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About the Tutorial 

A compiler translates the codes written in one language to some other language without 
changing the meaning of the program. It is also expected that a compiler should make the 
target code efficient and optimized in terms of time and space. 

Compiler design principles provide an in-depth view of translation and optimization process. 
Compiler design covers basic translation mechanisms and error detection & recovery. It 
includes lexical, syntax, and semantic analysis as front end, and code generation and 
optimization as back-end. 

Audience 

This tutorial is designed for students interested in learning the basic principles of compilers. 
Enthusiastic readers who would like to know more about compilers and those who wish to 
design a compiler themselves may start from here. 

Prerequisites 

This tutorial requires no prior knowledge of compiler design but requires a basic 
understanding of at least one programming language such as C, Java, etc. It would be an 
additional advantage if you have had prior exposure to Assembly Programming.  

Copyright & Disclaimer 

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 
Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 
any contents or a part of contents of this e-book in any manner without written consent of 
the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 
website or its contents including this tutorial. If you discover any errors on our website or in 
this tutorial, please notify us at contact@tutorialspoint.com 
 
 
 
 

mailto:contact@tutorialspoint.com
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Computers are a balanced mix of software and hardware. Hardware is just a piece of 
mechanical device and its functions are being controlled by a compatible software. Hardware 
understands instructions in the form of electronic charge, which is the counterpart of binary 
language in software programming. Binary language has only two alphabets, 0 and 1. To 
instruct, the hardware codes must be written in binary format, which is simply a series of 1s 
and 0s. It would be a difficult and cumbersome task for computer programmers to write such 
codes, which is why we have compilers to write such codes. 

Language Processing System 

We have learnt that any computer system is made of hardware and software. The hardware 
understands a language, which humans cannot understand. So we write programs in high-
level language, which is easier for us to understand and remember. These programs are then 
fed into a series of tools and OS components to get the desired code that can be used by the 
machine. This is known as Language Processing System. 

 

1. OVERVIEW 
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The high-level language is converted into binary language in various phases. A compiler is 
a program that converts high-level language to assembly language. Similarly, 
an assembler is a program that converts the assembly language to machine-level language. 
Let us first understand how a program, using C compiler, is executed on a host machine. 

 User writes a program in C language (high-level language). 

 The C compiler compiles the program and translates it to assembly program (low-
level language). 

 An assembler then translates the assembly program into machine code (object). 

 A linker tool is used to link all the parts of the program together for execution 
(executable machine code). 

 A loader loads all of them into memory and then the program is executed. 

Before diving straight into the concepts of compilers, we should understand a few other tools 
that work closely with compilers. 

Preprocessor 

A preprocessor, generally considered as a part of compiler, is a tool that produces input for 
compilers. It deals with macro-processing, augmentation, file inclusion, language extension, 
etc. 

Interpreter 

An interpreter, like a compiler, translates high-level language into low-level machine 
language. The difference lies in the way they read the source code or input. A compiler reads 
the whole source code at once, creates tokens, checks semantics, generates intermediate 
code, executes the whole program and may involve many passes. In contrast, an interpreter 
reads a statement from the input, converts it to an intermediate code, executes it, then takes 
the next statement in sequence. If an error occurs, an interpreter stops execution and reports 
it; whereas a compiler reads the whole program even if it encounters several errors. 

Assembler 

An assembler translates assembly language programs into machine code. The output of an 
assembler is called an object file, which contains a combination of machine instructions as 
well as the data required to place these instructions in memory. 

Linker 

Linker is a computer program that links and merges various object files together in order to 
make an executable file. All these files might have been compiled by separate assemblers. 
The major task of a linker is to search and locate referenced module/routines in a program 
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and to determine the memory location where these codes will be loaded, making the 
program instruction to have absolute references. 

Loader 

Loader is a part of operating system and is responsible for loading executable files into 
memory and execute them. It calculates the size of a program (instructions and data) and 
creates memory space for it. It initializes various registers to initiate execution. 

Cross-compiler 

A compiler that runs on platform (A) and is capable of generating executable code for 
platform (B) is called a cross-compiler. 

Source-to-source Compiler 

A compiler that takes the source code of one programming language and translates it into 
the source code of another programming language is called a source-to-source compiler. 
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A compiler can broadly be divided into two phases based on the way they compile. 

Analysis Phase 

Known as the front-end of the compiler, the analysis phase of the compiler reads the source 
program, divides it into core parts, and then checks for lexical, grammar, and syntax errors. 
The analysis phase generates an intermediate representation of the source program and 
symbol table, which should be fed to the Synthesis phase as input. 

 

Synthesis Phase 

Known as the back-end of the compiler, the synthesis phase generates the target program 
with the help of intermediate source code representation and symbol table. 

A compiler can have many phases and passes. 

 Pass : A pass refers to the traversal of a compiler through the entire program. 

 Phase : A phase of a compiler is a distinguishable stage, which takes input from the 
previous stage, processes and yields output that can be used as input for the next 
stage. A pass can have more than one phase. 

2. COMPILER ARCHITECTURE 
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The compilation process is a sequence of various phases. Each phase takes input from its 
previous stage, has its own representation of source program, and feeds its output to the 
next phase of the compiler. Let us understand the phases of a compiler. 

 

3. PHASES OF COMPILER 
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Lexical Analysis 

The first phase of scanner works as a text scanner. This phase scans the source code as a 
stream of characters and converts it into meaningful lexemes. Lexical analyzer represents 
these lexemes in the form of tokens as: 

<token-name, attribute-value> 

Syntax Analysis 

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical 
analysis as input and generates a parse tree (or syntax tree). In this phase, token 
arrangements are checked against the source code grammar, i.e., the parser checks if the 
expression made by the tokens is syntactically correct. 

Semantic Analysis 

Semantic analysis checks whether the parse tree constructed follows the rules of language. 
For example, assignment of values is between compatible data types, and adding string to an 
integer. Also, the semantic analyzer keeps track of identifiers, their types and expressions; 
whether identifiers are declared before use or not, etc. The semantic analyzer produces an 
annotated syntax tree as an output. 

Intermediate Code Generation 

After semantic analysis, the compiler generates an intermediate code of the source code for 
the target machine. It represents a program for some abstract machine. It is in between the 
high-level language and the machine language. This intermediate code should be generated 
in such a way that it makes it easier to be translated into the target machine code. 

Code Optimization 

The next phase does code optimization of the intermediate code. Optimization can be 
assumed as something that removes unnecessary code lines, and arranges the sequence of 
statements in order to speed up the program execution without wasting resources (CPU, 
memory). 

Code Generation 

In this phase, the code generator takes the optimized representation of the intermediate 
code and maps it to the target machine language. The code generator translates the 
intermediate code into a sequence of (generally) re-locatable machine code. Sequence of 
instructions of machine code performs the task as the intermediate code would do. 
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Symbol Table 

It is a data-structure maintained throughout all the phases of a compiler. All the identifiers’ 
names along with their types are stored here. The symbol table makes it easier for the 
compiler to quickly search the identifier record and retrieve it. The symbol table is also used 
for scope management. 
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Lexical analysis is the first phase of a compiler. It takes the modified source code from 
language preprocessors that are written in the form of sentences. The lexical analyzer breaks 
these syntaxes into a series of tokens, by removing any whitespace or comments in the 
source code. 

If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer works 
closely with the syntax analyzer. It reads character streams from the source code, checks for 
legal tokens, and passes the data to the syntax analyzer when it demands. 

 

Tokens 

Lexemes are said to be a sequence of characters (alphanumeric) in a token. There are some 
predefined rules for every lexeme to be identified as a valid token. These rules are defined 
by grammar rules, by means of a pattern. A pattern explains what can be a token, and these 
patterns are defined by means of regular expressions. 

In programming language, keywords, constants, identifiers, strings, numbers, operators, and 
punctuations symbols can be considered as tokens. 

For example, in C language, the variable declaration line 

int value = 100; 

contains the tokens: 

int (keyword), value (identifier), = (operator), 100 (constant) and ; 

(symbol). 

 

4. LEXICAL ANALYSIS 
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Specifications of Tokens 

Let us understand how the language theory undertakes the following terms: 

Alphabets 

Any finite set of symbols {0,1} is a set of binary alphabets, {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is 
a set of Hexadecimal alphabets, {a-z, A-Z} is a set of English language alphabets. 

Strings 

Any finite sequence of alphabets is called a string. Length of the string is the total number of 
occurrence of alphabets, e.g., the length of the string tutorialspoint is 14 and is denoted by 
|tutorialspoint| = 14. A string having no alphabets, i.e. a string of zero length is known as an 
empty string and is denoted by ε (epsilon). 

