Presentation

Dr. O. Ravi, Controller of Examinations, Madurai Kamaraj University, Madurai - 21.

REAL LINE TOPOLOGY

January 23, 2020

Sets

A well defined collection of objects is called a set. The sets are denoted by capital Letters A, B, C, \ldots

- **(**) $\mathbb{N} = \{1, 2, 3, 4, ...\}$. This is called the set of Natural numbers.
- **2** $\mathbb{W} = \{0, 1, 2, 3, ...\}$. This is called the set of whole numbers.
- **3** $\mathbb{Z} = \{...-3, -2, -1, 0, 1, 2, 3, ...\}$. This is called the set of all integers.
- The set Q = { p/q : p, q ∈ Z and q ≠ 0 } is called the set of all rational numbers.

- The set Q* of all those numbers which when expressed in decimal form are expressible neither interminating decimal nor in repeating decimals, is called the set of irrational numbers.
- (a) The totality of rationals and irrationals forms the set $\mathbb R$ of all real numbers.

•
$$X = \{a, b, c\}.$$

Finite and Infinite sets

A set in which the process of counting of elements surely comes to an end is called a finite set.

A set which is not finite is called an infinite set.

- In the above examples, 7 is called finite.
- **2** In the above examples, 1 to 6 are called infinite.

Empty set

A set consisting of no element at all is called an empty set and it is denoted by $\phi.$

Subsets

Let A and B be two sets such that each element of A is also contained in B. Then A is called a subset of set B and we write, $A \subseteq B$.

- $\mathbb{N} \subseteq \mathbb{W} \subseteq \mathbb{Z}.$

- The empty set is a subset of every set.

Union of sets

The union of two sets A and B denoted by $A \cup B$ is the set consisting of all those elements each one of which is contained either in A or in B or in both A and B.

Thus, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

Example $\mathbb{O} \ \mathbb{N} \cup \mathbb{W} = \mathbb{W}.$ $\mathbb{Q} \cup \mathbb{Q}^* = \mathbb{R}.$

Intersection of sets

The intersection of two sets A and B denoted by $A \cap B$ is the set consisting of all those elements which are common to both A and B. Thus $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Ordered pair

An ordered pair is a pair of entries made in a specify order, separated by a comma and enclosed within parentheses.

Example	
(1,2)	

Topology

Let X be a non-empty set. A class ${\cal T}$ of subsets of X is a topology on X iff ${\cal T}$ satisfies the following axioms.

- **()** X and ϕ belong to \mathcal{T} .
- 2) The union of any number of sets in \mathcal{T} belongs to \mathcal{T} .
- ${f 0}$ The intersection of any two sets in ${\cal T}$ belongs to ${\cal T}.$

The members of \mathcal{T} are called open sets and the pair (X, \mathcal{T}) is called a topological space.

Types of functions

- Onto function or surjection: A function f : A → B is called a surjection or an onto function if each element in B has a pre-image in A. (or) f(A) = B.
- One-one function or injection: A function f : A → B is called an injection or a one-one function if distinct elements in A have distinct images in B. i.e. an element in B has at most one pre-image in A. Symbolically the function f is one-one if f(x) = f(x') ⇒ x = x' (x and x' ∈ A).
- One-one and onto function or bijection: A function f : A → B which is both one-one and onto is called a bijection.
- Identity function: The function f : A → A defined as f(x) = x, ∀ x ∈ A is called the identity function on A. Obviously the identity function is a bijection.

Let $A = \{a, b, c\}$ and $B = \{x, y, z, w\}$. Define $f : A \rightarrow B$ by f(a) = z and f(c) = x. Then f is not a function.

Example

Let $A = \{a, b, c\}$ and $B = \{x, y, z, w\}$. Define $f : A \rightarrow B$ by f(a) = y; f(b) = x and f(c) = w. Then f is a one-one function.

Example

Let $A = \{1, 3, 5\}$ and $B = \{3, 9, 15\}$. Define $f : A \rightarrow B$ by f(x) = 3x for all $x \in A$. Then f is a one-one onto function.

Two sets A and B are said to be equivalent if there exists a bijection f from A to B.

Definition

A set A is said to be countably infinite if A is equivalent to the set \mathbb{N} of natural numbers.

- Since N is equivalent to N, the set N of natural numbers is countable.
- 2, 4, 6, ..., 2n, ...} is countably infinite.
- **(3)** The set \mathbb{Z} of integers is countably infinite.
- The set $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\}$ is countably infinite.

A set A is said to be countable if it is finite or countably infinite.

- {2, 4, 6, ..., 2n, ...} is countable.
- 2) The set \mathbb{Z} of integers is countable.
- **3** The set $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...\}$ is countable.
- **(**) The set \mathbb{Q}^+ of positive rational numbers is countable.
- **(**) The set \mathbb{Q} of rational numbers is countable.
- The set $\{0, 1, \frac{1}{2}, \frac{1}{3}, ...\}$ is countable.

A set which is not countable is called uncountable.

- (0, 1] is uncountable.
- 2) The set \mathbb{R} of real numbers is uncountable.
- **(**) The set \mathbb{Q}^* of irrational numbers is uncountable.
- Any interval in \mathbb{R} which contains more than one point is uncountable.

Let A be a subset of a space X, a point p in X is called a condensation point of A if for each open set U containing p, $U \cap A$ is uncountable.

Note: A countable subset A has no condensation points. τ_u denotes the usual topology on \mathbb{R} .

- In (\mathbb{R}, τ_u) , \mathbb{N} , the set of natural numbers, have no condensation points.
- **2** In (\mathbb{R}, τ_u) , \mathbb{Q} , the set of rational numbers, have no condensation points.

A subset A is called ω -open if for each $x \in A$, there exists an open set U containing x such that U - A is countable.

Note: In (X, τ), if A is open, then A is ω -open.

Example

The set \mathbb{Q}^* of irrational numbers in the real line space with the usual topology is ω -open but not open.