

http://www.allitebooks.org

PHP 5 Recipes
A Problem-Solution Approach

Lee Babin, Nathan A. Good,
Frank M. Kromann, Jon Stephens

http://www.allitebooks.org

PHP 5 Recipes: A Problem-Solution Approach
Copyright © 2005 by Lee Babin, Nathan A. Good, Frank M. Kromann, Jon Stephens

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-509-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills
Technical Reviewer: Rob Kunkle
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor and Artist: Van Winkle Design Group
Proofreader: April Eddy
Indexer: Broccoli Information Management
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

http://www.allitebooks.org

Contents at a Glance

iii

About the Authors . xv

About the Technical Reviewer . xvii

Introduction . xix

■CHAPTER 1 Overview of PHP Data Types and Concepts . 1

■CHAPTER 2 Overview of Classes, Objects, and Interfaces 21

■CHAPTER 3 Performing Math Operations . 85

■CHAPTER 4 Working with Arrays . 121

■CHAPTER 5 Working with Dates and Times . 197

■CHAPTER 6 Working with Strings . 265

■CHAPTER 7 Working with Files and Directories . 291

■CHAPTER 8 Working with Dynamic Imaging . 321

■CHAPTER 9 Using Regular Expressions . 351

■CHAPTER 10 Working with Variables . 393

■CHAPTER 11 Using Functions . 437

■CHAPTER 12 Understanding Web Basics . 453

■CHAPTER 13 Creating and Using Forms . 487

■CHAPTER 14 Working with Markup . 513

■CHAPTER 15 Using MySQL Databases in PHP 5 . 551

■CHAPTER 16 Communicating with Internet Services . 597

■INDEX . 631

http://www.allitebooks.org

http://www.allitebooks.org

Contents

About the Authors . xv

About the Technical Reviewer . xvii

Introduction . xix

■CHAPTER 1 Overview of PHP Data Types and Concepts 1

1-1. Variables . 2

1-2. Numbers . 4

1-3. Arrays . 5

1-4. Strings. 6

1-5. Regular Expressions . 7

1-6. Functions . 8

1-7. Project: Finding the Data Type of a Value . 10

1-8. Project: Discovering What Variables, Constants,

Functions, Classes, and Interfaces Are Available 12

1-9. Getting Information About the Current Script . 14

Summary . 19

Looking Ahead . 19

■CHAPTER 2 Overview of Classes, Objects, and Interfaces 21

Understanding Basic Concepts . 22

2-1. Creating Instances Using Constructors . 24

2-2. Using Default Constructors . 26

2-3. Setting Object Properties . 27

2-4. Controlling Access to Class Members . 30

2-5. Using Static Members and the self Keyword . 33

2-6. Using Class Constants . 37

2-7. Extending Classes . 43

2-8. Using Abstract Classes and Methods . 50

2-9. Using Interfaces. 53

2-10. Using Class Destructors. 55

2-11. Using Exceptions. 56

Getting Information About Classes and Objects . 61

Using Class and Object Functions . 61

v

http://www.allitebooks.org

2-12. Checking for the Existence of Classes and

Interfaces Using class_exists() and interface_exists() 63

2-13. Listing Methods and Interfaces Using get_class_methods() 65

2-14. Obtaining Variable Names . 66

2-15. Determining Whether an Object Is an Instance

of a Particular Class . 67

2-16. Listing Currently Loaded Interfaces and Classes 69

Using the Class Reflection API. 71

2-17. Obtaining a Dump of the Reflection API . 73

2-18. Performing Dynamic Class Instantiation . 76

2-19. Using the Reflection API to Deconstruct the Shape Class 77

Summary . 82

Looking Ahead . 83

■CHAPTER 3 Performing Math Operations . 85

3-1. Numeric Data Types . 85

3-2. Random Numbers . 95

3-3. Logarithms and Exponents . 100

3-4. Trigonometric Functions. 105

3-5. Formatting of Numeric Data . 108

3-6. Math Libraries . 113

3-7. A Static Math Class. 116

Summary . 119

Looking Ahead . 119

■CHAPTER 4 Working with Arrays . 121

4-1. Creating Arrays . 122

4-2. Accessing Array Elements . 122

4-3. Creating Multidimensional Arrays . 123

4-4. Using Array Keys . 124

4-5. Initializing an Array As a Range or Sequence of Values 124

Outputting Arrays. 126

4-6. Outputting an Array As a String . 126

4-7. Outputting Using array_values() and array_keys()

for Backward Compatibility . 126

4-8. Outputting an Array As a Tree . 128

Adding New Elements to Arrays . 131

4-9. Adding an Element to the End of an Array . 131

4-10. Appending One Array to Another . 132

4-11. Comparing Arrays . 135

■CONTENTSvi

http://www.allitebooks.org

4-12. Adding an Element to the Beginning of an Array 137

4-13. Inserting New Values at an Arbitrary Point

in an Indexed Array . 137

Getting and Setting the Size of an Array . 139

4-14. Counting Array Elements . 139

4-15. Setting an Array’s Size . 141

Traversing Arrays . 144

4-16. Looping Through an Associative Array Using foreach. 144

4-17. Looping Through a Compact Indexed Array

Using for and count() . 145

4-18. Looping Through a Sparse Array . 146

Removing Elements from Arrays. 147

4-19. Removing the First or Last Element from an Array 148

4-20. Removing One or More Arbitrary Array Elements 150

4-21. Extracting a Portion of an Array . 152

4-22. Extracting Values from Arrays with extract() 154

4-23. Extracting Values from an Array Using list() 156

4-24. Combining Arrays . 158

4-25. Obtaining Array Keys and Values . 159

4-26. Working with Unique Values . 160

4-27. Getting and Displaying Counts of Array Values 161

Finding and Working with Array Values . 162

4-28. Determining Whether an Element Is in an Array 163

4-29. Testing for the Existence of a Key in an Array 164

4-30. Obtaining Array Keys with a Given Value . 165

4-31. Finding the Greatest and Least Values in an Array 166

4-32. Finding the Sum and Average of the Values in an Array 168

Applying Functions to Arrays . 169

4-33. Applying Functions to Array Elements Using array_walk() 170

4-34. Applying Functions to Array Elements Using array_map() 173

4-35. Filtering Arrays Using array_filter() . 175

Sorting Arrays. 178

4-36. Sorting an Array by Its Values . 178

4-37. Sorting an Array by Its Keys . 180

4-38. Reversing an Array Using arsort() . 181

4-39. Reversing an Array Using krsort() . 182

4-40. Reversing an Array Using array_reverse() . 182

4-41. Randomizing an Array Using shuffle(), kshuffle(),

and array_rand(). 183

4-42. Sorting an Array Using Comparison Functions 184

■CONTENTS vii

http://www.allitebooks.org

4-43. Sorting Multidimensional Arrays . 186

4-44. Sorting Multiple Arrays. 189

Finding Permutations and Combinations. 190

4-45. Finding All Permutations of an Array’s Elements 190

4-46. Finding All Combinations of an Array’s Elements 193

Summary . 194

Looking Ahead . 195

■CHAPTER 5 Working with Dates and Times . 197

Overview of PHP 5’s Date and Time Functions. 198

Displaying Dates and Times . 200

5-1. Displaying Human-Readable Dates and Times 201

5-2. Displaying Arbitrary Dates and Times . 204

5-3. Converting Human-Readable Dates Into Unix

Timestamps Using strtotime() . 205

5-4. Finding the Date for a Weekday . 207

5-5. Getting the Day and Week of the Year . 211

5-6. Determining Whether a Given Year Is a Leap Year. 213

5-7. Getting Times and Dates of Files . 214

5-8. Setting Time Zones and GMT/UTC . 216

5-9. Displaying Times and Dates in Other Languages 219

5-10. Generating Localized GMT/UTC Time and Date Strings 224

5-11. Obtaining the Difference Between Two Dates 225

5-12. Project: Constructing and Using a Date Class 231

5-13. Extending the Date Class . 250

Summary . 263

Looking Ahead . 264

■CHAPTER 6 Working with Strings . 265

Manipulating Substrings . 266

6-1. Testing for Substrings. 267

6-2. Counting the Occurrences of a Substring . 269

6-3. Accessing Substrings . 269

6-4. Using Substring Alternatives . 270

6-5. Replacing Substrings . 271

Processing Strings. 273

6-6. Joining and Disassembling Strings . 273

6-7. Reversing Strings . 277

6-8. Controlling Case . 277

6-9. Trimming Blank Spaces . 279

■CONTENTSviii

http://www.allitebooks.org

6-10. Wrapping Text . 280

6-11. Checking String Length . 282

6-12. Comparing Strings . 283

6-13. Comparing Sound . 284

Project: Creating and Using a String Class . 285

6-14. Using a Page Reader Class . 285

Summary . 290

Looking Ahead . 290

■CHAPTER 7 Working with Files and Directories . 291

Working with Files . 291

7-1. Opening Files . 291

7-2. Reading from Files . 293

7-3. Writing to Files . 295

7-4. Closing Files . 296

7-5. Reading and Writing Comma-Separated Data 298

7-6. Reading Fixed-Width Delimited Data . 300

7-7. Reading and Writing Binary Data in a File . 301

7-8. Getting the Number of Lines in a File . 303

7-9. Getting the Number of Characters, Words,

or Paragraphs in a File . 304

7-10. Project: Creating and Using a File Class . 305

Working with Directories . 309

7-11. Listing All Files in the Current Directory . 310

7-12. Listing All Files of a Certain Type . 311

7-13. Sorting Files by Date . 313

7-14. Generating a Recursive Directory Listing . 314

7-15. Using the SPL DirectoryIterator Object . 316

Summary . 319

Looking Ahead . 319

■CHAPTER 8 Working with Dynamic Imaging. 321

Working with Image Types . 321

8-1. Working with JPGs . 321

8-2. Working with GIFs . 323

8-3. Working with PNGs . 325

Working with Image Libraries . 327

Creating an Image from Scratch. 327

8-4. Creating a Blank Canvas . 328

8-5. Creating and Using Colors . 329

■CONTENTS ix

http://www.allitebooks.org

8-6. Creating and Applying Different Shapes and Patterns 331

8-7. Outputting an Image . 334

Creating an Image from an Existing Image. 336

8-8. Loading an Existing Image . 337

8-9. Applying Modifications to an Existing Image 338

8-10. Saving and Outputting the Modified Image 340

Using TrueType Fonts . 341

8-11. Loading Fonts . 342

8-12. Applying TrueType Fonts to an Image . 343

8-13. Project: Creating and Using a Dynamic Thumbnail Class 345

Summary . 349

Looking Ahead . 349

■CHAPTER 9 Using Regular Expressions . 351

Overview of Regular Expression Syntax. 351

Qualifiers . 352

Ranges . 352

Line Anchors. 352

An Escape . 353

Saying OR . 353

Character Classes . 353

POSIX vs. PCRE . 353

POSIX . 354

PCRE . 355

Putting Regular Expressions to Work . 356

9-1. Using String Matching vs. Pattern Matching 356

9-2. Finding the nth Occurrence of a Match . 358

9-3. Matching with Greedy vs. Nongreedy Expressions 358

9-4. Matching a Valid IP Address . 360

9-5. Validating Pascal Case Names . 361

9-6. Validating U.S. Currency. 363

9-7. Formatting a Phone Number . 365

9-8. Finding Repeated Words . 367

9-9. Finding Words Not Followed by Other Words 368

9-10. Matching a Valid E-mail Address . 369

9-11. Finding All Matching Lines in a File . 371

9-12. Finding Lines with an Odd Number of Quotes 372

9-13. Capturing Text Inside HTML or XML Tags . 373

■CONTENTSx

9-14. Escaping Special Characters . 375

9-15. Replacing URLs with Links . 377

9-16. Replacing Smart Quotes with Straight Quotes. 380

9-17. Testing the Complexity of Passwords . 380

9-18. Matching GUIDs/UUIDs . 381

9-19. Reading Records with a Delimiter . 382

9-20. Creating Your Own RegExp Class . 385

Summary . 391

Looking Ahead . 391

■CHAPTER 10 Working with Variables . 393

10-1. Using Variable Types. 394

10-2. Assigning and Comparing . 396

10-3. Typecasting . 402

10-4. Using Constants . 408

10-5. Defining Variable Scope . 411

10-6. Parsing Values to Functions . 417

10-7. Using Dynamic Variable and Function Names 421

10-8. Encapsulating Complex Data Types. 425

10-9. Sharing Variables Between Processes . 429

10-10. Debugging . 431

Summary . 435

Looking Ahead . 435

■CHAPTER 11 Using Functions . 437

11-1. Accessing Function Parameters . 437

11-2. Setting Default Values for Function Parameters 438

11-3. Passing Values by Reference . 439

11-4. Creating Functions That Take a Variable Number of Arguments. . 440

11-5. Returning More Than One Value. 442

11-6. Returning Values by Reference . 443

11-7. Returning Failure. 445

11-8. Calling Variable Functions . 446

11-9. Accessing a Global Variable from Within a Function 447

11-10. Creating Dynamic Functions. 449

Summary . 450

Looking Ahead . 451

■CONTENTS xi

■CHAPTER 12 Understanding Web Basics . 453

Using Cookies. 453

12-1. Setting Cookies . 454

12-2. Reading Cookies . 455

12-3. Deleting Cookies . 456

12-4. Writing and Using a Cookie Class . 457

Using HTTP Headers . 459

12-5. Redirecting to a Different Location . 460

12-6. Sending Content Types Other Than HTML . 461

12-7. Forcing File “Save As” Downloads. 462

Using Sessions. 463

12-8. Implementing Sessions . 464

12-9. Storing Simple Data Types in Sessions. 465

12-10. Storing Complex Data Types in Sessions . 466

12-11. Detecting Browsers . 467

Using Querystrings . 470

12-12. Using Querystrings . 470

12-13. Passing Numeric Values in a Querystring. 471

12-14. Passing String Values in a Querystring . 472

12-15. Passing Complex Values in a Querystring 473

Authenticating Your Users . 475

12-16. Setting Up HTTP-Based Authentication . 475

12-17. Setting Up Cookie Authentication . 481

Using Environment and Configuration Variables . 484

12-18. Reading Environment and Configuration Variables. 484

12-19. Setting Environment and Configuration Variables. 485

Summary . 486

Looking Ahead . 486

■CHAPTER 13 Creating and Using Forms . 487

Understanding Common Form Issues . 487

13-1. GET vs. POST . 488

13-2. Superglobals vs. Globals . 490

13-3. Validating Form Input . 491

13-4. Working with Multipage Forms. 494

13-5. Redisplaying Forms with Preserved Information

and Error Messages . 496

Preventing Multiple Submissions of a Form . 499

13-6. Preventing Multiple Submissions on the Server Side 499

13-7. Preventing Multiple Submissions on the Client Side 500

■CONTENTSxii

13-8. Performing File Uploads. 502

13-9. Handling Special Characters. 505

13-10. Creating Form Elements with Multiple Options 506

13-11. Creating Form Elements Based on the

Current Time and/or Date . 508

Summary . 510

Looking Ahead . 511

■CHAPTER 14 Working with Markup. 513

14-1. Understanding Markup Concepts. 513

14-2. Manually Generating Markup . 514

14-3. Using DOM to Generate Markup . 516

14-4. Creating and Setting Attributes . 520

14-5. Parsing XML. 523

14-6. Transforming XML with XSL . 528

14-7. Using RSS Feeds. 531

14-8. Using WDDX. 539

14-9. Using SOAP . 542

Summary . 549

Looking Ahead . 549

■CHAPTER 15 Using MySQL Databases in PHP 5. 551

Basic Database Concepts . 551

15-1. Connecting to a MySQL Database . 551

15-2. Querying the Database . 553

15-3. Retrieving and Displaying Results . 555

15-4. Modifying Data . 557

15-5. Deleting Data. 559

15-6. Building Queries on the Fly . 561

The mysqli Extension vs. the PHP 4 MySQL Extension 564

15-7. Using the mysqli Object-Oriented API . 564

15-8. Using Exceptions to Handle Database Errors 567

15-9. Project: Displaying Linked Search Results . 571

15-10. Displaying Results in a Form . 576

Project: Bridging the Gap Between mysql and mysqli 579

15-11. Discovering Which Extension Is Being Used 579

15-12. Writing a Wrapper Class to Bridge the Gap 580

15-13. Project: Going from MySQL to XML and from XML to MySQL. . . 585

Summary . 596

Looking Ahead . 596

■CONTENTS xiii

■CHAPTER 16 Communicating with Internet Services. 597

16-1. Sending Internet Mail . 597

16-2. Project: Sending an E-mail with a Mail Class 599

16-3. Reading Mail with IMAP or POP3 . 602

16-4. Getting and Putting Files with FTP . 614

16-5. Performing DNS Lookups . 621

16-6. Checking Whether a Host Is Alive . 623

16-7. Getting Information About a Domain Name 627

Summary . 629

■INDEX . 631

■CONTENTSxiv

About the Authors

■LEE BABIN is a programmer based in Calgary, Alberta, where he serves as

the chief programmer for an innovative development firm duly named

The Code Shoppe. He has been developing complex web-driven applica-

tions since his graduation from DeVry University in early 2002 and has

since worked on more than 50 custom websites and online applications.

Lee is married to a beautiful woman, Dianne, who supports him in his

rather full yet rewarding work schedule. He enjoys playing video games,

working out, practicing martial arts, and traveling and can usually be

found working online on one of his many fun web projects. While Lee

has experience in a multitude of web programming languages, his preference has always been

PHP. With the release of PHP 5, many of his wishes have been fulfilled.

■NATHAN A. GOOD is an author, software engineer, and system administrator

in the Twin Cities in Minnesota. He fancies himself a regular Renaissance

man but is known by his friends as having delusions of grandeur. His

books include Professional Red Hat Enterprise Linux 3 (Wrox, 2004),

Regular Expression Recipes: A Problem-Solution Approach (Apress, 2005),

and Regular Expressions for Windows Developers: A Problem-Solution

Approach (Apress, 2005).

When Nathan is not working at a computer (which is rare), he spends

time with his family, spends time at church, and during the three weeks of

summer in Minnesota enjoys kayaking and biking.

■FRANK M. KROMANN is the senior software engineer at intelleFLEET,

where he is responsible for software design and development as well as

hardware integration. Most of this work is done as database-driven web

applications and involves a combination of centralized Linux servers

and decentralized Linux and Windows XP systems (touch-screen com-

puters) for data acquisition.

Frank has been involved with PHP development since 1997; he has

contributed several extensions to the project, has worked on countless

others, and was responsible for the Windows version of PHP-GTK.

When he is not writing code, you can find him on a golf course in Southern California or

having fun with his family.

xv

■ABOUT THE AUTHORSxvi

■JON STEPHENS started in IT during the mid-1990s, teaching computers

how to operate radio stations (and then teaching humans how to oper-

ate the computers). He has been working with and writing about web

and open-source technologies since the turn of the century. A coauthor

of Professional JavaScript, Second Edition (Wrox, 2001), Constructing

Usable Shopping Carts (friends of ED, 2004), and most recently Begin-

ning MySQL Database Design and Optimization (Apress, 2004), he’s also

a regular contributor to International PHP magazine.

Jon now works as a technical writer for MySQL AB, where he helps

maintain the MySQL manual, hangs out in the MySQL user forums, and asks the MySQL

developers questions about things he doesn’t understand.

Having lived in most places where one can reasonably live in the United States, Jon

migrated to Australia in 2002. He shares a house in Brisbane’s South End with varying num-

bers of cats and computers. In his spare time, he likes going to the ocean, riding his bicycle,

finding new and interesting places to drink coffee, reading the odd detective thriller, and

watching Bananas in Pyjamas with his daughter, Eleanor.

About the Technical Reviewer

■ROB KUNKLE has been a programmer and general computer enthusiast since he first got his

index fingers on a Commodore 64. More recently, he makes a living as a consultant, both put-

ting together applications and joyfully taking them apart. He loves a good airy discussion

about subjects such as computational linguistics, dumb luck, artificial intelligence, or just

wild speculation about the future.

He has a deep passion for photography; he enjoys trying to highlight the unspoken truths

and converting beauty found in everyday events and otherwise overlooked things. If you ever

happen to find yourself sitting in a cafe in the Inner Sunset district of San Francisco, be sure to

sit by the window and daydream; he might just stroll by with his dog and snap your photo. You

can see some of his images on http://www.flickr.com under the name “goodlux.”

xvii

Introduction

As the Internet continues to evolve, so too does the necessity for a language that addresses

the functionality needs of the Internet’s web viewers. Over time, some programming lan-

guages have come and gone, and others have continued to evolve. Several languages have

moved into the lead in the race for supremacy. Although languages such as ColdFusion,

ASP.NET, and CGI certainly have their advantages, PHP seems to be the developer’s choice

for a versatile, open-source solution.

PHP has grown over the years and, thanks to its devotees, has continued to adopt the

functionality most preferred by its user base. By actually listening to the developers to help

guide PHP’s development path, the PHP creators have introduced some impressive function-

ality over the years. However, PHP 4, while a sound developmental language and tool, was

lacking on a few fronts. For instance, it had a means for developers to take an object-oriented

approach, but several key pieces of functionality were not implemented, such as exception

handling and session support (for objects).

PHP 5 has changed all that. No longer must developers write classes that are missing

functionality. Available to PHP is a full set of object-oriented development tools. Of particular

note in PHP 5 is the ability to protect class variables in several ways. In addition, inheritance

difficulties are now a thing of the past, and exception handling has become a nice way of tak-

ing care of pesky errors and validation.

Thankfully, while PHP 5 has continued to develop, so too have the many extensions

that work alongside it. Several key extensions are bundled with the download package; for

instance, those who follow the MySQL database’s continued evolution will be happy to find

that the new mysqli extension contains a large set of functionality to help you work with

queries in a much more object-oriented way and to help speed up the efficiency of database-

driven web projects.

Further, the process of creating dynamic images has been improved; it is no longer diffi-

cult to install the GD2 library. Instead, it is bundled in PHP 5 from the start. All the bugs from

recent incarnations of the GD library seem to have been dealt with, and creating images using

the PHP 5 engine is simple and effective.

As web developers (and otherwise) continue to see XML as the be-all and end-all of portable

data storage, PHP 5 has gracefully adopted such functionality in the form of Simple XML, which is

a set of easy-to-use, custom-made, object-oriented methods for working with XML.

We could go on and on about the additions to PHP 5 that are getting rave reviews, but it is

much more helpful to actually see such functionality at work. While advancements in technol-

ogy take place every day, it is the actual implementation of such technology that brings

forward movement to the world.

Therefore, to show you some of the new PHP 5 functionality in real-world situations, this

book includes recipes that will allow you to simply drop code into your already custom-built

applications. By covering the vast scope of web applications, this book’s authors—with spe-

cialties in custom applications, database design, and Internet functionality—have devised a

xix

http://www.allitebooks.org

■INTRODUCTIONxx

set of code-based snippets that will allow you to take your code and port it to the next level of

PHP greatness.

We have considered everything from ease of use to migration (after all, many servers have

not handled the PHP upgrade yet) so that you will be able to search this book and bring your

code up to the cutting edge where it belongs. We hope you enjoy all that PHP 5 Recipes has to

offer; by using the recipes in this book, you can put our extensive research and experience

to work in your everyday coding conundrums.

Who This Book Is For
PHP 5 Recipes is for any PHP programmer looking for fast solutions to their coding problems

and wanting to capitalize on PHP 5’s new functionality. A basic knowledge of PHP is expected

and will come in handy when using the recipes in this book. Ideally, any PHP programmer,

from beginner to expert, will be likely to learn new things about PHP, especially PHP 5, and

gain a cutting-edge script or three to add to their repertoire.

How This Book Is Structured
PHP 5 Recipes is essentially a cookbook of programming snippets. You will be able to search

for the topic you are interested in and then find a sample you can integrate into your own

projects. Each recipe has an overview, contains code listing, and is followed by an in-depth

explanation of how the code works and where it might be applicable.

This book will guide you through the PHP 5 functionality set. In Chapter 1, you will start

with the basics, including a complete overview of what makes the PHP language what it is. In

Chapter 2, you will enter the world of object-oriented programming and see the advancements

in PHP’s fifth rendition.

In Chapter 3, you will learn how to take care of math issues (with an object-oriented

approach, of course); in Chapter 4, you will enter the flexible and powerful world of arrays.

One issue that can be a constant battle for programmers is dates and times. Therefore, Chap-

ter 5 covers date and time–related functionality. Chapter 6 covers how to work with everyone’s

favorite virtual textile, strings.

Chapter 7 covers files and directories and explains in detail how PHP 5 can deal with a

server’s file structure. Once you have a good grasp of how to work with files and directories,

you can then move into the rather amusing Chapter 8, which covers dynamic imaging; this

chapter will teach you everything you need to know about creating images that can captivate

the Internet and its audience.

Because working with regular expressions can be a difficult endeavor, Chapter 9 provides

you with some custom expressions to help you improve your programming skills. Then you

will return to the basics; Chapter 10 covers variables, and Chapter 11 explains functions. Don’t

be fooled, though—PHP 5 has added a lot of functionality that will make these two chapters

interesting and informative.

We will then get away from the basic programming content and cover web basics. In Chapter 12,

you will understand how to use some of the bells and whistles available in PHP 5. Forms will

follow in Chapter 13, which contains a lot of functionality for providing a web interface to

your potential development projects. Chapter 14 is on the cutting edge of technology in that

it provides an in-depth listing of markup recipes.

Things will then wind down to Chapter 15, which covers MySQL and brings you up to speed

on the technology associated with the new mysqli extension; these recipes use MySQL 4.1. Lastly,

Chapter 16 provides an informative look at Internet services.

Prerequisites
For PHP 5 Recipes, it is recommended, naturally, that you upgrade your current version of

PHP to the fifth incarnation. As this book goes to print, version 5.0.4 is the newest stable

release. In fact, many code samples in this book will not work on the PHP 4 platform. With

this in mind, you should also make sure to upgrade the server on which you are planning to

host applications so that it supports PHP 5.x.

In addition, certain pieces of functionality within Chapter 16 will require MySQL 4.1.

Of particular note is the mysqli extension, which requires MySQL 4.1 to run some of its

functionality.

We tested all the code within this book on Apache server configurations within PC- and

Linux-based operating systems. While most functionality should work on other popular server

platforms, certain bugs may arise; of particular note is the newest version of IIS, which this

book’s code does not fully function on.

Downloading the Code
All the code featured in this book is available for download; just browse to http://www.apress.com,

navigate to the Source Code section, and click this book’s title. The sample code is compressed

into a single ZIP file. Before you use the code, you’ll need to uncompress it using a utility such as

WinZip. Code is arranged in separate directories by chapter. Before using the code, refer to the

accompanying readme.txt file for information about other prerequisites and considerations.

Customer Support
We always value hearing from our readers, and we want to know what you think about this

book—what you liked, what you didn’t like, and what you think we can do better next time.

You can send us your comments by e-mail to feedback@apress.com. Please be sure to mention

the book title in your message.

We’ve made every effort to ensure the text and code don’t contain any errors. However,

mistakes can happen. If you find an error in the book, such as a spelling mistake or a faulty

piece of code, we would be grateful to hear about it. By sending in errata, you may save

another reader hours of frustration, and you’ll be helping to provide higher-quality informa-

tion. Simply e-mail the problem to support@apress.com, where your information will be

checked and posted on the errata page or used in subsequent editions of the book. You can

view errata from the book’s detail page.

■INTRODUCTION xxi

df1e604794cb6d1915bbedb2613cdeee

Overview of PHP Data Types
and Concepts

PHP began life as a way to manage a small personal website and was imagined and realized

by just one man, Ramsus Lerdorf. Originally dubbed Personal Home Page Tools, PHP quickly

evolved over the years from the basic scripting engine for a personal website into a highly

competitive, extremely robust code engine that is deployed on millions of websites across

the globe. PHP’s fast, effective engine; its widespread, open-source developer base; and its

platform flexibility have all come together to create one of the world’s most effective online

scripting languages.

Throughout the years PHP has continued to improve on its foundations, providing

increased functionality and scalability. Because of PHP’s standard of listening to the commu-

nity, fresh functionality is consistently added to every new release, allowing for more versatile

code and upgrades to its already substantial library of built-in methods. For years, people

have been using the PHP 4 series of code to create robust and powerful applications.

There is always room for improvement, however. Although PHP 4 is considered to be an

object-oriented programming (OOP) language, the class functionality found within it was not

entirely as flexible as some developers wanted it to be. Older OOP languages that have had

more time to grow have some strong functionality that PHP simply was not able to roll out in

its PHP 4 releases.

But that was then, and this is now. A very exciting occasion occurred for PHP developers

everywhere on July 13, 2004: PHP released its long-anticipated version 5. Sporting a new

object model powered by the already superb Zend II engine, PHP was ready to bring OOP

to a new level with this release.

On top of new, more powerful class structures and functionality, PHP 5 has introduced

many exciting features, some of which the community has been clamoring about for ages.

Say “hello (world)” to proper exception handling; new, simple-to-implement XML support;

more verbose Simple Object Access Protocol (SOAP) functionality for web services; and much,

much more.

This book will provide you with highly versatile recipes for improving and expanding

things with the new PHP 5 release. However, before we dive into that, in this chapter we will

give you a simple overview of what PHP can do, what is new with PHP 5, and how you can

apply these new concepts.

1

C H A P T E R 1

■ ■ ■

1-1.Variables

Variables in PHP are handled somewhat differently than in other similar programming lan-

guages. Rather than forcing the developer to assign a given variable a data type and then

assign a value to it (as in languages such as C++ and Java), PHP automatically assigns a data

type to a variable when a value is allocated to it. This makes PHP rather simple to use when

declaring variables and inputting values into them.

PHP variables, of course, follow a certain set of rules. All variables must begin with $ and

must be immediately followed by a letter or an underscore. Variables in PHP are indeed case-

sensitive and can contain any number of letters, numbers, or underscores after the initial $

and first letter or underscore.

Although initially variables in PHP were always assigned by value, since the PHP 4 release

(and including PHP 5), you can now assign variables by reference. This means you can create

something of an alias to a variable that will change the original value if you modify the alias.

This is quite different from value-assigned variables that are essentially copies of the original.

The following example shows a couple blocks of code to give you a good handle on PHP 5

variable functionality.

The Code

<?php

//sample1_1.php

//A properly set-up PHP variable.

$myvar = 0;

//An improper PHP variable.

//$1myvar = 0;

$yourvar = "This is my value
";

//An example of assigning variables by value.

$myvar = $yourvar;

//If we were to change it.

$myvar = "This is now my value.
";

echo $yourvar; //Echoes This is my value

//An example of assigning a variable by reference.

$myvar = &$yourvar;

$myvar = "This is now my value.
";

echo $yourvar; //Echoes This is now my value.

?>

This is my value

This is now my value.

1-1 ■ VARIABLES2

How It Works

Using superglobals has taken precedent while people slowly migrate their code from the old,

variable-based method (which requires register_globals to be set to on in the php.ini file) to

the new superglobal array method (which does not require register_globals to be set to on).

Basically, rather than using the old method of gathering data from places such as cookies, ses-

sions, and form variables, PHP 5 is moving its focus toward the concept of superglobals. A few

custom PHP globals can gather information from different sources. By using these superglob-

als, a developer can keep order within a script by knowing and managing exactly where a

variable has come from or will be going to. Considered largely more secure because you can

build code to tell exactly where variables are coming from, rather than just accepting a vari-

able at face value, superglobals are becoming the standard.

The default configuration for PHP 5 insists that the register_globals value be set to off.

This means you have to put a little more thought into your code. Rather than just receiving a

value and running with it, you must specify to PHP where the value is coming from and poten-

tially where you are going to put it. The following is an example of some superglobals in

action:

<?php

//Rather than accepting a value from a form like this:

$formvar = $formvar;

//Or like this:

$formvar = $HTTP_POST_VARS['formvar'];

//The new, way to receive a form var is as such:

$formvar = $_POST['formvar'];

?>

Similarly, get variables, session variables, cookies, files, and a few others are now handled

in much the same way. Consider this example with sessions that will check for a valid login:

<?php

if ($_SESSION['loggedin']){

echo "Proper login";

} else {

echo "You are not logged in.";

}

?>

By knowing exactly where your data has come from, you can prevent malicious people

from inserting false code into your premade scripts through, say, the address bar.

To get a full understanding of PHP 5 and its variable system, please see Chapter 10 by

Frank M. Kromann, where he will cover the wide world of variables in depth.

1-1 ■ VARIABLES 3

1-2. Numbers

As any good programming language should be able to, PHP is more than capable of taking care

of any math problems you may have. PHP 5 is especially flexible when dealing with numbers

because its variable accessing is so simple. That being said, you must exert a certain degree of

caution while working with said variables in order to make sure you retain the proper data con-

text. Luckily, PHP fully supports data typing; you just have to be careful when implementing it.