Special Symbols 

A typical high-level language contains the following symbols:- 
 

Arithmetic 
Symbols 

Addition(+), Subtraction(-), Modulo(%), Multiplication(*), 
Division(/) 

Punctuation Comma(,), Semicolon(;), Dot(.), Arrow(->) 

Assignment = 

Special Assignment +=, /=, *=, -= 

Comparison ==, !=, <, <=, >, >= 

Preprocessor # 
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Location Specifier & 

Logical &, &&, |, ||, ! 

Shift Operator >>, >>>, <<, <<< 

Language 

A language is considered as a finite set of strings over some finite set of alphabets. Computer 
languages are considered as finite sets, and mathematically set operations can be performed 
on them. Finite languages can be described by means of regular expressions. 



Compiler Design 

11 

 

The lexical analyzer needs to scan and identify only a finite set of valid string/token/lexeme 
that belong to the language in hand. It searches for the pattern defined by the language rules. 
Regular expressions have the capability to express finite languages by defining a pattern for 
finite strings of symbols. The grammar defined by regular expressions is known as regular 
grammar. The language defined by regular grammar is known as regular language. 

Regular expression is an important notation for specifying patterns. Each pattern matches a 
set of strings, so regular expressions serve as names for a set of strings. Programming 
language tokens can be described by regular languages. The specification of regular 
expressions is an example of a recursive definition. Regular languages are easy to understand 
and have efficient implementation. 

There are a number of algebraic laws that are obeyed by regular expressions, which can be 
used to manipulate regular expressions into equivalent forms. 

Operations 

The various operations on languages are: 

 Union of two languages L and M is written as 

L U M = {s | s is in L or s is in M} 

 Concatenation of two languages L and M is written as 

LM = {st | s is in L and t is in M} 

 The Kleene Closure of a language L is written as 

L* = Zero or more occurrence of language L. 

Notations 

If r and s are regular expressions denoting the languages L(r) and L(s), then 

 Union : (r)|(s) is a regular expression denoting L(r) U L(s) 

 Concatenation : (r)(s) is a regular expression denoting L(r)L(s) 

 Kleene closure : (r)* is a regular expression denoting (L(r))* 

 (r) is a regular expression denoting L(r) 

5. REGULAR EXPRESSIONS 
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Precedence and Associativity 

 *, concatenation (.), and | (pipe sign) are left associative 

 * has the highest precedence 

 Concatenation (.) has the second highest precedence. 

 | (pipe sign) has the lowest precedence of all. 

Representing valid tokens of a language in regular expression 

If x is a regular expression, then: 

 x* means zero or more occurrence of x. 

i.e., it can generate { e, x, xx, xxx, xxxx, … } 

 x+ means one or more occurrence of x. 

i.e., it can generate { x, xx, xxx, xxxx … } or x.x* 

 x? means at most one occurrence of x 

i.e., it can generate either {x} or {e}. 

[a-z] is all lower-case alphabets of English language. 

[A-Z] is all upper-case alphabets of English language. 

[0-9] is all natural digits used in mathematics. 

Representing occurrence of symbols using regular expressions 

letter = [a – z] or [A – Z] 
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9] 
sign = [ + | - ] 

Representing language tokens using regular expressions 

Decimal = (sign)?(digit)+ 
Identifier = (letter)(letter | digit)* 

The only problem left with the lexical analyzer is how to verify the validity of a regular 
expression used in specifying the patterns of keywords of a language. A well-accepted 
solution is to use finite automata for verification. 
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Finite automata is a state machine that takes a string of symbols as input and changes its 
state accordingly. Finite automata is a recognizer for regular expressions. When a regular 
expression string is fed into finite automata, it changes its state for each literal. If the input 
string is successfully processed and the automata reaches its final state, it is accepted, i.e., 
the string just fed was said to be a valid token of the language in hand. 

The mathematical model of finite automata consists of: 

 Finite set of states (Q) 

 Finite set of input symbols (Σ) 

 One Start state (q0) 

 Set of final states (qf) 

 Transition function (δ) 

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ), 

Q × Σ ➔ Q 

Finite Automata Construction 

Let L(r) be a regular language recognized by some finite automata (FA). 

 States : States of FA are represented by circles. State names are written inside 
circles. 

 Start state : The state from where the automata starts is known as the start state. 
Start state has an arrow pointed towards it. 

 Intermediate states : All intermediate states have at least two arrows; one pointing 
to and another pointing out from them. 

 Final state : If the input string is successfully parsed, the automata is expected to be 
in this state. Final state is represented by double circles. It may have any odd 
number of arrows pointing to it and even number of arrows pointing out from it. 
The number of odd arrows are one greater than even, i.e. odd = even+1. 

 Transition : The transition from one state to another state happens when a desired 
symbol in the input is found. Upon transition, automata can either move to the next 
state or stay in the same state. Movement from one state to another is shown as a 
directed arrow, where the arrows point to the destination state. If automata stays on 
the same state, an arrow pointing from a state to itself is drawn. 

6. FINITE AUTOMATA 
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Example : We assume FA accepts any three digit binary value ending in digit 1. FA = {Q(q0, 
qf), Σ(0,1), q0, qf, δ} 

 

Longest Match Rule 

When the lexical analyzer read the source-code, it scans the code letter by letter; and when 
it encounters a whitespace, operator symbol, or special symbols, it decides that a word is 
completed. 

For example: 

int intvalue; 

While scanning both lexemes till ‘int’, the lexical analyzer cannot determine whether it is a 
keyword int or the initials of identifier int value. 

The Longest Match Rule states that the lexeme scanned should be determined based on the 
longest match among all the tokens available. 

The lexical analyzer also follows rule priority where a reserved word, e.g., a keyword, of a 
language is given priority over user input. That is, if the lexical analyzer finds a lexeme that 
matches with any existing reserved word, it should generate an error. 
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Syntax analysis or parsing is the second phase of a compiler. In this chapter, we shall learn 
the basic concepts used in the construction of a parser. 

We have seen that a lexical analyzer can identify tokens with the help of regular expressions 
and pattern rules. But a lexical analyzer cannot check the syntax of a given sentence due to 
the limitations of the regular expressions. Regular expressions cannot check balancing 
tokens, such as parenthesis. Therefore, this phase uses context-free grammar (CFG), which 
is recognized by push-down automata. 

CFG, on the other hand, is a superset of Regular Grammar, as depicted below: 

 

It implies that every Regular Grammar is also context-free, but there exists some problems, 
which are beyond the scope of Regular Grammar. CFG is a helpful tool in describing the 
syntax of programming languages. 

Context-Free Grammar 

In this section, we will first see the definition of context-free grammar and introduce 
terminologies used in parsing technology. 

A context-free grammar has four components: 

 A set of non-terminals (V). Non-terminals are syntactic variables that denote sets 
of strings. The non-terminals define sets of strings that help define the language 
generated by the grammar. 

7. SYNTAX ANALYSIS 
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 A set of tokens, known as terminal symbols (Σ). Terminals are the basic symbols 
from which strings are formed. 

 A set of productions (P). The productions of a grammar specify the manner in 
which the terminals and non-terminals can be combined to form strings. Each 
production consists of a non-terminal called the left side of the production, an 
arrow, and a sequence of tokens and/or on- terminals, called the right side of the 
production. 

 One of the non-terminals is designated as the start symbol (S); from where the 
production begins. 

The strings are derived from the start symbol by repeatedly replacing a non-terminal 
(initially the start symbol) by the right side of a production, for that non-terminal. 

Example 

We take the problem of palindrome language, which cannot be described by means of 
Regular Expression. That is, L = { w | w = wR } is not a regular language. But it can be described 
by means of CFG, as illustrated below: 

G = ( V, Σ, P, S ) 

Where: 

V = { Q, Z, N } 

Σ = { 0, 1 } 

P = { Q → Z | Q → N | Q → ℇ | Z → 0Q0 | N → 1Q1 } 

S = { Q } 

This grammar describes palindrome language, such as: 1001, 11100111, 00100, 1010101, 
11111, etc. 

Syntax Analyzers 

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token 
streams. The parser analyzes the source code (token stream) against the production rules to 
detect any errors in the code. The output of this phase is a parse tree. 
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This way, the parser accomplishes two tasks, i.e., parsing the code, looking for errors, and 
generating a parse tree as the output of the phase. 

Parsers are expected to parse the whole code even if some errors exist in the program. 
Parsers use error recovering strategies, which we will learn later in this chapter. 

