
Compiler Design

i

Compiler Design

i

About the Tutorial

A compiler translates the codes written in one language to some other language without
changing the meaning of the program. It is also expected that a compiler should make the
target code efficient and optimized in terms of time and space.

Compiler design principles provide an in-depth view of translation and optimization process.
Compiler design covers basic translation mechanisms and error detection & recovery. It
includes lexical, syntax, and semantic analysis as front end, and code generation and
optimization as back-end.

Audience

This tutorial is designed for students interested in learning the basic principles of compilers.
Enthusiastic readers who would like to know more about compilers and those who wish to
design a compiler themselves may start from here.

Prerequisites

This tutorial requires no prior knowledge of compiler design but requires a basic
understanding of at least one programming language such as C, Java, etc. It would be an
additional advantage if you have had prior exposure to Assembly Programming.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent of
the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or in
this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Compiler Design

ii

Table of Contents

About the Tutorial ·· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ··· i

Table of Contents ·· ii

1. OVERVIEW ··· 1

Language Processing System ··· 1
Preprocessor ·· 2
Interpreter ··· 2
Assembler ·· 2
Linker ··· 2
Loader ·· 3
Cross-compiler ··· 3
Source-to-source Compiler ·· 3

2. COMPILER ARCHITECTURE ··· 4
Analysis Phase ·· 4
Synthesis Phase·· 4

3. PHASES OF COMPILER ·· 5
Lexical Analysis ·· 6
Syntax Analysis··· 6
Semantic Analysis ·· 6
Intermediate Code Generation ·· 6
Code Optimization ··· 6
Code Generation ·· 6
Symbol Table·· 7

4. LEXICAL ANALYSIS ·· 8

Tokens ··· 8

Specifications of Tokens ·· 9
Alphabets ··· 9
Strings ·· 9
Special Symbols ··· 9
Language ·· 10

Compiler Design

iii

5. REGULAR EXPRESSIONS ··· 11
Operations ··· 11
Notations ··· 11
Precedence and Associativity ·· 12

6. FINITE AUTOMATA ··· 13

Finite Automata Construction ··· 13

Longest Match Rule ··· 14

7. SYNTAX ANALYSIS··· 15

Context-Free Grammar ·· 15

Syntax Analyzers ··· 16

Derivation ··· 17
Left-most Derivation ·· 17
Right-most Derivation ·· 17

Parse Tree ··· 18
Ambiguity ··· 21
Associativity ··· 21
Precedence ·· 22
Left Recursion ·· 22
Left Factoring ··· 24

First and Follow Sets ·· 25
First Set ·· 25
Follow Set ·· 26

Limitations of Syntax Analyzers ··· 26

8. TYPES OF PARSING ··· 27

Top-down Parsing ·· 27

Bottom-up Parsing··· 27

9. TOP-DOWN PARSING ··· 29
Recursive Descent Parsing ··· 29
Back-tracking ··· 30
Predictive Parser ·· 30
LL Parser ··· 32
LL Parsing Algorithm ·· 32

Compiler Design

iv

10. BOTTOM-UP PARSING ·· 34
Shift-Reduce Parsing ·· 34
LR Parser ·· 34

LL vs. LR ··· 36

11. ERROR RECOVERY ·· 37
Panic Mode ·· 37
Statement Mode ·· 37
Error Productions ··· 37
Global Correction ··· 37
Abstract Syntax Trees ·· 38

12. SEMANTIC ANALYSIS ·· 40

Semantics ·· 40

Semantic Errors ··· 41

Attribute Grammar ·· 41
Synthesized Attributes ··· 41
Inherited Attributes ··· 42

S-attributed SDT ·· 43

L-attributed SDT ·· 43

13. RUNTIME ENVIRONMENT ·· 45

Activation Trees··· 45

Storage Allocation ··· 47

Static Allocation ·· 47

Stack Allocation ··· 48

Heap Allocation ··· 48

Parameter Passing ··· 49
r-value ·· 49
l-value ·· 49
Formal Parameters ·· 49
Actual Parameters ··· 50

Pass by Value ··· 50

Pass by Reference ·· 50

Compiler Design

v

Pass by Copy-restore ··· 50

Pass by Name ·· 51

14. SYMBOL TABLE ··· 52

Implementation··· 52

Operations ·· 53
insert() ··· 53
lookup() ·· 53

Scope Management ··· 54

15. INTERMEDIATE CODE GENERATION ··· 56

Intermediate Representation ·· 56

Three-Address Code ·· 57

Declarations ·· 58

16. CODE GENERATION ·· 60

Directed Acyclic Graph ·· 60

Peephole Optimization ·· 61
Redundant Instruction Elimination ·· 61
Unreachable Code ··· 62
Flow of Control Optimization··· 62
Algebraic Expression Simplification ··· 63
Strength Reduction ·· 63
Accessing Machine Instructions ··· 63

Code Generator ··· 63

Descriptors ·· 64

Code Generation ··· 64

17. CODE OPTIMIZATION ··· 66

Machine-independent Optimization ·· 66

Machine-dependent Optimization ··· 67

Basic Blocks ··· 67
Basic Block Identification ··· 67

Compiler Design

vi

Control Flow Graph ·· 68

Loop Optimization ··· 69

Dead-code Elimination ·· 69
Partially Dead Code·· 70

Partial Redundancy ··· 71

Compiler Design

1

Computers are a balanced mix of software and hardware. Hardware is just a piece of
mechanical device and its functions are being controlled by a compatible software. Hardware
understands instructions in the form of electronic charge, which is the counterpart of binary
language in software programming. Binary language has only two alphabets, 0 and 1. To
instruct, the hardware codes must be written in binary format, which is simply a series of 1s
and 0s. It would be a difficult and cumbersome task for computer programmers to write such
codes, which is why we have compilers to write such codes.

Language Processing System

We have learnt that any computer system is made of hardware and software. The hardware
understands a language, which humans cannot understand. So we write programs in high-
level language, which is easier for us to understand and remember. These programs are then
fed into a series of tools and OS components to get the desired code that can be used by the
machine. This is known as Language Processing System.

1. OVERVIEW

Compiler Design

2

The high-level language is converted into binary language in various phases. A compiler is
a program that converts high-level language to assembly language. Similarly,
an assembler is a program that converts the assembly language to machine-level language.
Let us first understand how a program, using C compiler, is executed on a host machine.

 User writes a program in C language (high-level language).

 The C compiler compiles the program and translates it to assembly program (low-
level language).

 An assembler then translates the assembly program into machine code (object).

 A linker tool is used to link all the parts of the program together for execution
(executable machine code).

 A loader loads all of them into memory and then the program is executed.

Before diving straight into the concepts of compilers, we should understand a few other tools
that work closely with compilers.

Preprocessor

A preprocessor, generally considered as a part of compiler, is a tool that produces input for
compilers. It deals with macro-processing, augmentation, file inclusion, language extension,
etc.

Interpreter

An interpreter, like a compiler, translates high-level language into low-level machine
language. The difference lies in the way they read the source code or input. A compiler reads
the whole source code at once, creates tokens, checks semantics, generates intermediate
code, executes the whole program and may involve many passes. In contrast, an interpreter
reads a statement from the input, converts it to an intermediate code, executes it, then takes
the next statement in sequence. If an error occurs, an interpreter stops execution and reports
it; whereas a compiler reads the whole program even if it encounters several errors.

Assembler

An assembler translates assembly language programs into machine code. The output of an
assembler is called an object file, which contains a combination of machine instructions as
well as the data required to place these instructions in memory.

Linker

Linker is a computer program that links and merges various object files together in order to
make an executable file. All these files might have been compiled by separate assemblers.
The major task of a linker is to search and locate referenced module/routines in a program

Compiler Design

3

and to determine the memory location where these codes will be loaded, making the
program instruction to have absolute references.

Loader

Loader is a part of operating system and is responsible for loading executable files into
memory and execute them. It calculates the size of a program (instructions and data) and
creates memory space for it. It initializes various registers to initiate execution.

Cross-compiler

A compiler that runs on platform (A) and is capable of generating executable code for
platform (B) is called a cross-compiler.

Source-to-source Compiler

A compiler that takes the source code of one programming language and translates it into
the source code of another programming language is called a source-to-source compiler.

Compiler Design

4

A compiler can broadly be divided into two phases based on the way they compile.

Analysis Phase

Known as the front-end of the compiler, the analysis phase of the compiler reads the source
program, divides it into core parts, and then checks for lexical, grammar, and syntax errors.
The analysis phase generates an intermediate representation of the source program and
symbol table, which should be fed to the Synthesis phase as input.

Synthesis Phase

Known as the back-end of the compiler, the synthesis phase generates the target program
with the help of intermediate source code representation and symbol table.