PHP also supports the full range of math functionality and even has a couple of math-

related libraries to use. Everything from the basic math equations and operators, such as

division or multiplication, all the way up to logarithms and exponents have a place to call

home in PHP 5.

Basic math operations are quite simple in PHP 5, but you must exude a bit of extra cau-

tion when maintaining the integrity of the data and outputting the end result.

The Code

<?php

//sample1_2.php

//You could assign an integer value this way:

$myint = 10;

//Then you could simply output it as so:

echo $myint . "
";

//But in order to MAKE SURE the value is an integer, it is more

//practical to do it like this:

echo (int) $myint . "
";

//That way, when something like this occurs:

$myint = 10 / 3;

//You can still retain an integer value like this:

echo (int) $myint . "
"; //echoes a 3.

?>

10

10

3

How It Works

The next important aspect to numbers in PHP that you may want to consider is how to output

them. PHP 5 supports a couple of nice functions, including printf() and sprintf(), that allow

you to output the display as you would like. By using either of these functions, you can format

your output data in several ways. Consider the following example in which it is integral that

the value be displayed as a dollar amount set to two decimal places:

1-2 ■ NUMBERS4

<?php

//Let's say you live in Canada and want to add GST tax to your amount.

$thenumber = 9.99 * 1.07;

//If you simply outputted this, the value would be skewed.

echo "$" . $thenumber . "
"; //Outputs $10.6893

//In order to show the value as a dollar amount, you can do this:

echo "$" . sprintf ("%.2f", $thenumber); //Outputs $10.69

?>

$10.6893

$10.69

Basically, you can manipulate numbers in PHP in much the same way as you handle

them in most programming languages. Those familiar with a language such as C++ or

JavaScript will not have many issues when piecing together equations for PHP 5. To get a

more in-depth explanation of numbers and some helpful real-world examples (including

a static math class), skip ahead to Frank M. Kromann’s detailed explanation on PHP 5’s

number crunching in Chapter 3.

1-3. Arrays

One of PHP 5’s major strengths resides in its rather powerful and verbose array processing

capabilities. Those familiar with a programming language such as C++ will feel right at home,

as PHP 5 has a truly formidable set of array functionality.

Many types of arrays are available to you in PHP 5, and you have many different ways to

work with them. PHP 5 fully supports regular arrays, multidimensional arrays, and even the

handy associative array. Unlike the string functions available to PHP, the array functions are

actually rather well organized and follow fairly easy-to-use naming conventions that make it

straightforward to work with them.

Setting up and assigning both associative arrays and regular arrays in PHP is easy. PHP

arrays start the index at zero, as most programming languages do. Indexing arrays is just as

easy; PHP 5 supports several methods to cycle through arrays and even has many built-in

functions for performing all sorts of handy methods such as sorting, reversing, and searching.

The following is a simple example of how to set up an array in PHP 5.

The Code

<?php
//sample1_3.php

//Set up a standard array.
$myarray = array("1","2","3");
//You can access values from the array as simply as this:
echo $myarray[0]; //Would output "1".
//Or with a for loop.
for ($i = 0; $i < count ($myarray); $i++){
echo $myarray[$i] . "
";

}

1-3 ■ ARRAYS 5

//Setting up an associative array is similarly easy.

$myassocarray = array ("mykey" => 'myvalue', "another" => 'one');

//And there is the handy while, each method for extracting info from

//associative arrays.

while ($element = each ($myassocarray)) {

echo "Key - " . $element['key'] . " and Value - " . $element['value'] . "
";

}

?>

11

2

3

Key - mykey and Value - myvalue

Key - another and Value - one

How It Works

Arrays are quite a powerful tool in PHP 5; you can use them in a myriad of ways. To take

advantage of arrays in truly powerful ways, be sure to check out Jon Stephen’s Chapter 4.

Chapter 4 is chock-full of examples that will help you get the most from PHP 5’s array func-

tionality.

1-4. Strings

Strings within PHP have evolved in an interesting manner. Over time PHP has accumulated a

fair amount of truly powerful timesaving functions that are included in any fresh install of

PHP 5. Combine this with PHP’s useful variable handling, and PHP 5 seems set to do anything

you would like with strings.

Unfortunately, although the functionality for strings that PHP contains is both powerful

and handy, it is also somewhat all over the place. Function naming conventions are rather

skewed and do not make a whole lot of sense. You may need to do a fair bit of searching the

PHP manual to utilize strings to their full potential.

String handling plays an important role in today’s online software development. With

the need for proper data validation and security constantly on the rise, so too must the devel-

oper’s skill with string handling improve. By using some of the more powerful functions in

the PHP language, you can make it so only the data you want gets put into your data storage

agents and only the data you want to be visible makes its appearance on your web pages.

Setting up and working with both strings and substrings is effortless with PHP 5, as the

following example demonstrates.

1-4 ■ STRINGS6

The Code

<?php

//sample1_4.php

//Because PHP determines the data type when a value is assigned to a variable

//setting up a string is as easy as this:

$mystring = "Hello World!";

//And naturally, outputting it is as easy as this:

echo $mystring . "
";

//Similarly, with the help of built-in functions like substr(), it is easy to work

//with substrings as well.

echo substr ($mystring,0,5); //Would output Hello.

?>

Hello World!

Hello

How It Works

Because working with strings is an important matter, to really get the most out of them make

sure you visit Chapter 6 get an in-depth look at what is truly possible in PHP 5 by using strings.

Not only will you get a good string explanation and plenty of examples, but you will also see

PHP 5’s class handling put to good use.

1-5. Regular Expressions

Regular expressions are interesting animals. Basically, a regular expression helps to validate

against a certain pattern of characters. Regular expressions provide you with a means to give

your script an example, if you will, to compare its variables against. By using PHP 5’s regular

expressions, you can create something of a variable map that you can then compare a value

against to determine its validity.

There are no real barriers to using regular expressions in PHP 5; the library containing its

important functions has been included in PHP since version 4.2. Those familiar with Perl’s

syntax for regular expressions will feel right at home working with them in PHP, as they share

similar structures.

Basically, two major subcategories of functions for regular expressions exist: ereg() and

preg_match(). Both of them allow you to set up a regular expression that you can then use to

compare strings against.

Commonly, regular expressions are used to validate data before insertion into a database

or some other form of data storage. When you need to ensure that an exact data string has been

submitted, there is no better way to confirm this than with regular expressions. Common uses

of regular expressions are to check Uniform Resource Locator (URL) or e-mail submissions,

because they both follow a common set of rules. (In other words, all e-mail addresses will have

a grouping of words, potentially divided by periods on either side of an @ character.)

1-5 ■ REGULAR EXPRESSIONS 7

http://www.allitebooks.org

The following is an example of a regular expression that will check to ensure that a prop-

erly formatting e-mail string has been submitted.

The Code

<?php

//sample1_5.php

$email = "lee@babinplanet.ca";

echo preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])+➥

(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$email); //Would return 1 (true).

echo "
";

$bademail = "leebabin.ca";

echo preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])+➥

(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$bademail); //Would return 0 (false).

?>

1

0

How It Works

As you can see, regular expressions can be confusing and can quite easily get out of hand.

Coding them requires a fair bit of trial and error and can quickly become overwhelming if

you are not careful. On the plus side is that most regular expressions, once coded, never really

need to be coded again, as they generally validate against strings that follow a rigid set of rules

and rarely change.

With that in mind, please feel free to check out Nathan A. Good’s Chapter 9 to experience

a fair amount of regular expressions that will come in handy with your everyday code.

1-6. Functions

A staple to any good programming language is the ability to declare and then program func-

tions. Basically, functions are blocks of code that can be called upon to produce a desired

effect. Functions in PHP 5 can have values both passed to them and returned from them. By

using functions effectively, you can clean up a lot of redundant code by placing commonly

used functionality into a single method.

The way functions work has not changed all that drastically with the advent of PHP 5. You

can still write functions however you want, you can still pass them values, and they can still

return values. One new addition to PHP 5, however, is the ability to include functions in XSL

Transformations (XSLT) stylesheets. While XML purists will no doubt have trouble with the

removal of the portability of XML, those who strictly use PHP to access and maintain their

XML will find it a godsend.

1-6 ■ FUNCTIONS8

Functions follow the same sort of naming conventions that variables do, but $ is not

required to precede the name of the function as it is with variables. The first character in a

function name can similarly not be a number and can instead be any letter or an underscore.

The following characters can then be any combination of letters, numbers, and underscores.

Class-embedded methods now have a few new features in PHP 5. You can now call parent

methods from within a child class and set up the protection you want to implement on meth-

ods declared within classes. By doing this, you can set up methods that can be called from any

object instance or strictly allow only child classes or internal methods to take advantage of

certain methods.

The following example shows how to build and then call a function; it is a simple process

that will look familiar to those fluent in other programming languages.

The Code

<?php

//sample1_6.php

//Here we create and then call a simple function that outputs something.

function helloworld (){

echo "Hello World!
";

}

//We call it as easy as this:

helloworld();

//Creating and calling a function that accepts arguments is just as easy.

function saysomething ($something){

echo $something . "
";

}

Saysomething ("Hello World!"); //This would output "Hello World!"

//And of course we can have our function return something as well.

function addvalues ($firstvalue, $secondvalue){

return $firstvalue + $secondvalue;

}

$newvalue = addvalues (1,3);

echo $newvalue; //Would echo "4".

?>

Hello World!

Hello World!

4

1-6 ■ FUNCTIONS 9

How It Works

Obviously, as you can imagine, functions can get complicated but can generate some powerful

results. As you go through this book, you will find plenty of worthy functions that may come in

handy during your application development. Feel free to skip ahead to Chapter 11 to get a

more in-depth explanation on what is truly possible in the world of PHP 5 functions.

1-7. Project: Finding the Data Type of a Value

Because of the (potentially) constantly changing data types in a variable, PHP can sometimes

be a little too lenient. Sometimes keeping constant control over a variable’s data type is not

only required but is essential. Thankfully, while PHP variables can and will change data types

on the fly, ways still exist to force a variable to retain a certain data type. PHP supports both

typecasting and methods that can force a variable into a certain data type. Table 1-1 lists PHP

5’s data types.

Table 1-1. PHP 5 Data Types

Data Type Description

Boolean Stores either a true or false value

Integer Stores a numeric value that is a whole number

Double Stores a numeric value that can contain a number of decimal places
(commonly called a float)

String Stores a chain of characters

Array Stores an indexed container of values

Object Stores an instance of a defined class

Resource Holds a reference to an external source

NULL Represents a variable that has no value

Two all-inclusive functions in PHP both get and set the value of a variable. Aptly titled

gettype() and settype(), they do exactly what you would assume they would. The gettype()

function returns a string containing the (current) data type of a variable. The settype() func-

tion sets the variable supplied to it with the data type also supplied to it. The prototypes for

these two functions are as follows:

bool settype (mixed &var, string type)

string gettype (mixed var)

Both of these variables may not be the best way to get things done, however. Although

gettype() will tell you what the data type of a variable is, you should already have a good idea

of what the variable probably is. More often than not, if you are checking on the data type of a

variable, you are attempting to confirm that it is the type that you need it to be, quite often for

validation. In this case, each data type corresponds to a function that begins with is_ (see

Table 1-2). If you are completely clueless as to what the data type of a variable is, then either

you are not paying enough attention to what is going on in your script or you are using it for

some extremely heavy debugging.

1-7 ■ PROJECT: F INDING THE DATA TYPE OF A VALUE10

Table 1-2. PHP is_ Functions

Data Type Return Type Function

Boolean bool is_bool (mixed var)

Integer bool is_int (mixed var)

Double bool is_float (mixed var)

String bool is_string (mixed var)

Array bool is_array (mixed var)

Object bool is_object (mixed var)

Resource bool is_resource (mixed var)

NULL bool is_null (mixed var)

In the following example, the script illustrates how to use an is_ function to determine a

proper data type and then work with it if necessary.

The Code

<?php

//sample1_7.php

//Here is a variable. It is pretty easy to see it is a string.

$unknownvar = "Hello World";

echo gettype ($unknownvar) . "
"; //Will output string.

//The gettype is quite slow; the better way to do this is:

if (is_string ($unknownvar)){

//Then do something with the variable.

echo "Is a string
";

}

?>

String

Is a string

How It Works

As you can see in the previous example, although the gettype() function will tell you that you

have a string, in most cases of validation the is_ functions will do a far superior job. Not only

are the is_ functions more efficient from a processing point of view, but by using them at all

times to validate the data type of a variable, you get around the real possibility that a PHP vari-

able will have its type changed again somewhere else within the script.

Similar to getting the data type of a variable, it is not always best to use settype() to

assign a data type to a variable. PHP supports the concept of data typing, which will allow you

to force a variable into a specific data type. Not only is this fast and efficient, but you can use it

much more cleanly in scripts. For example:

1-7 ■ PROJECT: F INDING THE DATA TYPE OF A VALUE 11

<?php

//Let's say we start with a double value.

$mynumber = "1.03";

//And let's say we want an integer.

//We could do this:

$mynumber = settype ($mynumber ,"integer");

echo $mynumber . "
"; //Would output 1.

//But it is better and looks far cleaner like this:

echo (int) $mynumber;

?>

Sometimes PHP is almost a little too simple to set up and maintain, which can lead to

obvious mistakes. Thankfully, for the careful programmer, you can easily control the type of

your variables and ensure a successful, highly functional application.

1-8. Project: Discovering What Variables, Constants, Functions,

Classes, and Interfaces Are Available

While running scripts in PHP, it may become necessary from time to time to check whether an

instance of a method, function, class, variable, or interface exists. PHP 5 has all your bases

covered in this case and contains some built-in functions to provide your script with the

answers it truly requires.

PHP provides you with a set called the _exists function line-up. Through four of these

functions you can determine if a function exists, whether an interface or method exists, and

even whether a class exists. The prototypes for function_exists(), method_exists(),

class_exists(), and interface_exists() are as follows:

bool function_exists (string function_name)

bool method_exists (object object, string method_name)

bool class_exists (string class_name [, bool autoload])

bool interface_exists (string interface_name [, bool autoload])

These functions can come in handy when preparing your scripts for use. Validation is

always key when programming large-scale applications, and the more massive in size they

become, the more important validation such as this becomes. The following example shows

how to use these functions for validation.

The Code

<?php

//sample1_8.php

//Let's say you had a script that for a long time

//called a function called isemail().

//Like this, for instance:

/*

if (isemail($email)){ //This will generate an error.

//Insert e-mail address into the database.

} else {

1-8 ■ PROJECT: DISCOVERING WHAT VARIABLES, CONSTANTS, FUNCTIONS, CLASSES, AND INTERFACES

ARE AVAILABLE

12

//Perform validation.

echo "Not a valid e-mail address.";

}

*/

//Now, if someone went ahead and changed the name of isemail(), your script

//would crash.

//Now, try something like this instead:

if (function_exists($isemail)){

if (isemail($email)){

//Insert e-mail address into the database.

} else {

//Perform validation.

echo "Not a valid e-mail address.";

}

} else {

//Handle the error by sending you an e-mail telling you the issues.

echo "Function does not exist.
";

}

?>

Function does not exist.

How It Works

As you can see, the second part of the previous script will take care of things in a much more

professional manner. As we mentioned, this sort of thing may not be an issue with smaller

applications, but as application size increases and the number of members on your team

upgrades substantially, issues such as this quickly become valid.

Especially important is this sort of validation within classes. Using class_exists(),

method_exists(), and interface_exists() can be a lifesaver within real-world, large-scale

applications that have a significantly sized team attending to them. An example of some

serious validation is as follows:

<?php

//First off, before we extend any class, we should confirm it exists.

if (class_exists (myparent)){

class anyclass extends myparent {

public $somemember;

public function dosomething (){

//Here we ensure that the parent method exists.

if (method_exists (parent,"parentmethod")){

//Then we can proceed.

} else {

//Mail us a warning.

}

}

1-8 ■ PROJECT: DISCOVERING WHAT VARIABLES, CONSTANTS, FUNCTIONS, CLASSES, AND INTERFACES

ARE AVAILABLE

13

}

} else {

//Mail us a warning.

echo "Class does not exist.
";

}

?>

Class does not exist.

Lastly, and most commonly, sometimes you will want to test to see whether a variable

exists. Likely, this will come about from user- or script-submitted values that will determine

whether a script will perform an action. By using the isset() function, your script can deter-

mine whether a variable has been set up. Consider the following example, which will help you

determine whether a search variable has been posted from a search engine:

<?php

//We are looking to receive a value from a "post" form before we search.

if (isset ($_POST['searchterm'])){

//Then we would perform our search algorithm here.

} else {

//Or else, we generate an error.

echo "You must submit a search term. Please click the Back button.";

}

?>

You must submit a search term. Please click the Back button.

1-9. Getting Information About the Current Script

Sometimes while developing it can be prudent to find out information about the environment

you are developing in and also where certain aspects of the script stand. For an all-encompassing

look at everything you would ever need to know about your version of PHP (but were afraid to

ask), you could do worse than calling the function phpinfo(). The function phpinfo() lists pretty

much every applicable variable in the PHP configuration as well as general interesting facts such

as the version number and when it was last compiled.

You can even display a table detailing the masterminds behind this wonderful language

by using the phpcredits() function; this is really nothing more than a curiosity, but it is there

should you require it.

To output all this fancy information, you need to make a quick function call or two, as

shown in the following example.

1-9 ■ GETTING INFORMATION ABOUT THE CURRENT SCRIPT14

The Code

<?php

//sample1_9.php

//Yes, that is it…

phpinfo();

//And credits if you so wish to see:

phpcredits();

?>

Figure 1-1 shows some output of the phpinfo() function, and Figure 1-2 shows some out-

put of the phpcredits() function.

Figure 1-1. Example output of the phpinfo() function

1-9 ■ GETTING INFORMATION ABOUT THE CURRENT SCRIPT 15

Figure 1-2. Example output of the phpcredits() function

How It Works

You can also get little tidbits of information to display to your screen without outputting the

overwhelming mass of information that phpinfo() or phpcredits() create for you by using a

more specific function such as phpversion(). This function is just as easy to use as phpinfo():

<?php

echo phpversion(); //Outputs 5.0.3 on my current setup.

?>

5.0.3

1-9 ■ GETTING INFORMATION ABOUT THE CURRENT SCRIPT16

Naturally, you can also get individual element information about the current PHP

settings by using the ini_get() function. You can even set the variables temporarily with the

ini_set() function, which can come in handy under certain circumstances. We will discuss

the ini_set() function in more detail in Chapter 12, so for now we will cover the ini_get()

function. It has a prototype as such:

string ini_get (string varname)

Too many arguments exist that can be passed to this function to list here; through this

function you can access pretty much any variable that can be set in the php.ini file. You can

even view all the configuration values by using the function ini_get_all(). Here is an exam-

ple of how you can use it:

<?php

//Check to see the maximum post value size.

echo ini_get ("post_max_size") . "
"; //Outputs 8M on our current server.

//Output all of the values.

$myarray = ini_get_all();

print_r($myarray);

?>

8M

Another handy, yet not required, function that PHP can produce for you is the getlastmod()

function. This function can return to you a Unix timestamp with the last modified date. This can

be helpful to keep track of a given script’s past and could potentially be used to track changes to

the document. This is not meant to be used as a revision control system, however, as there are

other, more powerful methods available for this. Here is a quick example of how to output the

last time your script was updated:

<?php

echo date ("F d Y H:i:s.", getlastmod()) . "
"; //June 01 2005 20:07:48.

?>

June 01 2005 20:07:48.

A truly powerful way to keep in touch with your script is using the predefined variable

$_SERVER. By feeding this variable arguments, you can extract valuable server- and script-

related information. It works largely the same as the $_POST or $_GET variable but already has

all the arguments it will need. Table 1-3 lists the $_SERVER arguments.

1-9 ■ GETTING INFORMATION ABOUT THE CURRENT SCRIPT 17

http://www.allitebooks.org

Table 1-3. PHP $_SERVER Arguments

Argument Result

PHP_SELF Returns the filename of the current script with the path relative to the root

SERVER_PROTOCOL Returns the name and revision of the page-requested protocol

REQUEST_METHOD Returns the request method used to access the page

REQUEST_TIME Returns the timestamp from the beginning of the request

DOCUMENT_ROOT Returns the root directory under which the current script is executing

HTTP_REFERER Returns the page address that referred to the current page

HTTP_USER_AGENT Returns the user agent of the header from the current request (handy for
browser identification)

REMOTE_ADDR Returns the IP address of the current user (handy for security)

REMOTE_PORT Returns the port of the user’s machine that is accessing the page

SCRIPT_FILENAME Returns the absolute filename from the current script

SCRIPT_NAME Returns the path of the current script

As you can see, you can retrieve a multitude of possible values through the $_SERVER vari-

able. For a complete list, refer to the PHP manual at http://www.php.net/reserved.variables.

The following is an example of a situation in which using the $_SERVER variable would

come in handy. Consider that you wanted to create a counter that would track only those

website visitors with a unique IP address. By using the $_SERVER variable, you can effectively

determine whether the IP address browsing the site is unique to the data collection.

<?php

//We get the IP address of the current user.

$curip = $_SERVER['REMOTE_ADDR'];

//Then we do a database query to see if this IP exists.

//Let's assume we have already put all of the IP addys in our

//db into an array called $myarr.

//We check if the new IP address exists in the array via the in_array() function.

$myarray = array ();

if (!in_array ($curip, $myarray)){

//Then we insert the new IP address into the database.

echo "We insert the IP addy: " . $curip . " into the database";

} else {

echo "The IP addy:" . $curip . " is already in the database.";

}

?>

We insert the IP addy: 127.0.0.1 into the database

1-9 ■ GETTING INFORMATION ABOUT THE CURRENT SCRIPT18

Summary
As you can see, PHP is a powerful and robust language that is growing in popularity and func-

tionality. With the advent of PHP 5, many of the concerns users had regarding certain aspects

have been largely resolved, or at least a resolution for them has begun. As you read the rest of

this book, you will pick up a large volume of highly useful code (available handily on the

Apress website) that can guide you and help you solve the many adversities you may come

across in your time as a PHP developer.

Looking Ahead
In the next chapter, Jon Stephens will be taking you through the functionality involved with

some of the more important improvements in PHP 5’s object-oriented programming. As PHP

continues to grow as an object-oriented language, it is continually evolving to respond to the

demand for more robust and feature-laden code. Prepare to get structured as you make your

way into the next chapter.

1-9 ■ GETTING INFORMATION ABOUT THE CURRENT SCRIPT 19

Overview of Classes,
Objects, and Interfaces

If you have worked with PHP in its earlier incarnations, then much of what you will find in

PHP 5 is quite familiar, as you no doubt noticed from Lee Babin’s survey of the major language

features in Chapter 1. Like its predecessor, PHP 5 supports object-oriented programming, but

the way in which this is implemented has changed; in fact, it has been expanded significantly

from what was formerly available. In this chapter, we will acquaint you with the basics of

classes, objects, and interfaces in PHP 5. In doing so, we will address the needs of several

groups of readers to make sure that we all (forgive the expression) wind up on the same page.

This book assumes you have prior experience with PHP 4 or some other programming or

scripting language. Of course, it is possible to write plenty of useful PHP 4 code (or PHP 5

code, for that matter) without using classes or objects, but we will start with a brief primer on

those two concepts so you start to see the advantages of using them. If you are already familiar

with the basics of object-oriented programming, then you will still find this chapter to be a

useful time-saver; however, it might not be a revelation. If you are not familiar with object-

oriented programming, prepare to be taken to the next level as a developer; once you begin

to see the advantages of using it, you will likely not want to go back to a purely procedural

way of coding.

If you are accustomed to writing object-oriented code in PHP 4, you will find that things

have changed quite a bit, and mastering the differences might take some time. By the way, you

will likely be happy to learn that the classes and objects you may have written for PHP 4 will

usually work in PHP 5, although you may have to do a bit of tweaking here and there. We will

point out the differences as we go and highlight any “gotchas” that might make things difficult

for you.

If you are new to PHP but you have had some experience programming in a heavily

object-oriented language such as Java or C++, you will find that most of the features of PHP 5

classes and objects will look familiar. In fact, the new object-oriented paradigm in PHP 5 is

modeled largely on Java and includes interfaces, abstract classes and methods, and excep-

tions. We will discuss how these are handled in PHP 5 in due course.

21

C H A P T E R 2

■ ■ ■

Other topics we will cover in this chapter include the following:

• Creating, copying, and destroying objects

• Creating class diagrams

• Finding the methods and properties of an object

• Overriding methods and using polymorphism

• Creating classes and objects dynamically

By the time you have finished reading this chapter, you will have a good grasp of how

classes and objects work in PHP 5, how they might prove useful in applications, how to obtain

information about them, and the key differences between PHP 4 and PHP 5 in this regard. We

will start with a brief look at what classes and objects are and explain some concepts you will

need to understand in order to discuss and work with them.

■Tip In this chapter, we have barely scratched the surface when it comes to object-oriented design, which

is a huge field of its own and largely independent of any particular programming language. For more about

object-oriented design principles as applied to PHP 5, refer to Matt Zandstra’s excellent PHP 5 Objects, Pat-

terns, and Practice (Apress, 2004). If you are serious about digging deep into PHP 5 objects and getting the

most from them in your own applications, we strongly recommend you read this book. Since much object-

oriented design literature is written with the assumption that the reader is fluent in C++ and/or Java, you

will find PHP 5 Objects, Patterns, and Practice especially helpful if you do not have a great deal of experience

in one of those two languages.

Understanding Basic Concepts
If you have never done any object-oriented programming before, then the terms class and

object may sound mysterious and even a bit scary. (If you have, then you can safely gloss over

or even skip the next few paragraphs and proceed to recipe 2-1.) However, classes and objects

are really neither mysterious nor scary. After you have used them a few times, you will start to

wonder how you managed to get along without them. Once you understand how they work,

you should not have any trouble creating your own.

An object is basically a type of data that allows you to group data and functions under

a single variable. In PHP, the -> operator denotes a member of a specific object, that is, a

property (piece of data) or method (function) belonging to an object. You can think of it as

meaning “has a,” with the arrow pointing from the thing doing the having to the thing being

had. In PHP 5, as in previous versions of the language, it is possible to create simple objects by

doing nothing more than assigning object properties to an otherwise unused variable. For

example:

<?php

$ball->color = "green";

$ball->weight = 100;

UNDERSTANDING BASIC CONCEPTS22

printf("The ball's color is %s, and its weight is %d kilos.",

$ball->color, $ball->weight);

?>

The output of the previous code is as follows:

The ball's color is green, and its weight is 100 kilos.

If you are familiar with associative arrays, then you will understand what we mean when

we say that you can think of an object as being like an associative array with alternative nota-

tion. They are quite similar, both being just unordered lists with named elements (rather than

indexed elements). Whether you use this

$ball['weight'] = 100;

or this

$ball->weight = 100;

each gives you a way of saying “the $ball has something called weight, whose value is 100.”

Where objects really become useful is when you have a way to create them on demand

from a single pattern. A class defines a reusable template from which you can create as many

similar objects (instances of the class) as you need. For example, if you are writing an inven-

tory system for a pet shop, you are likely to be working with information about lots of birds,

and you can write a Bird class to represent a generic bird; each instance of this class then rep-

resents an individual bird. You can think of the class as a collection of variables and functions

common to all birds. Variables attached to an object in this way are properties, and functions

manipulating these variables are methods. Together, the methods and properties of an object

are its members.

We have always thought of a programming object as being like a noun, with its properties

being adjectives (describing aspects of the objects) and its methods being verbs (representing

the object’s actions or changes that can be made to its properties). In the case of the Bird class,

you would likely want to have properties to account for a bird’s name, breed, and price. In this

context, you probably are not going to be too concerned about the bird’s flight speed or direc-

tion of travel, even though most birds are capable of flight—if you are not likely to use some

aspect or capability of the thing you are modeling when you define a class, then you should

not bother creating a corresponding class member.

■Note A class is a template or prototype object. An instance of this class represents a particular case of

this class. The word object can apply to classes and instances of classes alike.

Of course, programming objects do not have to model concrete objects; you can use them

to represent abstractions as well. In subsequent chapters of this book, you will use classes to

model abstract concepts such as dates and times (Chapter 5), files and directories (Lee Babin’s

Chapter 7), and Hypertext Markup Language (HTML) and Extensible Markup Language (XML)

tags (Frank M. Kromann’s Chapter 14).

UNDERSTANDING BASIC CONCEPTS 23

2-1. Creating Instances Using Constructors

To create a new instance of a class (also referred to as instantiating a class), you can use the

new operator in conjunction with the class name called as though it were a function. When

used in this way, it acts as what is known as the class constructor and serves to initialize the

instance. This instance is represented by a variable and is subject to the usual rules governing

variables and identifier names in PHP. For example, consider the following:

$tweety = new Bird('Tweety', 'canary');

This creates a specific instance of Bird and assigns it to the variable named $tweety. In

other words, you have defined $tweety as a Bird. So far you have not actually defined any

members for the Bird class, and we have not discussed exactly how you define classes in

PHP 5, so let’s do those tasks now.

The Code

<?php

class Bird

{

function __construct($name, $breed)

{

$this->name = $name;

$this->breed = $breed;

}

}

?>

How It Works/Variations

This is about as simple a class definition as you can write in PHP 5. As is the case in PHP 4, a

PHP 5 class is defined in a block of code that begins with the class keyword and the name of

the class. In most cases, a class is not going to be useful unless you can create instances of it

(this rule has exceptions, which you will learn about in recipe 2-11). To accomplish this task,

you need a class constructor. In PHP 5, you do this by defining a method with the name

__construct(); this method is called whenever you create a new instance of the class.

■Note It is customary in most programming languages, including PHP, to begin class names with a capital

letter and to write names of class instances beginning with a lowercase letter. This is a convention we will

observe throughout this book.

■Note In PHP 4, a class constructor was written as a method with the same name as the class (for exam-

ple, using a Bird() method as the constructor for the Bird class). While PHP 5 still supports this way of

creating instances of classes for backward compatibility, it is not recommended for new code. You will see

why when we talk about extending classes in recipe 2-7.

2-1 ■ CREATING INSTANCES USING CONSTRUCTORS24

The $this keyword has a special purpose: it allows you to refer to the instance from

within the class definition. It works as a placeholder and means, “the current instance of

this class.” The Bird class constructor assigns the string 'Tweety' to the name property of the

instance you are creating and the string 'canary' to its breed property. You can put this to

the test like so:

<?php

class Bird

{

function __construct($name, $breed)

{

$this->name = $name;

$this->breed = $breed;

}

}

$tweety = new Bird('Tweety', 'canary');

printf("<p>%s is a %s.</p>\n", $tweety->name, $tweety->breed);

?>

The resulting output is as follows:

Tweety is a canary.

To determine the price you want to charge for Tweety, you could set the price property

and output it like so:

<?php

// ...class defined and constructor called as previously shown...

$tweety->price = 24.95;

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$tweety->name, $tweety->breed, $tweety->price);

?>

The output from this is as follows:

Tweety is a canary and costs $24.95.

Notice that no $price variable is defined within the class itself; you have created one arbi-

trarily. While this is not a terribly bad thing, it is also not a terribly good one: it means you can

easily create Bird objects that are structurally inconsistent with others. If your application

depends on all birds having prices, then you will run into trouble the first time you forget to

assign a price to a bird. It is much better if you make sure every Bird has a price property by

including it in the constructor. We will return to this topic shortly, but first we will finish dis-

cussing class instance creation and initialization.

2-1 ■ CREATING INSTANCES USING CONSTRUCTORS 25

■Note It is possible to write a class without a __construct() method and even to instantiate it, but most

of the time this is not very useful.

2-2. Using Default Constructors

Suppose also that most—say, 80 percent—of your birds are priced at $15. Wouldn’t it be more

convenient if all your Bird instances came with prices already set to that amount and you

were required to set the prices of only the remaining 20 percent? PHP lets you set default

values for function parameters and for class constructors. The following example shows a

slightly revised Bird class.

The Code

<?php

class Bird

{

function __construct($name='No-name', $breed='breed unknown', $price = 15)

{

$this->name = $name;

$this->breed = $breed;

$this->price = $price;

}

}

$aBird = new Bird();

$tweety = new Bird('Tweety', 'canary');

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$aBird->name, $aBird->breed, $aBird->price);

$tweety->price = 24.95;

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$tweety->name, $tweety->breed, $tweety->price);

?>

Here is the output:

No-name is a breed unknown and costs $15.00.

Tweety is a canary and costs $24.95.

2-2 ■ USING DEFAULT CONSTRUCTORS26

How It Works

You have created a default constructor for the Bird class. If you forget to set one or more

properties when creating a new instance of the class, you will not get caught short later by a

division-by-zero error, for example.