Derivation 

A derivation is basically a sequence of production rules, in order to get the input string. 
During parsing, we take two decisions for some sentential form of input: 

 Deciding the non-terminal which is to be replaced. 

 Deciding the production rule, by which, the non-terminal will be replaced. 

To decide which non-terminal to be replaced with production rule, we can have two options. 

Left-most Derivation 

If the sentential form of an input is scanned and replaced from left to right, it is called left-
most derivation. The sentential form derived by the left-most derivation is called the left-
sentential form. 

Right-most Derivation 

If we scan and replace the input with production rules, from right to left, it is known as right-
most derivation. The sentential form derived from the right-most derivation is called the 
right-sentential form. 

Example 

Production rules: 

E → E + E 

E → E * E 
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E → id  

Input string: id + id * id 

The left-most derivation is: 

E → E * E 

E → E + E * E 

E → id + E * E 

E → id + id * E 

E → id + id * id 

Notice that the left-most side non-terminal is always processed first. 

The right-most derivation is: 

E → E + E 

E → E + E * E 

E → E + E * id 

E → E + id * id 

E → id + id * id 

Parse Tree 

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are 
derived from the start symbol. The start symbol of the derivation becomes the root of the 
parse tree. Let us see this by an example from the last topic. 

We take the left-most derivation of a + b * c 

The left-most derivation is: 

E → E * E 

E → E + E * E 

E → id + E * E 

E → id + id * E 

E → id + id * id 
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Step 1: 

E → E * E 

 

Step 2: 

E → E + E * E 

 

Step 3: 

E → id + E * E 
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Step 4: 

E → id + id * E 

 

Step 5: 

E → id + id * id 

 

In a parse tree: 

 All leaf nodes are terminals. 

 All interior nodes are non-terminals. 

 In-order traversal gives original input string. 

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is 
traversed first, therefore the operator in that sub-tree gets precedence over the operator 
which is in the parent nodes. 
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Ambiguity 

A grammar G is said to be ambiguous if it has more than one parse tree (left or right 
derivation) for at least one string. 

Example 

E → E + E 

E → E – E 

E → id 

For the string id + id – id, the above grammar generates two parse trees: 

 

The language generated by an ambiguous grammar is said to be inherently ambiguous. 
Ambiguity in grammar is not good for a compiler construction. No method can detect and 
remove ambiguity automatically, but it can be removed by either re-writing the whole 
grammar without ambiguity, or by setting and following associativity and precedence 
constraints.  

Associativity 

If an operand has operators on both sides, the side on which the operator takes this operand 
is decided by the associativity of those operators. If the operation is left-associative, then the 
operand will be taken by the left operator; or if the operation is right-associative, the right 
operator will take the operand. 

Example 

Operations such as Addition, Multiplication, Subtraction, and Division are left associative. If 
the expression contains: 
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id op id op id 

it will be evaluated as: 

(id op id) op id 

For example, (id + id) + id 

Operations like Exponentiation are right associative, i.e., the order of evaluation in the same 
expression will be: 

id op (id op id) 

For example, id ^ (id ^ id) 

Precedence 

If two different operators share a common operand, the precedence of operators decides 
which will take the operand. That is, 2+3*4 can have two different parse trees, one 
corresponding to (2+3)*4 and another corresponding to 2+(3*4). By setting precedence 
among operators, this problem can be easily removed. As in the previous example, 
mathematically * (multiplication) has precedence over + (addition), so the expression 2+3*4 
will always be interpreted as: 

2 + (3 * 4) 

These methods decrease the chances of ambiguity in a language or its grammar. 

Left Recursion 

A grammar becomes left-recursive if it has any non-terminal ‘A’ whose derivation contains 
‘A’ itself as the left-most symbol. Left-recursive grammar is considered to be a problematic 
situation for top-down parsers. Top-down parsers start parsing from the Start symbol, which 
in itself is non-terminal. So, when the parser encounters the same non-terminal in its 
derivation, it becomes hard for it to judge when to stop parsing the left non-terminal and it 
goes into an infinite loop. 

Example: 

(1) A => Aα | β 

 

(2) S => Aα | β  

    A => Sd  
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(1) is an example of immediate left recursion, where A is any non-terminal symbol and α 
represents a string of non-terminals. 

(2) is an example of indirect-left recursion. 

A top-down parser will first parse A, which in-turn will yield a string consisting of A itself 
and the parser may go into a loop forever. 

Removal of Left Recursion 

One way to remove left recursion is to use the following technique: 

The production 

A => Aα | β 

is converted into following productions 

A => βA' 

A' => αA' | ε 

This does not impact the strings derived from the grammar, but it removes immediate left 
recursion. 

Second method is to use the following algorithm, which should eliminate all direct and 
indirect left recursions. 

Algorithm 

START 

Arrange non-terminals in some order like A1, A2, A3,…, An 

for each i from 1 to n 
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{ 

for each j from 1 to i-1 

 { 

 replace each production of form Ai⟹Aj𝜸 

 with Ai ⟹ δ1𝜸  | δ2𝜸 | δ3𝜸 |…| 𝜸  

 where Aj ⟹ δ1 | δ2|…| δn  are current Aj productions 

 } 

} 

eliminate immediate left-recursion 

END 

Example 

The production set 

S => Aα | β 

A => Sd 

after applying the above algorithm, should become 

S => Aα | β  

A => Aαd | βd 

and then, remove immediate left recursion using the first technique. 

A => βdA' 

A' => αdA' | ε 

Now none of the production has either direct or indirect left recursion. 

Left Factoring 

If more than one grammar production rules has a common prefix string, then the top-down 
parser cannot make a choice as to which of the production it should take to parse the string 
in hand. 

Example 

If a top-down parser encounters a production like 

A ⟹ αβ | α𝜸 | … 
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Then it cannot determine which production to follow to parse the string, as both productions 
are starting from the same terminal (or non-terminal). To remove this confusion, we use a 
technique called left factoring. 

Left factoring transforms the grammar to make it useful for top-down parsers. In this 
technique, we make one production for each common prefixes and the rest of the derivation 
is added by new productions. 

Example 

The above productions can be written as 

A => αA’ 

A’=> β | 𝜸 | …  

Now the parser has only one production per prefix which makes it easier to take decisions. 

First and Follow Sets 

An important part of parser table construction is to create first and follow sets. These sets 
can provide the actual position of any terminal in the derivation. This is done to create the 
parsing table where the decision of replacing T[A, t] = α with some production rule. 

First Set 

This set is created to know what terminal symbol is derived in the first position by a non-
terminal. For example, 

α → t β 

That is, α derives t (terminal) in the very first position. So, t ∈ FIRST(α). 

Algorithm for Calculating First Set 

Look at the definition of FIRST(α) set: 

 if α is a terminal, then FIRST(α) = { α }. 

 if α is a non-terminal and α → ℇ is a production, then FIRST(α) = { ℇ }. 

 if α is a non-terminal and α → 𝜸1 𝜸2 𝜸3 … 𝜸n and any FIRST(𝜸) contains t, then t is 
in FIRST(α). 

First set can be seen as: FIRST(α) = { t | α →* t β } ∪ { ℇ | α →* ε} 
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Follow Set 

Likewise, we calculate what terminal symbol immediately follows a non-terminal α in 
production rules. We do not consider what the non-terminal can generate but instead, we 
see what would be the next terminal symbol that follows the productions of a non-terminal. 

Algorithm for Calculating Follow Set: 

 if α is a start symbol, then FOLLOW() = $ 

 if α is a non-terminal and has a production α → AB, then FIRST(B) is in FOLLOW(A) 
except ℇ. 

 if α is a non-terminal and has a production α → AB, where B ℇ, then FOLLOW(A) is in 
FOLLOW(α). 

Follow set can be seen as: FOLLOW(α) = { t | S *αt*} 

Limitations of Syntax Analyzers 

Syntax analyzers receive their inputs, in the form of tokens, from lexical analyzers. Lexical 
analyzers are responsible for the validity of a token supplied by the syntax analyzer. Syntax 
analyzers have the following drawbacks: 

 it cannot determine if a token is valid, 

 it cannot determine if a token is declared before it is being used, 

 it cannot determine if a token is initialized before it is being used, 

 it cannot determine if an operation performed on a token type is valid or not. 

These tasks are accomplished by the semantic analyzer, which we shall study in Semantic 
Analysis. 
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Syntax analyzers follow production rules defined by means of context-free grammar. The 
way the production rules are implemented (derivation) divides parsing into two types : top-
down parsing and bottom-up parsing. 