A compiler can have many phases and passes.

 Pass : A pass refers to the traversal of a compiler through the entire program.

 Phase : A phase of a compiler is a distinguishable stage, which takes input from the
previous stage, processes and yields output that can be used as input for the next
stage. A pass can have more than one phase.

2. COMPILER ARCHITECTURE

Compiler Design

5

The compilation process is a sequence of various phases. Each phase takes input from its
previous stage, has its own representation of source program, and feeds its output to the
next phase of the compiler. Let us understand the phases of a compiler.

3. PHASES OF COMPILER

Compiler Design

6

Lexical Analysis

The first phase of scanner works as a text scanner. This phase scans the source code as a
stream of characters and converts it into meaningful lexemes. Lexical analyzer represents
these lexemes in the form of tokens as:

<token-name, attribute-value>

Syntax Analysis

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical
analysis as input and generates a parse tree (or syntax tree). In this phase, token
arrangements are checked against the source code grammar, i.e., the parser checks if the
expression made by the tokens is syntactically correct.

Semantic Analysis

Semantic analysis checks whether the parse tree constructed follows the rules of language.
For example, assignment of values is between compatible data types, and adding string to an
integer. Also, the semantic analyzer keeps track of identifiers, their types and expressions;
whether identifiers are declared before use or not, etc. The semantic analyzer produces an
annotated syntax tree as an output.

Intermediate Code Generation

After semantic analysis, the compiler generates an intermediate code of the source code for
the target machine. It represents a program for some abstract machine. It is in between the
high-level language and the machine language. This intermediate code should be generated
in such a way that it makes it easier to be translated into the target machine code.

Code Optimization

The next phase does code optimization of the intermediate code. Optimization can be
assumed as something that removes unnecessary code lines, and arranges the sequence of
statements in order to speed up the program execution without wasting resources (CPU,
memory).

Code Generation

In this phase, the code generator takes the optimized representation of the intermediate
code and maps it to the target machine language. The code generator translates the
intermediate code into a sequence of (generally) re-locatable machine code. Sequence of
instructions of machine code performs the task as the intermediate code would do.

Compiler Design

7

Symbol Table

It is a data-structure maintained throughout all the phases of a compiler. All the identifiers’
names along with their types are stored here. The symbol table makes it easier for the
compiler to quickly search the identifier record and retrieve it. The symbol table is also used
for scope management.

Compiler Design

8

Lexical analysis is the first phase of a compiler. It takes the modified source code from
language preprocessors that are written in the form of sentences. The lexical analyzer breaks
these syntaxes into a series of tokens, by removing any whitespace or comments in the
source code.

If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer works
closely with the syntax analyzer. It reads character streams from the source code, checks for
legal tokens, and passes the data to the syntax analyzer when it demands.

Tokens

Lexemes are said to be a sequence of characters (alphanumeric) in a token. There are some
predefined rules for every lexeme to be identified as a valid token. These rules are defined
by grammar rules, by means of a pattern. A pattern explains what can be a token, and these
patterns are defined by means of regular expressions.

In programming language, keywords, constants, identifiers, strings, numbers, operators, and
punctuations symbols can be considered as tokens.

For example, in C language, the variable declaration line

int value = 100;

contains the tokens:

int (keyword), value (identifier), = (operator), 100 (constant) and ;

(symbol).

4. LEXICAL ANALYSIS

Compiler Design

9

Specifications of Tokens

Let us understand how the language theory undertakes the following terms:

Alphabets

Any finite set of symbols {0,1} is a set of binary alphabets, {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is
a set of Hexadecimal alphabets, {a-z, A-Z} is a set of English language alphabets.

Strings

Any finite sequence of alphabets is called a string. Length of the string is the total number of
occurrence of alphabets, e.g., the length of the string tutorialspoint is 14 and is denoted by
|tutorialspoint| = 14. A string having no alphabets, i.e. a string of zero length is known as an
empty string and is denoted by ε (epsilon).

Special Symbols

A typical high-level language contains the following symbols:-

Arithmetic
Symbols

Addition(+), Subtraction(-), Modulo(%), Multiplication(*),
Division(/)

Punctuation Comma(,), Semicolon(;), Dot(.), Arrow(->)

Assignment =

Special Assignment +=, /=, *=, -=

Comparison ==, !=, <, <=, >, >=

Preprocessor #

Compiler Design

10

Location Specifier &

Logical &, &&, |, ||, !

Shift Operator >>, >>>, <<, <<<

Language

A language is considered as a finite set of strings over some finite set of alphabets. Computer
languages are considered as finite sets, and mathematically set operations can be performed
on them. Finite languages can be described by means of regular expressions.

Compiler Design

11

The lexical analyzer needs to scan and identify only a finite set of valid string/token/lexeme
that belong to the language in hand. It searches for the pattern defined by the language rules.
Regular expressions have the capability to express finite languages by defining a pattern for
finite strings of symbols. The grammar defined by regular expressions is known as regular
grammar. The language defined by regular grammar is known as regular language.

Regular expression is an important notation for specifying patterns. Each pattern matches a
set of strings, so regular expressions serve as names for a set of strings. Programming
language tokens can be described by regular languages. The specification of regular
expressions is an example of a recursive definition. Regular languages are easy to understand
and have efficient implementation.

There are a number of algebraic laws that are obeyed by regular expressions, which can be
used to manipulate regular expressions into equivalent forms.

Operations

The various operations on languages are:

 Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

 Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Notations

If r and s are regular expressions denoting the languages L(r) and L(s), then

 Union : (r)|(s) is a regular expression denoting L(r) U L(s)

 Concatenation : (r)(s) is a regular expression denoting L(r)L(s)

 Kleene closure : (r)* is a regular expression denoting (L(r))*

 (r) is a regular expression denoting L(r)

5. REGULAR EXPRESSIONS

Compiler Design

12

Precedence and Associativity

 *, concatenation (.), and | (pipe sign) are left associative

 * has the highest precedence

 Concatenation (.) has the second highest precedence.

 | (pipe sign) has the lowest precedence of all.

Representing valid tokens of a language in regular expression

If x is a regular expression, then:

 x* means zero or more occurrence of x.

i.e., it can generate { e, x, xx, xxx, xxxx, … }

 x+ means one or more occurrence of x.

i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

 x? means at most one occurrence of x

i.e., it can generate either {x} or {e}.

[a-z] is all lower-case alphabets of English language.

[A-Z] is all upper-case alphabets of English language.

[0-9] is all natural digits used in mathematics.

Representing occurrence of symbols using regular expressions

letter = [a – z] or [A – Z]
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9]
sign = [+ | -]

Representing language tokens using regular expressions

Decimal = (sign)?(digit)+
Identifier = (letter)(letter | digit)*

The only problem left with the lexical analyzer is how to verify the validity of a regular
expression used in specifying the patterns of keywords of a language. A well-accepted
solution is to use finite automata for verification.

Compiler Design

13

Finite automata is a state machine that takes a string of symbols as input and changes its
state accordingly. Finite automata is a recognizer for regular expressions. When a regular
expression string is fed into finite automata, it changes its state for each literal. If the input
string is successfully processed and the automata reaches its final state, it is accepted, i.e.,
the string just fed was said to be a valid token of the language in hand.

The mathematical model of finite automata consists of:

 Finite set of states (Q)

 Finite set of input symbols (Σ)

 One Start state (q0)

 Set of final states (qf)

 Transition function (δ)

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ),

Q × Σ ➔ Q

Finite Automata Construction

Let L(r) be a regular language recognized by some finite automata (FA).

 States : States of FA are represented by circles. State names are written inside
circles.

 Start state : The state from where the automata starts is known as the start state.
Start state has an arrow pointed towards it.

 Intermediate states : All intermediate states have at least two arrows; one pointing
to and another pointing out from them.

 Final state : If the input string is successfully parsed, the automata is expected to be
in this state. Final state is represented by double circles. It may have any odd
number of arrows pointing to it and even number of arrows pointing out from it.
The number of odd arrows are one greater than even, i.e. odd = even+1.

 Transition : The transition from one state to another state happens when a desired
symbol in the input is found. Upon transition, automata can either move to the next
state or stay in the same state. Movement from one state to another is shown as a
directed arrow, where the arrows point to the destination state. If automata stays on
the same state, an arrow pointing from a state to itself is drawn.

6. FINITE AUTOMATA

Compiler Design

14

Example : We assume FA accepts any three digit binary value ending in digit 1. FA = {Q(q0,
qf), Σ(0,1), q0, qf, δ}

Longest Match Rule

When the lexical analyzer read the source-code, it scans the code letter by letter; and when
it encounters a whitespace, operator symbol, or special symbols, it decides that a word is
completed.