2-3. Setting Object Properties

A page or two back, we said it is better to include all properties of an object in its class definition

rather than creating them dynamically. This is for two reasons. First, as we mentioned, you want

to be sure all instances of a class have the same properties; otherwise, what happens when you

forget to set a price for a Bird when some other part of your code expects there to be one? Second,

when you assign a value to an object property, PHP does not check to see whether the property

already exists. This means that it is all too easy to make a mistake that can be difficult to detect

later, such as this one:

<?php

class Bird

{

function __construct($name='No-name', $breed='unknown', $price = 15)

{

$this->name = $name;

$this->breed = $breed;

$this->price = $price;

}

}

$polly = new Bird('Polynesia', 'parrot');

$polly->rice = 54.95; // ooooops...!

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$polly->name, $polly->breed, $polly->price);

?>

The output from this script is as follows:

Polynesia is a parrot and costs $15.00.

Just in case you have not spotted the error, you can add the following line of debugging

code to this script to see all of Polynesia’s properties at a glance:

printf("<pre>%s</pre>\n", print_r(get_object_vars($polly), TRUE));

2-3 ■ SETTING OBJECT PROPERTIES 27

http://www.allitebooks.org

The function get_object_vars() makes a handy addition to your object-oriented pro-

gramming toolkit. It takes any object as a parameter and returns an array whose keys are the

names of the object’s properties and whose values are the values of the properties. The output

in this case is as follows:

Array

(

[name] => Polynesia

[breed] => parrot

[price] => 15

[rice] => 54.95

)

The typographical error has resulted in the addition of a new rice property to the $polly

object, which is not what you wanted at all. You can avoid this sort of stuff by using methods

to get and set properties rather than setting them directly. Let’s rewrite the class, except this

time we will include a setPrice() method.

The Code

<?php

class Bird

{

function __construct($name='No-name', $breed='unknown', $price = 15)

{

$this->name = $name;

$this->breed = $breed;

$this->price = $price;

}

function setPrice($price)

{

$this->price = $price;

}

}

$polly = new Bird('Polynesia', 'parrot');

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$polly->name, $polly->breed, $polly->price);

$polly->setPrice(54.95);

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$polly->name, $polly->breed, $polly->price);

?>

2-3 ■ SETTING OBJECT PROPERTIES28

The output from this example is as follows:

Polynesia is a parrot and costs $15.00.

Polynesia is a parrot and costs $54.95.

Variations

What happens if you change the line containing the call to the setPrice() method to some-

thing like the following?

$polly->setPice(54.95);

Because you are attempting to call a method that has not been defined, the result is an

error message:

Fatal error: Call to undefined method Bird::setPice()

in /home/www/php5/bird-5.php on line 22

You will probably agree that this makes it much easier to find the source of the problem.

The same situation exists with regard to getting values of object properties: if you ask PHP for

the value of an undeclared variable, the chances are good that you will obtain zero, an empty

string, NULL, or boolean FALSE. If this is the same as the property’s default value (or if the prop-

erty has no default value), then finding the source of the error can be particularly difficult. On

the other hand, defining and using a getPrice() method minimizes the likelihood

of such problems occurring. A construct such as this

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$polly->getName(), $polly->getBreed(), $polly->getPrice());

may require a few extra keystrokes, but you will find that the time saved in tracking down

problems that do not give rise to any error messages is worth the effort.

■Note It is customary to name class members beginning with a lowercase letter. (A possible exception

to this is static members, which we will talk about in recipe 2-5.) As for what to do when a name contains

more than one word, two major schools of thought exist. Some programmers prefer to separate the words

using underscores, for example, my_long_method_name(). Others use what is known as intercap notation,

which consists of running the words together and capitalizing the first letter of each word after the first:

myLongMethodName(). We prefer the latter, so that is what we use. If you do not have to work to someone

else’s coding conventions, then it is really just a matter of personal taste, as PHP does not care which one

you use. However, you will find it easier in the long run to adopt one style or the other and stick with it.

2-3 ■ SETTING OBJECT PROPERTIES 29

2-4. Controlling Access to Class Members

We will start the discussion of this topic with a modified version of the previous example. The

following shows the new Bird class, including a complete collection of get and set methods.

The Code<?php

// file bird-get-set.php

class Bird

{

function __construct($name='No-name', $breed='unknown', $price = 15)

{

$this->name = $name;

$this->breed = $breed;

$this->price = $price;

}

function setName($name)

{

$this->name = $name;

}

function setBreed($breed)

{

$this->breed = $breed;

}

Notice that we have written the setPrice() method in such a way that the price cannot be

set to a negative value; if a negative value is passed to this method, the price will be set to zero.

function setPrice($price)

{

$this->price = $price < 0 ? 0 : $price;

}

function getName()

{

return $this->name;

}

function getBreed()

{

return $this->breed;

}

function getPrice()

{

return $this->price;

}

2-4 ■ CONTROLLING ACCESS TO CLASS MEMBERS30

To save some repetitive typing of the printf() statement that you have been using to out-

put all the information you have about a given Bird object, you can add a new method named

display() that takes care of this task:

function display()

{

printf("<p>%s is a %s and costs \$%.2f.</p>\n",

$this->name, $this->breed, $this->price);

}

}

Variations

Now let’s create a new instance of Bird. Let’s say that before you have the chance to write this

example, the shop sells Polynesia the parrot; so, you will use a magpie this time. First, call the

constructor with some plausible values:

$magpie = new Bird('Malaysia', 'magpie', 7.5);

$magpie->display();

?>

You can verify that the class is working as expected by viewing the output in a browser:

Malaysia is a magpie and costs $7.50.

Because the neighborhood cats are begging you to get rid of the magpie—even if it means

paying someone to take it off your hands—try using setPrice() to set the magpie’s asking

price to a negative number:

$magpie->setPrice(-14.95);

$magpie->display();

The setPrice() method prevents you from setting the price to a value less than zero:

Malaysia is a magpie and costs $0.00.

However, it is still possible to circumvent this restriction, whether you do so by accident

or the culprit is some particularly crafty, magpie-hating feline hacker:

$magpie->price = -14.95;

$magpie->display();

?>

2-4 ■ CONTROLLING ACCESS TO CLASS MEMBERS 31

As you can see here, this is the output:

Malaysia is a magpie and costs $-14.95.

How can you stop this sort of thing from happening? The solution lies in a feature that will

be familiar to anyone who has studied Java, but it is new in PHP 5: visibility. This allows you to

control how class members can be accessed through three keywords:

• public: The property or method can be accessed by any other code. This is the default

visibility for all class members in PHP 5. (Note: In PHP 4, all class members are public.)

• private: A private class member can be accessed only from within the same class.

Attempting to do so from outside the class will raise an error.

• protected: A class member that is declared as protected may be accessed from within

the class and from within any class that extends that class. (We will discuss how to

extend classes in recipe 2-7.)

Now that you know about visibility, fixing the problem you encountered is simple. Just

insert the following into the Bird class before the definition of the constructor:

private $name;

private $breed;

private $price;

When you reload the example in your browser, you will see something like this:

Malaysia is a magpie and costs $7.50.

Malaysia is a magpie and costs $0.00.

Fatal error: Cannot access private property Bird::$price in

/home/www/php5/bird-7.php on line 60

Making the instance variables private forces you (or anyone else using the Bird class) to

set its properties via the set methods you have defined, which ensures that any restrictions

you have made on the values of those properties are followed.

■Tip You can also declare methods as public, private, or protected, which has the same effect as for

class variables. You will see some more examples of private methods from recipe 2-5 onward and exam-

ples of protected methods in recipe 2-11.

2-4 ■ CONTROLLING ACCESS TO CLASS MEMBERS32

While it is true that the visibility of all class members defaults to public and that (unlike

the case with Java or C++) you are not required to declare public variables, it is still a good idea

to declare the visibility for all your variables. For one thing, it is good from an organizational

viewpoint; for example, if you are in the habit of declaring all variables in advance, you will

not surprise yourself later by accidentally reusing one of them. For another, the only way you

can use private and protected variables is to declare them explicitly.

2-5. Using Static Members and the self Keyword

Sometimes you will want to access a variable or method in the context of a class rather than

an object (class instance). You can do this using the static keyword, which is new in PHP 5.

As an example, let’s add a static property and a static method to the Bird class as it was in the

previous example (in the file bird-get-set.php). The ordering does not matter a great deal,

but our preference is to list all static members of a class first, so let’s insert the new code

immediately following the opening bracket in the class declaration.

The Code

public static $type = "bird";

public static function fly($direction = 'around')

{

printf("<p>The bird is flying %s.</p>\n", $direction);

}

Note that static members have visibility just like any other class members, and if you

do not declare them, they default to public. You can place the static keyword before or after

the visibility keyword, but by convention, the visibility is declared first. Static methods are

the same as any other method in that they take arguments, can return values, and can have

default arguments. However, static methods and static properties are not linked to any partic-

ular instance of the class but rather to the class itself. You can reference them in your calling

code using the name of the class and the :: operator. For example:

printf("<p>The Bird class represents a %s.</p>\n", Bird::$type);

Bird::fly();

Bird::fly('south');

The output from this snippet of code is as follows:

The Bird class represents a bird.

The bird is flying around.

The bird is flying south.

2-5 ■ USING STATIC MEMBERS AND THE SELF KEYWORD 33

To access a static member from within an instance of the class, you have to do things a bit

differently. Let’s modify the display() method a bit to illustrate this:

public function display()

{

printf("<p>The %s named '%s' is a %s and costs \$%.2f.</p>\n",

self::$type, $this->name, $this->breed, $this->price);

}

Now you will create a new instance of Bird and see what this change accomplishes. Here

is the code:

$sam = new Bird('Toucan Sam', 'toucan');

$sam->display();

Here is the output of the altered display() method:

The bird named 'Toucan Sam' is a toucan and costs $15.00.

If you look at the new version of the display() method, you will likely notice a new key-

word, self. This keyword refers to the class. It is important not to confuse self with this: this

means, “the current object” or “the current instance of a class.” self means, “the current class”

or “the class to which the current object belongs.” The differences between them are as follows.

• The self keyword does the following:

• Represents a class.

• Is never preceded by a dollar sign ($).

• Is followed by the :: operator.

• A variable name following the operator always takes a dollar sign ($). (Note that we

said this about names of variables, not names of constants. Keep this in mind

when you read the next section.) For example: self::$type.

• The this keyword does the following:

• Represents an object or an instance of a class.

• Is always preceded by a dollar sign ($).

• Is followed by the -> operator.

• A variable name following the operator never takes a dollar sign ($). For example:

$this->name.

■Tip You will never see $this followed by :: in working PHP 5 code.

2-5 ■ USING STATIC MEMBERS AND THE SELF KEYWORD34

CLASS DIAGRAMS

For short and simple classes, it is pretty easy to visualize the class and its members as a whole. However,

as your classes grow longer and more complex—and particularly as you begin to use and write class

libraries—you will probably want to use class diagrams both for designing new classes and for helping

you understand classes written by others that you need to use. Fortunately, there’s already a way to model

classes in a language-neutral fashion. Universal Modeling Language (UML) is a standard for representing

classes, their members, and the relationships between classes. UML actually does much more than

model classes; it is a fairly lengthy and complex specification, and it would be impossible to cover all of it

here. To find out more, visit the UML website at http://www.uml.org/, where you can obtain specifica-

tions, read tutorials, and get information about UML tools.

We will show you a limited subset of UML here, just enough to let you do some basic diagramming. A

class is represented by a box divided into three regions or compartments, with the class name at the top, the

class properties (also referred to as attributes) listed in the middle, and methods (known as operations) at the

bottom, as shown in the following illustration. The only required section is the one containing the class name;

the other two are optional.

You list properties like this:

<visibility> <property-name> : <data type> [= default-value]

You list the property’s visibility first and then the name of the property. This is followed by a colon (:)

and the property’s data type. Optionally, you can include an equals sign followed by the property’s default

value, if it has one.

You list methods like this:

<visibility> <method-name>([<parameter-list>]) : <return-type>

As with properties, you list a method’s visibility first and then the name of the method. Next comes a

set of parentheses containing an optional list of parameters. The parentheses are followed by a colon and

a return type. If the method returns no value, you use the keyword void to indicate the absence of one.

You write input parameters in this form:

[in] <parameter-name> : <data type> [= <default-value>]

Continued

[class name]

[properties]

[methods]

2-5 ■ USING STATIC MEMBERS AND THE SELF KEYWORD 35

List each parameter name with a colon and then the parameter’s data type. Some languages have both

input and output parameters, and for this reason, you can precede parameter names with in, out, or inout.

Because PHP has only input parameters, you will sometimes omit the in keyword, although some class dia-

gramming tools may include it regardless. You can optionally follow with an equals sign and the parameter’s

default value, if it has one.

You indicate visibility with these symbols:

• public: + (plus sign)

• private: - (minus sign)

• protected: # (hash sign)

Static members are underlined or preceded by the modifier <<static>>. Other specifics are also rep-

resented by keywords enclosed in doubled angle brackets (also known as stereotypes). For instance, class

constructors (which appear in recipes 2-8, 2-12, and others) and destructors (which are discussed exten-

sively in recipe 2-10) are often indicated using, respectively, <<create>> and <<destroy>>.

For example, here’s a UML representation of the Bird class:

You can use several tools to create UML class diagrams, including Microsoft Visio (Windows platforms

only) and Borland Together Designer (Windows, Linux, Mac OS X, Solaris). Many of the more sophisticated

tools include code-generation and reverse-engineering capabilities. For most of the diagrams in this book,

we used something a bit simpler and less expensive: the open-source Umbrello UML Modeller, which is

already included in some Linux distributions as part of the K Desktop Environment (KDE). You can also get the

Umbrello source code for Linux from http://uml.sourceforge.net/ and compile it yourself. It is also

possible to compile and run Umbrello on Windows platforms using Cygwin, a Unix emulator available from

http://www.cygwin.com/. Version 1.4 is included with KDE 3.4. We had no problems compiling or using

this release, or the more recent version 1.4.1, with KDE 3.3 and 3.4.

 Bird

-$name : String = "no-name"

-$breed : String = "unknown"

-$price : Float = 15.00

+$type : String = 'bird'

+fly($direction: String) : void

<<create> + _construct($name: String,$breed: String,$price: float) : Bird

+getName() : String

+getPrice() : Float

+getBreed() : String

+setPrice($price: float) : void

+setName($name: String) : void

+setBreed($breed: String) : void

2-5 ■ USING STATIC MEMBERS AND THE SELF KEYWORD36

A cross-platform application called ArgoUML is available for free under a Berkeley Software Distribution

(BSD) license from http://argouml.tigris.org/. Because ArgoUML is written in Java, it should run

identically on all common platforms (which is important to us, as we use Linux, Windows, and occasionally

FreeBSD and Solaris). It is also easy to install and run:

1. Download the archive for the latest release.

2. Unpack the archive into a convenient directory.

3. Open a shell or DOS prompt.

4. cd to the directory in which you unpacked the archive, and run the following command:

java -jar argouml.jar (it should not be difficult to create a shortcut to handle this for you).

The only other requirement for ArgoUML is that you have the Java 2 Virtual Machine installed on your

computer. If you run into problems, you can obtain documentation from the project website. While ArgoUML

remains under development, the latest version (0.18.1) is sufficiently complete and stable for basic day-to-

day use and makes a good learning tool.

In both the open-source modeling applications, the interface is fairly intuitive, and you can generate and

save your class diagrams in PNG, JPG, SVG, PostScript, and other formats, as well as store data in the

portable XML format. Each will also allow you to generate skeleton class code from your diagrams.

2-6. Using Class Constants

It is also useful sometimes to employ class constants. To declare a constant in a class, all you

have to do is precede an identifier with the const keyword. A class constant is always public

and static, and for this reason you cannot use the keywords public, private, protected, or

static when declaring one. The following is an example of an Employee class that uses con-

stants to enumerate classifications of employees. Let’s walk through the class listing and

some code to test this class. We will explain what is happening along the way.

The Code

<?php

class Employee

{

Let’s say you need to allow for three categories of workers: regular workers, supervisors,

and managers. You can define three constants, one per category:

const CATEGORY_WORKER = 0;

const CATEGORY_SUPERVISOR = 1;

const CATEGORY_MANAGER = 2;

2-6 ■ USING CLASS CONSTANTS 37

http://www.allitebooks.org

Each employee classification has an associated job title and rate of pay. With this in mind,

it seems reasonable to store those items of information in one or more arrays. Like other con-

stants in PHP, a class constant must be a scalar type such as an integer or a string; you cannot

use arrays or objects as constants. Since you might want to access information relating to

employee categories independent of any given employee, create a couple of static arrays to

hold job titles and rates of pay:

public static $jobTitles = array('regular worker', 'supervisor', 'manager');

public static $payRates = array(5, 8.25, 17.5);

Next, define a couple of static methods with which you can use the constants defined pre-

viously. They are both pretty simple: getCategoryInfo() takes a category number and returns

the corresponding job title and rate of pay; calcGrossPay() takes two arguments (a number

of hours and a category number) and returns the gross pay due an employee in that category

working that many hours. Notice that when referring to static variables from within a method

of that class—whether it is a static method or an instance method—you need to prefix the

variable name with self::.

■Note It is sometimes customary to use the :: operator when discussing an instance method in

relation to a class as a whole. For example, you might use Employee::getFirstName() as shorthand

for “the getFirstName() method of the Employee class,” even though getFirstName() is an instance

method and not a static method. This should usually be clear from the context.

public static function getCategoryInfo($cat)

{

printf("<p>A %s makes \$%.2f per hour.</p>\n",

self::$jobTitles[$cat],

self::$payRates[$cat]);

}

public static function calcGrossPay($hours, $cat)

{

return $hours * self::$payRates[$cat];

}

Now let’s define some instance variables. Each employee has a first name, a last name, an

ID number, and a job category code. These are all private variables; but we will define public

methods for manipulating them.

private $firstName;

private $lastName;

private $id;

private $category;

2-6 ■ USING CLASS CONSTANTS38

The Employee constructor is pretty simple. It just assigns its parameters to the correspon-

ding instance variables. For convenience, give $cat (the job category identifier) a default

value, as shown here:

public function __construct($fname, $lname, $id, $cat=self::CATEGORY_WORKER)

{

$this->firstName = $fname;

$this->lastName = $lname;

$this->id = $id;

$this->category = $cat;

}

Next, define some (unremarkable) get and set methods:

public function getFirstName()

{

return $this->firstName;

}

public function getLastName()

{

return $this->lastName;

}

public function getId()

{

return $this->id;

}

public function getCategory()

{

return $this->category;

}

public function setFirstName($fname)

{

$this->firstName = $fname;

}

public function setLastName($lname)

{

$this->lastName = $lname;

}

public function setId($id)

{

$this->id = $id;

}

2-6 ■ USING CLASS CONSTANTS 39

Instead of a setCategory() method, you define two methods—promote() and demote()—

to update the employee’s job category. The first of these increments the category property, but

only if it is less than the maximum (Employee::CATEGORY_MANAGER); the second decrements it,

but only if it is greater than the minimum (Employee::CATEGORY_WORKER).

Notice that these values are prefixed with self. If you do not do this, you will make PHP

think you are trying to use global constants with these names rather than class constants,

which is not what you want to do here.

public function promote()

{

if($this->category < self::CATEGORY_MANAGER)

$this->category++;

}

public function demote()

{

if($this->category > self::CATEGORY_WORKER)

$this->category--;

}

Finally, define a display() method that outputs the current values of all the properties:

public function display()

{

printf(

"<p>%s %s is Employee #%d, and is a %s making \$%.2f per hour.</p>\n",

$this->getFirstName(),

$this->getLastName(),

$this->getId(),

self::$jobTitles[$this->getCategory()],

self::$payRates[$this->getCategory()]

);

}

} // end class Employee

Figure 2-1 shows a UML diagram of the Employee class.

Let’s put the Employee class through a few paces. First, test the static getCategoryInfo()

method:

Employee::getCategoryInfo(Employee::CATEGORY_SUPERVISOR);

Next, create an instance of Employee; Bob Smith is employee number 102 and is a supervisor.

You can display() Bob and verify that his attributes are what you would expect them to be:

$bob = new Employee('Bob', 'Smith', 102, Employee::CATEGORY_SUPERVISOR);

$bob->display();

2-6 ■ USING CLASS CONSTANTS40

Figure 2-1. UML representation of the Employee class

You can promote Bob and then call the display() method once again to show that the

change was made:

$bob->promote();

$bob->display();

If you try to promote Bob a second time, nothing about him should change; the previous

call to the promote() method has already made him a manager, and there’s no higher

employee category.

$bob->promote();

$bob->display();

 Employee

+<<const>> CATEGORY_WORKER : int = 0

+<<const>> CATEGORY_SUPERVISOR : int = 1

+<<const>> CATEGORY_MANAGER : int = 2

-$firstName : string

-$lastName : string

-$id : int

-$category : int

+$payRates : array

+$jobTitles : array

+getCategoryInfo($cat: void) : void

+calcGrossPay($hours: float,$cat: int) : float

<<create>> + _construct($fname: string,$Iname: string,$id: int,$cat: int) : Employee

+getFirstName() : string

+getLastName() : string

+getId() : int

+getCategory() : int

+setFirstName($fname: string) : void

+setLastName($Iname: string) : void

+setId($id: int) : void

+promote() : void

+demote() : void

+display() : void

2-6 ■ USING CLASS CONSTANTS 41

Now you will demote Bob. He should be returned to his original supervisor role:

$bob->demote();

$bob->display();

Finally, test the static calcGrossPay() method:

$hours_worked = 35.5;

printf("<p>If %s %s works %.2f hours, he will gross \$%.2f.</p>\n",

$bob->getFirstName(),

$bob->getLastName(),

$hours_worked,

Employee::calcGrossPay($hours_worked, $bob->getCategory())

);

?>

■Tip The ::, or scope resolution operator, is sometimes referred to as the paamayim nekudotayim, which

is Hebrew for “double colon.” If you see this term as part of a PHP error message (for example, Parse

error: Unexpected T_PAAMAYIM_NEKUDOTAYIM...), it is often an indicator that you are using the

:: operator where PHP is expecting -> or the reverse.

You can see this output:

A supervisor makes $8.25 per hour.

Bob Smith is Employee #102 and is a supervisor making $8.25 per hour.

Bob Smith is Employee #102 and is a manager making $17.50 per hour.

Bob Smith is Employee #102 and is a manager making $17.50 per hour.

Bob Smith is Employee #102 and is a supervisor making $8.25 per hour.

If Bob Smith works 35.50 hours, he will gross $292.88.

In the call to getCategoryInfo() (and to calcGrossPay(), by inference), you can see the

advantage to using named class constants; you do not have to remember that a supervisor has

a job category ID of 1. Instead, you just write Employee::CATEGORY_SUPERVISOR. In addition, if

you add a new job category—say, assistant manager—you do not have to hunt through your

code and change a bunch of numbers. You can merely update the appropriate section of the

class to read something like this:

2-6 ■ USING CLASS CONSTANTS42

const CATEGORY_WORKER = 0;

const CATEGORY_SUPERVISOR = 1;

const CATGORY_ASST_MANAGER = 2;

const CATEGORY_MANAGER = 3;

public static $jobTitles

= array('regular worker', 'supervisor', 'assistant manager', 'manager');

public static $payRates = array(5, 8.25, 12.45, 17.5);

Try making this modification to Employee, and you will find that the example code

still works (although the output will be slightly different). Obviously, you can make further

improvements in this class; for instance, the set methods (including promote() and demote())

could return boolean values to indicate success or failure. (However, you will look at a feature

new in PHP 5 that actually gives you a better strategy when it comes to handling errors in

recipe 2-11). We have quite a bit left to cover in this introduction to classes and objects, so

we will now show how you can build sets of classes that relate to one another.

2-7. Extending Classes

If you were not already familiar with classes and objects, then by now perhaps you are starting

to see just how useful and economical they can be in PHP 5. However, we have not touched on

one of their most powerful features, which lies in the ability to reuse an existing class when

creating one or more new ones. This technique is known as extending a class.

Extending classes is useful when you have multiple objects that have some but not all

properties or methods in common. Rather than write a separate class for each object that

duplicates the members that are common to all, you can write a generic class that contains

these common elements, extend it with subclasses that inherit the common members, and

then add those that are specific to each subclass.

■Note Unlike some object-orienting programming languages, PHP 5 does not support multiple inheritance.

In other words, a derived class can have only one parent. However, a class can have multiple child classes.

In addition, a PHP 5 class can implement multiple interfaces (see recipe 2-9 later in this chapter).

Figure 2-2 shows an example in which we have reworked the Bird class from earlier in this

chapter and split it up into three classes. The new Parrot and Canary classes are subclasses of

Bird. The fact that they each inherit the methods and properties of the Bird class is indicated

by the arrows, whose heads point to the parent class.

2-7 ■ EXTENDING CLASSES 43

Figure 2-2. UML diagram showing class inheritance

The following is some PHP 5 code that implements these three classes. Bird has three

properties ($name, $price, and $breed), all of which are private. You can set the first two of

these with the public methods setName() and setPrice(), respectively, or in the class con-

structor. You can set the breed only from the Bird class constructor; because the setBreed()

method is private, it can be called only from within Bird, not from any other code. Since

$breed has no default value, you will receive a warning if you do not set it in the constructor.

This seems reasonable—you could rename a bird or change its price easily enough in real life,

but you will not often be transforming a pigeon into a bird of paradise unless you are a magi-

cian. Notice that you have changed this from the earlier incarnations of this class where you

had a default value for this property; here you are saying, “I do not want anyone adding a bird

to my inventory unless they say exactly what sort of bird it is.” You also force the programmer

to name the bird when it is created; however, the price does have a default value.

The Code

<?php

// file: bird-multi.php

// example classes for inheritance example

class Bird

{

private $name;

private $breed;

private $price;

 Bird

-$name : string

-$price : float = 15.00

-$breed : string

+call0 : string

<<create>>+_construct(in $name : string,in$breed : string) : Bird

+setName(in $name : string) : void

+getName() : string

+display() : string

-setBreed(in $breed : string) : void

+getBreed() : string

 Parrot

<<create>>+_construct(in $name : string) : Parrot

+curse() : void

+call() : string

 Canary

<<create>>+_construct(in $name : string) : Canary

+call() : string

2-7 ■ EXTENDING CLASSES44

public function __construct($name, $breed, $price=15)

{

$this->setName($name);

$this->setBreed($breed);

$this->setPrice($price);

}

public function setName($name)

{

$this->name = $name;

}

private function setBreed($breed)

{

$this->breed = $breed;

}

public function setPrice($price)

{

$this->price = $price;

}

All the get methods of this class are public, which means you can call them at any time

from within the Bird class, from within any subclasses of Bird that you might create, and from

any instance of Bird or a Bird subclass. The same is true for the display() and birdCall()

methods.

public function getName()

{

return $this->name;

}

public function getBreed()

{

return $this->breed;

}

public function getPrice()

{

return $this->price;

}

Each bird makes some sort of sound. Unless you override the birdCall() method in a

subclass, you assume that the bird chirps. We will discuss overriding class methods in the

“Variations” section. (We have named this method birdCall() rather than just call() to avoid

writing any confusing bits such as “make a call to call()” in the course of this discussion. Do

not let this lead you to think that there’s some requirement we are not telling you about to

make class names part of the names of their members or anything of that sort.)

2-7 ■ EXTENDING CLASSES 45

public function birdCall()

{

printf("<p>%s says: *chirp*</p>\n", $this->getName());

}

public function display()

{

printf("<p>%s is a %s and costs \$%.2f.</p>",

$this->getName(),

$this->getBreed(),

$this->getPrice());

}

} // end class Bird

Variations

Now let’s extend Bird to create a Parrot class. You indicate that Parrot extends Bird by using the

extends keyword as follows. What this means is that Parrot inherits all the properties and meth-

ods of Bird. For example, each instance of Parrot has a birdCall() method. Because birdCall()

is a public method, you can redefine it in Parrot without it affecting the birdCall() method

when called by an instance of Bird or another subclass. This is what we mean by overriding a

method of a parent class.

class Parrot extends Bird

{

public function birdCall()

{

printf("<p>%s says: *squawk*</p>\n", $this->getName());

}

You can also override the Bird class constructor. In this case, what you do is call the par-

ent’s constructor using the parent keyword. This keyword means “the class from which the

current class is derived,” and when employing it, the double-colon operator is always used to

indicate its members.

■Caution When extending a class in PHP 5, you should always call the parent constructor in the construc-

tor of the derived class; this is not done automatically. If you do not call parent::__construct() at some

point in the constructor of the subclass, the derived class will not inherit the properties and methods of the

parent. Also note that when you do so, you must make sure the parent constructor receives any parameters

it is expecting. For this reason, it is often advantageous to write the parent class constructor in a way such

that all parameters have default values; however, sometimes you do not want this to happen, and you must

judge this for yourself on a case-by-case basis.

2-7 ■ EXTENDING CLASSES46

The $name is passed to the Parrot constructor; you supply the values parrot and 25 for the

$breed and $price parameters. Thus, every Parrot has parrot as its breed and $25 as its price,

and while the price can later be updated, the breed cannot be changed once the Parrot has

been instantiated.

public function __construct($name)

{

parent::__construct($name, 'parrot', 25);

}

Notice that while you cannot call the setBreed() method of Bird directly from within

Parrot, you can call the Bird constructor, which does call setBreed(). The difference is that

setBreed() gets called from within Bird.

■Note Is it possible to override a method of a parent class where that method was declared as private?

Yes and no. If you try to call the parent class method directly—for example, if you write parent::setBreed()

at some point in the Parrot class—you will get a fatal error. If you do some experimenting, you will find that

nothing is preventing you from defining a new setBreed() method in Parrot, but you must keep in mind

that this method has nothing to do with the method of the same name found in Bird. In any case, you can-

not set the $breed property in the Parrot class, because it was defined as private in Bird. The moral of

the story is this: if you need to override a parent method in a subclass in any meaningful way, declare the

method as either public or protected in the parent class.

Now define a new method that is specific to Parrot, reflecting that parrots are often

graced with a vocabulary that is not available to other birds.

public function curse()

{

printf("<p>%s curses like a sailor.</p>\n", $this->getName());

}

} // end class Parrot

The curse() method is defined only for Parrot, and attempting to use it with Bird or

Canary will give rise to a fatal error.

The Canary class also extends Bird. You override the birdCall() method, but with a bit of

a twist: you provide the option to use either the parent’s birdCall() method or a different one.

To invoke the canary-specific functionality, all that is required is to invoke birdCall() with the

value TRUE.

class Canary extends Bird

{

public function birdCall($singing=FALSE)

{

if($singing)

printf("<p>%s says: *twitter*</p>\n", $this->getName());

else

parent::birdCall();

}

2-7 ■ EXTENDING CLASSES 47

http://www.allitebooks.org

The Canary constructor overrides the parent’s constructor in the same way that the Parrot

constructor does, except of course it passes canary as the value for $breed and uses the default

value for $price.

public function __construct($name)

{

parent::__construct($name, 'canary');

}

}

?>

Let’s test these classes:

<?php

// file: bird-multi-test.php

// test Bird class and its Parrot and Canary subclasses

// depends on classes defined in the file bird-multi.php

Of course, you cannot use the classes defined previously unless they are available to

the current script either by including the class code itself or by including the file in which the

classes are defined. You use the require_once() function so that the script will fail if the file

containing the classes is not found.

require_once('./bird-multi.php');

The tests themselves are pretty simple. First, create a new Parrot and call those methods

that produce output, including the curse() method defined specifically for Parrot. (Because

display() is a public method of Bird, you can use it as an instance method of any class deriv-

ing from Bird without redefining it.)

$polly = new Parrot('Polynesia');

$polly->birdCall();

$polly->curse();

$polly->display();

Next, instantiate the Canary class, and call its output methods. In the case of the

Bird::birdCall() method, the Parrot object $polly always shows the overridden behavior;

$tweety uses the parent’s birdCall() method unless you pass boolean TRUE to it, in which case

this Canary object’s birdCall() method acts in the alternative manner that you defined for it.

You can invoke Canary::birdCall() in both ways (with and without TRUE as a parameter) to

demonstrate that this is so:

$tweety = new Canary('Tweety');

$tweety->birdCall();

$tweety->birdCall(TRUE);

$tweety->display();

Now use the setName() method to give the canary a different name, once again invoking

its display() method to verify that the name has changed:

$tweety->setName('Carla');

$tweety->display();

2-7 ■ EXTENDING CLASSES48

Finally, you can still use the Bird constructor directly in order to create a bird of some

type other than a parrot or canary. Invoke its birdCall() and display() methods to illustrate

that the object was created and has the attributes and behavior you would expect:

$keet = new Bird('Lenny', 'lorakeet', 9.5);

$keet->birdCall();

$keet->display();

?>

Here is the output from the test script:

Polynesia is a parrot and costs $25.00.