 

 

Top-down Parsing 

When the parser starts constructing the parse tree from the start symbol and then tries to 
transform the start symbol to the input, it is called top-down parsing. 

 Recursive descent parsing : It is a common form of top-down parsing. It is called 
recursive, as it uses recursive procedures to process the input. Recursive descent 
parsing suffers from backtracking. 

 Backtracking : It means, if one derivation of a production fails, the syntax analyzer 
restarts the process using different rules of same production. This technique may 
process the input string more than once to determine the right production. 

Bottom-up Parsing 

As the name suggests, bottom-up parsing starts with the input symbols and tries to construct 
the parse tree up to the start symbol. 

Example: 

Input string : a + b * c 

Production rules: 

S → E 

E → E + T 

8. TYPES OF PARSING 
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E → E * T 

E → T 

T → id 

Let us start bottom-up parsing. 

a + b * c 

Read the input and check if any production matches with the input: 

a + b * c 

T + b * c 

E + b * c 

E + T * c 

E * c 

E * T 

E 

S 
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We have learnt in the last chapter that the top-down parsing technique parses the input, and 
starts constructing a parse tree from the root node gradually moving down to the leaf nodes. 
The types of top-down parsing are depicted below: 

 

Recursive Descent Parsing 

Recursive descent is a top-down parsing technique that constructs the parse tree from the 
top and the input is read from left to right. It uses procedures for every terminal and non-
terminal entity. This parsing technique recursively parses the input to make a parse tree, 
which may or may not require back-tracking. But the grammar associated with it (if not left 
factored) cannot avoid back-tracking. A form of recursive-descent parsing that does not 
require any back-tracking is known as predictive parsing. 

This parsing technique is regarded recursive, as it uses context-free grammar which is 
recursive in nature. 

9. TOP-DOWN PARSING 
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Back-tracking 

Top- down parsers start from the root node (start symbol) and match the input string against 
the production rules to replace them (if matched). To understand this, take the following 
example of CFG: 

S → rXd | rZd 

X → oa | ea 

Z → ai 

For an input string: read, a top-down parser, will behave like this: 

It will start with S from the production rules and will match its yield to the left-most letter of 
the input, i.e. ‘r’. The very production of S (S → rXd) matches with it. So the top-down parser 
advances to the next input letter (i.e. ‘e’). The parser tries to expand non-terminal ‘X’ and 
checks its production from the left (X → oa). It does not match with the next input symbol. 
So the top-down parser backtracks to obtain the next production rule of X, (X → ea). 

Now the parser matches all the input letters in an ordered manner. The string is accepted. 

 

 

 

 

Predictive Parser 

Predictive parser is a recursive descent parser, which has the capability to predict which 
production is to be used to replace the input string. The predictive parser does not suffer 
from backtracking. 

To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the 
next input symbols. To make the parser back-tracking free, the predictive parser puts some 
constraints on the grammar and accepts only a class of grammar known as LL(k) grammar. 
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Predictive parsing uses a stack and a parsing table to parse the input and generate a parse 
tree. Both the stack and the input contains an end symbol $ to denote that the stack is empty 
and the input is consumed. The parser refers to the parsing table to take any decision on the 
input and stack element combination. 

 

In recursive descent parsing, the parser may have more than one production to choose from 
for a single instance of input; whereas in predictive parser, each step has at most one 
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production to choose. There might be instances where there is no production matching the 
input string, making the parsing procedure to fail. 

LL Parser 

An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with 
some restrictions to get the simplified version, in order to achieve easy implementation. LL 
grammar can be implemented by means of both algorithms, namely, recursive-descent or 
table-driven. 

LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the 
second L in LL(k) stands for left-most derivation and k itself represents the number of look 
aheads. Generally k = 1, so LL(k) may also be written as LL(1). 

 

LL Parsing Algorithm 

We may stick to deterministic LL(1) for parser explanation, as the size of table grows 
exponentially with the value of k. Secondly, if a given grammar is not LL(1), then usually, it 
is not LL(k), for any given k. 

Given below is an algorithm for LL(1) Parsing: 

Input:  

string ω  

parsing table M for grammar G 

Output: 

   If ω is in L(G) then left-most derivation of ω, 

   error otherwise. 

 

Initial State : $S on stack (with S being start symbol) 

   ω$ in the input buffer 

 

SET ip to point the first symbol of ω$. 
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repeat 

let X be the top stack symbol and a the symbol pointed by ip. 

if X∈ Vt or $ 

if X = a 

   POP X and advance ip. 

 else 

   error() 

  endif 

else /* X is non-terminal */ 

   if M[X,a] = X → Y1, Y2,... Yk     

POP X 

PUSH Yk, Yk-1,... Y1 /* Y1 on top */ 

   Output the production X → Y1, Y2,... Yk  

   else 

   error() 

   endif 

 endif 

until X = $ /* empty stack */ 

A grammar G is LL(1) if A-> |  are two distinct productions of G: 

 for no terminal, both  and  derive strings beginning with a. 

 at most one of  and  can derive empty string. 

 if  -> t, then  does not derive any string beginning with a terminal in FOLLOW(A). 
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Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it 
reaches the root node. Here, we start from a sentence and then apply production rules in 
reverse manner in order to reach the start symbol. The image given below depicts the 
bottom-up parsers available. 

 

Shift-Reduce Parsing 

Shift-reduce parsing uses two unique steps for bottom-up parsing. These steps are known as 
shift-step and reduce-step. 

 Shift step: The shift step refers to the advancement of the input pointer to the next 
input symbol, which is called the shifted symbol. This symbol is pushed onto the 
stack. The shifted symbol is treated as a single node of the parse tree. 

 Reduce step : When the parser finds a complete grammar rule (RHS) and replaces it 
to (LHS), it is known as reduce-step. This occurs when the top of the stack contains a 
handle. To reduce, a POP function is performed on the stack which pops off the 
handle and replaces it with LHS non-terminal symbol. 

LR Parser 

The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class of 
context-free grammar which makes it the most efficient syntax analysis technique. LR 
parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the 

10. BOTTOM-UP PARSING 
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input stream; R stands for the construction of right-most derivation in reverse, and k denotes 
the number of lookahead symbols to make decisions. 

There are three widely used algorithms available for constructing an LR parser: 

 SLR(1) – Simple LR Parser: 

o Works on smallest class of grammar 

o Few number of states, hence very small table 

o Simple and fast construction 

 LR(1) – LR Parser: 

o Works on complete set of LR(1) Grammar 

o Generates large table and large number of states 

o Slow construction 

 LALR(1) – Look-Ahead LR Parser: 

o Works on intermediate size of grammar 

o Number of states are same as in SLR(1) 

LR Parsing Algorithm 

Here we describe a skeleton algorithm of an LR parser: 

token = next_token() 

repeat forever 

   s = top of stack 

   if action[s, token] = “shift si” then 

   PUSH token 

   PUSH si  

   token = next_token() 

else if action[s, tpken] = “reduce A::= β“ then  

   POP 2 * |β| symbols 

   s = top of stack 

   PUSH A 

 PUSH goto[s,A] 

else if action[s, token] = “accept” then 

 return 

 else 
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   error() 

LL vs. LR 

LL LR 

Does a leftmost derivation. Does a rightmost derivation in reverse. 

Starts with the root nonterminal on the 
stack. 

Ends with the root nonterminal on the stack. 

Ends when the stack is empty. Starts with an empty stack. 

Uses the stack for designating what is still 
to be expected. 

Uses the stack for designating what is 
already seen. 

Builds the parse tree top-down. Builds the parse tree bottom-up. 

Continuously pops a nonterminal off the 
stack, and pushes the corresponding right 
hand side. 

Tries to recognize a right hand side on the 
stack, pops it, and pushes the corresponding 
nonterminal. 

Expands the non-terminals. Reduces the non-terminals. 

Reads the terminals when it pops one off 
the stack. 

Reads the terminals while it pushes them on 
the stack. 

Pre-order traversal of the parse tree. Post-order traversal of the parse tree. 
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A parser should be able to detect and report any error in the program. It is expected that 
when an error is encountered, the parser should be able to handle it and carry on parsing 
the rest of the input. Mostly it is expected from the parser to check for errors but errors may 
be encountered at various stages of the compilation process. A program may have the 
following kinds of errors at various stages: 

 Lexical : name of some identifier typed incorrectly 

 Syntactical : missing semicolon or unbalanced parenthesis 

 Semantical : incompatible value assignment 

 Logical : code not reachable, infinite loop 

There are four common error-recovery strategies that can be implemented in the parser to 
deal with errors in the code. 