For example:

int intvalue;

While scanning both lexemes till ‘int’, the lexical analyzer cannot determine whether it is a
keyword int or the initials of identifier int value.

The Longest Match Rule states that the lexeme scanned should be determined based on the
longest match among all the tokens available.

The lexical analyzer also follows rule priority where a reserved word, e.g., a keyword, of a
language is given priority over user input. That is, if the lexical analyzer finds a lexeme that
matches with any existing reserved word, it should generate an error.

Compiler Design

15

Syntax analysis or parsing is the second phase of a compiler. In this chapter, we shall learn
the basic concepts used in the construction of a parser.

We have seen that a lexical analyzer can identify tokens with the help of regular expressions
and pattern rules. But a lexical analyzer cannot check the syntax of a given sentence due to
the limitations of the regular expressions. Regular expressions cannot check balancing
tokens, such as parenthesis. Therefore, this phase uses context-free grammar (CFG), which
is recognized by push-down automata.

CFG, on the other hand, is a superset of Regular Grammar, as depicted below:

It implies that every Regular Grammar is also context-free, but there exists some problems,
which are beyond the scope of Regular Grammar. CFG is a helpful tool in describing the
syntax of programming languages.

Context-Free Grammar

In this section, we will first see the definition of context-free grammar and introduce
terminologies used in parsing technology.

A context-free grammar has four components:

 A set of non-terminals (V). Non-terminals are syntactic variables that denote sets
of strings. The non-terminals define sets of strings that help define the language
generated by the grammar.

7. SYNTAX ANALYSIS

Compiler Design

16

 A set of tokens, known as terminal symbols (Σ). Terminals are the basic symbols
from which strings are formed.

 A set of productions (P). The productions of a grammar specify the manner in
which the terminals and non-terminals can be combined to form strings. Each
production consists of a non-terminal called the left side of the production, an
arrow, and a sequence of tokens and/or on- terminals, called the right side of the
production.

 One of the non-terminals is designated as the start symbol (S); from where the
production begins.

The strings are derived from the start symbol by repeatedly replacing a non-terminal
(initially the start symbol) by the right side of a production, for that non-terminal.

Example

We take the problem of palindrome language, which cannot be described by means of
Regular Expression. That is, L = { w | w = wR } is not a regular language. But it can be described
by means of CFG, as illustrated below:

G = (V, Σ, P, S)

Where:

V = { Q, Z, N }

Σ = { 0, 1 }

P = { Q → Z | Q → N | Q → ℇ | Z → 0Q0 | N → 1Q1 }

S = { Q }

This grammar describes palindrome language, such as: 1001, 11100111, 00100, 1010101,
11111, etc.

Syntax Analyzers

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token
streams. The parser analyzes the source code (token stream) against the production rules to
detect any errors in the code. The output of this phase is a parse tree.

Compiler Design

17

This way, the parser accomplishes two tasks, i.e., parsing the code, looking for errors, and
generating a parse tree as the output of the phase.

Parsers are expected to parse the whole code even if some errors exist in the program.
Parsers use error recovering strategies, which we will learn later in this chapter.

Derivation

A derivation is basically a sequence of production rules, in order to get the input string.
During parsing, we take two decisions for some sentential form of input:

 Deciding the non-terminal which is to be replaced.

 Deciding the production rule, by which, the non-terminal will be replaced.

To decide which non-terminal to be replaced with production rule, we can have two options.

Left-most Derivation

If the sentential form of an input is scanned and replaced from left to right, it is called left-
most derivation. The sentential form derived by the left-most derivation is called the left-
sentential form.

Right-most Derivation

If we scan and replace the input with production rules, from right to left, it is known as right-
most derivation. The sentential form derived from the right-most derivation is called the
right-sentential form.

Example

Production rules:

E → E + E

E → E * E

Compiler Design

18

E → id

Input string: id + id * id

The left-most derivation is:

E → E * E

E → E + E * E

E → id + E * E

E → id + id * E

E → id + id * id

Notice that the left-most side non-terminal is always processed first.

The right-most derivation is:

E → E + E

E → E + E * E

E → E + E * id

E → E + id * id

E → id + id * id

Parse Tree

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are
derived from the start symbol. The start symbol of the derivation becomes the root of the
parse tree. Let us see this by an example from the last topic.

We take the left-most derivation of a + b * c

The left-most derivation is:

E → E * E

E → E + E * E

E → id + E * E

E → id + id * E

E → id + id * id

Compiler Design

19

Step 1:

E → E * E

Step 2:

E → E + E * E

Step 3:

E → id + E * E

Compiler Design

20

Step 4:

E → id + id * E

Step 5:

E → id + id * id

In a parse tree:

 All leaf nodes are terminals.

 All interior nodes are non-terminals.

 In-order traversal gives original input string.

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is
traversed first, therefore the operator in that sub-tree gets precedence over the operator
which is in the parent nodes.

Compiler Design

21

Ambiguity

A grammar G is said to be ambiguous if it has more than one parse tree (left or right
derivation) for at least one string.

Example

E → E + E

E → E – E

E → id

For the string id + id – id, the above grammar generates two parse trees:

The language generated by an ambiguous grammar is said to be inherently ambiguous.
Ambiguity in grammar is not good for a compiler construction. No method can detect and
remove ambiguity automatically, but it can be removed by either re-writing the whole
grammar without ambiguity, or by setting and following associativity and precedence
constraints.

Associativity

If an operand has operators on both sides, the side on which the operator takes this operand
is decided by the associativity of those operators. If the operation is left-associative, then the
operand will be taken by the left operator; or if the operation is right-associative, the right
operator will take the operand.

Example

Operations such as Addition, Multiplication, Subtraction, and Division are left associative. If
the expression contains:

Compiler Design

22

id op id op id

it will be evaluated as:

(id op id) op id

For example, (id + id) + id

Operations like Exponentiation are right associative, i.e., the order of evaluation in the same
expression will be:

id op (id op id)

For example, id ^ (id ^ id)

Precedence

If two different operators share a common operand, the precedence of operators decides
which will take the operand. That is, 2+3*4 can have two different parse trees, one
corresponding to (2+3)*4 and another corresponding to 2+(3*4). By setting precedence
among operators, this problem can be easily removed. As in the previous example,
mathematically * (multiplication) has precedence over + (addition), so the expression 2+3*4
will always be interpreted as:

2 + (3 * 4)

These methods decrease the chances of ambiguity in a language or its grammar.

Left Recursion

A grammar becomes left-recursive if it has any non-terminal ‘A’ whose derivation contains
‘A’ itself as the left-most symbol. Left-recursive grammar is considered to be a problematic
situation for top-down parsers. Top-down parsers start parsing from the Start symbol, which
in itself is non-terminal. So, when the parser encounters the same non-terminal in its
derivation, it becomes hard for it to judge when to stop parsing the left non-terminal and it
goes into an infinite loop.

Example:

(1) A => Aα | β

(2) S => Aα | β

 A => Sd

Compiler Design

23

(1) is an example of immediate left recursion, where A is any non-terminal symbol and α
represents a string of non-terminals.

(2) is an example of indirect-left recursion.

A top-down parser will first parse A, which in-turn will yield a string consisting of A itself
and the parser may go into a loop forever.

Removal of Left Recursion

One way to remove left recursion is to use the following technique:

The production

A => Aα | β

is converted into following productions

A => βA'

A' => αA' | ε

This does not impact the strings derived from the grammar, but it removes immediate left
recursion.

Second method is to use the following algorithm, which should eliminate all direct and
indirect left recursions.

Algorithm

START

Arrange non-terminals in some order like A1, A2, A3,…, An

for each i from 1 to n

Compiler Design

24

{

for each j from 1 to i-1

 {

 replace each production of form Ai⟹Aj𝜸

 with Ai ⟹ δ1𝜸 | δ2𝜸 | δ3𝜸 |…| 𝜸

 where Aj ⟹ δ1 | δ2|…| δn are current Aj productions

 }

}

eliminate immediate left-recursion

END

Example

The production set

S => Aα | β

A => Sd

after applying the above algorithm, should become

S => Aα | β

A => Aαd | βd

and then, remove immediate left recursion using the first technique.

A => βdA'

A' => αdA' | ε

Now none of the production has either direct or indirect left recursion.

Left Factoring

If more than one grammar production rules has a common prefix string, then the top-down
parser cannot make a choice as to which of the production it should take to parse the string
in hand.

Example

If a top-down parser encounters a production like

A ⟹ αβ | α𝜸 | …

Compiler Design

25

Then it cannot determine which production to follow to parse the string, as both productions
are starting from the same terminal (or non-terminal). To remove this confusion, we use a
technique called left factoring.