Polynesia says: *squawk*

Polynesia curses like a sailor.

Tweety is a canary and costs $15.00.

Tweety says: *chirp*

Tweety says: *twitter*

Carla is a canary and costs $15.00.

Lenny is a lorakeet and costs $9.50.

Lenny says: *chirp*

■Tip PHP 5 introduces a feature that makes it easier to include classes in files by allowing you to define an

__autoload() function, which automatically tries to include a class file for any class that is not found when

you attempt to use it. To take advantage of this, you need to save each class in its own file and follow a strict

naming convention for these files, such as saving a class named ClassName in a file named

ClassName.inc.php. For example, define the following:

function __autoload($classname)

{

require_once("/includes/classes/$classname.inc.php");

}

In this case, if you try to use the class MyClass and if it was not already defined in your script, then PHP auto-

matically attempts to load the class named MyClass from the file /includes/classes/MyClass.inc.php.

However, you must be careful to follow the naming convention implied by your __autoload() function,

because PHP will raise a fatal (unrecoverable!) error if it cannot find the class file. The __autoload() function

also works with regard to interfaces not already defined in your scripts (see recipe 2-9).

2-7 ■ EXTENDING CLASSES 49

2-8. Using Abstract Classes and Methods

The Bird::birdCall() method you used in the previous example has a fallback in case a

derived class does not override it. Now let’s suppose you are not interested in providing a

default behavior for this method; instead, you want to force all Bird subclasses to provide

birdCall() methods of their own. You can accomplish this using another feature that is new to

PHP in version 5—abstract classes and methods.

■Note When it is necessary to emphasize that a class or method is not abstract (for instance, when a class

completely implements an abstract class), it is often referred to as being concrete.

An abstract method is one that is declared by name only, with the details of the imple-

mentation left up to a derived class. You should remember three important facts when

working with class abstraction:

• Any class that contains one or more abstract methods must itself be declared as

abstract.

• An abstract class cannot be instantiated; you must extend it in another class and then

create instances of the derived class. Put another way, only concrete classes can be

instantiated.

• A class that extends the abstract class must implement the abstract methods of the

parent class or itself be declared as abstract.

Let’s update the Bird class so that its birdCall() method is abstract. We will not repeat

the entire class listing here—only two steps are necessary to modify Bird. The first step is to

replace the method declaration for Bird::birdCall() with the following:

abstract public function birdCall();

An abstract method has no method body; it consists solely of the abstract keyword fol-

lowed by the visibility and name of the function, the function keyword, a pair of parentheses,

and a semicolon. What this line of code says in plain English is, “Any class derived from this

one must include a birdCall() method, and this method must be declared as public.”

The second step is to modify the class declaration by prefacing the name of the class with

the abstract keyword, as shown here:

abstract class Bird

2-8 ■ USING ABSTRACT CLASSES AND METHODS50

Figure 2-3 shows a UML diagram of the modified three-class package. Abstract classes

and methods are usually indicated with their names in italics; alternatively, you can use the

stereotype <<abstract>> for this purpose.

Figure 2-3. Modified (abstract) Bird and derived (concrete) classes

Now you need to consider how birdCall() is implemented in Parrot and Canary.

Parrot::birdCall() is fine the way it is; it is not abstract, and it does not refer to the birdCall()

method of the parent class. With Canary’s birdCall() method, however, you have a problem:

you cannot invoke the parent’s version of the method because it is abstract. However, it is not

much work to reimplement birdCall() so that this does not happen.

The Code

public function birdCall($singing=FALSE)

{

$sound = $singing ? "twitter" : "chirp";

printf("<p>%s says: *%s*</p>\n", $this->getName(), $sound);

}

 Bird

-$name : string

-$price : float = 15.00

-$breed : string

+call() : string

<<create>>+_construct($name: string,in$breed: string) : Bird

+setName($name: string) : void

+getName() : string

+display() : string

-setBreed($breed: string) : void

+getBreed() : string

 Parrot

<<create>>+_construct($name: string) : Parrot

+curse() : void

+call() : string

 Canary

<<create>>+_construct($name: string) : Canary

+call() : string

2-8 ■ USING ABSTRACT CLASSES AND METHODS 51

Let’s see what happens when you rerun the test code in bird-multi-test.php:

Polynesia is a parrot and costs $25.00.

Polynesia says: *squawk*

Polynesia curses like a sailor.

Tweety is a canary and costs $15.00.

Tweety says: *chirp*

Carla is a canary and costs $15.00.

Carla says: *chirp*

Carla says: *twitter*

Fatal error: Cannot instantiate abstract class Bird in

/home/www/php5/bird-multi-test-2.php on line 18

Extension

You run into trouble at the point where you try to create an object representation of Lenny

the lorakeet. You cannot create an instance of Bird because it is now an abstract class. You

can solve this problem in two ways (unless you want to pretend that Lenny is actually a par-

rot), and they both involve creating another concrete class that extends Bird. You can write

either a Lorakeet class just for use with lorakeets or a generic bird class (which you can call

GenericBird or whatever you like) that provides a catchall for species of birds for which you

do not want to write separate classes. We will leave the choice up to you; as an exercise, spend

a bit of time thinking about this sort of problem and the ramifications of both solutions.

■Tip If you do not want a method to be overridden in a subclass, you can keep this from happening by

declaring it with the final keyword, which functions more or less as the opposite to abstract. For exam-

ple, you could have declared Bird::display() as final without affecting either the Parrot class or the

Canary class as written, since neither subclass tries to override display(). You can also declare an entire

class as final, which means it cannot be subclassed at all. Since this is not difficult to prove, we will leave

that task as an exercise for you to do. Note that the final keyword comes before public, protected, or

static. We should also point out that it makes no sense to use final with private, since you cannot

override a private member of a class in any case, and a class declared as both final (no subclassing) and

private (no direct access) could not be used at all.

2-8 ■ USING ABSTRACT CLASSES AND METHODS52

2-9. Using Interfaces

As you saw in the previous section, abstract classes and methods allow you to declare some of

the methods of a class but defer their implementation to subclasses. So...what happens if you

write a class that has all abstract methods? We will offer you a somewhat indirect answer to

this question: what you end up with is just one step removed from an interface. You can think

of an interface as a template that tells you what methods a class should expose but leaves the

details up to you. Interfaces are useful in that they can help you plan your classes without

immediately getting bogged down in the details. You can also use them to distill the essential

functionality from existing classes when it comes time to update and extend an application.

To declare an interface, simply use the interface keyword, followed by the name of the

interface. Within the body of the interface, list declarations (delimited, as with classes, by

braces, {...}) for any methods to be defined by classes that implement the interface.

■Note In PHP 5 you can provide type hints for parameters of functions and methods, but only for types you

define. In other words, if you have defined a class named MyClass and then define a method MyMethod (of

MyClass or any other class) that takes an instance of MyClass as a parameter, you can declare it as (for

instance) public function myMethod(MyClass $myParam). This will cause PHP to issue a warning if

you try to use a value of some other type with myMethod. However, you cannot use type hints for predefined

data types such as int or string; attempting to do so will raise a syntax error.

The Code

Looking at the Bird class, you might deduce that you are really representing two different sorts

of functional units: a type of animal (which has a name and a breed) and a type of product

(which has a price). Let’s generalize these into two interfaces, like so:

interface Pet

{

public function getName();

public function getBreed();

}

interface Product

{

public function getPrice();

}

How It Works

To show that a class implements an interface, you add the implements keyword plus the name

of the interface to the class declaration. One advantage that interfaces have over abstract

classes is that a class can implement more than one interface, so if you wanted to show that

Bird implements both Pet and Product, you would simply rewrite the class declaration for

Bird, as shown here:

abstract class Bird implements Pet, Product

2-9 ■ USING INTERFACES 53

In fact, if you do this to the existing example that uses the Bird, Parrot, and Canary

classes, you will find that the example still runs. This is probably a good place to point out that

when you use (for example) implements anInterface in a class declaration, you are basically

saying, “I promise to implement in this class any methods listed in anInterface.” You cannot

defer the implementation of an interface method by declaring it as abstract in the imple-

menting class.

■Caution In PHP 5, interfaces may declare only methods. An interface cannot declare any variables.

An interface is represented in UML diagrams by a box with two compartments, the top one

containing the stereotype <<Interface>> followed by the name of the interface and the bottom

one containing the signatures of the interface’s methods. Figure 2-4 shows the updated Bird

class diagram with the Pet and Product interfaces and their relationship with the Bird class.

Note that the implementation by a class of an interface is indicated by a dashed arrow

that points from the class to the interface that it implements.

Figure 2-4. Updated class diagram showing implementation of interfaces by the Bird class

 Bird

-$name : string

-$price : float = 15.00

-$breed : string

+call() : string

<<create>>+_construct($name: string,$breed: string) : Bird

+setName($name: string) : void

+getName() : string

+display() : string

-setBreed($breed: string) : void

+getBreed() : string

+getPrice() : float

+setPrice($price : float) : void

 Parrot

<<create>>+_construct($name: string) : Parrot

+curse() : void

+call() : string

 Canary

<<create>>+_construct($name: string) : Canary

+call() : string

 <<Interface>>

 Pet

+getName() : string

+getBreed() : string

 <<Interface>>

 Product

+getPrice() : float

2-9 ■ USING INTERFACES54

Using interfaces can help you keep your classes consistent with one another. For example,

if you need to write classes to represent additional pets for sale by the pet store, you can, by

implementing Pet and Product in those classes, guarantee that they will have the same meth-

ods that Bird and its subclasses do.

2-10. Using Class Destructors

In PHP 5, classes can have destructors as well as constructors. A destructor is simply a method

that is guaranteed to be invoked whenever an instance of the class is removed from memory,

either as the result of a script ending or because of a call to the unset() function. For example,

suppose that when a user of your e-commerce website—represented by an instance of a

SiteUser class—leaves the site, you want to make sure that all the user’s preference data is

saved to the site’s user database. Suppose further that SiteUser already has a savePrefs()

method that accomplishes this task; you just need to make sure it is called when the user

logs out. In that case, the class listing might include something like the following.

The Code

class SiteUser

{

// class variables...

public function __construct()

{

// constructor method code...

}

// other methods...

public function savePref()

{

// code for saving user preferences...

}

// Here's the class destructor:

public function __destruct()

{

$this->savePrefs();

}

}

How It Works

As you can see from this listing, all you need to do is to add a __destruct() method to the class

containing whatever code you want to be executed when an instance of the class ceases to exist.

2-10 ■ USING CLASS DESTRUCTORS 55

“MAGIC” METHODS

Method and function names beginning with a double underscore—such as __construct(),

__destruct(), and __autoload()—are reserved in PHP and are often referred to as magic. Several

others, such as those you already looked at in this chapter, are invoked automatically in response to certain

events. (For this reason, you should never name your own functions or methods with two leading underscores.)

Here is a listing of most of these magic methods, along with a brief description of each:

• __construct(): Called when a new instance of the class is created.

• __destroy(): Called when an instance of the class passes out of memory; this happens when you

either unset() the instance or a script finishes running.

• __autoload(): Called when you refer to a class for the first time (for example, call its constructor,

call one of its static methods, and so on).

• __clone(): Called when you create a copy of an object using the clone keyword.

• __get() and __set(): Called when you attempt to get or set an object property that is not defined

for that object. __get() takes a single parameter, which represents the name of the property;

__set() takes two parameters: the name of the property you tried to set and the value you tried to

assign to it.

• __call(): Called when you try to call an undefined method. It takes two arguments: the method

name that was used and an array containing any values that were passed to the method.

• __sleep() and __wakeup: __sleep() is called when you try to serialize() an object. This is

useful when (for example) you need to close a database connection used by an object before saving

it or when you want to save only some of an object’s properties. This method should return an array

containing the names of the variables you want to be serialized. __wakeup() is called when you

unserialize() an object; you can use it to re-establish database connections or reinitialize the

object in whatever other ways you require.

• __toString(): Called when a string representation of the object is required.

Of course, any of these magic methods comes into play only if you have defined it for a given class.

You should also note that they cannot be called directly, only via the event they are supposed to intercept.

For more information on magic methods and their uses, see the PHP manual or PHP 5 Objects, Patterns, and

Practice by Matt Zandstra (Apress, 2004).

2-11. Using Exceptions

PHP 5 introduces a much-improved mechanism for handling errors. Like many of PHP 5’s new

features, exceptions may already be familiar to you if you are a Java programmer. If you are not,

here is your chance to become acquainted with them.

The purpose of exceptions is to help segregate error-handling code from the parts of your

application that are actually doing the work. A typical situation is working with a database.

The following is a bit of code showing how you might do this in PHP 4 or how you might do

this in PHP 5 without using exceptions:

2-11 ■ USING EXCEPTIONS56

<?php

$connection = mysql_connect($host, $user, $password)

or die("Error #". mysql_errno() .": " . mysql_error() . ".");

mysql_select_db($database, $connection)

or die("Error: could not select database $database on host $hostname.");

$query = "SELECT page_id,link_text,parent_id

FROM menus

WHERE page_id='$pid'";

$result = mysql_query($query)

or die("Query failed: Error #". mysql_errno() .": " . mysql_error() . ".");

if(mysql_num_rows($result) == 0)

echo "<h2>Invalid page request -- click <a href=\""

. $_SERVER["PHP_SELF"] . "?pid=1\">here to continue.</h2>\n";

else

{

$value = mysql_fetch_object($result)

or die("Fetch operation failed: Error #". mysql_errno()

. ": " . mysql_error() . ".");

// ...

}

// etc. ...

?>

Notice that every time you interact with the database, you include an explicit error check.

This is good in that you are practicing defensive programming and not leaving the user with a

blank page or half-completed page in the event of an error. However, it is not so good in that

the error checking is mixed up with the rest of the code. Using PHP 5 exception handling, the

same block might look something like the following example.

The Code

<?php

function errors_to_exceptions($code, $message)

{

throw new Exception($code, $message);

}

set_error_handler('errors_to_exceptions');

try

{

$connection = mysql_connect($host, $user, $password);

2-11 ■ USING EXCEPTIONS 57

mysql_select_db($database, $connection);

$query = "SELECT page_id,link_text,parent_id

FROM menus

WHERE page_id='$pid'";

$result = mysql_query($query);

if(mysql_num_rows($result) == 0)

echo "<h2>Invalid page request -- click <a href=\""

. $_SERVER["PHP_SELF"] . "?pid=1\">here to continue.</h2>\n";

else

{

$value = mysql_fetch_object($result);

// ...

}

// etc. ...

}

catch Exception $e

{

printf("<p>Caught exception: %s.</p>\n", $e->getMessage());

}

?>

How It Works

The basic structure for exception handling looks like this:

try

{

perform_some_action();

if($some_action_results_in_error)

throw new Exception("Houston, we've got a problem...");

perform_another_action();

if($other_action_results_in_error)

throw new Exception("Houston, we've got a different problem...");

}

catch Exception $e

{

handle_exception($e);

}

2-11 ■ USING EXCEPTIONS58

The try block contains any code that is to be tested for exceptions. When an exception

is thrown, either automatically or by using the throw keyword, script execution immediately

passes to the next catch block. (If PHP cannot find any catch block following the try block,

then it will issue an Uncaught Exception error.)

Having to use throw to signal an exception manually each time an error condition is

encountered really is not more efficient or cleaner than using repeated if or or die() con-

structs. In some programming languages, such as Java, the most common exceptions are

thrown automatically, and all you have to worry about is supplying the code that goes inside

the try and catch blocks. However, because PHP 5 has to maintain backward compatibility

with older code, the traditional error-production mechanism takes precedence. To override

this behavior, you can use the set_error_handler() function to call a function to be executed

whenever an error is generated, in place of PHP’s default behavior. This function takes the

name of an error-handling function as its sole argument and causes the function with this

name to be executed whenever PHP raises an error. (Note that the name of the function to be

executed is passed to set_error_handler() as a string.) In the second version of the database

code snippet, you have defined a function named errors_to_exceptions, which simply throws

an exception.

You may have noticed that when you throw an exception, you actually use the throw key-

word followed by an Exception object. The definition of the Exception class is as follows, and

Figure 2-5 shows a UML representation of this class:

<?php

class Exception

{

protected $message = 'Unknown exception'; // Exception message

protected $code = 0; // Exception code (user-defined)

protected $file; // Filename

protected $line; // Line number

function __construct($message = null, $code = 0);

final function getMessage(); // Message

final function getCode(); // Code

final function getFile(); // Filename

final function getLine(); // Line number

final function getTrace(); // Backtrace (array)

final function getTraceAsString(); // Backtrace (string)

function __toString(); // Formatted string for display

}

?>

2-11 ■ USING EXCEPTIONS 59

Figure 2-5. The PHP 5 Exception class (UML representation)

■Tip You can define a __toString() method for any class. It is generally not a good idea to declare this

method as final. (The only time you might want this to happen is in a class that is itself declared final, in

which case there’s no need.)

Like any well-designed class, the properties of an Exception are not directly accessible

to calling code, and their values must be obtained using the get methods shown. Only the

$message and $code can be set by the user, and this must be done via the class constructor. You

can extend Exception, which can be a good idea when you are dealing with several classes or

different sets of classes with dissimilar functionality. Note that all the get methods are final

and thus cannot be overridden in any subclasses. The __toString() method is a “magic”

method (as discussed earlier in this chapter) that is called whenever you try to output an

instance of Exception directly using echo or print. You can override this method in an

Exception subclass.

■Tip For some code examples using multiple Exception subclasses, see MySQL Database Design and

Optimization (Apress, 2004).

 Exception

#$message : string = 'Unknown exception'

#$code : int = 0

#$file : string

#$line : int

+_construct(in $message : string = NULL,in$code : int = 0) : object

<<final>> + getMessage() : string

<<final>> + getCode() : int

<<final>> + getFile() : string

<<final>> + getTrace() : array

<<final>> + getTraceAsString() : string

+_toString() : string

2-11 ■ USING EXCEPTIONS60

Some PHP object-oriented libraries and extensions supply their own exception classes.

For example, the Document Object Model (DOM) extension implements a DOMException class

and raises an instance of this class whenever an illegal DOM operation is attempted. When

using a new PHP 5 class library for the first time, be sure to check whether it includes its own

Exception subclasses.

Getting Information About Classes and Objects
What do you do when you need to use one or more classes for which no documentation is

available? Since PHP is an interpreted rather than a compiled language, you will usually be

able to turn to the source code; however, sometimes this is not possible:

• You may not have access to all the files making up an application.

• Source code can be encrypted using tools such as IonCube.

• You may need to work with an extension that was compiled from C or Java and for

which neither complete documentation nor the original sources is available.

• The sources may be available, but you might not be a C or Java programmer or simply

not have time to study them in depth.

• You may be writing some highly abstracted code and not know ahead of time whether a

given class is available or which of two or more classes might be.

To help you in these situations, PHP 5 provides two mechanisms for obtaining information

about classes, class members, and objects. The class and object functions, which we will discuss

first, are mostly the same as those found in PHP 4, with a few additions and enhancements.

These can provide you with basic information about the availability of classes, interfaces, and

their public members. For more serious reverse-engineering, PHP 5 has introduced a set of

interfaces and classes known collectively as the Reflection API. Using this application program-

ming interface (API), it is possible to find out just about everything you might want to know

about an interface or a class and its members, including private and protected members and the

arguments expected by class methods. In fact, using the Reflection API classes, it is possible to

reverse-engineer complete extensions.

Using Class and Object Functions
PHP’s class and object functions are fairly straightforward and simple to use. You will find

most of them in Table 2-1.

2-11 ■ USING EXCEPTIONS 61

Table 2-1. PHP 5 Class and Object Functions (Partial Listing)

Function Arguments/Types Description/Purpose

class_exists() string $class, bool $autoload=TRUE Returns TRUE if the class
named $class has been
defined. Attempts to call
__autoload() if the class is
not defined unless $autoload

is set to FALSE.1

class_implements() object $object Returns an array containing
the names of all interfaces
implemented by the class of
which $object is an
instance.2

class_parents() object $object Returns an array containing
the names of all classes from
which $object descends
(does not include the name
of the class of which $object
is an instance).2

get_class_methods() string $class or object $object Returns an array of class
public method names. Can
take either the name of a
class or an instance of the
class as an argument.

get_class_vars() string $class Returns an array of default
public properties of the class
named $class.

get_class() object $object Returns the name of the
class of an object.

get_declared_classes() void Returns an array containing
the names of all classes
defined in the current script.

get_declared_interfaces() void Returns an array of the
names of all interfaces
defined in the current
script.2

get_object_vars() object $object Returns an associative array
whose keys are the names of
the properties of $object and
whose values are the values
of those properties.

get_parent_class() string $class or object $object Returns the name of the
parent class of the $class or
$object.

interface_exists() string $interface, bool $autoload=TRUE Returns TRUE if $interface is
defined in the current script.
Unless $autoload is set to
FALSE, this function will
attempt to invoke
__autoload() (if defined).2

2-11 ■ USING EXCEPTIONS62

Function Arguments/Types Description/Purpose

is_a() object $object, string $class Returns TRUE if $object is an
instance of $class or one of
its subclasses.

is_subclass_of() object $object, string $class Returns TRUE if $object is a
descendant of $class. As of
PHP 5.0.3, the first argument
may also be the name of a
class (as a string).1

method_exists() object $object, string $method Returns TRUE if $object has a
method named $method.

Notes: (1) changed in PHP 5 (2) added in PHP 5

The next few recipes assume you have defined the set of classes (Bird, Parrot, Canary) and

interfaces (Pet and Product) shown earlier in Figure 2-4.

2-12. Checking for the Existence of Classes and Interfaces Using

class_exists() and interface_exists()

The following defines an additional class Shape that has some static and public variables (the

reason for this will become apparent shortly):

class Shape

{

const NUM_SIDES_TRIANGLE = 3;

const NUM_SIDES_SQUARE = 4;

const NUM_SIDES_PENTAGON = 5;

const NUM_SIDES_HEXAGON = 6;

static $shapeNames = array('triangle', 'quadrilateral', 'pentagon', 'hexagon');

public $numberOfSides;

public $perimeter;

private $name;

function __construct($numberOfSides = 3, $sideLength = 10)

{

if($numberOfSides < 3)

$this->numberOfSides = 3;

elseif($numberOfSides > 6)

$this->numberOfSides = 6;

else

$this->numberOfSides = $numberOfSides;

$this->setName(Shape::$shapeNames[$this->numberOfSides - 3]);

2-12 ■ CHECKING FOR THE EXISTENCE OF CLASSES AND INTERFACES
USING CLASS_EXISTS() AND INTERFACE_EXISTS()

63

$this->perimeter = ($sideLength < 1 ? 1 : $sideLength) * $this->numberOfSides;

}

protected function setName($name)

{

$this->name = $name;

}

public function getName()

{

return $this->name;

}

}

Let’s also create some class instances to use in the tests:

$polly = new Parrot('Polynesia');

$tweety = new Canary('Tweety');

$square = new Shape(Shape::NUM_SIDES_SQUARE);

Next you will look at the class_exists() and interface_exists() functions, which do

pretty much what their names sound like; they tell you whether a given class or interface is

defined. Each takes a string and returns a TRUE or FALSE value.

The Code

$classes = array('Parrot', 'Canary', 'Bird', 'Monkey', 'Pet');

$interfaces = array('Pet', 'Product', 'Customer', 'Bird');

print "<p>";

foreach($classes as $class)

printf("The class '%s' is %sdefined.
\n",

$class,

class_exists($class, FALSE) ? '' : 'un');

print "</p>\n<p>";

foreach($interfaces as $interface)

printf("The interface '%s' is %sdefined.
\n",

$interface,

interface_exists($interface, FALSE) ? '' : 'un');

print "</p>\n";

2-12 ■ CHECKING FOR THE EXISTENCE OF CLASSES AND INTERFACES
USING CLASS_EXISTS() AND INTERFACE_EXISTS()

64

Here is the output:

The class 'Parrot' is defined.

The class 'Canary' is defined.

The class 'Bird' is defined.

The class 'Monkey' is undefined.

The class 'Pet' is undefined.

The interface 'Pet' is defined.

The interface 'Product' is defined.

The interface 'Customer' is undefined.

The interface 'Bird' is undefined.

2-13. Listing Methods and Interfaces Using get_class_methods()

You can use get_class_methods() to obtain a list of the public methods exposed by either a

class or a class instance; you can also use this function with interfaces, as demonstrated in

this example:

The Code

printf("<p>Parrot class methods: %s</p>\n",

implode(', ', get_class_methods('Parrot')));

printf("<p>\$polly instance methods: %s</p>\n",

implode(', ', get_class_methods($polly)));

printf("<p>Shape class methods: %s</p>\n",

implode(', ', get_class_methods('Shape')));

printf("<p>Pet interface methods: %s</p>\n",

implode(', ', get_class_methods('Pet')));

Here is the output:

Parrot class methods: call, __construct, curse, setBreed, setName, ➥

setPrice, getName, getBreed, getPrice, display

$polly instance methods: call, __construct, curse, setBreed, setName, ➥

setPrice, getName, getBreed, getPrice, display

Shape class methods: __construct, getName

Pet interface methods: getName, getBreed

Notice that the array returned by get_class_methods() contains names of public methods

either defined in the class or inherited from a parent class. Private and protected methods are

not listed.

2-13 ■ LISTING METHODS AND INTERFACES USING GET_CLASS_METHODS() 65

2-14. Obtaining Variable Names

PHP has two functions for obtaining the names of public variables; you can use get_class_

variables() with classes (it takes the name of the class as its argument), and you can use

get_object_variables() with objects (it acts on an instance of a class). You might wonder why

two functions exist instead of one function that can act on either a class or a class instance, as

there is for class and object methods. Let’s compare the results using these with the class Shape

and the Shape instance $square and see what happens.

The Code

printf("<pre>Shape class variables: %s</pre>",

print_r(get_class_vars('Shape'), TRUE));

printf("<pre>\$square object variables: %s</pre>",

print_r(get_object_vars($square), TRUE));

As you can see here, the output of these two functions can be markedly different, even

when comparing the variables of a class with those of an instance of the same class:

Shape class variables: Array

(

[numberOfSides] =>

[perimeter] =>

[shapeNames] => Array

(

[0] => triangle

[1] => quadrilateral

[2] => pentagon

[3] => hexagon

)

)

$square object variables: Array

(

[numberOfSides] => 4

[perimeter] => 40

)

How It Works

Static variables are shown in the output of get_class_variables() but not in that of

get_object_variables(). In the case of Shape, $numberOfSides and $perimeter have no default

value, so no variable is shown; however, when you call get_object_variables() on an instance

of Shape, the values set by the class constructor for these variables are reported. Variables that

are declared as private or protected are not reported by either of these functions.

2-14 ■ OBTAINING VARIABLE NAMES66

■Tip When you call get_class_variables() using a class that has no public variables, or get_object_

variables() on an instance of that class, the value returned is an empty array. However, it is possible to

view an object’s private and protected variables using print_r() or var_dump().

2-15. Determining Whether an Object Is an Instance

of a Particular Class

You can use the is_a() function to determine whether an object is an instance of a given class.

This function takes two parameters, an object ($object) and the name of a class or an interface

('name'), and returns TRUE if any of the following conditions is true:

• $object is an instance of a class named name.

• $object is an instance of a class that descends from a class named name.

• $object is an instance of a class implementing an interface named name.

• $object is an instance of a class that descends from a class implementing an interface

named name.

This is one of those things that sounds more complicated than it really is, so perhaps the

following code will help make it clearer.

The Code

print "<p>";

printf("\$polly is %sa Parrot.
\n",

is_a($polly, 'Parrot') ? '' : 'not ');

printf("\$polly is %sa Canary.
\n",

is_a($polly, 'Canary') ? '' : 'not ');

printf("\$polly is %sa Bird.
\n",

is_a($polly, 'Bird') ? '' : 'not ');

printf("\$polly is %sa Pet.
\n",

is_a($polly, 'Pet') ? '' : 'not ');

print "</p>\n";

Here is the output:

$polly is a Parrot.

$polly is not a Canary.

$polly is a Bird.

$polly is a Pet.

2-15 ■ DETERMINING WHETHER AN OBJECT IS AN INSTANCE OF A PARTICULAR CLASS 67

How It Works

Since $polly is an instance of Parrot, the first is_a() test is true. It is not an instance of the

Canary class, and it does not descend from Canary, so the second test is false. $polly is an

instance of Parrot, which extends the Bird class, so the third test is true. Bird implements

the Pet interface, so the fourth test using is_a() also returns TRUE.

Variations

is_a() answers the question, Does object A descend from class B? A closely related question is,

What is the parent class of class C? You can answer this with the help of get_parent_class(). This

function takes the name of a class and returns the name of its parent, if it has one; otherwise, it

returns an empty string. It is not difficult to write a bit of recursive code that takes care of tracing

the complete inheritance trail of a class:

function write_parents($class)

{

$parent = get_parent_class($class);

if($parent != '')

{

printf("<p>%s is a child of %s.</p>\n", $class, $parent);

write_parents($parent);

}

else

printf("<p>%s has no parent class.</p>\n", $class);

}

write_parents('Canary');

This yields the following result:

Canary is a child of Bird.

Bird has no parent class.

However, PHP 5 introduces a simpler way to accomplish this using the class_parents()

function. As a bonus, an analogous class_interfaces() function returns a list of all interfaces

implemented by a class. Notice that both of these functions take an instance of the class as a

parameter:

printf("<p>Canary class parents: %s</p>\n",

implode(', ', class_parents($tweety)));

printf("<p>Canary class implements: %s</p>\n",

implode(', ', class_implements($tweety)));

2-15 ■ DETERMINING WHETHER AN OBJECT IS AN INSTANCE OF A PARTICULAR CLASS68

Here is the output:

Canary class parents: Bird

Canary class implements: Product, Pet

2-16. Listing Currently Loaded Interfaces and Classes

You can obtain lists of the interfaces and classes currently loaded with the functions

get_declared_interfaces() and get_declared_classes(), respectively.

The Code

printf("<p>Interfaces currently available: %s</p>",

implode(', ', get_declared_interfaces()));

printf("<p>Classes currentlyavailable: %s</p>",

implode(', ', get_declared_classes()));

The following is the output generated by this code on one of our test systems running

PHP 5.0.4 under Apache 1.3.33 on Windows 2000. Your results are likely to be different,

depending on which operating system and web server software you are using, as well as which

PHP extensions you have loaded at the time.

Interfaces currently available: Traversable, IteratorAggregate,

Iterator, ArrayAccess, Reflector, RecursiveIterator, SeekableIterator,

Pet, Product

Classes currently available: stdClass, Exception, ReflectionException,

Reflection, ReflectionFunction, ReflectionParameter, ReflectionMethod,

ReflectionClass, ReflectionObject, ReflectionProperty,

ReflectionExtension, COMPersistHelper, com_exception,

com_safearray_proxy, variant, com, dotnet, RecursiveIteratorIterator,

FilterIterator, ParentIterator, LimitIterator, CachingIterator,

CachingRecursiveIterator, ArrayObject, ArrayIterator,

DirectoryIterator, RecursiveDirectoryIterator, SQLiteDatabase,

SQLiteResult, SQLiteUnbuffered, SQLiteException, __PHP_Incomplete_Class,

php_user_filter, Directory, DOMException, DOMStringList, DOMNameList,

DOMImplementationList, DOMImplementationSource, DOMImplementation,

DOMNode, DOMNameSpaceNode, DOMDocumentFragment, DOMDocument,

DOMNodeList, DOMNamedNodeMap, DOMCharacterData, DOMAttr, DOMElement,

DOMText, DOMComment, DOMTypeinfo, DOMUserDataHandler, DOMDomError,

DOMErrorHandler, DOMLocator, DOMConfiguration, DOMCdataSection,

DOMDocumentType, DOMNotation, DOMEntity, DOMEntityReference,

DOMProcessingInstruction, DOMStringExtend, DOMXPath, SimpleXMLElement,

SimpleXMLIterator, SWFShape, SWFFill, SWFGradient, SWFBitmap, SWFText,

2-16 ■ LISTING CURRENTLY LOADED INTERFACES AND CLASSES 69

SWFTextField, SWFFont, SWFDisplayItem, SWFMovie, SWFButton, SWFAction,

SWFMorph, SWFSprite, SWFSound, mysqli, mysqli_result, mysqli_stmt,

PDFlibException, PDFlib, tidy, tidyNode, XSLTProcessor, Shape, Bird,

Parrot, Canary

Variations

The get_declared_classes() function can be handy when writing scripts to run in places

where you do not know ahead of time which extensions or programming classes might be

available. For example, suppose you need to process an XML file, but you are not sure which

XML APIs might be available:

$xmlfile = '/xmlfiles/myfile.xml';

$classes = get_declared_classes();

if(in_array('SimpleXMLElement', $classes))

{

$xmldoc = simplexml_load_file($xmlfile);

// process XML using SimpleXML API...