Panic Mode 

When a parser encounters an error anywhere in the statement, it ignores the rest of the 
statement by not processing input from erroneous input to delimiter, such as semi-colon. 
This is the easiest way of error-recovery and also, it prevents the parser from developing 
infinite loops. 

Statement Mode 

When a parser encounters an error, it tries to take corrective measures so that the rest of the 
inputs of the statement allow the parser to parse ahead. For example, inserting a missing 
semicolon, replacing comma with a semicolon, etc. Parser designers have to be careful here 
because one wrong correction may lead to an infinite loop. 

Error Productions 

Some common errors are known to the compiler designers that may occur in the code. In 
addition, the designers can create augmented grammar to be used, as productions that 
generate erroneous constructs when these errors are encountered. 

Global Correction 

The parser considers the program in hand as a whole and tries to figure out what the 
program is intended to do and tries to find out a closest match for it, which is error-free. 

11. ERROR RECOVERY 



Compiler Design 

38 

 

When an erroneous input (statement) X is fed, it creates a parse tree for some closest error-
free statement Y. This may allow the parser to make minimal changes in the source code, but 
due to the complexity (time and space) of this strategy, it has not been implemented in 
practice yet. 

Abstract Syntax Trees 

Parse tree representations are not easy to be parsed by the compiler, as they contain more 
details than actually needed. Take the following parse tree as an example: 

 

If watched closely, we find most of the leaf nodes are single child to their parent nodes. This 
information can be eliminated before feeding it to the next phase. By hiding extra 
information, we can obtain a tree as shown below: 
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Abstract tree can be represented as: 

 

ASTs are important data structures in a compiler with least unnecessary information. ASTs 
are more compact than a parse tree and can be easily used by a compiler. 
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We have learnt how a parser constructs parse trees in the syntax analysis phase. The plain 
parse-tree constructed in that phase is generally of no use for a compiler, as it does not carry 
any information of how to evaluate the tree. The productions of context-free grammar, which 
makes the rules of the language, do not accommodate how to interpret them. 

For example: 

E → E + T 

The above CFG production has no semantic rule associated with it, and it cannot help in 
making any sense of the production. 

Semantics 

Semantics of a language provide meaning to its constructs, like tokens and syntax structure. 
Semantics help interpret symbols, their types, and their relations with each other. Semantic 
analysis judges whether the syntax structure constructed in the source program derives any 
meaning or not. 

CFG + semantic rules = Syntax Directed Definitions 

For example: 

int a = “value”; 

should not issue an error in lexical and syntax analysis phase, as it is lexically and structurally 
correct, but it should generate a semantic error as the type of the assignment differs. These 
rules are set by the grammar of the language and evaluated in semantic analysis. The 
following tasks should be performed in semantic analysis: 

 Scope resolution 

 Type checking 

 Array-bound checking 

 
 

12. SEMANTIC ANALYSIS 
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Semantic Errors 

We have mentioned some of the semantic errors that the semantic analyzer is expected to 
recognize: 

 Type mismatch 

 Undeclared variable 

 Reserved identifier misuse 

 Multiple declaration of variable in a scope 

 Accessing an out of scope variable 

 Actual and formal parameter mismatch 

Attribute Grammar 

Attribute grammar is a special form of context-free grammar where some additional 
information (attributes) are appended to one or more of its non-terminals in order to 
provide context-sensitive information. Each attribute has well-defined domain of values, 
such as integer, float, character, string, and expressions. 

Attribute grammar is a medium to provide semantics to the context-free grammar and it can 
help specify the syntax and semantics of a programming language. Attribute grammar (when 
viewed as a parse-tree) can pass values or information among the nodes of a tree. 

Example: 

E → E + T { E.value = E.value + T.value } 

The right part of the CFG contains the semantic rules that specify how the grammar should 
be interpreted. Here, the values of non-terminals E and T are added together and the result 
is copied to the non-terminal E. 

Semantic attributes may be assigned to their values from their domain at the time of parsing 
and evaluated at the time of assignment or conditions. Based on the way the attributes get 
their values, they can be broadly divided into two categories : synthesized attributes and 
inherited attributes. 

Synthesized Attributes 

These attributes get values from the attribute values of their child nodes. To illustrate, 
assume the following production: 

S → ABC 

If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized attribute, 
as the values of ABC are synthesized to S. 
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As in our previous example (E → E + T), the parent node E gets its value from its child node. 
Synthesized attributes never take values from their parent nodes or any sibling nodes. 

Inherited Attributes 

In contrast to synthesized attributes, inherited attributes can take values from parent and/or 
siblings. As in the following production, 

S → ABC 

A can get values from S, B, and C. B can take values from S, A, and C. Likewise, C can take 
values from S, A, and B. 

Expansion : When a non-terminal is expanded to terminals as per a grammatical rule. 

 

Reduction : When a terminal is reduced to its corresponding non-terminal according to 
grammar rules. Syntax trees are parsed top-down and left to right. Whenever reduction 
occurs, we apply its corresponding semantic rules (actions). 

Semantic analysis uses Syntax Directed Translations to perform the above tasks. 

Semantic analyzer receives AST (Abstract Syntax Tree) from its previous stage (syntax 
analysis). 

Semantic analyzer attaches attribute information with AST, which are called Attributed AST. 

Attributes are two tuple value, <attribute name, attribute value> 

For example: 

int value  = 5; 

<type, “integer”> 

<presentvalue, “5”> 

For every production, we attach a semantic rule. 
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S-attributed SDT 

If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These attributes 
are evaluated using S-attributed SDTs that have their semantic actions written after the 
production (right hand side). 

 

As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing, as the 
values of the parent nodes depend upon the values of the child nodes. 

L-attributed SDT 

This form of SDT uses both synthesized and inherited attributes with restriction of not taking 
values from right siblings. 

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling nodes. 
As in the following production, 

S → ABC 

S can take values from A, B, and C (synthesized). A can take values from S only. B can take 
values from S and A. C can get values from S, A, and B. No non-terminal can get values from 
the sibling to its right. 

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner. 
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We may conclude that if a definition is S-attributed, then it is also L-attributed, as L-
attributed definition encloses S-attributed definitions. 
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A program as a source code is merely a collection of text (code, statements, etc.) and to make 
it alive, it requires actions to be performed on the target machine. A program needs memory 
resources to execute instructions. A program contains names for procedures, identifiers, etc., 
that require mapping with the actual memory location at runtime. 

By runtime, we mean a program in execution. Runtime environment is a state of the target 
machine, which may include software libraries, environment variables, etc., to provide 
services to the processes running in the system. 

Runtime support system is a package, mostly generated with the executable program itself 
and facilitates the process communication between the process and the runtime 
environment. It takes care of memory allocation and de-allocation while the program is 
being executed. 

Activation Trees 

A program is a sequence of instructions combined into a number of procedures. Instructions 
in a procedure are executed sequentially. A procedure has a start and an end delimiter and 
everything inside it is called the body of the procedure. The procedure identifier and the 
sequence of finite instructions inside it make up the body of the procedure. 

The execution of a procedure is called its activation. An activation record contains all the 
necessary information required to call a procedure. An activation record may contain the 
following units (depending upon the source language used). 

Temporaries Stores temporary and intermediate values of an expression. 

Local Data Stores local data of the called procedure. 

Machine Status Stores machine status such as Registers, Program Counter, etc., 
before the procedure is called. 

Control Link Stores the address of activation record of the caller procedure. 

13. RUNTIME ENVIRONMENT 
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Access Link Stores the information of data which is outside the local scope. 

Actual Parameters Stores actual parameters, i.e., parameters which are used to send 
input to the called procedure. 

Return Value Stores return values. 

Whenever a procedure is executed, its activation record is stored on the stack, also known 
as control stack. When a procedure calls another procedure, the execution of the caller is 
suspended until the called procedure finishes execution. At this time, the activation record 
of the called procedure is stored on the stack. 

We assume that the program control flows in a sequential manner and when a procedure is 
called, its control is transferred to the called procedure. When a called procedure is executed, 
it returns the control back to the caller. This type of control flow makes it easier to represent 
a series of activations in the form of a tree, known as the activation tree. 

To understand this concept, we take a piece of code as an example: 

. . . 

printf(“Enter Your Name: “); 

scanf(“%s”, username); 

show_data(username); 

printf(“Press any key to continue…”); 

. . . 

int show_data(char *user) 

   { 

   printf(“Your name is %s”, username); 

   return 0; 

   } 

. . .  
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Given below is the activation tree of the code: 

 

Now we understand that procedures are executed in depth-first manner, thus stack 
allocation is the best suitable form of storage for procedure activations. 