Left factoring transforms the grammar to make it useful for top-down parsers. In this
technique, we make one production for each common prefixes and the rest of the derivation
is added by new productions.

Example

The above productions can be written as

A => αA’

A’=> β | 𝜸 | …

Now the parser has only one production per prefix which makes it easier to take decisions.

First and Follow Sets

An important part of parser table construction is to create first and follow sets. These sets
can provide the actual position of any terminal in the derivation. This is done to create the
parsing table where the decision of replacing T[A, t] = α with some production rule.

First Set

This set is created to know what terminal symbol is derived in the first position by a non-
terminal. For example,

α → t β

That is, α derives t (terminal) in the very first position. So, t ∈ FIRST(α).

Algorithm for Calculating First Set

Look at the definition of FIRST(α) set:

 if α is a terminal, then FIRST(α) = { α }.

 if α is a non-terminal and α → ℇ is a production, then FIRST(α) = { ℇ }.

 if α is a non-terminal and α → 𝜸1 𝜸2 𝜸3 … 𝜸n and any FIRST(𝜸) contains t, then t is
in FIRST(α).

First set can be seen as: FIRST(α) = { t | α →* t β } ∪ { ℇ | α →* ε}

Compiler Design

26

Follow Set

Likewise, we calculate what terminal symbol immediately follows a non-terminal α in
production rules. We do not consider what the non-terminal can generate but instead, we
see what would be the next terminal symbol that follows the productions of a non-terminal.

Algorithm for Calculating Follow Set:

 if α is a start symbol, then FOLLOW() = $

 if α is a non-terminal and has a production α → AB, then FIRST(B) is in FOLLOW(A)
except ℇ.

 if α is a non-terminal and has a production α → AB, where B ℇ, then FOLLOW(A) is in
FOLLOW(α).

Follow set can be seen as: FOLLOW(α) = { t | S *αt*}

Limitations of Syntax Analyzers

Syntax analyzers receive their inputs, in the form of tokens, from lexical analyzers. Lexical
analyzers are responsible for the validity of a token supplied by the syntax analyzer. Syntax
analyzers have the following drawbacks:

 it cannot determine if a token is valid,

 it cannot determine if a token is declared before it is being used,

 it cannot determine if a token is initialized before it is being used,

 it cannot determine if an operation performed on a token type is valid or not.

These tasks are accomplished by the semantic analyzer, which we shall study in Semantic
Analysis.

Compiler Design

27

Syntax analyzers follow production rules defined by means of context-free grammar. The
way the production rules are implemented (derivation) divides parsing into two types : top-
down parsing and bottom-up parsing.

Top-down Parsing

When the parser starts constructing the parse tree from the start symbol and then tries to
transform the start symbol to the input, it is called top-down parsing.

 Recursive descent parsing : It is a common form of top-down parsing. It is called
recursive, as it uses recursive procedures to process the input. Recursive descent
parsing suffers from backtracking.

 Backtracking : It means, if one derivation of a production fails, the syntax analyzer
restarts the process using different rules of same production. This technique may
process the input string more than once to determine the right production.

Bottom-up Parsing

As the name suggests, bottom-up parsing starts with the input symbols and tries to construct
the parse tree up to the start symbol.

Example:

Input string : a + b * c

Production rules:

S → E

E → E + T

8. TYPES OF PARSING

Compiler Design

28

E → E * T

E → T

T → id

Let us start bottom-up parsing.

a + b * c

Read the input and check if any production matches with the input:

a + b * c

T + b * c

E + b * c

E + T * c

E * c

E * T

E

S

Compiler Design

29

We have learnt in the last chapter that the top-down parsing technique parses the input, and
starts constructing a parse tree from the root node gradually moving down to the leaf nodes.
The types of top-down parsing are depicted below:

Recursive Descent Parsing

Recursive descent is a top-down parsing technique that constructs the parse tree from the
top and the input is read from left to right. It uses procedures for every terminal and non-
terminal entity. This parsing technique recursively parses the input to make a parse tree,
which may or may not require back-tracking. But the grammar associated with it (if not left
factored) cannot avoid back-tracking. A form of recursive-descent parsing that does not
require any back-tracking is known as predictive parsing.

This parsing technique is regarded recursive, as it uses context-free grammar which is
recursive in nature.

9. TOP-DOWN PARSING

Compiler Design

30

Back-tracking

Top- down parsers start from the root node (start symbol) and match the input string against
the production rules to replace them (if matched). To understand this, take the following
example of CFG:

S → rXd | rZd

X → oa | ea

Z → ai

For an input string: read, a top-down parser, will behave like this:

It will start with S from the production rules and will match its yield to the left-most letter of
the input, i.e. ‘r’. The very production of S (S → rXd) matches with it. So the top-down parser
advances to the next input letter (i.e. ‘e’). The parser tries to expand non-terminal ‘X’ and
checks its production from the left (X → oa). It does not match with the next input symbol.
So the top-down parser backtracks to obtain the next production rule of X, (X → ea).

Now the parser matches all the input letters in an ordered manner. The string is accepted.

Predictive Parser

Predictive parser is a recursive descent parser, which has the capability to predict which
production is to be used to replace the input string. The predictive parser does not suffer
from backtracking.

To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the
next input symbols. To make the parser back-tracking free, the predictive parser puts some
constraints on the grammar and accepts only a class of grammar known as LL(k) grammar.

Compiler Design

31

Predictive parsing uses a stack and a parsing table to parse the input and generate a parse
tree. Both the stack and the input contains an end symbol $ to denote that the stack is empty
and the input is consumed. The parser refers to the parsing table to take any decision on the
input and stack element combination.

In recursive descent parsing, the parser may have more than one production to choose from
for a single instance of input; whereas in predictive parser, each step has at most one

Compiler Design

32

production to choose. There might be instances where there is no production matching the
input string, making the parsing procedure to fail.

LL Parser

An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with
some restrictions to get the simplified version, in order to achieve easy implementation. LL
grammar can be implemented by means of both algorithms, namely, recursive-descent or
table-driven.

LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the
second L in LL(k) stands for left-most derivation and k itself represents the number of look
aheads. Generally k = 1, so LL(k) may also be written as LL(1).

LL Parsing Algorithm

We may stick to deterministic LL(1) for parser explanation, as the size of table grows
exponentially with the value of k. Secondly, if a given grammar is not LL(1), then usually, it
is not LL(k), for any given k.

Given below is an algorithm for LL(1) Parsing:

Input:

string ω

parsing table M for grammar G

Output:

 If ω is in L(G) then left-most derivation of ω,

 error otherwise.

Initial State : $S on stack (with S being start symbol)

 ω$ in the input buffer

SET ip to point the first symbol of ω$.

Compiler Design

33

repeat

let X be the top stack symbol and a the symbol pointed by ip.

if X∈ Vt or $

if X = a

 POP X and advance ip.

 else

 error()

 endif

else /* X is non-terminal */

 if M[X,a] = X → Y1, Y2,... Yk

POP X

PUSH Yk, Yk-1,... Y1 /* Y1 on top */

 Output the production X → Y1, Y2,... Yk

 else

 error()

 endif

 endif

until X = $ /* empty stack */

A grammar G is LL(1) if A-> | are two distinct productions of G:

 for no terminal, both and derive strings beginning with a.

 at most one of and can derive empty string.

 if -> t, then does not derive any string beginning with a terminal in FOLLOW(A).

Compiler Design

34

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it
reaches the root node. Here, we start from a sentence and then apply production rules in
reverse manner in order to reach the start symbol. The image given below depicts the
bottom-up parsers available.

Shift-Reduce Parsing

Shift-reduce parsing uses two unique steps for bottom-up parsing. These steps are known as
shift-step and reduce-step.

 Shift step: The shift step refers to the advancement of the input pointer to the next
input symbol, which is called the shifted symbol. This symbol is pushed onto the
stack. The shifted symbol is treated as a single node of the parse tree.

 Reduce step : When the parser finds a complete grammar rule (RHS) and replaces it
to (LHS), it is known as reduce-step. This occurs when the top of the stack contains a
handle. To reduce, a POP function is performed on the stack which pops off the
handle and replaces it with LHS non-terminal symbol.

LR Parser

The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class of
context-free grammar which makes it the most efficient syntax analysis technique. LR
parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the

10. BOTTOM-UP PARSING

Compiler Design

35

input stream; R stands for the construction of right-most derivation in reverse, and k denotes
the number of lookahead symbols to make decisions.