}

elseif(in_array('DOMDocument', $classes))

{

$xmldoc = new DOMDocument();

$xmldoc->load($xmlfile);

// process XML using DOM API...

}

else

{

// process XML using Expat or other means...

}

You can use these functions with predefined classes as well as those you have written or

included yourself. Here is an example showing what you obtain by using class_parents(),

class_implements(), get_class_methods(), and get_class_variables() in order to obtain

information about the built-in ArrayIterator class:

$class = 'ArrayIterator';

eval("@\$object = new \$class();");

printf("<p>%s class parents: %s</p>\n",

$class,

print_r(class_parents($object), TRUE));

printf("<p>%s class implements: %s</p>\n",

$class,

implode(', ', class_implements($object)));

printf("<p>%s class methods: %s</p>\n",

$class,

implode(', ', get_class_methods($class)));

2-16 ■ LISTING CURRENTLY LOADED INTERFACES AND CLASSES70

printf("<p>%s class variables: %s</p>",

$class,

print_r(get_class_vars($class), TRUE));

We have “cheated” here and used print_r() with the arrays that we knew would be empty

so you could see that these are in fact empty arrays and not empty strings or NULLs:

ArrayIterator class parents: Array()

ArrayIterator class implements: Iterator, Traversable, ArrayAccess, SeekableIterator

ArrayIterator class methods: __construct, offsetExists, offsetGet,➥

offsetSet, offsetUnset, append, getArrayCopy, count, rewind, current,➥

key, next, valid, seek

ArrayIterator class variables: Array()

Using the Class Reflection API
PHP 5’s class and object functions do not tell you anything about the classes’ internals, only

about their public members. To make the most of a class, you really need to know about its

private and protected members, as well as about the parameters expected by its methods. The

Reflection API comes in handy here; it allows you to perform thorough reverse-engineering of

any class or interface.

It has been said that he who understands a thing by breaking it apart loses the thing he

understands, but in some programming situations you want or need to do exactly that. While

the class and object functions you looked at in the previous set of recipes can be useful in this

regard, the Reflection API has a number of advantages over those functions:

• It is completely object-oriented.

• You can obtain detailed information about extensions.

• It allows you to access private and protected variables more easily and to obtain default

values of properties of classes (without having to instantiate an object using the default

constructor).

• It is possible to obtain complete method signatures (except for return types).

• You can examine private and protected methods, which is not possible using the class

and object functions.

The Reflection API (as illustrated in Figure 2-6) consists of eight classes, all of which

except for the Reflection class implement the Reflector interface, which is defined as shown

here:

Interface Reflector

{

public static function export();

public function __toString();

}

2-16 ■ LISTING CURRENTLY LOADED INTERFACES AND CLASSES 71

Figure 2-6. PHP 5 Reflection API classes (UML diagram)

 ReflectionFunction

<<final>> - _clone() : void

<<create>> + _construct(in $name : string) : object

+_toString() : string

+export() : string

+getName() : string

+getFileName() : string

+isInternal() : boolean

+isUserDefined() : boolean

+getStartLine() : int

+getEndLine() : int

+getDocComment() : string

+invoke(in $args : mixed) : mixed

+invokeArgs(in arg1s : array) : mixed

+returnsReference() : boolean

+getParameters() : ReflectionParameter[]

+getNumberOfParameters() : int

+getNumberOfRequiredParameters() : int

 ReflectionProperty

<<final>> - _clone() : void

+ _construct(in $class : mixed,in $name : string) : object

+_toString() : string

+getName() : string

+isPublic() : boolean

+isPrivate() : boolean

+isProtected() : byte

+isStatic() : boolean

+isDefault() : boolean

+getModifiers() : int

+getValue(in $object : stdClass) : mixed

+setValue(in $object : stdClass,in $value : mixed) : void

+getDeclaringClass() : ReflectionClass

 ReflectionClass

<<final>> - _clone() : void

<<create>>+_construct(in $name : string) : object

+_toString() : string

+export() : string

+getName() : string

+isInternal() : boolean

+isUserDefined() : boolean

+isInstantiable() : boolean

+getFileName() : string

+getStartLine() : int

+getEndLine() : int

+getDocComment() : string

+getConstructor() : ReflectionMethod

+getMethod(in $name : string) : ReflectionMethod

+getMethods() : ReflectionMethod[]

+getProperty(in $name : string) : ReflectionProperty

+getProperties() : ReflectionProperty[]

+getConstant(in $name : string) mixed

+getConstants() : array

+getInterfaces() : ReflectionClass[]

+isInterface() : boolean

+isAbstract() : boolean

+isFinal() : boolean

+getModifiers() : int

+isInstance(in $object : stdClass) : boolean

+newInstance(in $args : mixed) : stdClass

+getParentClass() : ReflectionClass

+isSubclassOf(in $class : ReflectionClass) : boolean

+getStaticProperties() : array

+getDefaultProperties() : array

+isIterable() : boolean

+implementsInterface(in $name : string) : boolean

+getExtension() : ReflectionExtension

+getExtensionName() : string

 ReflectionMethod

<<final>> - _clone() : void

<<create>>+_construct(in $class : mixed, $name : string) : void

+_toString() : string

+export() : string

+invoke(in $object : stdClass,in $args : mixed) : mixed

+invokeArgs(in $object : stdClass,in $args : array) : mixed

+isFinal() : boolean

+isAbstract() : boolean

+isPublic() : boolean

+isPrivate() : boolean

+isProtected() : boolean

+isStatic() : boolean

+isConstructor() : boolean

+isDestructor() : boolean

+getModifiers() : int

+getDeclaringClass() : ReflectionClass

+getName() : string

+isInternal() : boolean

+getFileName() : string

+getStartLine() : int

+getEndLine() : int

+getDocComment() : string

+getStaticVariables() : array

+returnsReference() : boolean

+getParameters() : ReflectionParameter[]

+getNumberOfParameters() : int

+getNumberOfRequiredParameters() : int

 ReflectionExtension

<<final>> - _clone() : void

<<create>>+_construct(in $name : string) : object

+_toString() : string

+export() : string

+getName() : string

+getVersion() : string

+getFunctions() : ReflectionFunction[]

+getConstants() : array

+getINIEntries() : array

+getClasses() : ReflectionClass[]

+getClassNames() : array

 RefectionParameter

<<final>> - _clone() : void

<<create>>+_construct(in $name : string) : object

+_toString() : string

+export() : string

+getName() : string

+isPassedByReference() : boolean

+getClass() : ReflectionClass

+allowsNull() : boolean

+isOptional() : boolean

+isDefaultValueAvailable() : boolean

+getDefaultValue() : mixed

 <<Interface>>

 Reflector

+export() : void

+_toString() : string

2-16 ■ LISTING CURRENTLY LOADED INTERFACES AND CLASSES72

The Reflection API classes are as follows:

• Reflection: This class implements as a static method the export() method defined by

Reflector, although it does not actually implement the Reflector interface. You can use

this method to dump all the methods and/or properties of a class, extension, property,

method, or parameter.

• ReflectionClass: This class models a PHP 5 class and exposes methods for accessing

nearly all aspects of the class, including its properties, methods, any parent classes that

it extends or interfaces it implements, whether it is abstract or final, and so on. Note

that you can also use the ReflectionClass to represent an interface.

• ReflectionFunction: Represents a function.

• ReflectionMethod: Extends the ReflectionFunction class and is used to model a class

method.

• ReflectionParameter: Represents a parameter of a function or method.

• ReflectionProperty: Models a class property.

• ReflectionExtension: Represents a PHP extension.

• ReflectionException: Represents an exception thrown by one of the Reflection API

classes. This class actually extends the Exception class.

We will not list all the methods of these classes here; you will get to see some of them used

in later recipes, and for the rest you can consult Figure 2-6 or refer to the PHP manual (http://

docs.php.net/en/language.oop5.reflection.html).

2-17. Obtaining a Dump of the Reflection API

If you are feeling adventurous, you can use export() to get a dump of the Reflection API. This

example shows how to do this, using the Shape class defined earlier, which we have saved to a

file named Shape.class.php.

The Code

<?php

// file: reflection-export-1.php

// simple Reflection::export() example

// include class file

require_once('./Shape.class.php');

// create new instance of ReflectionClass

$rc = new ReflectionClass('Shape');

?><pre><?php

// dump class info

2-17 ■ OBTAINING A DUMP OF THE REFLECTION API 73

Reflection::export($rc);

?></pre>

How It Works

The ReflectionClass constructor takes the name of the class you want to examine (as a string

value). To get a dump of all class members, simply pass the ReflectionClass object you have

just created to the static Reflection::export() method. The result contains all properties and

methods of the class along with all parameters of those methods, and it even includes line

numbers and comments from the source code for the class.

Here is the output:

/**

* An example class for class/object functions

* and Reflection examples - contains a mix of

* public/private/protected/static members,

* constants, etc.

*/

Class [class Shape] {

@@ /home/www/php5/ch2/Shape.class.php 11-66

- Constants [4] {

Constant [integer NUM_SIDES_TRIANGLE] { }

Constant [integer NUM_SIDES_SQUARE] { }

Constant [integer NUM_SIDES_PENTAGON] { }

Constant [integer NUM_SIDES_HEXAGON] { }

}

- Static properties [1] {

Property [public static $shapeNames]

}

- Static methods [0] {

}

- Properties [3] {

Property [public $numberOfSides]

Property [public $perimeter]

Property [private $name]

}

- Methods [3] {

/**

* Class constructor

* input params:

* int $numberOfSides, int $sideLength

2-17 ■ OBTAINING A DUMP OF THE REFLECTION API74

*/

Method [public method __construct] {

@@ /home/www/php5/ch2/Shape.class.php 32 - 44

- Parameters [2] {

Parameter #0 [$numberOfSides = 3]

Parameter #1 [$sideLength = 10]

}

}

/**

* Sets the name value

* Input param:

* string $name

*/

Method [protected method setName] {

@@ /home/www/php5/ch2/Shape.class.php 52 - 55

- Parameters [1] {

Parameter #0 [$name]

}

}

/**

* Retrieves the name value

* returns string

*/

Method [public method getName] {

@@ /home/www/php5/ch2/Shape.class.php 62 - 65

}

}

}

Variations

That wasn’t so difficult, was it? You can accomplish the same thing for any PHP 5 class by

replacing Shape with the class name. This includes built-in classes and those made available

by extensions. However, while dumping a pile of data about a class can occasionally be useful

during development, this does not use the real power of the Reflection API, which is that it

exposes fully object-oriented interfaces for almost any aspect of a class or an object that you

might need to use. For example, harking back to the pet shop scenario, suppose you have

defined a number of classes implementing the Pet interface. Rather than having a single

petCall() method in Pet that you have extended for each class, let’s also suppose you have

defined a method performing this function but that it is different for each subclass. See

Figure 2-7 for an abbreviated UML representation.

2-17 ■ OBTAINING A DUMP OF THE REFLECTION API 75

Figure 2-7. Modified set of Pets

2-18. Performing Dynamic Class Instantiation

Now imagine that you have to write a module that works with some existing code that uses

a Pet class but you have no way of knowing ahead of time which one it might be. Using the

Reflection API’s ReflectionClass and ReflectionMethod classes, the following code shows

one way you could solve this problem.

The Code

<?php

// Existing code has created an instance of a class

// implementing the Pet interface as the variable $pet...

// This array uses the class names as keys and the

// 'make a noise' method names as values

$noises = array('Dog' => 'bark', 'Cat' => 'meow',

'Pig' => 'oink', 'Mouse' => 'squeak');

// Now you need for the pet to make a noise...

// First you need to get the name of the class, and then

// create a corresponding instance of ReflectionClass

$pet_name = get_class($pet);

$pet_rc = new ReflectionClass($pet_name);

// Get the name of the correct method based on the name of the class

// (if no match is found, set the method name to NULL):

// If there was a match on the class name, create

// an instance of ReflectionMethod using the class name

// and corresponding method name, and then invoke this method

// by calling ReflectionMethod's invoke() method

if(array_key_exists($pet_name, $noises))

<<Interface>>

Pet

Dog

+ bark()

Cat

+ meow()

Pig

+ oink()

Mouse

+ squeak()

2-18 ■ PERFORMING DYNAMIC CLASS INSTANTIATION76

{

$pc_method = new ReflectionMethod($pet_rc, $noises[$pet_name]);

$pc_method->invoke($pet);

}

else // Otherwise, indicate that there's no sound for this Pet

print "This pet does not make a sound";

?>

The ReflectionMethod class constructor takes two arguments: the name or an instance of

the class and the name of the method. You can use ReflectionMethod::invoke() to simulate a

call to the corresponding method; this method requires at least one argument, either NULL (if

the referenced object method is static) or an instance of the class. In other words, using the

Parrot class defined earlier, you can invoke its birdCall() method dynamically like so:

<?php

require_once('./bird-interface.php');

$class = 'Parrot';

$method = 'birdCall';

$rm = new ReflectionMethod($class, $method);

$rm->invoke(new $class('Polly'));

// Output is: Polly says *squawk*.

?>

The output is identical to that produced by the following code:

<?php

require_once('./bird-interface.php');

$polly = new Parrot('Polly');

$polly->birdCall();

?>

Note that you can also invoke a class constructor dynamically simply by using

new $class(), where $class is the name of the class.

2-19. Using the Reflection API to Deconstruct the Shape Class

We will finish this chapter with a more involved example of using the Reflection API to

deconstruct the Shape class in an object-oriented fashion by using the ReflectionClass,

ReflectionMethod, and ReflectionParameter classes. Let’s dive right into the code, and we

will explain what is happening along the way.

The Code

<?php

// file: reflection-example-2.php

// more involved Reflection API example

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS 77

// Include the proper class file

$class = 'Shape';

require_once("./$class.class.php");

// Create a new ReflectionClass instance

$rc = new ReflectionClass($class);

// Display the name of the class

printf("<p>Name: *%s*
\n", $rc->getName());

// Display the file the class is defined in, and

// the beginning and ending line numbers

printf("Defined in file '%s', lines %d - %d
\n",

$rc->getFileName(),

$rc->getStartLine(),

$rc->getEndLine());

It is possible to get documentation comments from the class source; both ReflectionClass

and ReflectionMethod provide a getDocComment() method. (Note that these are both instance

methods.) ReflectionClass::getDocComment() returns a string containing the multiline com-

ment immediately preceding the class definition; ReflectionMethod::getDocComment() returns

a string containing the multiline comment immediately preceding the method declaration

in the source. In both cases, the string includes the opening and closing /* and */ comment

delimiters. If there is no matching comment, then getDocComment() returns an empty string.

printf("<p>Contains the comments:<pre>%s</pre></p>",

$rc->getDocComment());

ReflectionClass has a number of boolean methods that tell you whether the class is

public, private, static, abstract, and so on. In addition, because this class can also model an

interface, the isInterface() method returns TRUE if you are examining an interface and FALSE

if you are introspecting a class.

printf("%s is %san interface.
\n",

$rc->getName(),

$rc->isInterface() ? '' : 'not ');

printf("%s is %sinstantiable.
\n",

$rc->getName(),

$rc->isInstantiable() ? '' : 'not ');

printf("%s is %sabstract.
\n",

$rc->getName(),

$rc->isAbstract() ? '' : 'not ');

printf("%s is %sfinal.</p>\n",

$rc->getName(),

$rc->isFinal() ? '' : 'not ');

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS78

The getConstants() method returns an associative array of all class constants. This array’s

keys are the names of the constants, and their values are those of the corresponding constants.

$constants = $rc->getConstants();

$num_constants = count($constants);

printf("%s defines %d constant%s",

$rc->getName(),

$num_constants == 0 ? 'no' : $num_constants,

$num_constants != 1 ? 's' : '');

if($num_constants > 0)

printf(":<pre>%s</pre>", print_r($constants, TRUE));

The instance method ReflectionClass::getProperties() returns an array of class prop-

erties (actually an array of ReflectionProperty objects). Here you will just supply each of these

in turn as a parameter to the static Reflection::export() method to obtain a dump of the

property’s attributes, but you can also employ a number of ReflectionProperty methods to

determine the property’s name, access, whether it is static, and how to get or set the value

currently stored by the property represented.

■Note Each of the elements in the array returned by getConstants() is an instance of

ReflectionParameter.

$props = $rc->getProperties();

$num_props = count($props);

printf("%s defines %d propert%s",

$rc->getName(),

$num_props == 0 ? 'no' : $num_props,

$num_props == 1 ? 'y' : 'ies');

if($num_props > 0)

{

print ':';

foreach($props as $prop)

{

print "<pre>";

Reflection::export($prop);

print "</pre>";

}

}

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS 79

The ReflectionClass method getMethods() returns an array of ReflectionMethod objects,

each corresponding to a class method.

$methods = $rc->getMethods();

$num_methods = count($methods);

printf("%s defines %d method%s
\n",

$rc->getName(),

$num_methods == 0 ? 'no' : $num_methods,

$num_methods != 1 ? 's' : '');

if($num_methods > 0)

{

print '<p>';

foreach($methods as $method)

{

printf("%s%s%s%s%s%s() ",

$method->isFinal() ? 'final ' : '',

$method->isAbstract() ? 'abstract ' : '',

$method->isPublic() ? 'public ' : '',

$method->isPrivate() ? 'private ' : '',

$method->isProtected() ? 'protected ' : '',

$method->getName());

$params = $method->getParameters();

$num_params = count($params);

In addition to the methods shown previously for determining access and other method

attributes (as well as some others that you can see listed in Figure 2-6 or at http://docs.php.net/

en/language.oop5.reflection.html). Each instance of ReflectionMethod has a getParameters()

method that returns an array of ReflectionParameter objects. Each of these models a method

parameter. In this example script, you list only the names of any parameters using the getName()

method; however, this class has several additional methods that are well worth investigating,

and we strongly urge you to take a bit of time to do so. You can use this script as a starting

point, adding more methods calls and trying it on different classes, and observe the results.

printf("has %s parameter%s%s",

$num_params == 0 ? 'no' : $num_params,

$num_params != 1 ? 's' : '',

$num_params > 0 ? ': ' : '');

if($num_params > 0)

{

$names = array();

foreach($params as $param)

$names[] = '$' . $param->getName();

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS80

print implode(', ', $names);

}

print '
';

}

}

?>

Here you can see the output from the preceding script:

Name: *Shape*

Defined in file '/home/www/php5/ch2/Shape.class.php', lines 11 - 66

Contains the comments:

/**

* An example class for class/object functions

* and Reflection examples - contains a mix of

* public/private/protected/static members,

* constants, etc.

*/

Shape is not an interface.

Shape is instantiable.

Shape is not abstract.

Shape is not final.

Shape defines 4 constants:

Array

(

[NUM_SIDES_TRIANGLE] => 3

[NUM_SIDES_SQUARE] => 4

[NUM_SIDES_PENTAGON] => 5

[NUM_SIDES_HEXAGON] => 6

)

Shape defines 4 properties:

Property [public static $shapeNames]

Property [public $numberOfSides]

Property [public $perimeter]

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS 81

Property [private $name]

Shape defines 3 methods

public __construct() has 2 parameters: $numberOfSides, $sideLength

protected setName() has 1 parameter: $name

public getName() has no parameters

Using the Reflection API, it is possible to find out virtually anything you would ever need

to know about an extension, interface, class, object, method, or property—whether you need

to get information about a library for which you cannot obtain documentation or to be able to

work with dynamic classes and objects in your PHP 5 applications. Although we have barely

scratched the surface in this chapter, it is well worth your time to read more about this API

and experiment with it.

Summary
If we were asked to name the biggest difference between PHP 4 and PHP 5, we would say with-

out hesitation that it is the introduction of the Zend II language engine. The resulting changes

in PHP’s handling of classes and objects are little short of revolutionary. PHP 4 was a procedural

scripting language with some capacity to work with basic objects and classes. PHP 5 is a differ-

ent animal: it has the capability for being used as a fully fledged object-oriented language with

polymorphism, inheritance, and encapsulation. The fact that it has managed to achieve these

objectives while maintaining almost complete backward compatibility with PHP 4–style classes

and objects is amazing.

In this chapter, we covered the most important and useful of these new capabilities, start-

ing with an overview of basic object-oriented concepts. You looked at what classes and objects

are, their major parts (members), and how to create them. One major change in PHP 5 from

its predecessors is that true encapsulation is now supported; that is, you can control access

to class members by declaring them to be public, private, or protected. In addition, you can

now force subclasses to implement methods (using abstract classes and methods) as well as

prevent subclasses from modifying class members (by declaring methods or classes as final).

PHP 5 also allows for a higher level of abstraction by introducing interfaces; just as a class

serves as a template for an object, you can think of an interface as a template for a class—

or perhaps it is better to think of a class as implementing one or more interfaces.

Another object-oriented feature making its first appearance in PHP 5 is a new way of han-

dling errors. Exceptions, implemented using an Exception class, make it possible to streamline

error handling by reducing the number of checks required. They also make it possible to sepa-

rate error checking from the functional portions of your code. Because the PHP developers

wanted to maintain backward compatibility, it is necessary to do a bit of extra preparation to

bypass the default error-handling mechanism if you want to use exceptions. However, as you

have now seen, doing so is not terribly difficult to accomplish and makes it possible to write

much cleaner code than before.

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS82

Object-oriented programming is not really complete without a way to obtain information

about classes, class instances, and class members, and PHP 4 provided a number of functions to

accomplish this. In this chapter, you looked at how PHP 5 retains these functions and adds a few

new ones. PHP 5 also introduces a set of classes whose main purpose is to model classes. These

classes, known collectively as the Reflection API, make it possible to examine extensions, inter-

faces, classes, functions, class methods, and properties and their relationships to one another. In

addition to introspecting classes, the Reflection API helps facilitate the dynamic generation and

manipulation of classes and objects. Both of these capabilities can prove extremely useful when

writing generic routines to handle classes and objects whose identity and composition are not

known before runtime.

Looking Ahead
In Chapter 3, Frank M. Kromann shows how to perform math calculations in PHP 5. He will

cover a number of useful topics in this area, including a survey of the types of numbers sup-

ported in PHP 5, ways to identify them, how they are expressed, and techniques enabling the

programmer to format numbers in many different ways for output. PHP 5 has a wealth of

mathematical functions and operators, and you will get the opportunity to see how to use

some of them to help you solve problems you are likely to encounter in your work with PHP 5;

these mathematical functions include all common trigonometric functions and functions for

working with exponents and logarithms. Chapter 3 will also cover how to generate random

numbers for arbitrary ranges of numbers and intervals within those ranges. Finally, you will

examine a couple of “bonus” math libraries: BCMath, used for performing calculations requir-

ing a high degree of precision, and GMP, which allows you to work with large integers. Of

course, the chapter will provide heaps of examples and useful bits of code that you can easily

adapt and build on for your own PHP 5 projects.

2-19 ■ USING THE REFLECTION API TO DECONSTRUCT THE SHAPE CLASS 83

Performing Math Operations

Math is one of the fundamental elements of most programming languages. Math allows

the programmer to perform anything from simple additions to advanced calculations. Even

though PHP was designed to create dynamic Hypertext Markup Language (HTML) documents,

it has evolved to a general-purpose programming language that includes a strong and flexible

math implementation.

The implementation of math in PHP looks very much like the implementation in C. In

fact, many of the functions are implemented as simple wrappers around the math functions

found in C libraries.

3-1. Numeric Data Types

Working with numbers or numeric data and math functions in PHP is simple. Basically, you

have two data types to work with, floating point and integer. The internal representations for

these values are the C data types double and int, and these data types follow the same set of

rules as in C.

We’ve designed most the samples in this chapter to work with the command-line inter-

face (CLI) version of PHP. If you use the samples with a web server and view the results in a

browser, you may see different formatting than the results shown in this chapter. This is espe-

cially true if a recipe is using a variable-width font to present the data. In most cases, we show

the generated output following the code sample. When the output generates HTML output,

we will use a figure to display the result.

■Note The minimum and maximum values for integer values depend on the system architecture where

PHP is running. On a 32-bit operating system, an integer can be between –2,147,483,648 and 2,147,483,647.

PHP is a loosely typed scripting language where variables change the data type as needed

by calculations. This allows the engine to perform type conversions on the fly. So, when num-

bers and strings are included in a calculation, the strings will be converted to a numeric value

before the calculation is performed, and numeric values are converted to strings before they

are concatenated with other strings. In the following example, a string and an integer value

are added, and the result is an integer value.

85

C H A P T E R 3

■ ■ ■

The Code

<?php

// Example 3-1-1.php

$a="5";

$b= 7 + $a;

echo "7 + $a = $b";

?>

How It Works

The variable $a is assigned a string value of 5, and then the variable $b is assigned the value of

the calculation of 7 plus the value of $a. The two values are of different types, so the engine will

convert one of them so they are both the same type. The operator + indicates the addition of

numeric values to the string, which is converted to a numeric value of 5 before the addition.

The last line displays the calculation, and the result is as follows:

7 + 5 = 12

PHP will also convert the data types of one or more values in a calculation in order to per-

form the calculation correctly. In the following example, the float is converted to an integer

before the binary and (&) operation is executed.

The Code

<?php

// Example 3-1-2.php

$a = 3.5;

$b = $a & 2;

echo "$a & 2 = $b";

?>

How It Works

The variable $a is assigned a floating-point value of 3.5. Then, the variable $b is assigned the

result of the calculation of $a and 2 with the binary and operation. In this case, the floating-

point value is converted to an integer (3) before the binary and operation is performed. If you

look at the binary values of 3 and 2, you will see these are 011 and 010; if you then perform the

operation on each bit, you get the result (0 & 0 = 0, 1 & 0 = 0, and 1 & 1 = 1).

3.5 & 2 = 2

And as the next example shows, PHP will perform an additional conversion on the result-

ing data type if the result of a calculation requires that. So, when an integer is divided by an

integer, the resulting value might be an integer or a float depending on the result and not on

the operation.

3-1 ■ NUMERIC DATA TYPES86

The Code

<?php

// Example 3-1-3.php

$a = 5;

$b = $a / 2;

echo "$a / 2 = $b\n";

$a = 6;

$b = $a / 2;

echo "$a / 2 = $b\n";

?>

How It Works

This example shows two integer divisions. No data type conversions are needed before the

calculations, as both sides of the division operator are numeric, but in the first case where 5 is

divided by 2, the result is 2.5, so that value must be stored in a floating-point data type. In the

other calculation, where 6 is divided by 2, the result is 6 and can be stored in an integer data

type.

5 / 2 = 2.5

6 / 2 = 3

PHP has a number of functions to test the data type of a variable. Three of these functions

test whether the variable contains a numeric value, or, more specifically, whether it is a float or

an integer.

The function is_numeric() checks if the value passed as the argument is numeric, and as

shown in the next example, it will return a boolean value: true for integers, floats, and string

values with a numeric content and false for all other data types. The following example shows

how you can use the is_numeric() function.

The Code

<?php

// Example 3-1-4.php

$a = 1;

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 1.5;

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = true;

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 'Test';

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

3-1 ■ NUMERIC DATA TYPES 87

$a = '3.5';

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = '3.5E27';

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 0x19;

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 0777;

echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

?>

How It Works

This example shows how you can use the is_numeric() function on variables of different data

types. In each of the tests, you use the tertiary operator (?) to print the string value of true or

false depending on the result returned by the function.

is_numeric(1) = true

is_numeric(1.5) = true

is_numeric(1) = false

is_numeric(Test) = false

is_numeric(3.5) = true

is_numeric(3.5E27) = true

is_numeric(25) = true

is_numeric(511) = true

The functions is_int() and is_float() check for specific data types. These functions will

return true if an integer or float is passed and false in any other case, even if a string with a

valid numeric representation is passed.

The Code

<?php

// Example 3-1-5.php

$a = 123;

echo "is_int($a) = " . (is_int($a) ? "true" : "false") . "\n";

$a = '123';

echo "is_int($a) = " . (is_int($a) ? "true" : "false") . "\n";

?>

3-1 ■ NUMERIC DATA TYPES88

How It Works

This example shows how the function is_int() will return true if the value passed as the argu-

ment is an integer and false if it is anything else, even if the string contains a numeric value.

is_int(123) = true

is_int(123) = false

To test for other data types, PHP implements is_bool(), is_string(), is_array(),

is_object(), is_resource(), and is_null(). All these functions take one argument and return

a boolean value.

It is possible to force the engine to change the data type. This is called typecasting, and it

works by adding (int), (integer), (float), (double), or (real) in front of the variable or value

or by using the function intval() or floatval(). This next example shows how you can use

the is_int() function with the (int) typecasting to force a string value to be converted to an

integer before the type is checked.

The Code

<?php

// Example 3-1-6.php

$a = 123;

echo "is_int($a) = " . (is_int($a) ? "true" : "false") . "\n";

$a = '123';

echo "is_int((int)$a) = " . (is_int((int)$a) ? "true" : "false") . "\n";

?>

How It Works

This example works as the previous example does, but because of the implicit typecasting of

the string to an integer before calling the is_int() function, both tests will return true.

is_int(123) = true

is_int((int)123) = true

Using typecasting might force the value to become a zero value. This will happen if the

value is an object, an array, or a string that contains a non-numeric value and if this variable is

typecast to an integer or floating-point value.

When the intval() function is used on strings, it’s possible to pass a second parameter

that specifies the base to use for the conversion. The default value is 10, but it’s possible to use

base 2 (binary), 8 (octal), 16 (hexadecimal), or any other value such as 32 or 36, as shown in

the following example.

3-1 ■ NUMERIC DATA TYPES 89

The Code

<?php
// Example 3-1-7.php
echo intval('123', 10) . "\n";
echo intval('101010', 2) . "\n";
echo intval('123', 8) . "\n";
echo intval('123', 16) . "\n";

echo intval('H123', 32) . "\n";
echo intval('H123', 36) . "\n";
?>

How It Works

This example takes numeric values with different bases and converts them to decimal representa-

tions (base 10). A decimal value uses the digits 0123456789, a binary value uses the digits 01, an

octal value uses the digits 01234567, and a hexadecimal value uses the digits 0123456789abcdef.

The digits for base 32 and base 36 are 0123456789 and the first 22 or 26 letters of the alphabet. So,

the value H123 does not denote a hexadecimal value.

123

42

83

291

558147

794523

The intval() function will also work on boolean and float types, returning the integer

value. The integer value of a boolean variable is 0 for false and 1 for true. For a float value,

this function will truncate the value at the decimal point.

When working with integers, it is sometimes necessary to convert between different base

values. The PHP interpreter will accept integers as part of the script, in decimal, octal, and

hexadecimal form, and automatically convert these to the internal decimal representation.

Using the octal and hexadecimal forms can make the code more readable. You can use the

octal form when setting file permissions, as this is the notation used on most Unix and Unix-

like systems, and you can use the hexadecimal form when defining constants where you need

to have a single bit set in each constant.

<?php
// Example 3-1-8.php
chmod("/mydir", 0755);

define('VALUE_1', 0x001);
define('VALUE_2', 0x002);
define('VALUE_3', 0x004);
define('VALUE_4', 0x008);
define('VALUE_5', 0x010);
define('VALUE_6', 0x020);
?>

3-1 ■ NUMERIC DATA TYPES90

It is easier to read and define constants based on single bits when using the hexadecimal

representation, where each digit represents 4 bits, than when using with decimal representa-

tion, where the same values would be 1, 2, 4, 8, 16, and 32.

Sometimes it’s also useful to convert integer values to other bases such as binary or base 32

and base 36, as used in the previous example. You can use the function base_convert() to

convert any integer value from one base to another. The function takes one numeric and two

integer parameters, where the first parameter is the number to be converted. This value can

be an integer or a string with a numeric representation. The second parameter is the base to

convert from, and the third parameter is the base to convert to. The function will always

return a string value, even if the result is an integer in the decimal representation.

The Code

<?php
// Example 3-1-9.php
echo base_convert('123', 10, 10) . "\n";
echo base_convert('42', 10, 2) . "\n";
echo base_convert('83', 10, 8) . "\n";
echo base_convert('291', 10, 16) . "\n";

echo base_convert('558147', 10, 32) . "\n";
echo base_convert('794523', 10, 36) . "\n";

echo base_convert('abcd', 16, 8) . "\n";
echo base_convert('abcd', 16, 2) . "\n";?>

How It Works

In this example, you saw the same values as in the previous example, but this example uses

the base_convert() function to do the reverse conversion. In addition, this example also

shows conversions between bases other than the decimal 10.

123

101010

123

123

h123

h123

125715

1010101111001101

Remember that the maximum width of an integer value in PHP is 32-bit. If you need to

convert integer values with more than 32 bits, you can use the GMP extension (see recipe 3-6).