Storage Allocation 

Runtime environment manages runtime memory requirements for the following entities: 

 Code : It is known as the text part of a program that does not change at runtime. Its 
memory requirements are known at the compile time. 

 Procedures : Their text part is static but they are called in a random manner. That 
is why, stack storage is used to manage procedure calls and activations. 

 Variables : Variables are known at the runtime only, unless they are global or 
constant. Heap memory allocation scheme is used for managing allocation and de-
allocation of memory for variables in runtime. 

Static Allocation 

In this allocation scheme, the compilation data is bound to a fixed location in the memory 
and it does not change when the program executes. As the memory requirement and storage 
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locations are known in advance, runtime support package for memory allocation and de-
allocation is not required. 

Stack Allocation 

Procedure calls and their activations are managed by means of stack memory allocation. It 
works in last-in-first-out (LIFO) method and this allocation strategy is very useful for 
recursive procedure calls. 

Heap Allocation 

Variables local to a procedure are allocated and de-allocated only at runtime. Heap allocation 
is used to dynamically allocate memory to the variables and claim it back when the variables 
are no more required. 

Except statically allocated memory area, both stack and heap memory can grow and shrink 
dynamically and unexpectedly. Therefore, they cannot be provided with a fixed amount of 
memory in the system. 
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As shown in the image above, the text part of the code is allocated a fixed amount of memory. 
Stack and heap memory are arranged at the extremes of total memory allocated to the 
program. Both shrink and grow against each other. 

Parameter Passing 

The communication medium among procedures is known as parameter passing. The values 
of the variables from a calling procedure are transferred to the called procedure by some 
mechanism. Before moving ahead, first go through some basic terminologies pertaining to 
the values in a program. 

r-value 

The value of an expression is called its r-value. The value contained in a single variable also 
becomes an r-value if it appears on the right-hand side of the assignment operator. r-values 
can always be assigned to some other variable. 

l-value 

The location of memory (address) where an expression is stored is known as the l-value of 
that expression. It always appears at the left hand side of an assignment operator. 

For example: 

day = 1; 

week = day * 7; 

month = 1; 

year = month * 12; 

From this example, we understand that constant values like 1, 7, 12, and variables like day, 
week, month, and year, all have r-values. Only variables have l-values, as they also represent 
the memory location assigned to them. 

For example: 

7 = x + y; 

is an l-value error, as the constant 7 does not represent any memory location. 

Formal Parameters 

Variables that take the information passed by the caller procedure are called formal 
parameters. These variables are declared in the definition of the called function. 
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Actual Parameters 

Variables whose values or addresses are being passed to the called procedure are called 
actual parameters. These variables are specified in the function call as arguments. 

Example: 

fun_one() 

{ 

   int actual_parameter = 10; 

   call fun_two(int actual_parameter); 

} 

   fun_two(int formal_parameter) 

{ 

   print formal_parameter; 

} 

Formal parameters hold the information of the actual parameter, depending upon the 
parameter passing technique used. It may be a value or an address. 

Pass by Value 

In pass by value mechanism, the calling procedure passes the r-value of actual parameters 
and the compiler puts that into the called procedure’s activation record. Formal parameters 
then hold the values passed by the calling procedure. If the values held by the formal 
parameters are changed, it should have no impact on the actual parameters. 

Pass by Reference 

In pass by reference mechanism, the l-value of the actual parameter is copied to the 
activation record of the called procedure. This way, the called procedure now has the address 
(memory location) of the actual parameter and the formal parameter refers to the same 
memory location. Therefore, if the value pointed by the formal parameter is changed, the 
impact should be seen on the actual parameter, as they should also point to the same value. 

Pass by Copy-restore 

This parameter passing mechanism works similar to ‘pass-by-reference’ except that the 
changes to actual parameters are made when the called procedure ends. Upon function call, 
the values of actual parameters are copied in the activation record of the called procedure. 
Formal parameters, if manipulated, have no real-time effect on actual parameters (as l-
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values are passed), but when the called procedure ends, the l-values of formal parameters 
are copied to the l-values of actual parameters. 

Example: 

int y;  

calling_procedure()  

{ 

   y = 10;      

   copy_restore(y); //l-value of y is passed 

   printf y; //prints 99  

} 

copy_restore(int x)  

{      

   x = 99; // y still has value 10 (unaffected) 

   y = 0; // y is now 0  

} 

When this function ends, the l-value of formal parameter x is copied to the actual parameter 
y. Even if the value of y is changed before the procedure ends, the l-value of x is copied to the 
l-value of y, making it behave like call by reference. 

Pass by Name 

Languages like Algol provide a new kind of parameter passing mechanism that works like 
preprocessor in C language. In pass by name mechanism, the name of the procedure being 
called is replaced by its actual body. Pass-by-name textually substitutes the argument 
expressions in a procedure call for the corresponding parameters in the body of the 
procedure so that it can now work on actual parameters, much like pass-by-reference. 
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Symbol table is an important data structure created and maintained by compilers in order 
to store information about the occurrence of various entities such as variable names, 
function names, objects, classes, interfaces, etc. Symbol table is used by both the analysis and 
the synthesis parts of a compiler. 

A symbol table may serve the following purposes depending upon the language in hand: 

 To store the names of all entities in a structured form at one place. 

 To verify if a variable has been declared. 

 To implement type checking, by verifying assignments and expressions in the 
source code are semantically correct. 

 To determine the scope of a name (scope resolution). 

A symbol table is simply a table which can be either linear or a hash table. It maintains an 
entry for each name in the following format: 

<symbol name,  type,  attribute> 

For example, if a symbol table has to store information about the following variable 
declaration: 

static int interest; 

then it should store the entry such as: 

<interest, int, static> 

The attribute clause contains the entries related to the name. 

Implementation 

If a compiler is to handle a small amount of data, then the symbol table can be implemented 
as an unordered list, which is easy to code, but it is only suitable for small tables only. A 
symbol table can be implemented in one of the following ways: 

 Linear (sorted or unsorted) list 

 Binary Search Tree 

 Hash table 

14. SYMBOL TABLE 
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Among all, symbol tables are mostly implemented as hash tables, where the source code 
symbol itself is treated as a key for the hash function and the return value is the information 
about the symbol. 

Operations 

A symbol table, either linear or hash, should provide the following operations. 

insert() 

This operation is more frequently used by analysis phase, i.e., the first half of the compiler 
where tokens are identified and names are stored in the table. This operation is used to add 
information in the symbol table about unique names occurring in the source code. The 
format or structure in which the names are stored depends upon the compiler in hand. 

An attribute for a symbol in the source code is the information associated with that symbol. 
This information contains the value, state, scope, and type about the symbol. The insert() 
function takes the symbol and its attributes as arguments and stores the information in the 
symbol table. 

For example: 

int a; 

should be processed by the compiler as: 

insert(a, int); 

lookup() 

lookup() operation is used to search a name in the symbol table to determine: 

 if the symbol exists in the table. 

 if it is declared before it is being used. 

 if the name is used in the scope. 

 if the symbol is initialized. 

 if the symbol declared multiple times. 

The format of lookup() function varies according to the programming language. The basic 
format should match the following: 

lookup(symbol) 

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol 
exists in the symbol table, it returns its attributes stored in the table. 
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Scope Management 

A compiler maintains two types of symbol tables: a global symbol table which can be 
accessed by all the procedures and scope symbol tables that are created for each scope in 
the program. 

To determine the scope of a name, symbol tables are arranged in hierarchical structure as 
shown in the example below: 

. . .  

int value=10; 

 

void pro_one() 

   { 

   int one_1; 

   int one_2; 

    

      {              \ 

      int one_3;      |_  inner scope 1  

      int one_4;      |  

      }              / 

       

   int one_5;  

    

      {              \    

      int one_6;      |_  inner scope 2 

      int one_7;      | 

      }              / 

   } 

    

void pro_two() 

   { 

   int two_1; 

   int two_2; 
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      {              \ 

      int two_3;      |_  inner scope 3 

      int two_4;      | 

      }              / 

       

   int two_5; 

   } 

. . .  

The above program can be represented in a hierarchical structure of symbol tables: 

 

The global symbol table contains names for one global variable (int value) and two 
procedure names, which should be available to all the child nodes shown above. The names 
mentioned in the pro_one symbol table (and all its child tables) are not available for pro_two 
symbols and its child tables. 