There are three widely used algorithms available for constructing an LR parser:

 SLR(1) – Simple LR Parser:

o Works on smallest class of grammar

o Few number of states, hence very small table

o Simple and fast construction

 LR(1) – LR Parser:

o Works on complete set of LR(1) Grammar

o Generates large table and large number of states

o Slow construction

 LALR(1) – Look-Ahead LR Parser:

o Works on intermediate size of grammar

o Number of states are same as in SLR(1)

LR Parsing Algorithm

Here we describe a skeleton algorithm of an LR parser:

token = next_token()

repeat forever

 s = top of stack

 if action[s, token] = “shift si” then

 PUSH token

 PUSH si

 token = next_token()

else if action[s, tpken] = “reduce A::= β“ then

 POP 2 * |β| symbols

 s = top of stack

 PUSH A

 PUSH goto[s,A]

else if action[s, token] = “accept” then

 return

 else

Compiler Design

36

 error()

LL vs. LR

LL LR

Does a leftmost derivation. Does a rightmost derivation in reverse.

Starts with the root nonterminal on the
stack.

Ends with the root nonterminal on the stack.

Ends when the stack is empty. Starts with an empty stack.

Uses the stack for designating what is still
to be expected.

Uses the stack for designating what is
already seen.

Builds the parse tree top-down. Builds the parse tree bottom-up.

Continuously pops a nonterminal off the
stack, and pushes the corresponding right
hand side.

Tries to recognize a right hand side on the
stack, pops it, and pushes the corresponding
nonterminal.

Expands the non-terminals. Reduces the non-terminals.

Reads the terminals when it pops one off
the stack.

Reads the terminals while it pushes them on
the stack.

Pre-order traversal of the parse tree. Post-order traversal of the parse tree.

Compiler Design

37

A parser should be able to detect and report any error in the program. It is expected that
when an error is encountered, the parser should be able to handle it and carry on parsing
the rest of the input. Mostly it is expected from the parser to check for errors but errors may
be encountered at various stages of the compilation process. A program may have the
following kinds of errors at various stages:

 Lexical : name of some identifier typed incorrectly

 Syntactical : missing semicolon or unbalanced parenthesis

 Semantical : incompatible value assignment

 Logical : code not reachable, infinite loop

There are four common error-recovery strategies that can be implemented in the parser to
deal with errors in the code.

Panic Mode

When a parser encounters an error anywhere in the statement, it ignores the rest of the
statement by not processing input from erroneous input to delimiter, such as semi-colon.
This is the easiest way of error-recovery and also, it prevents the parser from developing
infinite loops.

Statement Mode

When a parser encounters an error, it tries to take corrective measures so that the rest of the
inputs of the statement allow the parser to parse ahead. For example, inserting a missing
semicolon, replacing comma with a semicolon, etc. Parser designers have to be careful here
because one wrong correction may lead to an infinite loop.

Error Productions

Some common errors are known to the compiler designers that may occur in the code. In
addition, the designers can create augmented grammar to be used, as productions that
generate erroneous constructs when these errors are encountered.

Global Correction

The parser considers the program in hand as a whole and tries to figure out what the
program is intended to do and tries to find out a closest match for it, which is error-free.

11. ERROR RECOVERY

Compiler Design

38

When an erroneous input (statement) X is fed, it creates a parse tree for some closest error-
free statement Y. This may allow the parser to make minimal changes in the source code, but
due to the complexity (time and space) of this strategy, it has not been implemented in
practice yet.

Abstract Syntax Trees

Parse tree representations are not easy to be parsed by the compiler, as they contain more
details than actually needed. Take the following parse tree as an example:

If watched closely, we find most of the leaf nodes are single child to their parent nodes. This
information can be eliminated before feeding it to the next phase. By hiding extra
information, we can obtain a tree as shown below:

Compiler Design

39

Abstract tree can be represented as:

ASTs are important data structures in a compiler with least unnecessary information. ASTs
are more compact than a parse tree and can be easily used by a compiler.

Compiler Design

40

We have learnt how a parser constructs parse trees in the syntax analysis phase. The plain
parse-tree constructed in that phase is generally of no use for a compiler, as it does not carry
any information of how to evaluate the tree. The productions of context-free grammar, which
makes the rules of the language, do not accommodate how to interpret them.

For example:

E → E + T

The above CFG production has no semantic rule associated with it, and it cannot help in
making any sense of the production.

Semantics

Semantics of a language provide meaning to its constructs, like tokens and syntax structure.
Semantics help interpret symbols, their types, and their relations with each other. Semantic
analysis judges whether the syntax structure constructed in the source program derives any
meaning or not.

CFG + semantic rules = Syntax Directed Definitions

For example:

int a = “value”;

should not issue an error in lexical and syntax analysis phase, as it is lexically and structurally
correct, but it should generate a semantic error as the type of the assignment differs. These
rules are set by the grammar of the language and evaluated in semantic analysis. The
following tasks should be performed in semantic analysis:

 Scope resolution

 Type checking

 Array-bound checking

12. SEMANTIC ANALYSIS

Compiler Design

41

Semantic Errors

We have mentioned some of the semantic errors that the semantic analyzer is expected to
recognize:

 Type mismatch

 Undeclared variable

 Reserved identifier misuse

 Multiple declaration of variable in a scope

 Accessing an out of scope variable

 Actual and formal parameter mismatch

Attribute Grammar

Attribute grammar is a special form of context-free grammar where some additional
information (attributes) are appended to one or more of its non-terminals in order to
provide context-sensitive information. Each attribute has well-defined domain of values,
such as integer, float, character, string, and expressions.

Attribute grammar is a medium to provide semantics to the context-free grammar and it can
help specify the syntax and semantics of a programming language. Attribute grammar (when
viewed as a parse-tree) can pass values or information among the nodes of a tree.

Example:

E → E + T { E.value = E.value + T.value }

The right part of the CFG contains the semantic rules that specify how the grammar should
be interpreted. Here, the values of non-terminals E and T are added together and the result
is copied to the non-terminal E.

Semantic attributes may be assigned to their values from their domain at the time of parsing
and evaluated at the time of assignment or conditions. Based on the way the attributes get
their values, they can be broadly divided into two categories : synthesized attributes and
inherited attributes.

Synthesized Attributes

These attributes get values from the attribute values of their child nodes. To illustrate,
assume the following production:

S → ABC

If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized attribute,
as the values of ABC are synthesized to S.

Compiler Design

42

As in our previous example (E → E + T), the parent node E gets its value from its child node.
Synthesized attributes never take values from their parent nodes or any sibling nodes.

Inherited Attributes

In contrast to synthesized attributes, inherited attributes can take values from parent and/or
siblings. As in the following production,

S → ABC

A can get values from S, B, and C. B can take values from S, A, and C. Likewise, C can take
values from S, A, and B.

Expansion : When a non-terminal is expanded to terminals as per a grammatical rule.

Reduction : When a terminal is reduced to its corresponding non-terminal according to
grammar rules. Syntax trees are parsed top-down and left to right. Whenever reduction
occurs, we apply its corresponding semantic rules (actions).

Semantic analysis uses Syntax Directed Translations to perform the above tasks.

Semantic analyzer receives AST (Abstract Syntax Tree) from its previous stage (syntax
analysis).

Semantic analyzer attaches attribute information with AST, which are called Attributed AST.

Attributes are two tuple value, <attribute name, attribute value>

For example:

int value = 5;

<type, “integer”>

<presentvalue, “5”>

For every production, we attach a semantic rule.

Compiler Design

43

S-attributed SDT

If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These attributes
are evaluated using S-attributed SDTs that have their semantic actions written after the
production (right hand side).

As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing, as the
values of the parent nodes depend upon the values of the child nodes.

L-attributed SDT

This form of SDT uses both synthesized and inherited attributes with restriction of not taking
values from right siblings.

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling nodes.
As in the following production,

S → ABC

S can take values from A, B, and C (synthesized). A can take values from S only. B can take
values from S and A. C can get values from S, A, and B. No non-terminal can get values from
the sibling to its right.

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner.

Compiler Design

44

We may conclude that if a definition is S-attributed, then it is also L-attributed, as L-
attributed definition encloses S-attributed definitions.

Compiler Design

45

A program as a source code is merely a collection of text (code, statements, etc.) and to make
it alive, it requires actions to be performed on the target machine. A program needs memory
resources to execute instructions. A program contains names for procedures, identifiers, etc.,
that require mapping with the actual memory location at runtime.

By runtime, we mean a program in execution. Runtime environment is a state of the target
machine, which may include software libraries, environment variables, etc., to provide
services to the processes running in the system.

Runtime support system is a package, mostly generated with the executable program itself
and facilitates the process communication between the process and the runtime
environment. It takes care of memory allocation and de-allocation while the program is
being executed.

Activation Trees

A program is a sequence of instructions combined into a number of procedures. Instructions
in a procedure are executed sequentially. A procedure has a start and an end delimiter and
everything inside it is called the body of the procedure. The procedure identifier and the
sequence of finite instructions inside it make up the body of the procedure.