You can assign a value to a variable in a few ways in PHP (see Chapter 10). The most basic

form is the assignment $a = 10;, where $a is given the integer value 10. If the variable exists,

the old value will be lost, and if the variable is used for the first time, the internal structure will

be allocated. There is no need to declare variables before use, and any variable can be reas-

signed to another value with another type at any time.

3-1 ■ NUMERIC DATA TYPES 91

For variables of a numeric type, it is also possible to assign a new value and at the same

time use the existing value in the calculation of the new value. You do this with $a += 5;,

where the new value of $a will be the old value plus 5. If $a is unassigned at the time the state-

ment is executed, the engine will generate a warning and assume the old value of 0 before

calculating the new value.

Tables 3-1, 3-2, and 3-3 show the arithmetic, bitwise, and assignment operators that are

available in PHP.

Table 3-1. Arithmetic Operators

Example Operation Result

-$a Negation Negative value of $a

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a divided by $b

Table 3-2. Bitwise Operators

Example Operation Result

$a & $b And Bits that are set in both $a and $b are set.

$a | $b Or Bits that are set in either $a or $b are set.

$a ^ $b Xor Bits that are set in $$a or $b but not in both are set.

~ $a Not Bits that are set in $a are not set, and vice versa.

$a << $b Shift left Shift the bits of $a to the left $b steps.

$a >> $b Shift right Shift the bits of $a to the right $b steps.

Table 3-3. Assignment Operators

Example Operation Result

$a += $b Addition $a = $a + $b

$a -= $b Subtraction $a = $a - $b

$a *= $b Multiplication $a = $a * $b

$a /= $b Division $a = $a / $b

$a %= $b Modulus $a = $a % $b

$a &= $b Bitwise and $a = $a & $b

$a |= $b Bitwise or $a = $a | $b

$a ^= $b Bitwise xor $a = $a ^ $b

$a <<= $b Left-shift $a = $a << $b

$a >>= $b Right-shift $a = $a >> $b

3-1 ■ NUMERIC DATA TYPES92

■Note If you use bitwise operators on strings, the system will apply the operation on the string character

by character. For example, 123 & 512 equals 102. First, the values 1 and 5 are “anded” together in binary

terms, that is, 001 and 101; only the last bit is common, so the first character becomes 001. The next two

values are 2 and 1 (or in binary values, 10 and 01). These two values are “anded” together to make 00, or 0.

And finally, 3 and 2 are “anded” together, so that’s 11 and 10 with the result of 10, or 2. So, the resulting

string is 102.

Integer values can be signed and unsigned in the range from –2,147,483,648 to

2,147,483,647. If a calculation on any integer value causes the result to get outside these

boundaries, the type will automatically change to float, as shown in the following example.

The Code

<?php

// Example 3-1-10.php

$i = 0x7FFFFFFF;

echo "$i is " . (is_int($i) ? "an integer" : "a float") . "\n";

$i++;

echo "$i is " . (is_int($i) ? "an integer" : "a float") . "\n";

?>

How It Works

The variable $i is assigned a value corresponding to the largest integer number PHP can

handle, and then is_int() is called to verify that $i is an integer. Then the value of $i is

incremented by 1, and the same check is performed again.

2147483647 is an integer

2147483648 is a float

In other languages with strict type handling, the increment of $i by 1 would lead to over-

flow, and the result would be a negative value of –2,147,483,648.

Comparing integer values is simple and exact because there is a limited number of values

and each value is well defined. This is not the case with floating-point values, where the preci-

sion is limited. Comparing two integers with = will result in a true value if the two integers are

the same and false if they are different. This is not always the case with floating-point values.

These are often looked at with a numeric string representation that might change during pro-

cessing. The following example shows that a simple addition of two floating-point variables

compared to a variable with the expected value result can lead to an unexpected result.

3-1 ■ NUMERIC DATA TYPES 93

The Code

<?php

// Example 3-1-11.php

$a=50.3;

$b=50.4;

$c=100.7;

if ($a + $b == $c) {

echo "$a + $b == $c\n";

}

else {

echo "$a + $b != $c\n";

}

?>

How It Works

Three variables are each assigned a floating-point value; then, a calculation is performed with

the two first values, and the result is compared to the last value. One would expect that the

output from this code would indicate that $a + $b == $c.

50.3 + 50.4 != 100.7

This result indicates that PHP is having trouble with simple floating-point operations, but

you will find the same result in other languages. It is possible to compare floating-point val-

ues, but you should avoid the == operator and use the <, >, >=, and <= operators instead. In the

following example, the loop goes from 0 to 100 in steps of 0.1, and the two checks inside the

loop print a line of text when $i reaches the value 50.

The Code

<?php

// Example 3-1-12.php

for ($i = 0; $i < 100; $i += 0.1) {

if ($i == 50) echo '$i == 50' . "\n";

if ($i >= 50 && $i < 50.1) echo '$i >= 50 && $i < 50.1' . "\n";

}

?>

How It Works

This code creates a loop where the variable $i starts as an integer with the value 0. The code

in the loop is executed as long as the value of $i is less than 100. After each run-through, the

value of $i is incremented by 0.1. So, after the first time, $i changes to a floating-point value.

The code in the loop uses two different methods to compare the value of $i, and, as the result

shows, only the second line is printed.

3-1 ■ NUMERIC DATA TYPES94

$i >= 50 && $i < 50.1

Another way to make sure the values are compared correctly is to typecast both sides of

the == operator to integers like this: if ((int)$i == 50) echo '$i == 50' . "\n";. This will

force the engine to compare two integer values, and the result will be as expected.

3-2. Random Numbers

Random numbers are almost a science by themselves. Many different implementations

of random number generators exist, and PHP implements two of them: rand() and mt_rand().

The rand() function is a simple wrapper for the random function that is defined in libc (one

of the basic libraries provided by the compiler used to build PHP). mt_rand() is a drop-in

replacement with well-defined characteristics (Mersenne Twister), and mt_rand() is even

much faster than the version from libc.

Working with random number generation often requires seeding the generator to avoid

generating the same random number each time the program is executed. This is also the case

for PHP, but since version 4.2.0, this seeding takes place automatically. It is still possible to use

the srand() and mt_srand() functions to seed the generators, but it’s no longer required.

You can use both random generators with no arguments or with two arguments. If no

arguments are passed, the functions will return an integer value between 0 and RAND_MAX,

where RAND_MAX is a constant defined by the C compilers used to generate PHP. If two argu-

ments are passed, these will be used as the minimum and maximum values, and the functions

will return a random value between these two numbers, both inclusive.

Both random generators provide functions to get the value of MAX_RAND. The next example

shows how to use these functions.

The Code

<?php

// Example 3-2-1.php

echo "getrandmax = " . getrandmax() . "\n";

echo "mt_getrandmax = " . mt_getrandmax() . "\n";

?>

How It Works

On a Linux or Unix system, this sample code produces this output:

Getrandmax() = 2147483647

mt_getrandmax() = 2147483647

On a Windows system, the same code produces this output:

Getrandmax() = 32767

mt_getrandmax() = 2147483647

3-2 ■ RANDOM NUMBERS 95

This difference is caused by the different libc implementations of the random number

generators and the MAX_RAND value between different platforms.

You can generate random numbers (integer values) between 0 and MAX_RAND by calling

rand() or mt_rand() without any arguments, as shown in the next example.

The Code

<?php

// Example 3-2-2.php

echo "rand() = " . rand() . "\n";

echo "mt_rand() = " . mt_rand() . "\n";

?>

How It Works

On Windows and Linux systems, the output from this code would look like the following,

though the values will be different each time the script is executed:

rand() = 9189

mt_rand() = 1101277682

In many cases, it’s required to get a random value with other minimum and maximum

values than the default. This is where the two optional arguments are used. The first argument

specifies the minimum value, and the second specifies the maximum value. The following

example shows how to get a random value from 5 to 25.

The Code

<?php

// Example 3-2-3.php

echo "rand(5, 25) = " . rand(5, 25) . "\n";

echo "mt_rand(5, 25) = " . mt_rand(5, 25) . "\n";

?>

How It Works

This example prints two random values from 5 to 25.

rand(5, 25) = 8

mt_rand(5, 25) = 6

Random values are not restricted to positive integers. The following example shows how

to get random values from –10 to 10.

3-2 ■ RANDOM NUMBERS96

The Code

<?php

// Example 3-2-4.php

echo "rand(-10, 10) = " . rand(-10, 10) . "\n";

echo "mt_rand(-10, 10) = " . mt_rand(-10, 10) . "\n";

?>

How It Works

This example prints two random values between –10 and 10.

rand(-10, 10) = 5

mt_rand(-10, 10) = -6

Generating random numbers with these two functions will always result in an integer

value. With some simple math it is possible to change this to generate a random floating-point

value. So, if you want to generate random floating-point values from 0 to 10 with two deci-

mals, you could write a function called frand(), as shown next.

The Code

<?php

// Example 3-2-5.php

function frand($min, $max, $decimals = 0) {

$scale = pow(10, $decimals);

return mt_rand($min * $scale, $max * $scale) / $scale;

}

echo "frand(0, 10, 2) = " . frand(0, 10, 2) . "\n";

?>

How It Works

The function takes two mandatory arguments and one optional argument. If the third argu-

ment is omitted, the function will work as mt_rand() and return an integer. When the third

argument is given, the function calculates a scale value used to calculate new values for the

minimum and maximum and to adjust the result from mt_rand() to a floating-point value

within the range specified by $min and $max. The output from this sample looks like this:

frand(0, 10, 2) = 3.47

3-2 ■ RANDOM NUMBERS 97

Working with currency values might require the generation of random numbers with

fixed spacing. Generating random values between $0 and $10 and in steps of $0.25 would not

be possible with the frand() function without a few modifications. By changing the third

parameters from $decimals to $precision and changing the logic a bit, it is possible to gener-

ate random numbers that fit both models, as shown in the following example.

The Code

<?php

// Example 3-2-6.php

function frand($min, $max, $precision = 1) {

$scale = 1/$precision;

return mt_rand($min * $scale, $max * $scale) / $scale;

}

echo "frand(0, 10, 0.25) = " . frand(0, 10, 0.25) . "\n";

?>

■Note There are no checks on the $precision value. Setting $precision = 0 will cause a division-by-

zero error.

How It Works

The output from the sample looks like this:

frand(0, 10, 0.25) = 3.25

Changing the precision parameter to 0.01 gives the same result as in the first example, and

changing it to 3 causes the function to return random values between 0 and 10 in steps of 3.

The possible values are 0, 3, 6, and 9, as shown in the next example.

The Code

<?php

// Example 3-2-7.php

function frand($min, $max, $precision = 1) {

$scale = 1/$precision;

return mt_rand($min * $scale, $max * $scale) / $scale;

}

echo "frand(0, 10, 3) = " . frand(0, 10, 3) . "\n";

?>

3-2 ■ RANDOM NUMBERS98

How It Works

The precision parameter has been changed to 3, so the ||$scale value will be 1/3. This reduces

the internal minimum and maximum values to 0 and 3, and the result of mt_rand() is divided

by $scale, which is the same as multiplying by 3. The internal random value will be 0, 1, 2, or 3,

and when that’s multiplied by 3, the possible values are 0, 3, 6, or 9.

frand(0, 10, 3) = 6

■Note The arguments to mt_rand() are expected to be integers. If other types are passed, the values

are converted to integers before calculating the random value. This might cause the minimum and maximum

values to be truncated, if the calculation of $min * $scale or $max * $scale results in a floating-point

value.

You can also use the random number generators to generate random strings. This can be

useful for generating passwords. The next example defines a function called GeneratePassword()

that takes two optional arguments. These arguments specify the minimum and maximum

lengths of the generated password.

The Code

<?php

// Example 3-2-8.php

function GeneratePassword($min = 5, $max = 8) {

$ValidChars = "abcdefghijklmnopqrstuvwxyz123456789";

$max_char = strlen($ValidChars) - 1;

$length = mt_rand($min, $max);

$password = "";

for ($i = 0; $i < $length; $i++) {

$password .= $ValidChars[mt_rand(0, $max_char)];

}

return $password;

}

echo "New Password = " . GeneratePassword() . "\n";

echo "New Password = " . GeneratePassword(4, 10) . "\n";

?>

3-2 ■ RANDOM NUMBERS 99

How It Works

The output from this script could look like this:

New Password = bbeyq

New Password = h3igij3bd7

The mt_rand() function is first used to get the length of the new password and then used

within the for loop to select each character randomly from a predefined string of characters.

You could extend this string to include both uppercase and lowercase characters and other

characters that might be valid.

The variable $max_char defines the upper limit of the random number generation. This is

set to the length of the string of valid characters minus 1 to avoid the mt_rand() function from

returning a value that is outside the string’s boundaries.

3-3. Logarithms and Exponents

PHP implements the log(), log10(), exp(), and pow() functions, as well as logp1() and

expm1() that are marked as experimental, to calculate logarithms and exponents.

The exp() and log() functions are considered to be the inverse of each other, and they

use e as the base. This number is called neperian, or the natural logarithm base. $e = exp(1);

gives the value of e, and it’s equal to 2.71828182846. This number is also defined as a constant

called M_E, and it’s defined as 2.7182818284590452354.

The following example shows the calculation of e and the inverse nature of the two

functions.

The Code

<?php

// Example 3-3-1.php

$e = exp(1);

echo "$e\n";

$i = log($e);

echo "$i\n";

?>

How It Works

This example calculates the value of e and assigns it to the variable $e, which is printed before

it is used as a parameter to the log() function.

2.71828182846

1

You can calculate logarithms with other base values by dividing the result of the log()

function with log(base). If the base is 10, it is faster to use the built-in log10() function, but

for all other values of base, you can use this method.

3-3 ■ LOGARITHMS AND EXPONENTS100

The Code

<?php
// Example 3-3-2.php
$val = 100;
$i = log($val);
echo "log($val) = $i\n";
$i10 = log($val) / log(10);
echo "log($val) / log(10) = $i10\n";
$i10 = log10($val);
echo "log10($val) = $i10\n";
?>

How It Works

This example calculates the natural logarithm of 10 and prints it. Then it uses the nature of

the logarithmic functions to calculate log10 of the same value, and at last it uses the building

log10() function to verify the result. The output from this example looks like this:

log(100) = 4.60517018599

log(100) / log(10) = 2

log10(100) = 2

The pow() function calculates one number to the power of another number. The function

takes two arguments, where the first is the base and the second is the exponent. The return

value will be an integer, if possible, or a float value. In the case of an error, the return value will

be FALSE. When the base value is e, the pow() function becomes equal to the exp() function.

■Note PHP cannot handle negative base values if the exponent is a noninteger.

The following example shows how to use the pow() function with integers, floats, and

both negative and positive numbers.

The Code

<?php

// Example 3-3-3.php

echo pow(2, 8) . "\n";

echo pow(-2, 5) . "\n";

echo pow(-2.5, 5) . "\n";

echo pow(0, 0) . "\n";

echo pow(M_E, 1) . "\n";

echo pow(3.2, 4.5) . "\n";

echo pow(2, -2) . "\n";

echo pow(-2, -3) . "\n";

?>

3-3 ■ LOGARITHMS AND EXPONENTS 101

How It Works

This example shows how the pow() function can calculate the power of both positive and neg-

ative values of both integer and floating-point types.

256

-32

-97.65625

1

2.71828182846

187.574977246

0.25

-0.125

Another special case of pow() is that when the exponent is 0.5, the function is equal to the

sqrt() function.

When presenting data in a graphical form (bar or line charts), it is sometimes practical to

use a logarithmic scale to avoid small values being too close to the X axis and to reduce the

visual difference between small and large values.

The next example uses a simple HTML-based technology to draw bar charts from an

array of data. The script defines two constants used by the ShowChart() function to select a

linear or logarithmic scale when drawing the chart. The ShowChart() function takes three

arguments, where the first is the array of data used to draw the chart, the second is the

optional chart type, and the third is an optional height value used to calculate the scaling of

the data. In this case, the data used is hard-coded, but this part of the script could use a data-

base connection or a log file from a web server to fetch the data. The final part of the script is

where the HTML document is created and sent to the client.

The Code

<?php

// Example 3-3-4.php

define('BAR_LIN', 1);

define('BAR_LOG', 2);

function ShowChart($arrData, $iType = BAR_LIN, $iHeight = 200) {

echo '<table border=0><tr>';

$max = 0;

foreach($arrData as $y) {

if ($iType == BAR_LOG) {

$y = log10($y);

}

if ($y > $max) $max = $y;

}

$scale = $iHeight / $max;

3-3 ■ LOGARITHMS AND EXPONENTS102

foreach($arrData as $x=>$y) {

if ($iType == BAR_LOG) {

$y = log10($y);

}

$y = (int)($y*$scale);

echo "<td valign=bottom>

</td>

<td width=5> </td>";

}

echo '</tr></table>';

}

$arrData = array(

150,

5,

200,

8,

170,

50,

3

);

echo '<html><body>';

echo 'Show chart with linear scale';

ShowChart($arrData, BAR_LIN);

echo '
Show chart with logarithmic scale';

ShowChart($arrData, BAR_LOG);

echo '</body></html>';

?>

How It Works

The ShowChart() function uses a small image of 1✕1 pixels to generate the bars. Each bar is

represented with the image being scaled to a height and width that matches the data in the

first array passed to the function. The second parameter selects linear or logarithmic scale,

and the third parameter defines the height of the entire chart. Figure 3-1 shows the resulting

charts with linear and logarithmic scale.

3-3 ■ LOGARITHMS AND EXPONENTS 103

Figure 3-1. Sample bar charts with linear and logarithmic scale

Using plain HTML to generate charts is not optimal because of the limitations of the

markup language. It’s possible to generate more advanced charts with the GD (GIF, PNG, or

JPG images) and Ming (Flash movies) extensions. Figure 3-2 shows an example of a bar chart

generated with the Ming extension.

Figure 3-2. Bar chart generated with the Ming extension

Linear Logarithmic

3-3 ■ LOGARITHMS AND EXPONENTS104

3-4. Trigonometric Functions

PHP implements a full set of trigonometric and hyperbolic functions as well as a few

functions to convert from degrees to radians and back. A number of constants, including

M_PI (3.1415926538979323846), and a few derivatives are also defined to make life easier for

the developer, as described in Table 3-4 and Table 3-5.

Table 3-4. Trigonometric Functions

Name Description

cos() Cosine

sin() Sine

tan() Tangent

acos() Arc cosine

asin() Arc sine

atan() Arc tangent

atan2() Arc tangent of two variables

pi() A function returning pi (the same as M_PI)

deg2rad() Degree to radians

rad2deg() Radians to degrees

Table 3-5. Hyperbolic Functions

Name Description

cosh() Hyperbolic cosine (exp(arg) + exp(-arg))/2

sinh() Hyperbolic sine (exp(arg) - exp(-arg))/2

tanh() Hyperbolic tangent sinh(arg)/cosh(arg)

acosh() Inverse hyperbolic cosine

asinh() Inverse hyperbolic sine

atanh() Inverse hyperbolic tangent

■Note acosh(), asinh(), and atanh() are not implemented on the Windows platform.

You can use the trigonometric functions to calculate positions of elements in a plane. This

can be useful when using GD or Ming extensions to generate dynamic graphical content. If a

line that starts in (0, 0) and ends in (100, 0) is to be duplicated starting at (20, 20) and rotated

35 degrees, you can calculate the ending point with the trigonometric functions, as shown in

the following example.

3-4 ■ TRIGONOMETRIC FUNCTIONS 105

The Code

<?php

// Example 3-4-1.php

$start = array(0, 0);

$end = array(100, 0);

$length = sqrt(pow($end[0] - $start[0], 2) + pow($end[1] - $start[1], 2));

$angle = 35;

$r = deg2rad($angle);

$new_start = array(20, 20);

$new_end = array(

$new_start[0] + cos($r) * $length,

$new_start[1] + sin($r) * $length

);

var_dump($new_end);

?>

How It Works

The first line is defined by two sets of coordinates. These are assigned as arrays to the variables

$start and $end and used to calculate the length of the line. Setting the starting point of the

new line is as simple as assigning $new_start the coordinates as an array. This is then used

together with the angle (35 degrees) to calculate the value of $new_end.

array(2) {

[0]=>

float(101.915204429)

[1]=>

float(77.3576436351)

}

The arguments to cos(), sin(), and tan() should always be given in radians, and the

values returned by acos(), asin(), and atan() will always be in radians. If you need to operate

on angles specified in degrees, you can use the deg2rad() and rad2deg() functions to convert

between the two.

Trigonometric functions have a wide range of usages; one of them is to calculate the dis-

tance between two locations on the earth. Each location is specified by a set of coordinates.

Several different methods with varying accuracy are available, and they can more or less com-

pensate for the fact that the earth is not a perfect sphere. One of the simplest methods is

called the Great Circle Distance, and it’s based on the assumptions that 1 minute of arc is

1 nautical mile and the radius of the earth is 6,364.963 kilometers (3,955.00465 miles). These

assumptions work fine when both locations are far from the poles and equator.

3-4 ■ TRIGONOMETRIC FUNCTIONS 106

The formula used to calculate the distance takes the longitude and latitude for each loca-

tion, and it looks like this:

D = R * ARCOS (SIN(L1) * SIN(L2) + COS(L1) * COS(L2) * COS(DG))

This formula returns the distance in kilometers or miles (depending on the radius value)

and assumes all the trigonometric functions to be working in degrees. For most calculators it

is possible to choose degrees or radians, but for PHP only radians is available, so you need to

convert everything to and from degrees. It would also be nice to have the function return the

result in miles or kilometers.

R is the earth’s radius in kilometers or miles, L1 and L2 are the latitude of the first and sec-

ond locations in degrees, and DG is the longitude of the second location minus the longitude of

the first location, also in degrees. Latitude values are negative south of the equator. Longitudes

are negative to the west with the center being the Greenwich mean time (GMT) line.

Calculating the distance between two locations starts by finding the longitude and lati-

tude of each location and inserting the values in the formula. A Google search is an easy way

to find longitude and latitude values for many popular locations. You can use maps and even

Global Positioning System (GPS) receivers. As an example, we have chosen Copenhagen and

Los Angeles. Copenhagen is located east of the GMT line at 12.56951 and north of the equator

at 55.67621, and Los Angeles is located west of the GMT line at –118.37323 and a bit closer to

the equator at 34.01241.

To make the calculations a little easier, you can start by creating a function that will

return the distance between two locations in either kilometers or miles. The function is called

GetDistance(); it takes four mandatory parameters and one optional parameter. The two con-

stants (KM and MILES) select the format of the return value as well as define the earth’s radius in

both formats.

The Code

<?php

// Example 3-4-2.php

define('KM', 6364.963);

define('MILES', 3955.00465);

function GetDistance($la1, $lo1, $la2, $lo2, $r = KM) {

$l1 = deg2rad($la1);

$l2 = deg2rad($la2);

$dg = deg2rad($lo2 - $lo1);

$d = $r * acos(sin($l1) * sin($l2) + cos($l1) * cos($l2) * cos($dg));

return $d;

}

// Copenhagen

$lat1 = 55.67621;

$long1 = 12.56951;

3-4 ■ TRIGONOMETRIC FUNCTIONS 107

// Los Angeles

$lat2 = 34.01241;

$long2 = -118.37323;

echo "The distance from Copenhagen to Los Angeles is " .

round(GetDistance($lat1, $long1, $lat2, $long2)) . " km\n";

echo "The distance from Copenhagen to Los Angeles is " .

round(GetDistance($lat1, $long1, $lat2, $long2, MILES)) . " miles\n";

?>

How It Works

Two constants define the radius of the earth in kilometers and miles. The same two constants

are used as parameters to the GetDistance() function, so there is no need for additional con-

stants here. The GetDistance() function takes four mandatory parameters that specify the

latitude and longitude of each point for which the distance should be calculated.

The round() function is used on the return value, before printing, to get rid of any deci-

mals, because the calculation is not that accurate anyway. The output from the script is the

distance between Copenhagen and Los Angeles in kilometers and in miles:

The distance from Copenhagen to Los Angeles is 9003 km

The distance from Copenhagen to Los Angeles is 5594 miles

3-5. Formatting of Numeric Data

Except for warnings, errors, and so on, most output from PHP is generated by a few functions,

such as echo, print(), and printf(). These functions convert the argument to a string and

send it to the client (console or web browser). The PHP-GTK extension uses other

methods/functions to generate output. You can use the sprintf() function in the same way as

the printf() function, except it returns the formatted string for further processing. The con-

version of numbers to string representation takes place in a simple way without any special

formatting, except for a few options used with the |printf() function. It is possible to embed

integer and floating-point values in strings for easy printing, as shown in the following sample.

The Code

<?php

// Example 3-5-1.php

$i = 123;

$f = 12.567;

echo "\$i = $i and \$f = $f\n";

?>

3-5 ■ FORMATTING OF NUMERIC DATA108

How It Works

Two numeric variables are defined and assigned an integer and a floating-point value. The two

variables are then embedded in a string. This generates the following output:

$i = 123 and $f = 12.567

Other functions can format numeric values before the value is output to the client. You

can convert an integer into a string representation with a different base using one of these

functions: decbin(), decoct(), dechex(), or base_convert(). The base_convert() function can

convert an integer to any base, as you saw in recipe 3-1, but the first three functions make the

code a bit more readable, and there is no need for additional parameters. Three functions—

bindec(), octdec(), and hexdec()—can convert binary, octal, and hexadecimal strings to

decimal integer values; again, these conversions can be handled by base_convert(), but the

result will be a string value for any conversion, where the three other functions will return an

integer or a float depending on the number of bits needed to represent the number.

When decimal numbers (integers or floats) are presented, it’s common to use a decimal

point, a thousand separator, and a fixed number of decimals after the decimal point. This

makes it much easier to read the value when it contains many digits. In PHP the function

number_format() converts integers and floating-point values into a readable string representa-

tion. The function takes one, two, or four parameters. The first parameter is the numeric value

to be formatted. This is expected to be a floating-point value, but the function allows it to be

an integer or a string and performs the conversion to a float when needed.

■Note If a non-numeric string value is passed as the first parameter, the internal conversion will result in 0.

No warnings or errors will be generated.

The second parameter indicates the number of decimals after the decimal point. The

default number of decimals is zero. The third and fourth parameters specify the character for

the decimal point and thousand separator. The default values are a dot (.) and a comma (,),

but you can change to any character. The following example shows how you can format an

integer and a floating-point value with the number_format() function.

The Code

<?php

// Example 3-5-2.php

$i = 123456;

$f = 98765.567;

$si = number_format($i, 0, ',', '.');

$sf = number_format($f, 2);

echo "\$si = $si and \$sf = $sf\n";

?>

3-5 ■ FORMATTING OF NUMERIC DATA 109

How It Works

Two floating-point values are defined and formatted with the number_format() function. The

first value is presented as an integer with zero decimals, the decimal point is represented with

a comma (not shown), and the thousand separator is a dot. The second value is formatted

with two decimals and uses the system default for the decimal point and thousand separator.

$si = 123.456 and $sf = 98,765.57

You can use two other functions to format numbers: printf() and sprintf(). Both func-

tions take one or more arguments, where the first argument is a string that describes the

format and the remaining arguments replace placeholders defined in the formatting string

with values. The main difference between the two functions is the way the output is handled.

The printf() function sends the output directly to the client and returns the length of the

printed string; sprintf() returns the string to the program. Both functions follow the same

formatting rules, where % followed by a letter indicates a placeholder. Table 3-6 lists the

allowed placeholders.

Table 3-6. printf() and sprintf() Formatting Types

Type Description

% A literal percent character. No argument is required.

b The argument is treated as an integer and presented as a binary number.

c The argument is treated as an integer and presented as the character with that American
Standard Code for Information Interchange (ASCII) value.

d The argument is treated as an integer and presented as a (signed) decimal number.

e The argument is treated as scientific notation (for example, 1.2e+2).

|u The argument is treated as an integer and presented as an unsigned decimal number.

f The argument is treated as a float and presented as a floating-point number (locale aware).

F The argument is treated as a float and presented as a floating-point number (nonlocale
aware). Available since PHP 4.3.10 and PHP 5.0.3.

o The argument is treated as an integer and presented as an octal number.

s The argument is treated and presented as a string.

x The argument is treated as an integer and presented as a hexadecimal number (with
lowercase letters).

X The argument is treated as an integer and presented as a hexadecimal number (with upper-
case letters).

The following example shows how you can format an integer and a floating-point value

with the printf() function.

3-5 ■ FORMATTING OF NUMERIC DATA110

The Code

<?php

// Example 3-5-3.php

$i = 123456;

$f = 98765.567;

printf("\$i = %x and \$i = %b\n", $i, $i);

printf("\$i = %d and \$f = %f\n", $i, $f);

printf("\$i = %09d and \$f = %0.2f\n", $i, $f);

?>

How It Works

This example shows how the printf() function can format numbers as different data types.

$i = 1E240 and $i = 11110001001000000

$i = 123456 and $f = 98765.567000

$i = 000123456 and $f = 98765.57

It is also possible to use typecasting to convert numbers to strings; this works as if the

variable were embedded in a string, as shown in the next example.

The Code

<?php

// Example 3-5-4.php

$i = 123456;

$f = 98765.567;

echo "\$i = " . (string)$i . "\n";

echo "\$f = " . (string)$f . "\n";

?>

How It Works

The two variables are typecast into a string value and used to generate the output.

$i = 123456

$f = 98765.567

3-5 ■ FORMATTING OF NUMERIC DATA 111

On systems where libc implements the function strfmon(), PHP will also define a

function called money_format(). The function takes a formatting string and a floating-point

number as arguments. The result of this function depends on the setting of the LC_MONETARY

category of the locale settings. You can change this value with the setlocale() function before

calling money_format(). This function can convert only one floating-point value at the time,

and the formatting string can contain one placeholder along with other characters that will be

returned with the formatted number.
The placeholder is defined as a sequence of the following elements:

• The % character indicates the beginning of the placeholder.

• Optional flags.

• Optional width.

• Optional left precision.

• Optional right precision.

• A conversion character.

The following example shows a few ways of formatting currency values and shows how to

change the locale setting before showing a money value, as well as a few other formatting

options.

The Code

<?php

// Example 3-5-5.php

$number = 1234.56;

setlocale(LC_MONETARY, 'en_US');

echo money_format('%i', $number) . "\n";

setlocale(LC_MONETARY, 'en_DK');

echo money_format('%.2i', $number) . "\n";

$number = -1234.5672;

setlocale(LC_MONETARY, 'en_US');

echo money_format('%(#10n', $number) . "\n";

echo money_format('%(#10i', $number) . "\n";

?>

How It Works

A floating-point value is passed to the money_format() function. Before each call to this func-

tion, the LC_MONETARY value is changed by a call to the setlocale() function.

USD 1,234.56

DKK 1.234,56

($ 1,234.57)

(USD 1,234.57)

3-5 ■ FORMATTING OF NUMERIC DATA112

3-6. Math Libraries

PHP comes with two math extensions: BCMath and GMP. BCMath is a binary calculator that

supports numbers of any size and precision. This extension is bundled with PHP. (It’s compiled

by default on Windows systems; on Unix systems it can be enabled with the -enable-bcmath con-

figure option.) There is no need for external libraries. The GMP extension is a wrapper around

the GNU MP library, and it allows you to work with arbitrary-length integers. This extension

requires the GNU library and can be included by adding -with-gmp when configuring PHP. (For

binary Windows distributions this will be included in the php_gmp.dll file). Table 3-7 shows the

functions implemented by the BCMath extension.

Table 3-7. BCMath Functions

Name Description

bcadd() Adds two numbers

bccomp() Compares two numbers

|bcdiv() Divides two numbers

bcmod() Calculates the remainder with the division of two numbers

bcmul() Multiplies two numbers

bcpow() Raises one number to the power of another

bcpowmod() Raises one number to the power of another, raised by the specified modulus

bcscale() Sets the default scale for all BCMath functions

bcsqrt() Calculates the square root of a number

bcsub() Subtracts two numbers

Most of these functions take an optional scale parameter. If the scale parameter is omit-

ted, the functions will use the value defined by a call to bcscale(). The scale parameter defines

the number of decimals returned by the function, as shown in the following example.

The Code

<?php

// Example 3-6-1.php

bcscale(3);

$a = 1.123;

$b = 2.345;

$c = bcadd($a, $b);

echo "$c\n";

$c = bcadd($a, $b, 1);

echo "$c\n";

?>

3-6 ■ MATH LIBRARIES 113

How It Works

Two floating-point values are defined and added with the bcadd() function using the default

scale (3) set by a call to bcscae(). Then the same two values are added, but this time the

default scale is overwritten by the third argument. Note how the result is truncated and not

rounded.

3.468

3.4

The GMP extension implements a long list of functions (see Table 3-8) that can be used to

manipulate large integer values (more than 32 bits).