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever 
a name needs to be searched in a symbol table, it is searched using the following algorithm: 

1. first a symbol will be searched in the current scope, i.e., current symbol table, 

2. if a name is found, then search is completed, else it will be searched in the parent 
symbol table until, 

3. either the name is found or the global symbol table has been searched for the name. 
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A source code can directly be translated into its target machine code, then why at all we need 
to translate the source code into an intermediate code which is then translated to its target 
code? Let us see the reasons why we need an intermediate code. 

 

 If a compiler translates the source language to its target machine language without 
having the option for generating intermediate code, then for each new machine, a 
full native compiler is required. 

 Intermediate code eliminates the need of a new full compiler for every unique 
machine by keeping the analysis portion same for all the compilers. 

 The second part of compiler, synthesis, is changed according to the target machine. 

 It becomes easier to apply the source code modifications to improve code 
performance by applying code optimization techniques on the intermediate code. 

Intermediate Representation 

Intermediate codes can be represented in a variety of ways and they have their own benefits. 

 High Level IR - High-level intermediate code representation is very close to the 
source language itself. They can be easily generated from the source code and we 
can easily apply code modifications to enhance performance. But for target machine 
optimization, it is less preferred. 

 Low Level IR - This one is close to the target machine, which makes it suitable for 
register and memory allocation, instruction set selection, etc. It is good for machine-
dependent optimizations. 

Intermediate code can be either language-specific (e.g., Byte Code for Java) or language-
independent (three-address code). 

15. INTERMEDIATE CODE GENERATION 
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Three-Address Code 

Intermediate code generator receives input from its predecessor phase, semantic analyzer, 
in the form of an annotated syntax tree. That syntax tree then can be converted into a linear 
representation, e.g., postfix notation. Intermediate code tends to be machine-independent 
code. Therefore, code generator assumes to have unlimited number of memory storage 
(register) to generate code. 

For example: 

a = b + c * d; 

The intermediate code generator will try to divide this expression into sub-expressions and 
then generate the corresponding code. 

r1 = c * d; 

r2 = b + r1;  

r3 = r2 + r1; 

a = r3 

r being used as registers in the target program. 

A three-address code has at most three address locations to calculate the expression. A three-
address code can be represented in two forms : quadruples and triples. 

Quadruples 

Each instruction in quadruples presentation is divided into four fields: operator, arg1, arg2, 
and result. The above example is represented below in quadruples format: 

Op arg1 arg2 result 

* c D r1 

+ b r1 r2 

+ r2 r1 r3 
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= r3  a 

Triples 

Each instruction in triples presentation has three fields : op, arg1, and arg2. The results of 
respective sub-expressions are denoted by the position of expression. Triples represent 
similarity with DAG and syntax tree. They are equivalent to DAG while representing 
expressions. 

Op arg1 arg2 

* C D 

+ B (0) 

+ (1) (0) 

= (2)  

Triples face the problem of code immovability while optimization, as the results are 
positional and changing the order or position of an expression may cause problems. 

Indirect Triples 

This representation is an enhancement over triples representation. It uses pointers instead 
of position to store results. This enables the optimizers to freely re-position the sub-
expression to produce an optimized code. 

Declarations 

A variable or procedure has to be declared before it can be used. Declaration involves 
allocation of space in memory and entry of type and name in the symbol table. A program 
may be coded and designed keeping the target machine structure in mind, but it may not 
always be possible to accurately convert a source code to its target language. 
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Taking the whole program as a collection of procedures and sub-procedures, it becomes 
possible to declare all the names local to the procedure. Memory allocation is done in a 
consecutive manner and names are allocated to memory in the sequence they are declared 
in the program. We use offset variable and set it to zero {offset = 0} that denote the base 
address. 

The source programming language and the target machine architecture may vary in the way 
names are stored, so relative addressing is used. While the first name is allocated memory 
starting from the memory location 0 {offset=0}, the next name declared later should be 
allocated memory next to the first one. 

Example: 

We take the example of C programming language where an integer variable is assigned 2 
bytes of memory and a float variable is assigned 4 bytes of memory. 

int a; 

float b; 

Allocation process: 

{offset = 0} 

int a; 

id.type = int 

id.width = 2 

offset = offset + id.width  

{offset = 2} 

float b; 

   id.type = float 

   id.width = 4 

   offset = offset + id.width  

{offset = 6} 

To enter this detail in a symbol table, a procedure enter can be used. This method may have 
the following structure: 

enter(name, type, offset) 

This procedure should create an entry in the symbol table, for variable name, having its type 
set to type and relative address offset in its data area. 
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Code generation can be considered as the final phase of compilation. Through post code 
generation, optimization process can be applied on the code, but that can be seen as a part 
of code generation phase itself. The code generated by the compiler is an object code of some 
lower-level programming language, for example, assembly language. We have seen that the 
source code written in a higher-level language is transformed into a lower-level language 
that results in a lower-level object code, which should have the following minimum 
properties: 

 It should carry the exact meaning of the source code. 

 It should be efficient in terms of CPU usage and memory management. 

We will now see how the intermediate code is transformed into target object code (assembly 
code, in this case). 

Directed Acyclic Graph 

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps to see 
the flow of values flowing among the basic blocks, and offers optimization too. DAG provides 
easy transformation on basic blocks. DAG can be understood here: 

 Leaf nodes represent identifiers, names, or constants. 

 Interior nodes represent operators. 

 Interior nodes also represent the results of expressions or the identifiers/name 
where the values are to be stored or assigned. 

Example: 

t0 = a + b 

t1 = t0 + c 

d = t0 + t1 

16. CODE GENERATION 
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[t0 = a + b] 
 

[t1 = t0 + c] 

 

[d = t0 + t1] 

Peephole Optimization 

This optimization technique works locally on the source code to transform it into an 
optimized code. By locally, we mean a small portion of the code block at hand. These methods 
can be applied on intermediate codes as well as on target codes. A bunch of statements is 
analyzed and are checked for the following possible optimization: 

Redundant Instruction Elimination 

At source code level, the following can be done by the user: 

int add_ten(int x) 

{ 

   int y, z; 

   y = 10; 

   z = x + y; 

   return z; 

} 

int add_ten(int x) 

{ 

   int y; 

   y = 10; 

   y = x + y; 

   return y; 

} 

int add_ten(int x) 

{ 

   int y = 10; 

   return x + y; 

} 

       

int add_ten(int x) 

{ 

   return x + 10; 

} 

       

    

At compilation level, the compiler searches for instructions redundant in nature. Multiple 
loading and storing of instructions may carry the same meaning even if some of them are 
removed. For example: 

 MOV x, R0 

 MOV R0, R1 
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We can delete the first instruction and re-write the sentence as: 

MOV x, R1 

Unreachable Code 

Unreachable code is a part of the program code that is never accessed because of 
programming constructs. Programmers may have accidently written a piece of code that can 
never be reached. 

Example: 

void add_ten(int x) 

{ 

   return x + 10; 

   printf(“value of x is %d”, x); 

} 

In this code segment, the printf statement will never be executed, as the program control 
returns back before it can execute, hence printf can be removed. 

Flow of Control Optimization 

There are instances in a code where the program control jumps back and forth without 
performing any significant task. These jumps can be removed. Consider the following chunk 
of code: 

...   

MOV R1, R2 

GOTO L1 

... 

L1 :   GOTO L2 

L2 :   INC R1 

In this code, label L1 can be removed, as it passes the control to L2. So instead of jumping to 
L1 and then to L2, the control can directly reach L2, as shown below: 

...   

MOV R1, R2 

GOTO L2 
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... 

L2 :   INC R1 

Algebraic Expression Simplification 

There are occasions where algebraic expressions can be made simple. For example, the 
expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be 
replaced by INC a. 

Strength Reduction 

There are operations that consume more time and space. Their ‘strength’ can be reduced by 
replacing them with other operations that consume less time and space, but produce the 
same result. 

For example, x * 2 can be replaced by x << 1, which involves only one left shift. Though the 
output of a * a and a2 is same, a2 is much more efficient to implement. 

Accessing Machine Instructions 

The target machine can deploy more sophisticated instructions, which can have the 
capability to perform specific operations much efficiently. If the target code can 
accommodate those instructions directly, that will not only improve the quality of code, but 
also yield more efficient results. 

Code Generator 

A code generator is expected to have an understanding of the target machine’s runtime 
environment and its instruction set. The code generator should take the following things into 
consideration to generate the code: 

 Target language : The code generator has to be aware of the nature of the target 
language for which the code is to be transformed. That language may facilitate some 
machine-specific instructions to help the compiler generate the code in a more 
convenient way. The target machine can have either CISC or RISC processor 
architecture. 