The execution of a procedure is called its activation. An activation record contains all the
necessary information required to call a procedure. An activation record may contain the
following units (depending upon the source language used).

Temporaries Stores temporary and intermediate values of an expression.

Local Data Stores local data of the called procedure.

Machine Status Stores machine status such as Registers, Program Counter, etc.,
before the procedure is called.

Control Link Stores the address of activation record of the caller procedure.

13. RUNTIME ENVIRONMENT

Compiler Design

46

Access Link Stores the information of data which is outside the local scope.

Actual Parameters Stores actual parameters, i.e., parameters which are used to send
input to the called procedure.

Return Value Stores return values.

Whenever a procedure is executed, its activation record is stored on the stack, also known
as control stack. When a procedure calls another procedure, the execution of the caller is
suspended until the called procedure finishes execution. At this time, the activation record
of the called procedure is stored on the stack.

We assume that the program control flows in a sequential manner and when a procedure is
called, its control is transferred to the called procedure. When a called procedure is executed,
it returns the control back to the caller. This type of control flow makes it easier to represent
a series of activations in the form of a tree, known as the activation tree.

To understand this concept, we take a piece of code as an example:

. . .

printf(“Enter Your Name: “);

scanf(“%s”, username);

show_data(username);

printf(“Press any key to continue…”);

. . .

int show_data(char *user)

 {

 printf(“Your name is %s”, username);

 return 0;

 }

. . .

Compiler Design

47

Given below is the activation tree of the code:

Now we understand that procedures are executed in depth-first manner, thus stack
allocation is the best suitable form of storage for procedure activations.

Storage Allocation

Runtime environment manages runtime memory requirements for the following entities:

 Code : It is known as the text part of a program that does not change at runtime. Its
memory requirements are known at the compile time.

 Procedures : Their text part is static but they are called in a random manner. That
is why, stack storage is used to manage procedure calls and activations.

 Variables : Variables are known at the runtime only, unless they are global or
constant. Heap memory allocation scheme is used for managing allocation and de-
allocation of memory for variables in runtime.

Static Allocation

In this allocation scheme, the compilation data is bound to a fixed location in the memory
and it does not change when the program executes. As the memory requirement and storage

Compiler Design

48

locations are known in advance, runtime support package for memory allocation and de-
allocation is not required.

Stack Allocation

Procedure calls and their activations are managed by means of stack memory allocation. It
works in last-in-first-out (LIFO) method and this allocation strategy is very useful for
recursive procedure calls.

Heap Allocation

Variables local to a procedure are allocated and de-allocated only at runtime. Heap allocation
is used to dynamically allocate memory to the variables and claim it back when the variables
are no more required.

Except statically allocated memory area, both stack and heap memory can grow and shrink
dynamically and unexpectedly. Therefore, they cannot be provided with a fixed amount of
memory in the system.

Compiler Design

49

As shown in the image above, the text part of the code is allocated a fixed amount of memory.
Stack and heap memory are arranged at the extremes of total memory allocated to the
program. Both shrink and grow against each other.

Parameter Passing

The communication medium among procedures is known as parameter passing. The values
of the variables from a calling procedure are transferred to the called procedure by some
mechanism. Before moving ahead, first go through some basic terminologies pertaining to
the values in a program.

r-value

The value of an expression is called its r-value. The value contained in a single variable also
becomes an r-value if it appears on the right-hand side of the assignment operator. r-values
can always be assigned to some other variable.

l-value

The location of memory (address) where an expression is stored is known as the l-value of
that expression. It always appears at the left hand side of an assignment operator.

For example:

day = 1;

week = day * 7;

month = 1;

year = month * 12;

From this example, we understand that constant values like 1, 7, 12, and variables like day,
week, month, and year, all have r-values. Only variables have l-values, as they also represent
the memory location assigned to them.

For example:

7 = x + y;

is an l-value error, as the constant 7 does not represent any memory location.

Formal Parameters

Variables that take the information passed by the caller procedure are called formal
parameters. These variables are declared in the definition of the called function.

Compiler Design

50

Actual Parameters

Variables whose values or addresses are being passed to the called procedure are called
actual parameters. These variables are specified in the function call as arguments.

Example:

fun_one()

{

 int actual_parameter = 10;

 call fun_two(int actual_parameter);

}

 fun_two(int formal_parameter)

{

 print formal_parameter;

}

Formal parameters hold the information of the actual parameter, depending upon the
parameter passing technique used. It may be a value or an address.

Pass by Value

In pass by value mechanism, the calling procedure passes the r-value of actual parameters
and the compiler puts that into the called procedure’s activation record. Formal parameters
then hold the values passed by the calling procedure. If the values held by the formal
parameters are changed, it should have no impact on the actual parameters.

Pass by Reference

In pass by reference mechanism, the l-value of the actual parameter is copied to the
activation record of the called procedure. This way, the called procedure now has the address
(memory location) of the actual parameter and the formal parameter refers to the same
memory location. Therefore, if the value pointed by the formal parameter is changed, the
impact should be seen on the actual parameter, as they should also point to the same value.

Pass by Copy-restore

This parameter passing mechanism works similar to ‘pass-by-reference’ except that the
changes to actual parameters are made when the called procedure ends. Upon function call,
the values of actual parameters are copied in the activation record of the called procedure.
Formal parameters, if manipulated, have no real-time effect on actual parameters (as l-

Compiler Design

51

values are passed), but when the called procedure ends, the l-values of formal parameters
are copied to the l-values of actual parameters.

Example:

int y;

calling_procedure()

{

 y = 10;

 copy_restore(y); //l-value of y is passed

 printf y; //prints 99

}

copy_restore(int x)

{

 x = 99; // y still has value 10 (unaffected)

 y = 0; // y is now 0

}

When this function ends, the l-value of formal parameter x is copied to the actual parameter
y. Even if the value of y is changed before the procedure ends, the l-value of x is copied to the
l-value of y, making it behave like call by reference.

Pass by Name

Languages like Algol provide a new kind of parameter passing mechanism that works like
preprocessor in C language. In pass by name mechanism, the name of the procedure being
called is replaced by its actual body. Pass-by-name textually substitutes the argument
expressions in a procedure call for the corresponding parameters in the body of the
procedure so that it can now work on actual parameters, much like pass-by-reference.

Compiler Design

52

Symbol table is an important data structure created and maintained by compilers in order
to store information about the occurrence of various entities such as variable names,
function names, objects, classes, interfaces, etc. Symbol table is used by both the analysis and
the synthesis parts of a compiler.

A symbol table may serve the following purposes depending upon the language in hand:

 To store the names of all entities in a structured form at one place.

 To verify if a variable has been declared.

 To implement type checking, by verifying assignments and expressions in the
source code are semantically correct.

 To determine the scope of a name (scope resolution).

A symbol table is simply a table which can be either linear or a hash table. It maintains an
entry for each name in the following format:

<symbol name, type, attribute>

For example, if a symbol table has to store information about the following variable
declaration:

static int interest;

then it should store the entry such as:

<interest, int, static>

The attribute clause contains the entries related to the name.

Implementation

If a compiler is to handle a small amount of data, then the symbol table can be implemented
as an unordered list, which is easy to code, but it is only suitable for small tables only. A
symbol table can be implemented in one of the following ways:

 Linear (sorted or unsorted) list

 Binary Search Tree

 Hash table

14. SYMBOL TABLE

Compiler Design

53

Among all, symbol tables are mostly implemented as hash tables, where the source code
symbol itself is treated as a key for the hash function and the return value is the information
about the symbol.

Operations

A symbol table, either linear or hash, should provide the following operations.

insert()

This operation is more frequently used by analysis phase, i.e., the first half of the compiler
where tokens are identified and names are stored in the table. This operation is used to add
information in the symbol table about unique names occurring in the source code. The
format or structure in which the names are stored depends upon the compiler in hand.

An attribute for a symbol in the source code is the information associated with that symbol.
This information contains the value, state, scope, and type about the symbol. The insert()
function takes the symbol and its attributes as arguments and stores the information in the
symbol table.

For example:

int a;

should be processed by the compiler as:

insert(a, int);

lookup()

lookup() operation is used to search a name in the symbol table to determine:

 if the symbol exists in the table.

 if it is declared before it is being used.

 if the name is used in the scope.

 if the symbol is initialized.

 if the symbol declared multiple times.

The format of lookup() function varies according to the programming language. The basic
format should match the following:

lookup(symbol)

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol
exists in the symbol table, it returns its attributes stored in the table.