Table 3-8. GMP Functions

Name Description

gmp_abs Calculates absolute value

gmp_add Adds numbers

|gmp_and Logical and

gmp_clrbit Clears bit

gmp_cmp Compares numbers

gmp_com Calculates one’s complement

|gmp_div_q Divides numbers

gmp_div_qr Divides numbers and gets quotient and remainder

gmp_div_r Remainder of the division of numbers

gmp_div Alias of gmp_div_q()

gmp_divexact Exact division of numbers

gmp_fact Factorial

gmp_gcd Calculates GCD

gmp_gcdext Calculates GCD and multipliers

gmp_hamdist Hamming distance

gmp_init Creates GMP number

gmp_intval Converts GMP number to integer

gmp_invert Inverse by modulo

gmp_jacobi Jacobi symbol

gmp_legendre Legendre symbol

gmp_mod Modulo operation

gmp_mul Multiplies numbers

gmp_neg Negates number

gmp_or Logical or

gmp_perfect_square Perfect square check

gmp_popcount Population count

3-6 ■ MATH LIBRARIES114

Name Description

gmp_pow Raises number into power

gmp_powm Raises number into power with modulo

gmp_prob_prime Checks if number is “probably prime”

gmp_random Random number

gmp_scan0 Scans for 0

gmp_scan1 Scans for 1

gmp_setbit Sets bit

gmp_sign Sign of number

gmp_sqrt Calculates square root

gmp_sqrtrem Square root with remainder

gmp_strval Converts GMP number to string

gmp_sub Subtracts numbers

gmp_xor Logical xor

The following is an alternative to base_convert() that works on integers up to 32-bit.

The Code

<?php

// Example 3-6-2.php

if (!extension_loaded("gmp")) {

dl("php_gmp.dll");

}

/*use gmp library to convert base. gmp will convert numbers > 32bit*/

function gmp_convert($num, $base_a, $base_b)

{

return gmp_strval(gmp_init($num, $base_a), $base_b);

}

echo "12345678987654321 in hex is: " .

gmp_convert('12345678987654321', 10, 16) . "\n";

?>

How It Works

This example takes a large integer value and converts it into a hexadecimal representation.

The output will look like this:

12345678987654321 in hex is: 2bdc546291f4b1

Note that all the integer values are represented as strings.

3-6 ■ MATH LIBRARIES 115

■Note Loading the GMP extension as a DLL will work only on Windows systems, and using the dl() func-

tion will work only for CLI and Common Gateway Interface (CGI) versions of PHP. For the Unix system, the

GMP extension will be built-in or must be loaded as gmp.so.

The large integer values are stored internally as resource types. The function gmp_init()

takes two parameters, where the first is a string representation and the second is an optional

base value if the integer is given in a base value other than 10. The function gmp_strval() can

convert a GMP resource to a readable string value. The rest of the functions manipulate one or

more large integer values.

3-7. A Static Math Class

The math functions in PHP are, for the most part, designed to be used directly as functions

and procedures, but with the new object model introduced in PHP 5 it’s possible to create a

static Math() class that will act like math classes in other languages such as Java or JavaScript.

■Note It’s always faster to call the functions directly than it is to use classes to wrap around the functions.

However, static classes can make function names easier to remember, as they can be defined closer to what

is used in other languages.

The next example shows how you can create and use a simple static Math() class. Using

the static keyword in front of class members and methods makes it possible to use these

without instantiating the class.

The Code

<?php

// Example math.php

define('RAND_MAX', mt_getrandmax());

class Math {

static $pi = M_PI;

static $e = M_E;

static function pi() {

return M_PI;

}

static function intval($val) {

return intval($val);

}

3-7 ■ A STATIC MATH CLASS116

static function floor($val) {

return floor($val);

}

static function ceil($val) {

return ceil($val);

}

static function round($val, $decimals = 0) {

return round($val, $decimals);

}

static function abs($val) {

return abs($val);

}

static function floatval($val) {

return floatval($val);

}

static function rand($min = 0, $max = RAND_MAX) {

return mt_rand($min, $max);

}

static function min($var1, $var2) {

return min($var1, $var2);

}

static function max($var1, $var2) {

return max($var1, $var2);

}

}

$a = 3.5;

echo "Math::\$pi = " . Math::$pi . "\n";

echo "Math::\$e = " . Math::$e . "\n";

echo "Math::intval($a) = " . Math::intval($a) . "\n";

echo "Math::floor($a) = " . Math::floor($a) . "\n";

echo "Math::ceil($a) = " . Math::ceil($a) . "\n";

echo "Math::round(Math::\$pi, 2) = " . Math::round(Math::$pi, 2) . "\n";

echo "Math::abs(-$a) = " . Math::abs(-$a) . "\n";

echo "Math::floatval($a) = " . Math::floatval($a) . "\n";

echo "Math::rand(5, 25) = " . Math::rand(5, 25) . "\n";

echo "Math::rand() = " . Math::rand() . "\n";

echo "Math::min(2, 28) = " . Math::min(3, 28) . "\n";

echo "Math::max(3, 28) = " . Math::max(3, 28) . "\n";

?>

3-7 ■ A STATIC MATH CLASS 117

How It Works

The output from this script is simple but shows how the class is used:

Math::$pi = 3.14159265359

Math::$e = 2.71828182846

Math::intval(3.5) = 3

Math::floor(3.5) = 3

Math::ceil(3.5) = 4

Math::round(Math::$pi, 2) = 3.14

Math::abs(-3.5) = 3.5

Math::floatval(3.5) = 3.5

Math::rand(5, 25) = 13

Math::rand() = 1651387578

Math::min(2, 28) = 3

Math::max(3, 28) = 28

The JavaScript Math() class does not implement the intval(), floatval(), and rand()

functions, and the round() function does not take a second argument to specify the number

of decimals. The following example shows the same code in JavaScript.

The Code

<html>

<!-- Example math.html -->

<body>

<script language=JavaScript>

a = 3.5;

document.write('Math.PI = ' + Math.PI + '
');

document.write('Math.E = ' + Math.E + '
');

document.write('floor(' + a + ') = ' + Math.floor(a) + '
');

document.write('ceil(' + a + ') = ' + Math.ceil(a) + '
');

document.write('round(Math.PI) = ' + Math.round(Math.PI) + '
');

document.write('min(3, 28) = ' + Math.min(3, 28) + '
');

document.write('max(3, 28) = ' + Math.max(3, 28) + '
');

</script>

</body>

</html>

How It Works

Figure 3-3 shows the output in a browser.

3-7 ■ A STATIC MATH CLASS118

Figure 3-3. Using the Math() class in JavaScript

Summary
This chapter demonstrated how you can use many of the built-in math functions and opera-

tors in conjunction with the advantages of a loosely typed language such as PHP to calculate

simple but advanced computations.

We first covered the basic data types and how PHP handles them when assigning and cal-

culating values. Then we discussed the conversion of integers between different base values.

Next, we talked about random numbers and how to build functions to generate random

values of floating-point or string data types.

The next two topics were logarithmic and trigonometric functions. These functions have

a wide range of usages, but this chapter concentrated on how you can use them to generate

charts and calculate the distance between two points on the earth.

Then, we discussed two extensions for handling math on numbers that do not fit into the

simple numeric data types of PHP. Finally, we showed how you can create a static math class

and use it like you would implement math classes in other languages.

Looking Ahead
In Chapter 4, Jon Stephens will demonstrate how to use arrays as complex data types in PHP.

The chapter will show how you can manipulate arrays, how you can search arrays to find a

specific value, and how you can sort and traverse arrays with different methods.

3-7 ■ A STATIC MATH CLASS 119

Working with Arrays

If you have worked with PHP 4 or another scripting language, then you have almost certainly

worked with arrays—the idea of lists or collections of values is central to programming in gen-

eral, and PHP is no exception. If you are not already familiar with arrays, you should flip back

to Lee Babin’s Chapter 1 and get up to speed on just what an array is. Here we will just remind

you that the simple definition of the word array is “a collection or list of values.”

However, when using arrays in PHP, it is important to remember that PHP lumps together

two different sorts of constructs under the same name: ordered lists and unordered lists.

Ordered lists are often referred to in PHP as indexed arrays, in which each value is referenced

by a unique number, and unordered lists (collections) are referred to as associative arrays, in

which each value is identified by a unique name (a string value) and the order usually is not

important. It is possible in PHP for a single array to contain both indexed and named values.

Because of this, you will sometimes find that PHP has two ways of performing certain

array-related tasks, depending on whether you need to be mindful of keys and key/value rela-

tions, such as when you are populating or adding items to arrays or ordering (sorting) arrays.

This duplication can sometimes make working with PHP arrays a bit overwhelming. On the

other hand, it also means that PHP has many built-in functions for performing common tasks

with arrays, and when you do have to “roll your own,” you will find that you can handle many

of these tasks with just a few lines of code.

In this chapter, we will cover the following topics:

• Creating and populating arrays

• Outputting arrays in various user-friendly formats

• Adding new elements to and removing them from existing arrays, both singly and in sets

• Getting and setting the size or length of an array

• Combining arrays

• Finding array elements and traversing arrays

• Applying functions to arrays

• Sorting arrays according to keys, values, and other criteria

• Comparing arrays and array elements

• Finding combinations and permutations of array elements

121

C H A P T E R 4

■ ■ ■

Arrays in PHP 5 provide an amazingly huge range of functionality, so we have lots to cover

in this chapter. Let’s get started by reviewing how to create arrays and how to get data into

them once they have been created and then move on from there.

4-1. Creating Arrays

Creating arrays in PHP is quite easy. Both indexed arrays and associative arrays are produced

by calling the array() function.

The Code

$my_array = array();

$pets = array('Tweety', 'Sylvester', 'Bugs', 'Wile E.');

$person = array('Bill', 'Jones', 24, 'CA');

$customer = array('first' => 'Bill', 'last' => 'Jones',

'age' => 24, 'state' => 'CA');

How It Works

The simplest way to create an array in PHP is to call array() without any arguments, which

creates a new, empty array. You can create an array that is already populated with some ele-

ments simply by listing those elements, separated by commas, as arguments to array(). Array

elements can be any valid PHP data type, and elements belonging to the same array can be

different data types. To create an associative array, list the array’s key/value pairs using the =>

operator to associate each key with its corresponding value, and separate the key/value pairs

from each other with commas.

4-2. Accessing Array Elements

To access the elements of an indexed array, just use square brackets ([]) and the number of

the element in the array starting with 0 (not 1!) and going from left to right.

The Code

print "<p>Pet number 1 is named '$pets[0]'.</p>\n";

print "<p>The person's age is $person[2].</p>\n";

print "<p>The customer's age is {$customer['age']}.</p>\n";

Assuming you have defined the $pets, $person, and $customer arrays as shown in recipe 4-1,

the previous statements will produce the following output:

Pet number 1 is named 'Tweety'.

The person's age is 24.

4-1 ■ CREATING ARRAYS122

■Note The customer's age is 24. In each case, the array element is accessed by using the array’s variable

name followed by the index of the desired element in square brackets. Note that you must put associative

array keys in quotes; in addition, if you want to use variable interpolation when outputting an element from

an associative array, you must surround the variable name with braces, as shown in the last print state-

ment of the previous code.

4-3. Creating Multidimensional Arrays

As we said earlier, array elements can be any legal PHP data type, even other arrays. This

recipe shows some arrays consisting of other arrays, also referred to as multidimensional

arrays. To access elements of such arrays, you can use multiple sets of brackets, working your

way from the outside in, as shown in the last two statements in the following code.

The Code

$customers

= array(

array('first' => 'Bill', 'last' => 'Jones',

'age' => 24, 'state' => 'CA'),

array('first' => 'Mary', 'last' => 'Smith',

'age' => 32, 'state' => 'OH'),

array('first' => 'Joyce', 'last' => 'Johnson',

'age' => 21, 'state' => 'TX'),

);

$pet_breeds

= array(

'dogs' => array('Poodle', 'Terrier', 'Dachshund'),

'birds' => array('Parrot', 'Canary'),

'fish' => array('Guppy', 'Tetra', 'Catfish', 'Angelfish')

);

printf("<p>The name of the second customer is %s %s.</p>\n",

$customers[1]['first'], $customers[1]['last']);

printf("<p>%s and %s</p>", $pet_breeds['dogs'][0], $pet_breeds['birds'][1]);

The output of these two statements is as follows:

The name of the second customer is Mary Smith.

Poodle and Canary

4-3 ■ CREATING MULTIDIMENSIONAL ARRAYS 123

4-4. Using Array Keys

It is possible to use the => operator when creating indexed arrays. This allows you to define

an array whose elements do not have contiguous indexes, as shown next. We will show you

another means of defining such arrays in the next recipe, coming up shortly.

The Code

$primes = array(1 => 'one', 2 => 'two', 3 => 'three', 5 => 'five', 7 => 'seven');

Variations

It is entirely possible to use both integer and string keys in the same array. For instance, this is

entirely legal:

$array = array('name' => 'Bill', 'age' => 32, 1 => '25 Main St.',

2 => 'Apt. 24', 'city' => 'San Francisco', 'state' => 'CA');

If you use the minimal string representation of an integer as an array key, PHP will inter-

pret this as an integer. Note the word minimal here—using $array as defined previously, if

you assign a value to $array['1'], then the value of $array[1] will be updated; if you assign a

value to $array['01'], this will create a new element in $array with that value and with the

string key '01'.

4-5. Initializing an Array As a Range or Sequence of Values

It is often useful to be able to create an array and fill it with a sequence or range of values, most

often integers. Some examples of these are the arrays (1, 2, 3, 4, 5), (5, 10, 15, 20), and

(6, 2, -2, -6, -10). You may already be thinking that we are about to show you some code

involving for or foreach loops for constructing such arrays. However, although it is possible to

initialize arrays in this way, PHP provides a function that can make things much simpler. In fact,

in many cases it can obviate the need to create variables that hold “throwaway” arrays, which are

used only once, as you will see shortly. This function has the following prototype:

array range(mixed $start, mixed $end[, mixed $step])

This function returns an array whose first element is $start and whose last element is

$end. If these values are integers (and $step is not used), the result is an array whose elements

consist of $start, followed by the integers between $start and $end, followed by $end. For

instance, range(0, 4) returns the array (0, 1, 2, 3, 4). If $end is greater than $start, then

the array is created in reverse order; in other words, range(4, 0) yields the array (4, 3, 2, 1, 0).

The following are a few examples that ought to give you some ideas regarding the many

ways you can use range().

The Code

<?php

function array_list($array) # save a bit of typing

{

printf("<p>(%s)</p>\n", implode(', ', $array));

4-4 ■ Using Array Keys124

}

$arr1 = range(5, 11); # integer start/end

array_list($arr1);

$arr2 = range(0, -5); # count backward

array_list($arr2);

$arr3 = range(3, 15, 3); # use $step to skip intervals of 3

array_list($arr3);

array_list(range(20, 0, -5)); # stepping backward

array_list(range(2.4, 3.1, .1)); # fractional values

array_list(range('a', 'f')); # produce a sequence of characters

array_list(range('M', 'A', -2)); # skip every other letter going backward

?>

If you use $start or $end values consisting of more than one character, only the first char-

acter is used; any remainder is ignored.

■Note If you are not already familiar with implode(), see the following section for more information about

this and other ways to display an array’s content in an easy-to-read form.

Here is the output:

(5, 6, 7, 8, 9, 10, 11)

(0, -1, -2, -3, -4, -5)

(3, 6, 9, 12, 15)

(20, 15, 10, 5, 0)

(2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1)

(a, b, c, d, e, f)

(M, K, I, G, E, C, A)

4-5 ■ IN IT IALIZ ING AN ARRAY AS A RANGE OR SEQUENCE OF VALUES 125

Outputting Arrays
Before performing operations on arrays, it is good to have at least one or two ways to output

all the elements of an array so you can check your results. You can do this in numerous ways.

Some of these ways are better suited for use with indexed arrays, but most of them can be

used equally well with either indexed or associative arrays. Probably the most useful ways to

display arrays are as comma-delimited strings and as trees. We will show how you can do both

in the next two sections.

4-6. Outputting an Array As a String

Working with ordered (indexed) arrays is generally simpler than with unordered (associative)

ones, as shown in the next example.

The Code

$languages = array('German', 'French', 'Spanish');

printf("<p>Languages: %s.</p>\n", implode(', ', $languages));

Here is the output:

Languages: German, French, Spanish.

How It Works

The implode() function represents a handy way to output an entire indexed array in one go.

It takes two arguments: a “glue” string of zero or more characters used to join the elements of

the array into a single string and the array whose elements are to be joined. Here is the formal

prototype of this function:

string implode(string $glue='', array $pieces)

■Note The implode() function is also aliased as join(). We prefer implode() (perhaps because it obvi-

ously does the reverse of explode()), but you can use either name for this function—it will perform in the

same way. Whichever alias you use, we recommend you pick one and stick with it in all your code.

4-7. Outputting Using array_values() and array_keys() for

Backward Compatibility

Strictly speaking, you can use the $glue and $pieces arguments in either order, but we recom-

mend you supply these in the order shown. In PHP 5, $glue defaults to an empty string and

can be omitted; however, this is not backward compatible and will cause an error in older

versions of PHP (prior to PHP 4.3.0). This function does not really work with associative arrays.

4-6 ■ OUTPUTTING AN ARRAY AS A STRING126

To output all the values of an associative array as a string, you can use the array_values()

function to get an ordered array consisting of the associative array’s values; to do likewise

with all of its keys, you can use array_keys().

The Code

$countries_languages

= array('Germany' => 'German', 'France' => 'French', 'Spain' => 'Spanish');

printf("<p>Languages: %s.</p>\n",

implode(', ', array_values($countries_languages)));

printf("<p>Countries: %s.</p>\n",

implode(', ', array_keys($countries_languages)));

Here is the output:

Languages: German, French, Spanish.

Countries: Germany, France, Spain.

Variations

If you want to add that little extra-special touch, you can wrap these in a couple of functions

and surround the joined array elements with parentheses, like so:

<?php

function array_values_string($arr)

{

return sprintf("(%s)", implode(', ', array_values($arr)));

}

function array_keys_string($arr)

{

return sprintf("(%s)", implode(', ', array_key($arr)));

}

$countries_languages

= array('Germany' => 'German', 'France' => 'French', 'Spain' => 'Spanish');

print 'Countries: ';

print array_keys_string($countries_languages);

print '
Languages: ';

print array_values_string($countries_languages);

?>

4-7 ■ OUTPUTTING USING ARRAY_VALUES() AND ARRAY_KEYS() FOR BACKWARD COMPATIBIL ITY 127

The output produced by this is as follows:

Countries: (Germany, France, Spain)

Languages: (German, French, Spanish)

You might also find these two functions or similar ones useful in dynamically generating

code.

4-8. Outputting an Array As a Tree

For debugging purposes, you may also want to use the print_r(), var_export(), and var_dump()

functions to output an array as a tree. These are all particularly useful with associative arrays and

nested arrays, as they show all keys and values and act recursively. The following example shows

how you can do this.

The Code

<?php

$customers

= array(

array('first' => 'Bill', 'last' => 'Jones',

'age' => 24, 'state' => 'CA'),

array('first' => 'Mary', 'last' => 'Smith',

'age' => 32, 'state' => 'OH'),

array('first' => 'Joyce', 'last' => 'Johnson',

'age' => 21, 'state' => 'TX'),

);

printf("print_r():<pre>%s</pre>", print_r($customers, TRUE));

printf("var_export():<pre>%s</pre>", var_export($customers, TRUE));

print 'var_dump():<pre>';

var_dump($customers);

print '</pre>';

?>

This is the output of the previous code snippet:

print_r():

Array

(

[0] => Array

(

[first] => Bill

[last] => Jones

[age] => 24

4-8 ■ OUTPUTTING AN ARRAY AS A TREE128

[state] => CA

)

[1] => Array

(

[first] => Mary

[last] => Smith

[age] => 32

[state] => OH

)

[2] => Array

(

[first] => Joyce

[last] => Johnson

[age] => 21

[state] => TX

)

)

var_export():

array (

0 =>

array (

'first' => 'Bill',

'last' => 'Jones',

'age' => 24,

'state' => 'CA',

),

1 =>

array (

'first' => 'Mary',

'last' => 'Smith',

'age' => 32,

'state' => 'OH',

),

2 =>

array (

'first' => 'Joyce',

'last' => 'Johnson',

'age' => 21,

'state' => 'TX',

),

)

var_dump():

4-8 ■ OUTPUTTING AN ARRAY AS A TREE 129

array(3) {

[0]=>

array(4) {

["first"]=>

string(4) "Bill"

["last"]=>

string(5) "Jones"

["age"]=>

int(24)

["state"]=>

string(2) "CA"

}

[1]=>

array(4) {

["first"]=>

string(4) "Mary"

["last"]=>

string(5) "Smith"

["age"]=>

int(32)

["state"]=>

string(2) "OH"

}

[2]=>

array(4) {

["first"]=>

string(5) "Joyce"

["last"]=>

string(7) "Johnson"

["age"]=>

int(21)

["state"]=>

string(2) "TX"

}

}

How It Works

All three of these functions output a string representation of a variable. In the case of print_r()

and var_export(), you can supply a second optional argument of boolean TRUE in order to have

the function return a string rather than output it directly. var_dump() has no such option; how-

ever, you can pass multiple values to this function.

4-8 ■ OUTPUTTING AN ARRAY AS A TREE130

One other item of interest concerning var_export() is that the output of this function is

valid PHP code—a fact you can use in your scripts. You might also note that the output from

var_dump() contains type and size information about each array element with which it is pos-

sible to tell at a glance whether your array elements contain the sort of data you are expecting

them to contain.

■Tip You can use print_r(), var_export(), and var_dump() with variables and values of any type, not

just with arrays.

Adding New Elements to Arrays
You can use bracket notation to add new elements to an associative array, like so:

$customer['email'] = 'billsmith@mysite.net';

This is pretty simple with associative arrays, and it is also possible to set arbitrary ele-

ments for indexed arrays this way. However, because you sometimes have to be concerned

about both ordering the elements and maintaining the continuity of indexes, you often need

to employ some different techniques for adding new elements to an indexed array.

■Note From this point on, we will usually refer to indexed (ordered) arrays simply as arrays, but we will

continue to use associative array when speaking of associative or unordered arrays. We will use the term

indexed or ordered only when it seems necessary to avoid confusion.

4-9. Adding an Element to the End of an Array

If you want to add a new element to the end of an array, you can do that using the variable

name for the array followed by a set of empty brackets. You can do this regardless of whether

the array has any existing elements, as shown in the following example.

The Code

<?php

$languages = array(); // create a new, empty array

$languages[] = 'German';

$languages[] = 'French';

$languages[] = 'Spanish';

printf("<p>Languages: %s.</p>\n", implode(', ', $languages));

?>

4-9 ■ ADDING AN ELEMENT TO THE END OF AN ARRAY 131

Here is the output:

Languages: German, French, Spanish.

Variations

You can also use the array_push() function to accomplish this task, as shown here:

<?php

$languages = array();

array_push($languages, 'German', 'French', 'Spanish');

printf("<p>Languages: %s.</p>\n", implode(', ', $languages));

?>

The output of this code snippet is the same as in the previous example. array_push() can

be useful when you want to append multiple elements to an array in a single function call. The

first argument is the array to which you want to append. You can then use as many values as

you want as additional arguments to this function; these will be appended to the array in the

order in which they are listed as arguments.

■Caution You might be tempted to feed array_push() an array as the second argument rather than list

the values separately. Do not do this unless you intend to append to the array an element that is itself an

array. If you are looking for a way to add the elements in one array as new elements to another array, see

recipe 4-10.

4-10. Appending One Array to Another

If you have two or more sets of elements that you would like to combine sequentially into a

single set, you can use the array_merge() function for this purpose. This function takes two or

more arrays as arguments and returns a new array whose elements consist of all the elements

in the arguments passed to it, in order. That is, it literally appends arrays onto one another. If

it helps, you can think of this function as laying out arrays end to end in order to produce a

new one.

The Code

<?php

function array_display($array, $pre=FALSE)

{

$tag = $pre ? 'pre' : 'p';

printf("<%s>%s</%s>\n", $tag, var_export($array, TRUE), $tag);

}

4-10 ■ APPENDING ONE ARRAY TO ANOTHER132

$arr1 = array(1, 2, 3);

$arr2 = array(10, 20, 30);

$arr3 = array(5, 10, 15, 20);

$comb1 = array_merge($arr1, $arr2);

$comb2 = array_merge($arr2, $arr1);

$comb3 = array_merge($arr3, $arr2, $arr1);

array_display($comb1);

array_display($comb2);

array_display($comb3);

?>

Here is the output:

array (0 => 1, 1 => 2, 2 => 3, 3 => 10, 4 => 20, 5 => 30,)

array (0 => 10, 1 => 20, 2 => 30, 3 => 1, 4 => 2, 5 => 3,)

array (0 => 5, 1 => 10, 2 => 15, 3 => 20, 4 => 10, 5 => 20, 6 => 30,

7 => 1, 8 => 2, 9 => 3,)

Variations

You might have noticed that array_merge() reorders the array’s indexes. This happens even if

you set the indexes explicitly; however, you can get around this behavior by using the + opera-

tor instead, as shown here:

<?php

$arr4 = array(10 => 'a', 11 => 'b', 12 => 'c');

array_display(array_merge($arr1, $arr4), TRUE);

array_display($arr1 + $arr4, TRUE);

?>

You can compare the results to see the difference:

array (

0 => 1,

1 => 2,

2 => 3,

3 => 'a',

4 => 'b',

5 => 'c',

)

4-10 ■ APPENDING ONE ARRAY TO ANOTHER 133

array (

0 => 1,

1 => 2,

2 => 3,

10 => 'a',

11 => 'b',

12 => 'c',

)

You also need to be aware of a “gotcha” when using the + operator in this way, which is

also known as obtaining the union of two arrays. What happens when there are elements with

the same index in more than one of the arrays? For example, consider the following:

<?php

$arr5 = array(1 => 'x', 2 => 'y', 3 => 'z');

array_display(array_merge($arr1, $arr5), TRUE);

array_display($arr1 + $arr5, TRUE);

?>

Only the first instance of an element with an index matched in the second or subsequent

arrays makes it into the result. Any elements having a matching index in a subsequent array

are dropped, as shown here:

array (

0 => 1,

1 => 2,

2 => 3,

3 => 'x',

4 => 'y',

5 => 'z',

)

array (

0 => 1,

1 => 2,

2 => 3,

3 => 'z',

)

Of course, you can use array_merge() and the + operator with associative arrays as well, as

shown here:

<?php

$dogs1 = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian');

4-10 ■ APPENDING ONE ARRAY TO ANOTHER134

$dogs2 = array('Ringo' => 'Dachshund', 'Traveler' => 'Setter');

array_display(array_merge($dogs1, $dogs2), TRUE);

array_display($dogs1 + $dogs2, TRUE);

?>

In fact, as long as there are no conflicting keys, you can generally use either method, as

shown here:

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

'Ringo' => 'Dachshund',

'Traveler' => 'Setter',

)

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

'Ringo' => 'Dachshund',

'Traveler' => 'Setter',

)

These techniques are handy if you want to add new elements onto the end of an array, but

what if you want to add an element to the beginning, or even somewhere in the middle? We

will show you how to accomplish these tasks in recipes 4-12 and 4-13.

4-11. Comparing Arrays

It is possible to make comparisons between arrays using the ==, ===, >, and < operators.

Two arrays are considered equal if and only if they match with respect to size, keys, and

values. The order in which the elements are listed does not affect the output of a comparison

for simple equality using the == operator. Two arrays are considered identical if and only if

they are identical in every respect, including size, keys, values, and order in which the arrays’

elements occur. If all these conditions are not met, then the result of a comparison using the

=== operator is FALSE.

The following example illustrates equality, identity, and the difference between them with

respect to arrays.

The Code

<?php

function array_eq_ident($arr1, $arr2)

{

printf("<p>The two arrays are %sequal.</p>\n",

$arr1 == $arr2 ? '' : 'not ');

4-11 ■ COMPARING ARRAYS 135

printf("<p>The two arrays are %sidentical.</p>\n",

$arr1 === $arr2 ? '' : 'not ');

}

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

$pups = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

$mutts = array('Lassie' => 'Collie', 'Rin-Tin-Tin' => 'Alsatian',

'Bud' => 'Sheepdog','Snoopy' => 'Beagle');

print "<p>\$dogs and \$pups:</p>\n" ;

array_eq_ident($dogs, $pups);

print "<p>\$dogs and \$pups:</p>\n" ;

array_eq_ident($dogs, $mutts);

?>

Here is the output:

$dogs and $pups:

The two arrays are equal.

The two arrays are identical.

$dogs and $mutts:

The two arrays are equal.

The two arrays are not identical.

How It Works

The arrays (2, 4, 6, 8) and (4, 8, 6, 2) are neither equal nor identical. The arrays (2, 4,

6, 8) and (1 => 4, 3 => 8, 2 => 6, 0 => 2) are equal, because (2, 4, 6, 8) is the same

as (0 => 2, 1 => 4, 2 => 6, 3 => 8), so both arrays have the same indexes pointing to the

same values; however, these two arrays are not identical, because the elements are not listed

in the same order.

You can use the > and < operators to compare the lengths of two arrays. In other words,

given the array variables $arr1 and $arr2, the expression $arr1 > $arr2 is a convenient short-

hand for count($arr1) > count($arr2) and for sizeof($arr1) > sizeof($arr2). Likewise,

$arr1 < $aar2 produces the same result as count($arr1) < count($arr2) and as sizeof($arr1)

< sizeof($arr2).

The two array elements $a and $b are considered equal only if (string)$a === (string)$b,

that is, only if their string representations are the same.

4-11 ■ COMPARING ARRAYS136

4-12. Adding an Element to the Beginning of an Array

Prepending an element to an array in PHP is not difficult and requires only that you use the

array_unshift() function. This function’s prototype is as follows:

int array_unshift(array $arr, mixed $val[, mixed $val2[, ...]])

The first argument is the array you want to modify; one or more additional arguments

are added, in order, to the beginning of the array. The value returned by array_unshift() is the

number of elements in the array after it has been modified (however, you are not required to

use this if you do not need to do so).

The Code

<?php

$prices = array(5.95, 10.75, 11.25);

printf("<p>%s</p>\n", implode(', ', $prices));

array_unshift($prices, 10.85);

printf("<p>%s</p>\n", implode(', ', $prices));

array_unshift($prices, 3.35, 17.95);

printf("<p>%s</p>\n", implode(', ', $prices));

?>

5.95, 10.75, 11.25

10.85, 5.95, 10.75, 11.25

3.35, 17.95, 10.85, 5.95, 10.75, 11.25

4-13. Inserting New Values at an Arbitrary Point

in an Indexed Array

Suppose you are working with this array:

$languages = array('German', 'French', 'Spanish');

And suppose because of a change in your application requirements, you need to insert

Russian as the second element. You might try this:

$languages[1] = 'Russian';

But when you output the changed array, you discover that what you have done is overwrite

the second value, and that is not what you want. You want the array to contain the values German,

Russian, French, and Spanish. You can do this by using the array_splice() function, whose pro-

totype is as follows:

array array_splice(array $original, int $offset, int $length, array $new)

4-12 ■ ADDING AN ELEMENT TO THE BEGINNING OF AN ARRAY 137

The function removes $length elements in $array starting from position $offset and

inserts the elements contained in $new to take their place. It returns an array of the elements

that were removed from $array. Since you are interested only in inserting new elements into

an array (and not in removing any), you will write a new function named array_insert() that

is a special case of array_splice(). The following code defines this new function and tests it.

The Code

<?php

// file: array-insert.php

function array_insert(&$array, $offset, $new)

{

array_splice($array, $offset, 0, $new);

}

$languages = array('German', 'French', 'Spanish');

printf("<pre>%s</pre>\n", var_export($languages, TRUE));

array_insert($languages, 1, 'Russian');

printf("<pre>%s</pre>\n", var_export($languages, TRUE));

array_insert($languages, 3, array('Swedish', 'Italian'));

printf("<pre>%s</pre>\n", var_export($languages, TRUE));

?>

How It Works

When you call array_splice() with the $length parameter equal to 0, no elements are removed

from $array. Because this function works on the array in place, you need to use the indirection

operator (&) with this argument so that array_insert() is passed a reference to $array.

After defining the initial elements in the $languages array, you insert Russian into the sec-

ond position. Since arrays are indexed beginning with 0, you will need to use 1 for the value of

the $position argument. Note that when array_splice() is used with a single $new element, it

is not required to be an array, so the same is true for the custom function. Then you insert an

array containing Swedish and Italian into $languages starting with the fourth position.

array (

0 => 'German',

1 => 'French',

2 => 'Spanish',

)

array (

0 => 'German',

1 => 'Russian',

2 => 'French',

3 => 'Spanish',

)

4-13 ■ INSERTING NEW VALUES AT AN ARBITRARY POINT IN AN INDEXED ARRAY138

array (

0 => 'German',

1 => 'Russian',

2 => 'French',

3 => 'Swedish',

4 => 'Italian',

5 => 'Spanish',

)

As you can see, the indexes of the elements in the $languages array are automatically

reordered each time new elements are inserted into it using the array_splice() function or

the array_insert() function that you have derived from it.