 IR Type : Intermediate representation has various forms. It can be in Abstract 
Syntax Tree (AST) structure, Reverse Polish Notation, or 3-address code. 

 Selection of instruction : The code generator takes Intermediate Representation as 
input and converts (maps) it into target machine’s instruction set. One 
representation can have many ways (instructions) to convert it, so it becomes the 
responsibility of the code generator to choose the appropriate instructions wisely. 
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 Register allocation : A program has a number of values to be maintained during 
the execution. The target machine’s architecture may not allow all of the values to 
be kept in the CPU memory or registers. Code generator decides what values to keep 
in the registers. Also, it decides the registers to be used to keep these values. 

 Ordering of instructions : At last, the code generator decides the order in which 
the instruction will be executed. It creates schedules for instructions to execute 
them. 

Descriptors 

The code generator has to track both the registers (for availability) and addresses (location 
of values) while generating the code. For both of them, the following two descriptors are 
used: 

 Register descriptor : Register descriptor is used to inform the code generator 
about the availability of registers. Register descriptor keeps track of values stored in 
each register. Whenever a new register is required during code generation, this 
descriptor is consulted for register availability. 

 Address descriptor : Values of the names (identifiers) used in the program might 
be stored at different locations while in execution. Address descriptors are used to 
keep track of memory locations where the values of identifiers are stored. These 
locations may include CPU registers, heaps, stacks, memory or a combination of the 
mentioned locations. 

Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1, 
x, the code generator: 

 updates the Register Descriptor R1 that has value of x and 

 updates the Address Descriptor (x) to show that one instance of x is in R1. 

Code Generation 

Basic blocks comprise of a sequence of three-address instructions. Code generator takes 
these sequence of instructions as input. 

Note : If the value of a name is found at more than one place (register, cache, or memory), 
the register’s value will be preferred over the cache and main memory. Likewise, cache’s 
value will be preferred over the main memory. Main memory is barely given any preference. 

getReg : Code generator uses getReg function to determine the status of available registers 
and the location of name values. getReg works as follows: 

 If variable Y is already in register R, it uses that register. 

 Else if some register R is available, it uses that register. 

 Else if both the above options are not possible, it chooses a register that requires 
minimal number of load and store instructions. 
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For an instruction x = y OP z, the code generator may perform the following actions. Let us 
assume that L is the location (preferably register) where the output of y OP z is to be saved: 

 Call function getReg, to decide the location of L. 

 Determine the present location (register or memory) of y by consulting the Address 
Descriptor of y. If y is not presently in register L, then generate the following 
instruction to copy the value of y to L: 

MOV y’, L 

where y’ represents the copied value of y. 

 Determine the present location of z using the same method used in step 2 for y and 
generate the following instruction: 

OP z’, L 

where z’ represents the copied value of z. 

 Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a 
register, update its descriptor to indicate that it contains the value of x. Update the 
descriptor of x to indicate that it is stored at location L. 

 If y and z has no further use, they can be given back to the system. 

Other code constructs like loops and conditional statements are transformed into assembly 
language in general assembly way. 

 



Compiler Design 

66 

 

Optimization is a program transformation technique, which tries to improve the code by 
making it consume less resources (i.e. CPU, Memory) and deliver high speed. 

In optimization, high-level general programming constructs are replaced by very efficient 
low-level programming codes. A code optimizing process must follow the three rules given 
below: 

 The output code must not, in any way, change the meaning of the program. 

 Optimization should increase the speed of the program and if possible, the program 
should demand less number of resources. 

 Optimization should itself be fast and should not delay the overall compiling 
process. 

Efforts for an optimized code can be made at various levels of compiling the process. 

 At the beginning, users can change/rearrange the code or use better algorithms to 
write the code. 

 After generating intermediate code, the compiler can modify the intermediate code 
by address calculations and improving loops. 

 While producing the target machine code, the compiler can make use of memory 
hierarchy and CPU registers. 

Optimization can be categorized broadly into two types : machine independent and machine 
dependent. 

Machine-independent Optimization 

In this optimization, the compiler takes in the intermediate code and transforms a part of the 
code that does not involve any CPU registers and/or absolute memory locations. For 
example: 

do 

{ 

   item = 10; 

   value = value + item;  

}while(value<100); 

17. CODE OPTIMIZATION 
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This code involves repeated assignment of the identifier item, which if we put this way: 

Item = 10; 

do 

{ 

   value = value + item;  

} while(value<100); 

should not only save the CPU cycles, but can be used on any processor. 

Machine-dependent Optimization 

Machine-dependent optimization is done after the target code has been generated and when 
the code is transformed according to the target machine architecture. It involves CPU 
registers and may have absolute memory references rather than relative references. 
Machine-dependent optimizers put efforts to take maximum advantage of memory 
hierarchy. 

Basic Blocks 

Source codes generally have a number of instructions, which are always executed in 
sequence and are considered as the basic blocks of the code. These basic blocks do not have 
any jump statements among them, i.e., when the first instruction is executed, all the 
instructions in the same basic block will be executed in their sequence of appearance without 
losing the flow control of the program. 

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-CASE 
conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, etc. 

Basic Block Identification 

We may use the following algorithm to find the basic blocks in a program: 

1. Search header statements of all the basic blocks from where a basic block starts: 

i. First statement of a program. 

ii. Statements that are target of any branch (conditional/unconditional). 

iii. Statements that follow any branch statement. 

2. Header statements and the statements following them form a basic block. 

3. A basic block does not include any header statement of any other basic block. 

Basic blocks are important concepts from both code generation and optimization point of 
view. 
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Basic blocks play an important role in identifying variables, which are being used more than 
once in a single basic block. If any variable is being used more than once, the register memory 
allocated to that variable need not be emptied unless the block finishes execution. 

Control Flow Graph 

Basic blocks in a program can be represented by means of control flow graphs. A control flow 
graph depicts how the program control is being passed among the blocks. It is a useful tool 
that helps in optimization by locating any unwanted loops in the program. 
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Loop Optimization 

Most programs run as a loop in the system. It becomes necessary to optimize the loops in 
order to save CPU cycles and memory. Loops can be optimized by the following techniques: 

 Invariant code : A fragment of code that resides in the loop and computes the same 
value at each iteration is called a loop-invariant code. This code can be moved out of 
the loop by saving it to be computed only once, rather than with each iteration. 

 Induction analysis : A variable is called an induction variable if its value is altered 
within the loop by a loop-invariant value. 

 Strength reduction : There are expressions that consume more CPU cycles, time, 
and memory. These expressions should be replaced with cheaper expressions 
without compromising the output of expression. For example, multiplication (x * 2) 
is expensive in terms of CPU cycles than (x << 1) and yields the same result. 

Dead-code Elimination 

Dead code is one or more than one code statements, which are: 

 Either never executed or unreachable, 

 Or if executed, their output is never used. 

Thus, dead code plays no role in any program operation and therefore, it can simply be 
eliminated. 
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Partially Dead Code 

There are some code statements whose computed values are used only under certain 
circumstances, i.e., sometimes the values are used and sometimes they are not. Such codes 
are known as partially dead-code. 

 

The above control flow graph depicts a chunk of program where variable ‘a’ is used to assign 
the output of expression ‘x * y’. Let us assume that the value assigned to ‘a’ is never used 
inside the loop. Immediately after the control leaves the loop, ‘a’ is assigned the value of 
variable ‘z’, which would be used later in the program. We conclude here that the assignment 
code of ‘a’ is never used anywhere, therefore it is eligible to be eliminated. 

 

Likewise, the picture above depicts that the conditional statement is always false, implying 
that the code, written in true case, will never be executed, hence it can be removed. 
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Partial Redundancy 

Redundant expressions are computed more than once in parallel path, without any change 
in operands; whereas partial-redundant expressions are computed more than once in a path, 
without any change in operands. For example, 

 

[redundant expression] 

 

[partially redundant expression] 

Loop-invariant code is partially redundant and can be eliminated by using a code-motion 
technique. 

Another example of a partially redundant code can be: 

If (condition) 

{ 

   a = y OP z; 

} 

else 

{ 

   ... 

} 

c = y OP z; 

We assume that the values of operands (y and z) are not changed from assignment of 
variable a to variable c. Here, if the condition statement is true, then y OP z is computed twice, 
otherwise once. Code motion can be used to eliminate this redundancy, as shown below: 
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If (condition) 

{ 

   ... 

   tmp = y OP z; 

   a = tmp; 

   ... 

} 

else 

{ 

   ... 

   tmp = y OP z; 

} 

c = tmp; 

Here, whether the condition is true or false; y OP z should be computed only once. 

 