Compiler Design

54

Scope Management

A compiler maintains two types of symbol tables: a global symbol table which can be
accessed by all the procedures and scope symbol tables that are created for each scope in
the program.

To determine the scope of a name, symbol tables are arranged in hierarchical structure as
shown in the example below:

. . .

int value=10;

void pro_one()

 {

 int one_1;

 int one_2;

 { \

 int one_3; |_ inner scope 1

 int one_4; |

 } /

 int one_5;

 { \

 int one_6; |_ inner scope 2

 int one_7; |

 } /

 }

void pro_two()

 {

 int two_1;

 int two_2;

Compiler Design

55

 { \

 int two_3; |_ inner scope 3

 int two_4; |

 } /

 int two_5;

 }

. . .

The above program can be represented in a hierarchical structure of symbol tables:

The global symbol table contains names for one global variable (int value) and two
procedure names, which should be available to all the child nodes shown above. The names
mentioned in the pro_one symbol table (and all its child tables) are not available for pro_two
symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever
a name needs to be searched in a symbol table, it is searched using the following algorithm:

1. first a symbol will be searched in the current scope, i.e., current symbol table,

2. if a name is found, then search is completed, else it will be searched in the parent
symbol table until,

3. either the name is found or the global symbol table has been searched for the name.

Compiler Design

56

A source code can directly be translated into its target machine code, then why at all we need
to translate the source code into an intermediate code which is then translated to its target
code? Let us see the reasons why we need an intermediate code.

 If a compiler translates the source language to its target machine language without
having the option for generating intermediate code, then for each new machine, a
full native compiler is required.

 Intermediate code eliminates the need of a new full compiler for every unique
machine by keeping the analysis portion same for all the compilers.

 The second part of compiler, synthesis, is changed according to the target machine.

 It becomes easier to apply the source code modifications to improve code
performance by applying code optimization techniques on the intermediate code.

Intermediate Representation

Intermediate codes can be represented in a variety of ways and they have their own benefits.

 High Level IR - High-level intermediate code representation is very close to the
source language itself. They can be easily generated from the source code and we
can easily apply code modifications to enhance performance. But for target machine
optimization, it is less preferred.

 Low Level IR - This one is close to the target machine, which makes it suitable for
register and memory allocation, instruction set selection, etc. It is good for machine-
dependent optimizations.

Intermediate code can be either language-specific (e.g., Byte Code for Java) or language-
independent (three-address code).

15. INTERMEDIATE CODE GENERATION

Compiler Design

57

Three-Address Code

Intermediate code generator receives input from its predecessor phase, semantic analyzer,
in the form of an annotated syntax tree. That syntax tree then can be converted into a linear
representation, e.g., postfix notation. Intermediate code tends to be machine-independent
code. Therefore, code generator assumes to have unlimited number of memory storage
(register) to generate code.

For example:

a = b + c * d;

The intermediate code generator will try to divide this expression into sub-expressions and
then generate the corresponding code.

r1 = c * d;

r2 = b + r1;

r3 = r2 + r1;

a = r3

r being used as registers in the target program.

A three-address code has at most three address locations to calculate the expression. A three-
address code can be represented in two forms : quadruples and triples.

Quadruples

Each instruction in quadruples presentation is divided into four fields: operator, arg1, arg2,
and result. The above example is represented below in quadruples format:

Op arg1 arg2 result

* c D r1

+ b r1 r2

+ r2 r1 r3

Compiler Design

58

= r3 a

Triples

Each instruction in triples presentation has three fields : op, arg1, and arg2. The results of
respective sub-expressions are denoted by the position of expression. Triples represent
similarity with DAG and syntax tree. They are equivalent to DAG while representing
expressions.

Op arg1 arg2

* C D

+ B (0)

+ (1) (0)

= (2)

Triples face the problem of code immovability while optimization, as the results are
positional and changing the order or position of an expression may cause problems.

Indirect Triples

This representation is an enhancement over triples representation. It uses pointers instead
of position to store results. This enables the optimizers to freely re-position the sub-
expression to produce an optimized code.

Declarations

A variable or procedure has to be declared before it can be used. Declaration involves
allocation of space in memory and entry of type and name in the symbol table. A program
may be coded and designed keeping the target machine structure in mind, but it may not
always be possible to accurately convert a source code to its target language.

Compiler Design

59

Taking the whole program as a collection of procedures and sub-procedures, it becomes
possible to declare all the names local to the procedure. Memory allocation is done in a
consecutive manner and names are allocated to memory in the sequence they are declared
in the program. We use offset variable and set it to zero {offset = 0} that denote the base
address.

The source programming language and the target machine architecture may vary in the way
names are stored, so relative addressing is used. While the first name is allocated memory
starting from the memory location 0 {offset=0}, the next name declared later should be
allocated memory next to the first one.

Example:

We take the example of C programming language where an integer variable is assigned 2
bytes of memory and a float variable is assigned 4 bytes of memory.

int a;

float b;

Allocation process:

{offset = 0}

int a;

id.type = int

id.width = 2

offset = offset + id.width

{offset = 2}

float b;

 id.type = float

 id.width = 4

 offset = offset + id.width

{offset = 6}

To enter this detail in a symbol table, a procedure enter can be used. This method may have
the following structure:

enter(name, type, offset)

This procedure should create an entry in the symbol table, for variable name, having its type
set to type and relative address offset in its data area.

Compiler Design

60

Code generation can be considered as the final phase of compilation. Through post code
generation, optimization process can be applied on the code, but that can be seen as a part
of code generation phase itself. The code generated by the compiler is an object code of some
lower-level programming language, for example, assembly language. We have seen that the
source code written in a higher-level language is transformed into a lower-level language
that results in a lower-level object code, which should have the following minimum
properties:

 It should carry the exact meaning of the source code.

 It should be efficient in terms of CPU usage and memory management.

We will now see how the intermediate code is transformed into target object code (assembly
code, in this case).

Directed Acyclic Graph

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps to see
the flow of values flowing among the basic blocks, and offers optimization too. DAG provides
easy transformation on basic blocks. DAG can be understood here:

 Leaf nodes represent identifiers, names, or constants.

 Interior nodes represent operators.

 Interior nodes also represent the results of expressions or the identifiers/name
where the values are to be stored or assigned.

Example:

t0 = a + b

t1 = t0 + c

d = t0 + t1

16. CODE GENERATION

Compiler Design

61

[t0 = a + b]

[t1 = t0 + c]

[d = t0 + t1]

Peephole Optimization

This optimization technique works locally on the source code to transform it into an
optimized code. By locally, we mean a small portion of the code block at hand. These methods
can be applied on intermediate codes as well as on target codes. A bunch of statements is
analyzed and are checked for the following possible optimization:

Redundant Instruction Elimination

At source code level, the following can be done by the user:

int add_ten(int x)

{

 int y, z;

 y = 10;

 z = x + y;

 return z;

}

int add_ten(int x)

{

 int y;

 y = 10;

 y = x + y;

 return y;

}

int add_ten(int x)

{

 int y = 10;

 return x + y;

}

int add_ten(int x)

{

 return x + 10;

}

At compilation level, the compiler searches for instructions redundant in nature. Multiple
loading and storing of instructions may carry the same meaning even if some of them are
removed. For example:

 MOV x, R0

 MOV R0, R1

Compiler Design

62

We can delete the first instruction and re-write the sentence as:

MOV x, R1

Unreachable Code

Unreachable code is a part of the program code that is never accessed because of
programming constructs. Programmers may have accidently written a piece of code that can
never be reached.

Example:

void add_ten(int x)

{

 return x + 10;

 printf(“value of x is %d”, x);

}

In this code segment, the printf statement will never be executed, as the program control
returns back before it can execute, hence printf can be removed.

Flow of Control Optimization

There are instances in a code where the program control jumps back and forth without
performing any significant task. These jumps can be removed. Consider the following chunk
of code:

...

MOV R1, R2

GOTO L1

...

L1 : GOTO L2

L2 : INC R1

In this code, label L1 can be removed, as it passes the control to L2. So instead of jumping to
L1 and then to L2, the control can directly reach L2, as shown below:

...

MOV R1, R2

GOTO L2

Compiler Design

63

...

L2 : INC R1

Algebraic Expression Simplification

There are occasions where algebraic expressions can be made simple. For example, the
expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be
replaced by INC a.

Strength Reduction

There are operations that consume more time and space. Their ‘strength’ can be reduced by
replacing them with other operations that consume less time and space, but produce the
same result.

For example, x * 2 can be replaced by x << 1, which involves only one left shift. Though the
output of a * a and a2 is same, a2 is much more efficient to implement.

Accessing Machine Instructions

The target machine can deploy more sophisticated instructions, which can have the
capability to perform specific operations much efficiently. If the target code can
accommodate those instructions directly, that will not only improve the quality of code, but
also yield more efficient results.

Code Generator

A code generator is expected to have an understanding of the target machine’s runtime
environment and its instruction set. The code generator should take the following things into
consideration to generate the code:

 Target language : The code generator has to be aware of the nature of the target
language for which the code is to be transformed. That language may facilitate some
machine-specific instructions to help the compiler generate the code in a more
convenient way. The target machine can have either CISC or RISC processor
architecture.

 IR Type : Intermediate representation has various forms. It can be in Abstract
Syntax Tree (AST) structure, Reverse Polish Notation, or 3-address code.

 Selection of instruction : The code generator takes Intermediate Representation as
input and converts (maps) it into target machine’s instruction set. One
representation can have many ways (instructions) to convert it, so it becomes the
responsibility of the code generator to choose the appropriate instructions wisely.

Compiler Design

64

 Register allocation : A program has a number of values to be maintained during
the execution. The target machine’s architecture may not allow all of the values to
be kept in the CPU memory or registers. Code generator decides what values to keep
in the registers. Also, it decides the registers to be used to keep these values.

 Ordering of instructions : At last, the code generator decides the order in which
the instruction will be executed. It creates schedules for instructions to execute
them.

Descriptors

The code generator has to track both the registers (for availability) and addresses (location
of values) while generating the code. For both of them, the following two descriptors are
used:

 Register descriptor : Register descriptor is used to inform the code generator
about the availability of registers. Register descriptor keeps track of values stored in
each register. Whenever a new register is required during code generation, this
descriptor is consulted for register availability.

 Address descriptor : Values of the names (identifiers) used in the program might
be stored at different locations while in execution. Address descriptors are used to
keep track of memory locations where the values of identifiers are stored. These
locations may include CPU registers, heaps, stacks, memory or a combination of the
mentioned locations.

Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1,
x, the code generator:

 updates the Register Descriptor R1 that has value of x and

 updates the Address Descriptor (x) to show that one instance of x is in R1.

Code Generation

Basic blocks comprise of a sequence of three-address instructions. Code generator takes
these sequence of instructions as input.

Note : If the value of a name is found at more than one place (register, cache, or memory),
the register’s value will be preferred over the cache and main memory. Likewise, cache’s
value will be preferred over the main memory. Main memory is barely given any preference.

getReg : Code generator uses getReg function to determine the status of available registers
and the location of name values. getReg works as follows:

 If variable Y is already in register R, it uses that register.

 Else if some register R is available, it uses that register.

 Else if both the above options are not possible, it chooses a register that requires
minimal number of load and store instructions.

Compiler Design

65

For an instruction x = y OP z, the code generator may perform the following actions. Let us
assume that L is the location (preferably register) where the output of y OP z is to be saved:

 Call function getReg, to decide the location of L.

 Determine the present location (register or memory) of y by consulting the Address
Descriptor of y. If y is not presently in register L, then generate the following
instruction to copy the value of y to L:

MOV y’, L

where y’ represents the copied value of y.

 Determine the present location of z using the same method used in step 2 for y and
generate the following instruction:

OP z’, L

where z’ represents the copied value of z.

 Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a
register, update its descriptor to indicate that it contains the value of x. Update the
descriptor of x to indicate that it is stored at location L.

 If y and z has no further use, they can be given back to the system.

Other code constructs like loops and conditional statements are transformed into assembly
language in general assembly way.

Compiler Design

66

Optimization is a program transformation technique, which tries to improve the code by
making it consume less resources (i.e. CPU, Memory) and deliver high speed.

In optimization, high-level general programming constructs are replaced by very efficient
low-level programming codes. A code optimizing process must follow the three rules given
below:

 The output code must not, in any way, change the meaning of the program.

 Optimization should increase the speed of the program and if possible, the program
should demand less number of resources.

 Optimization should itself be fast and should not delay the overall compiling
process.

Efforts for an optimized code can be made at various levels of compiling the process.

 At the beginning, users can change/rearrange the code or use better algorithms to
write the code.

 After generating intermediate code, the compiler can modify the intermediate code
by address calculations and improving loops.

 While producing the target machine code, the compiler can make use of memory
hierarchy and CPU registers.

Optimization can be categorized broadly into two types : machine independent and machine
dependent.

Machine-independent Optimization

In this optimization, the compiler takes in the intermediate code and transforms a part of the
code that does not involve any CPU registers and/or absolute memory locations. For
example:

do

{

 item = 10;

 value = value + item;

}while(value<100);

17. CODE OPTIMIZATION

Compiler Design

67

This code involves repeated assignment of the identifier item, which if we put this way:

Item = 10;

do

{

 value = value + item;

} while(value<100);

should not only save the CPU cycles, but can be used on any processor.

Machine-dependent Optimization

Machine-dependent optimization is done after the target code has been generated and when
the code is transformed according to the target machine architecture. It involves CPU
registers and may have absolute memory references rather than relative references.
Machine-dependent optimizers put efforts to take maximum advantage of memory
hierarchy.

Basic Blocks

Source codes generally have a number of instructions, which are always executed in
sequence and are considered as the basic blocks of the code. These basic blocks do not have
any jump statements among them, i.e., when the first instruction is executed, all the
instructions in the same basic block will be executed in their sequence of appearance without
losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-CASE
conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, etc.

Basic Block Identification

We may use the following algorithm to find the basic blocks in a program:

1. Search header statements of all the basic blocks from where a basic block starts:

i. First statement of a program.

ii. Statements that are target of any branch (conditional/unconditional).

iii. Statements that follow any branch statement.

2. Header statements and the statements following them form a basic block.

3. A basic block does not include any header statement of any other basic block.

Basic blocks are important concepts from both code generation and optimization point of
view.

Compiler Design

68

Basic blocks play an important role in identifying variables, which are being used more than
once in a single basic block. If any variable is being used more than once, the register memory
allocated to that variable need not be emptied unless the block finishes execution.

Control Flow Graph

Basic blocks in a program can be represented by means of control flow graphs. A control flow
graph depicts how the program control is being passed among the blocks. It is a useful tool
that helps in optimization by locating any unwanted loops in the program.

Compiler Design

69

Loop Optimization

Most programs run as a loop in the system. It becomes necessary to optimize the loops in
order to save CPU cycles and memory. Loops can be optimized by the following techniques:

 Invariant code : A fragment of code that resides in the loop and computes the same
value at each iteration is called a loop-invariant code. This code can be moved out of
the loop by saving it to be computed only once, rather than with each iteration.

 Induction analysis : A variable is called an induction variable if its value is altered
within the loop by a loop-invariant value.

 Strength reduction : There are expressions that consume more CPU cycles, time,
and memory. These expressions should be replaced with cheaper expressions
without compromising the output of expression. For example, multiplication (x * 2)
is expensive in terms of CPU cycles than (x << 1) and yields the same result.

Dead-code Elimination

Dead code is one or more than one code statements, which are:

 Either never executed or unreachable,

 Or if executed, their output is never used.

Thus, dead code plays no role in any program operation and therefore, it can simply be
eliminated.

Compiler Design

70

Partially Dead Code

There are some code statements whose computed values are used only under certain
circumstances, i.e., sometimes the values are used and sometimes they are not. Such codes
are known as partially dead-code.

The above control flow graph depicts a chunk of program where variable ‘a’ is used to assign
the output of expression ‘x * y’. Let us assume that the value assigned to ‘a’ is never used
inside the loop. Immediately after the control leaves the loop, ‘a’ is assigned the value of
variable ‘z’, which would be used later in the program. We conclude here that the assignment
code of ‘a’ is never used anywhere, therefore it is eligible to be eliminated.

Likewise, the picture above depicts that the conditional statement is always false, implying
that the code, written in true case, will never be executed, hence it can be removed.

Compiler Design

71

Partial Redundancy

Redundant expressions are computed more than once in parallel path, without any change
in operands; whereas partial-redundant expressions are computed more than once in a path,
without any change in operands. For example,

[redundant expression]

[partially redundant expression]

Loop-invariant code is partially redundant and can be eliminated by using a code-motion
technique.

Another example of a partially redundant code can be:

If (condition)

{

 a = y OP z;

}

else

{

 ...

}

c = y OP z;

We assume that the values of operands (y and z) are not changed from assignment of
variable a to variable c. Here, if the condition statement is true, then y OP z is computed twice,
otherwise once. Code motion can be used to eliminate this redundancy, as shown below:

Compiler Design

72

If (condition)

{

 ...

 tmp = y OP z;

 a = tmp;

 ...

}

else

{

 ...

 tmp = y OP z;

}

c = tmp;

Here, whether the condition is true or false; y OP z should be computed only once.