Getting and Setting the Size of an Array
Arrays in PHP are dynamic; their sizes change as elements are added or removed. Because of

the way that foreach works with arrays, you often do not need to know an array’s size in order

to traverse it. Nonetheless, sometimes you do need to know how many elements an array con-

tains.

Unlike the case with some programming languages, you are not obligated to declare

the size of a PHP array in advance in order to create it. However, you can cause an array to

be padded out to a certain size when it otherwise is not long enough for a given purpose.

See recipe 4-15 for one way to handle this sort of problem.

4-14. Counting Array Elements

You might be wondering what happens if you try to insert new elements into an array at a non-

existent position. Let’s put this to the test, first by assigning an arbitrarily high index to a new

element and then by using the array_insert() function defined previously (see recipe 4-13).

<?

// array_insert() defined in previous recipe

$languages1 = array('German', 'French', 'Spanish');

array_insert($languages1, 6, 'Russian');

printf("<pre>%s</pre>\n", var_export($languages1, TRUE));

$languages2 = array('German', 'French', 'Spanish');

$languages[6] = 'Russian';

printf("<pre>%s</pre>\n", var_export($languages2, TRUE));

?>

4-14 ■ COUNTING ARRAY ELEMENTS 139

Here is the result:

array (

0 => 'German',

1 => 'French',

2 => 'Spanish',

3 => 'Russian'

)

array (

0 => 'German',

1 => 'French',

2 => 'Spanish',

6 => 'Russian',

)

Which behavior is desirable depends on your circumstances, which you cannot really

assess unless you know how to count the elements in an array and how to traverse an array.

So, let’s take care of those issues without further delay.

You can easily get the size of an array in PHP using the count() function, which works

equally well on indexed and associative arrays, as shown next.

The Code

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian');

$birds = array('parrot', 'magpie', 'lorikeet', 'cuckoo');

printf("<p>There are %d dogs and %d birds.</p>", count($dogs), count($birds));

$birds[] = 'ibis';

printf("<p>There are now %d birds:</p>", count($birds));

printf("<pre>%s</pre>\n", var_export($birds, TRUE));

$birds[10] = 'heron';

unset($birds[3]);

printf("<p>There are now %d birds:</p>", count($birds));

printf("<pre>%s</pre>\n", var_export($birds, TRUE));

?>

4-14 ■ COUNTING ARRAY ELEMENTS140

Here is the output:

There are 3 dogs and 4 birds.

There are now 5 birds:

array (

0 => 'parrot',

1 => 'magpie',

2 => 'lorikeet',

3 => 'cuckoo',

4 => 'ibis',

)

There are now 5 birds:

array (

0 => 'parrot',

1 => 'magpie',

2 => 'lorikeet',

4 => 'ibis',

10 => 'heron',

)

How It Works

The count() function always returns the number of elements currently stored in the array.

This is true regardless of how the elements are indexed, as you can see from the last portion

of the example, where the elements are indexed by the numbers 0, 1, 2, 3, and 10, but count()

shows that $birds in fact contains just five elements. You will look at some implications of this

when we discuss traversing arrays in the next section. Note that unsetting an array element

removes the element but does not reindex the other elements; to see how to do this, refer to

the section “Removing Elements from Arrays.”

■Note You can also use sizeof() in place of count() for obtaining the number of elements in an array.

This is nothing more than an alias for count(); the two functions perform identically. We prefer count(),

but you can use whichever of the two you prefer. Just do so consistently.

4-15. Setting an Array’s Size

If you need to guarantee that an array has a certain number of elements, you might want to

look at a PHP function called array_pad(), whose prototype is as follows:

array array_pad(array $input, int $size, mixed $value)

4-15 ■ SETTING AN ARRAY’S SIZE 141

This function takes as its first argument an array whose length is to be expanded. It does

this by copying the array and then adding to the copy a series of new elements whose value is

$value until the total length of the array reaches the absolute value of $size. (Why do we say

“absolute value” rather than simply “value”? You will see why in a moment.) Then it returns

the copy. It does not alter the original array.

The Code

<?php

$birds = array('parrot', 'magpie', 'lorikeet', 'cuckoo');

$more_birds = array_pad($birds, 6, 'some bird');

printf("<p>Birds:</p><pre>%s</pre>\n", var_export($birds, TRUE));

printf("<p>More birds:</p><pre>%s</pre>\n", var_export($more_birds, TRUE));

?>

Here is the output:

Birds:

array (

0 => 'parrot',

1 => 'magpie',

2 => 'lorakeet',

3 => 'cuckoo',

)

More birds:

array (

0 => 'parrot',

1 => 'magpie',

2 => 'lorakeet',

3 => 'cuckoo',

4 => 'some bird',

5 => 'some bird',

)

How It Works

The $birds array contains four values, and you have called array_pad() with $size equal to 6

and the padding value 'some bird'. So, the new array $more_birds contains all the values of

the original plus two new ones, both equal to some birds, tacked onto the end.

Variations

You can also cause the new values to be added to the beginning of the array by using a nega-

tive value for $size:

4-15 ■ SETTING AN ARRAY’S SIZE142

<?php

$birds = array('parrot', 'magpie', 'lorikeet', 'cuckoo');

$more_birds = array_pad($birds, -6, 'some bird');

printf("<p>More birds:</p><pre>%s</pre>\n", var_export($more_birds, TRUE));

?>

More birds:

array (

0 => 'some bird',

1 => 'some bird',

2 => 'parrot',

3 => 'magpie',

4 => 'lorakeet',

5 => 'cuckoo',

)

Notice that the elements taken from the original array are automatically reindexed and

that the padding elements are indexed beginning with 0.

You can also use array_pad() with associative arrays. However, the keys of the additional

elements will be numeric, as shown here:

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian');

$pups = array_pad($dogs, 5, 'mutt');

printf("<p>Pups (right padding):</p><pre>%s</pre>\n", var_export($pups, TRUE));

$pups = array_pad($dogs, -5, 'mutt');

printf("<p>Pups (left padding):</p><pre>%s</pre>\n", var_export($pups, TRUE));

printf("<p>Dogs:</p><pre>%s</pre>\n", var_export($dogs, TRUE));

?>

Pups (right padding):

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

0 => 'mutt',

1 => 'mutt',

)

4-15 ■ SETTING AN ARRAY’S SIZE 143

Pups (left padding):

array (

0 => 'mutt',

1 => 'mutt',

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

)

Dogs:

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

)

For other techniques you can use for inserting elements into arrays, see recipes 4-11

through 4-14.

Traversing Arrays
Traversing an array means to go through it, element by element. You can also refer to this as

looping through or iterating through an array.

4-16. Looping Through an Associative Array Using foreach

For associative and indexed arrays, the simplest way to do this is to use foreach.

The Code

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'German Shepherd', 'Snoopy' => 'Beagle');

foreach($dogs as $name => $breed)

print "$name is a $breed.
\n";

$birds = array('parrot', 'magpie', 'lorikeet', 'cuckoo');

foreach($birds as $bird)

print "$bird ";

print "
";

4-16 ■ LOOPING THROUGH AN ASSOCIATIVE ARRAY USING FOREACH144

$birds[] = 'ibis';

$birds[10] = 'heron';

unset($birds[3]);

foreach($birds as $bird)

print "$bird ";

?>

Here is the output:

Lassie is a Collie.

Bud is a Sheepdog.

Rin-Tin-Tin is a German Shepherd.

Snoopy is a Beagle.

parrot magpie lorikeet cuckoo

parrot magpie lorikeet ibis heron

As you can see from the output for the changed $birds array, this can be particularly use-

ful with an indexed array when the array is sparse (does not have contiguous indexes).

4-17. Looping Through a Compact Indexed Array

Using for and count()

With compact indexed arrays, you can also employ a for loop by using the count() function to

obtain the upper limit.

The Code

<?php

$birds = array('parrot', 'magpie', 'lorikeet', 'cuckoo');

$limit = count($birds);

for($i = 0; $i < $limit; $i++)

printf("<p>(%d) %s.</p>\n", $i, ucfirst($birds[$i]));

?>

Here is the output:

(1) Parrot.

(2) Magpie.

(3) Lorikeet.

(4) Cuckoo.

4-17 ■ LOOPING THROUGH A COMPACT INDEXED ARRAY USING FOR AND COUNT() 145

4-18. Looping Through a Sparse Array

The previous method does not work for sparse arrays, since the value of the greatest index

will be greater than the number of elements in the array. Another word of caution is in order

regarding a common error in which a programmer attempts to use count() inside the for

construct:

for($i = 0; $i < count($somearray); i++)

The problem with this is that if the code inside the loop adds elements or removes ele-

ments from the array, you are likely to obtain inaccurate results, because some elements are

skipped or processed twice. Even if the loop does not change the number of elements in the

array, using count() directly to set the limiting condition is still inefficient, because the func-

tion is called every time execution passes through the for loop. Always set a variable equal to

the value returned by count(), and use that variable in the limiting condition.

In mixed arrays (where some elements have integer keys and others have string keys), you

can employ foreach to iterate through the entire array; however, using for will retrieve only

those elements using integer keys, as shown in this example:

<?php

error_reporting();

$array = array('name' => 'Bill', 'age' => 32, 1 => '25 Main St.',

2 => 'Apt. 24', 'city' => 'San Francisco', 'state' => 'CA');

print "<p>Using foreach:</p>\n";

foreach($array as $element)

print("$element\n");

print "\n";

print "<p>Using for:</p>\n";

$limit = count($array);

for($i = 0; $i < $limit; $i++)

printf("%s\n", $array[$i]);

print "\n";

?>

Here is what happens when you run the previous code, assuming that error reporting is

set to its default level:

Using foreach:

. Bill

. 32

. 25 Main St.

. Apt. 24

. San Francisco

. CA

Using for:

4-18 ■ LOOPING THROUGH A SPARSE ARRAY146

Notice: Undefined offset: 0 in /home/www/php5/for-vs-foreach.php on line 13

.

25 Main St.

Apt. 24

Notice: Undefined offset: 3 in /home/www/php5/for-vs-foreach.php on line 13

.

Notice: Undefined offset: 4 in /home/www/php5/for-vs-foreach.php on line 13

.

Notice: Undefined offset: 5 in /home/www/php5/for-vs-foreach.php on line 13

.

You can take care of the problem with undefined indexes in such cases by using the

isset() function to see whether an array element is defined for a given index.

The Code

<?php

$array = array('name' => 'Bill', 'age' => 32, 1 => '25 Main St.',

2 => 'Apt. 24', 'city' => 'San Francisco', 'state' => 'CA');

print "<p>Using for:</p>\n<p>";

$limit = count($array);

for($i = 0; $i < $limit; $i++)

if(isset($array[$i]))

printf("· %s
\n", $array[$i]);

print "</p>\n";

?>

This will produce a more desirable result:

Using for:

· 25 Main St.

· Apt. 24

Removing Elements from Arrays
You can remove elements from an associative array quite easily by using the unset() function.

Here is an example:

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'German Shepherd', 'Snoopy' => 'Beagle');

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

unset($dogs['Rin-Tin-Tin']);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

?>

4-18 ■ LOOPING THROUGH A SPARSE ARRAY 147

You can verify that this works by viewing the output in a web browser:

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'German Shepherd',

'Snoopy' => 'Beagle',

)

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Snoopy' => 'Beagle',

)

4-19. Removing the First or Last Element from an Array

You can employ the same technique just shown with an indexed array, but this has a potential

problem, as noted in recipe 4.15: you wind up with a sparse array. Often what you want is an

array whose elements have contiguous indexes. If you want to remove the first or last element

while compacting the array’s indexes, this is not such a big issue, as PHP has functions for tak-

ing care of this easily.

The Code

<?php

$languages = array('French','German','Russian','Chinese','Hindi', 'Quechua');

printf("<p>Original array:</p><pre>%s</pre>\n", var_export($languages, TRUE));

$removed = array_shift($languages);

printf("<p>Using array_shift():
Removed element: %s</p><pre>%s</pre>\n",

$removed,

var_export($languages, TRUE));

$removed = array_pop($languages);

printf("<p>Using array_pop():
Removed element: %s</p><pre>%s</pre>\n",

$removed,

var_export($languages, TRUE));

unset($languages[count($languages) - 1]);

printf("<p>Using unset() and count():</p><pre>%s</pre>\n",

var_export($languages, TRUE));

?>

4-19 ■ REMOVING THE F IRST OR LAST ELEMENT FROM AN ARRAY148

Here is the output:

Original array:

array (

0 => 'French',

1 => 'German',

2 => 'Russian',

3 => 'Chinese',

4 => 'Hindi',

5 => 'Quechua',

)

Using array_shift():

Removed element: French

array (

0 => 'German',

1 => 'Russian',

2 => 'Chinese',

3 => 'Hindi',

4 => 'Quechua',

)

Using array_pop():

Removed element: Quechua

array (

0 => 'German',

1 => 'Russian',

2 => 'Chinese',

3 => 'Hindi',

)

Using unset() and count():

array (

0 => 'German',

1 => 'Russian',

2 => 'Chinese',

)

4-19 ■ REMOVING THE F IRST OR LAST ELEMENT FROM AN ARRAY 149

How It Works

To remove the first element of an array, just use the array_shift() function. This function

returns the element that was removed and reorders the array’s indexes. To remove the last ele-

ment, you can use array_pop(), which also returns the element that was removed. If you do not

need to keep track of the element that was removed, you can use unset() along with count() to

get the index of the last array element. However, array_pop() acts directly on the array, which is

usually more convenient. The same is true for array_shift().

4-20. Removing One or More Arbitrary Array Elements

Now you come to the slightly more challenging case of what to do when you want to remove

one or more elements from the middle of an array. You can do this in several ways, but the

technique we will show you involves writing an array_remove() function that is really just

another special case of your old friend array_splice(). You will use this function to remove

the third element of an array named $languages. Since you are removing only one element,

you do not need to pass a third argument.

The Code

<?php

function array_remove(&$array, $offset, $length=1)

{

return array_splice($array, $offset, $length);

}

$languages = array('French', 'German', 'Russian', 'Chinese',

'Hindi', 'Quechua', 'Spanish', 'Hausa');

printf("<p>Original array:</p><pre>%s</pre>\n", var_export($languages, TRUE));

$removed = array_remove($languages, 2);

printf("<p>Removed: %s
Remaining:</p><pre>%s</pre>\n",

var_export($removed, TRUE),

var_export($languages, TRUE));

Here is the result of the two array remove() function calls:

Original array:

array (

0 => 'French',

1 => 'German',

2 => 'Russian',

3 => 'Chinese',

4 => 'Hindi',

5 => 'Quechua',

6 => 'Spanish',

7 => 'Hausa',

)

4-20 ■ REMOVING ONE OR MORE ARBITRARY ARRAY ELEMENTS150

Removed: array (0 => 'Russian',)

Remaining:

array (

0 => 'French',

1 => 'German',

2 => 'Chinese',

3 => 'Hindi',

4 => 'Quechua',

5 => 'Spanish',

6 => 'Hausa',

)

Notice that even when you remove only a single element, this function still returns an

array consisting of the element that was removed.

How It Works

Since array_splice() works on an array in place, you have made array_remove() do likewise by

passing to it as its first argument a reference to the array it is to work on. The second argument

($offset) represents the index at which you want to start removing elements. (Do not forget

that indexing begins at 0, so you use 2 for this parameter.) The third parameter ($length) repre-

sents the number of elements to be removed; you make this parameter optional by assigning to

it a default value of 1.

You might notice a difference in the way you call array_splice() here as opposed to how

you used it when writing the array_insert() function: you return from array_remove() the value

returned by array_splice(). This is because array_splice() returns an array consisting of any

elements removed from the array it is called to act upon. Since you did not remove any elements

from the array in array_insert(), there was no need to do so; however, it could come in handy

here, and it does not cost anything extra to do this.

Variations

Let’s see how you can use the array_remove() function to remove several elements from the

beginning and the end of an array:

<?php

$languages = array('French', 'German', 'Russian', 'Chinese',

'Hindi', 'Quechua', 'Spanish', 'Hausa');

printf("<pre>Original array:\n%s</pre>\n", var_export($languages, TRUE));

$num = 2;

$removed1 = array_remove($languages, 0, $num);

$removed2 = array_remove($languages, count($languages) - $num, $num);

printf("<p>Removed (start): %s
Removed (end): %s

Remaining: %s</p>\n",

var_export($removed1, TRUE),

var_export($removed2, TRUE),

var_export($languages, TRUE));

?>

4-20 ■ REMOVING ONE OR MORE ARBITRARY ARRAY ELEMENTS 151

In this example, you have removed the first two and last two elements of the array. Notice

that you have used the intermediate variable $num for the number of elements to remove. Here

is the output:

Original array:

array (

0 => 'French',

1 => 'German',

2 => 'Russian',

3 => 'Chinese',

4 => 'Hindi',

5 => 'Quechua',

6 => 'Spanish',

7 => 'Hausa',

)

Removed (start): array (0 => 'French', 1 => 'German',)

Removed (end): array (0 => 'Quechua', 1 => 'Spanish',)

Remaining: array (0 => 'Russian', 1 => 'Chinese', 2 => 'Hindi', 3 => 'Hausa',)

Before moving on, you should note that the arrays returned by array_splice(), and thus

by array_remove(), are indexed sequentially beginning with 0. The original indexes of the

removed elements are not preserved.

4-21. Extracting a Portion of an Array

If you want to extract part of an array while leaving the original array intact, use the

array_slice() function, whose full prototype is as follows:

array array_slice(array $array, int $offset[, int $length[, bool $preserve]])

This function returns an array whose elements are the $length elements extracted from

$array beginning with the element at index $offset. However, unlike the built-in function

array_splice() or the custom function array_remove(), this function does not affect the origi-

nal array. For example, starting with the $languages array as you defined it in the previous

example, you can obtain a slice of it consisting of the same elements you ended up with, as

shown in the next example.

The Code

<?php

$languages = array('French', 'German', 'Russian', 'Chinese',

'Hindi', 'Quechua', 'Spanish', 'Hausa');

printf("<pre>Original array:\n%s</pre>\n", var_export($languages, TRUE));

$slice1 = array_slice($languages, 2, count($languages) - 2);

printf("<pre>Slice 1:\n%s</pre>\n", var_export($slice1, TRUE));

4-21 ■ EXTRACTING A PORTION OF AN ARRAY152

Beginning with PHP 5.0.2, you can cause the array returned by this function to preserve

the indexes of the original by passing an additional argument of TRUE:

$slice2 = array_slice($languages, 2, count($languages) - 2, TRUE);

printf("<pre>Slice 2:\n%s</pre>\n", var_export($slice2, TRUE));

?>

How It Works

You can see how this works by examining the output of the previous code and comparing

$slice1 and $slice2:

Original array:

array (

0 => 'French',

1 => 'German',

2 => 'Russian',

3 => 'Chinese',

4 => 'Hindi',

5 => 'Quechua',

6 => 'Spanish',

7 => 'Hausa',

)

Slice 1:

array (

0 => 'Russian',

1 => 'Chinese',

2 => 'Hindi',

3 => 'Quechua',

4 => 'Spanish',

5 => 'Hausa',

)

Slice 2:

array (

2 => 'Russian',

3 => 'Chinese',

4 => 'Hindi',

5 => 'Quechua',

6 => 'Spanish',

7 => 'Hausa',

)

4-21 ■ EXTRACTING A PORTION OF AN ARRAY 153

You can also use negative values for $offset and/or $length. If $offset is negative, then

the slice returned will start abs($offset) elements from the end of the array; if $length is neg-

ative, then the slice will end abs($length) elements from the end of the array. For instance,

given the following:

$slice3 = array_slice($languages, -6, -2, TRUE);

then $slice3 will be identical to $slice2 from the previous example.

Finally, you can obtain a slice consisting of all elements of an array beginning with the ele-

ment at index $offset all the way through to the end of the array simply by omitting the $length

argument. Assuming that $languages is the same array as defined in the last two examples, then

the following:

$last3 = array_slice($languages, -3);

printf("<p>Last 3: %s</p>\n", var_export($last3, TRUE));

will produce this output:

Last 3: array (0 => 'Quechua', 1 => 'Spanish', 2 => 'Hausa',)

Note that if you want to preserve the original keys, you must supply $length as well as

$preserve_keys, as using 0 (or any value that converts to 0, such as an empty string or NULL)

for $length will return an empty array. To get a slice consisting of the last three elements in

$languages while preserving the keys, you would need to use something like this:

$last3 = array_slice($languages, -3, 3, TRUE);

printf("<p>Last 3: %s</p>\n", var_export($last3, TRUE));

This will produce the expected result, as shown here:

Last 3: array (5 => 'Quechua', 6 => 'Spanish', 7 => 'Hausa',)

4-22. Extracting Values from Arrays with extract()

When working with an array, it is sometimes possible to save yourself some time and typing by

extracting its elements into simple variables. You do this using the extract() function. This func-

tion works by creating a set of variables whose names are taken from the associative array keys

and then setting the variables values to the array element values. We find this function particu-

larly handy when handling rows returned from database queries, such as those returned by

mysql_fetch_assoc() and mysqli_fetch_assoc(), but you can use this function anytime you

are obliged to work with arrays, especially those with many elements.

The Code

<?php

$customer = array('first' => 'Bill', 'last' => 'Jones', 'age' => 24,

'street' => '123 Main St.', 'city' => 'Pacifica',

'state' => 'California');

4-22 ■ EXTRACTING VALUES FROM ARRAYS WITH EXTRACT()154

extract($customer);

print "<p>$first $last is $age years old, and lives in $city, $state.</p>";

extract($customer, EXTR_PREFIX_ALL, 'cust');

print "<p>$cust_first $cust_last is $cust_age years old,

and lives in $cust_city, $cust_state.</p>";

?>

The print statements each output the following sentence:

Bill Jones is 24 years old, and lives in Pacifica, California.

Variations

extract() offers some additional options that can be helpful when the array keys might not be

legal variable identifiers or when you want to avoid overwriting existing variables that might

have the same name. (By default, extract() will overwrite such variables.) If you need to see

what variables are currently defined, you can call get_defined_vars() to obtain an array of all

their names.

EXTR_PREFIX_ALL adds a prefix string to the beginning of each key in the original array.

This option and the other extract() options that add a prefix to extracted variable names

automatically add an underscore character to the prefix. For example, the following will out-

put each of the values in the $scores array, in turn, on a separate line:

<?php

$scores = array(91, 56, 87, 79);

extract($scores, EXTR_PREFIX_ALL, "score");

print "<p>$score_0</p>";

print "<p>$score_1</p>";

print "<p>$score_2</p>";

print "<p>$score_3</p>";

?>

Another extremely handy option is EXTR_REFS, which extracts the variables as references

to the original associative array elements. The following code shows an example, which also

shows how you can combine options passed to extract() by ORing them together using the

pipe (|) operator. In this case, you will add the prefix pts to each array key and then make each

variable that results into a reference.

4-22 ■ EXTRACTING VALUES FROM ARRAYS WITH EXTRACT() 155

<?php

$points = array('home' => 21, 'away' => 13);

extract($points, EXTR_REFS|EXTR_PREFIX_ALL, 'pts');

$pts_home -= 4;

$pts_away += 6;

printf("<p>%s</p>", var_export($points, TRUE));

?>

Because the extracted variables are references, updating their values updates those of the

corresponding elements in the original array:

array ('home' => 17, 'away' => 19,)

You can pass several other options to extract() to exercise more fine-grained control over

when variables are or are not overwritten as well as when variable names are or are not prefixed;

however, we find that EXTR_PREFIX_ALL and EXTR_REFS satisfy most requirements, so we will let

you look up the others in the PHP manual if you are interested.

4-23. Extracting Values from an Array Using list()

The list() operator is technically not a function, even though it looks like one. It is also useful

for obtaining values, particularly when dealing with indexed arrays. The easiest way to explain

what list() does is to show you first and then explain afterward, so the following simple

example gets things started.

The Code

<?php

$scores = array(88, 75, 91, 84);

list($maths, $english, $history, $biology) = $scores;

printf("<p>Maths: %d; English: %d; History: %d; Biology: %d.</p>\n",

$maths, $english, $history, $biology);

?>

As you might expect, the output from this is as follows:

Maths: 88; English: 75; History: 91; Biology: 84.

4-23 ■ EXTRACTING VALUES FROM AN ARRAY USING L IST()156

How It Works

list() works by assigning values from the array on the right side of the equals sign to the vari-

ables passed to it, in order. So, in this example, $maths was set equal to $scores[0], $english to

$scores[1], and so on.

Variations

If some values in the array do not interest you, you can skip them by marking their places with

an “empty” comma, like so:

<?php

$scores = array(88, 75, 91, 84);

list($maths, , $history) = $scores;

using the @ operator to suppress a warning about the undefined variables...

@printf("<p>Maths: %d; English: %d; History: %d; Biology: %d.</p>\n",

$maths, $english, $history, $biology);

?>

Although only three array positions have been marked, this is completely permissible;

list() simply quits trying to make any assignments after it is finished with all the variables

you have supplied.

Since %d was used to mark the place of the undefined variable, its value is coerced to

integer 0, as shown here:

Maths: 88; English: 75; History: 0; Biology: 84.

If you try to use more variables with list() than there are elements in the array, you may

get a warning about an undefined index. You can suppress this warning with the @ operator

(also known as the error suppression operator). However, those variables will remain unset, as

shown here:

<?php

$scores = array(88, 75);

@list($maths, $english, $history) = $scores;

@printf("<p>Maths: %d; English: %d; History: %d; Biology: %d.</p>\n",

$maths, $english, $history, $biology);

?>

This is the output:

Maths: 88; English: 75; History: 0; Biology: 0.

Note that list() ignores elements with string keys.

4-23 ■ EXTRACTING VALUES FROM AN ARRAY USING L IST() 157

4-24. Combining Arrays

We have already discussed how to insert arrays into one another and have shown how to write

a function to help you do so. Now you will tackle something a bit different: combining two

indexed arrays to obtain an associative array. For example, suppose you have two arrays

defined as shown:

$colors = array('red', 'yellow', 'green');

$flavors = array('apple', 'banana', 'lime');

And suppose you would like to combine these into a single array that looks like this:

$fruit = array('red' => 'apple', 'yellow' => 'banana', 'green' => 'lime');

You might think that this requires writing some code that loops through both arrays,

assigning one string as a key and the other as its corresponding value, perhaps something

like this:

$fruit = array();

$limit = count($colors);

for($i = 0; $i < $limit; $i++)

$fruit[$colors[$i]] = $flavors[$i];

Of course, then you are obligated to perform some checks. Are the arrays the same length?

Are they both in fact arrays? Fortunately, PHP has a function that handles all these issues for you.

The Code

<?php

$colors = array('red', 'yellow', 'green');

$flavors = array('apple', 'banana', 'lime'); # same size as $colors

$tastes = array('sweet', 'sour'); # different size

$prices = array(); # empty

$name = 'lemon'; # not an array

$arrays = array('name' => $name, 'prices' => $prices,

'flavors' => $flavors, 'tastes' => $tastes);

foreach($arrays as $key => $value)

{

if($fruits = @array_combine($colors, $value))

printf("<pre>%s</pre>\n", var_export($fruits, TRUE));

else

printf("<p>Couldn't combine \$colors and \$%s.</p>", $key);

}

?>

4-24 ■ COMBINING ARRAYS158

You are using the @ operator in this example to suppress any warnings or errors triggered

by passing invalid parameters to array_combine() so that you can handle those using if ...

else. Here is the output from this code:

Couldn't combine $colors and $name.

Couldn't combine $colors and $prices.

array (

'red' => 'apple',

'yellow' => 'banana',

'green' => 'lime',

)

Couldn't combine $colors and $tastes.

How It Works

array_combine() takes two arrays as arguments, attempts to assign the values from the first

arrays as keys to the values found in the second, and returns an associative array if it succeeds.

If it fails for any reason (if both arguments are not arrays, if either or both of them are empty,

or if they do not contain the same number of values), the function returns FALSE.

4-25. Obtaining Array Keys and Values

What about the converse of the problem you looked at in the previous section? In other words,

what if you have an associative array named $fruits that is defined as shown here:

$fruits = array('red' => 'apple', 'yellow' => 'banana', 'green' => 'lime');

and you like to work with just the colors of the fruits, or just their names? PHP 5 provides a

pair of functions intended to make it easy to do this: array_keys() returns an array consisting

of only the keys of the array that it acts on, and array_values() returns an array consisting of

only the values of the original array. What follows is a simple example in which we have

defined an array_display() function to cut down on the repetition of code.

The Code

<?php

function array_display($array, $pre=FALSE) # set optional 2nd argument to

{ # TRUE for preformatted tree display

$tag = $pre ? 'pre' : 'p';

printf("<%s>%s</%s>\n", $tag, var_export($array, TRUE), $tag);

}

$fruits = array('red' => 'apple', 'yellow' => 'banana', 'green' => 'lime');

4-25 ■ OBTAINING ARRAY KEYS AND VALUES 159

$colors = array_keys($fruits);

$flavors = array_values($fruits);

array_display($fruits);

array_display($colors);

array_display($flavors);

?>

How It Works

This is pretty straightforward stuff. You start with the associative array $fruits as defined pre-

viously. You then use array_keys() to get the keys from $fruit and assign its return value to

the variable $colors. Next you use array_values() to get its values, assigning that function’s

return value to $flavors. Finally, you output all three variables using array_display(), which

is really nothing more than a wrapper for the var_export() function you looked at earlier in

the chapter (in recipe 4-8). The result is easy enough to predict, but we will show it to you any-

way for the sake of completeness:

array ('red' => 'apple', 'yellow' => 'banana', 'green' => 'lime',)

array (0 => 'red', 1 => 'yellow', 2 => 'green',)

array (0 => 'apple', 1 => 'banana', 2 => 'lime',)

■Tip If you use array_values() on an indexed array, you will just obtain an array whose structure is

identical to the first one, with one important exception: its indexes will be reordered. This can be a handy

way to “compact” sparse arrays.

4-26. Working with Unique Values

Often you will find yourself dealing with sets of data (arrays) containing duplicate values.

Although nothing is wrong with this in and of itself, many times you will be interested only in

unique values. For example, suppose you are involved with internationalizing a website, and

you are working with some logging data concerning countries from which your site has had

visitors and the languages spoken in those countries. Let’s assume you have already parsed

the log files and have ended up with an array defined as follows:

$countries = array('USA' => 'English', 'Spain' => 'Spanish',

'Brazil' => 'Portuguese', 'UK' => 'English',

'Mexico' => 'Spanish', 'Germany' => 'German',

'Colombia' => 'Spanish', 'Canada' => 'English',

'Russia' => 'Russian', 'Austria' => 'German',

'France' => 'French', 'Argentina' => 'Spanish');

4-26 ■ WORKING WITH UNIQUE VALUES160

To get the unique values in this array, all that is necessary is to use the built-in

array_unique() function, as shown next.

The Code

$languages = array_unique($countries);

printf("<pre>%s</pre>\n", var_export($languages, TRUE));

The output looks like this:

array (

'USA' => 'English',

'Spain' => 'Spanish',

'Brazil' => 'Portuguese',

'Germany' => 'German',

'Russia' => 'Russian',

'France' => 'French',

)

How It Works

The array_unique() function returns an array from which all duplicate values have been

removed. In cases of duplicate values, only the first element having that value is included

each time. (This can occasionally prove useful.) The key associated with each of these values

is preserved, as you can see in the previous output. This is true whether the array in question

is associative or indexed. If you want only the values, without the keys, you will need to use

the array_values() function (discussed in the previous section) on the result.

4-27. Getting and Displaying Counts of Array Values

Another frequent task is getting the number of elements that have unique values. The follow-

ing example shows one way you can do this, as applied to the $countries array defined in the

previous recipe.

The Code

<?php

$language_counts = array_count_values($countries);

?>

<table border="1" cellpadding="3" cellspacing="0">

<tbody>

<tr><th>Language</th><th>Number
of
Countries</th></tr>

<?php

foreach($language_counts as $language => $number)

print " <tr><td>$language</td><td>$number</td></tr>\n";

?>

</tbody>

</table>

4-27 ■ GETTING AND DISPLAYING COUNTS OF ARRAY VALUES 161

How It Works

This works by using the function array_count_values(), which creates a new array whose keys

are the values of the array passed to it as a parameter and whose values are the number of

times each of those values occurs in the original array.

We have dressed up the output just a bit this time by using a HTML table. To obtain this,

just loop through the $language_count array, writing a new two-column row for each element

and inserting the key into one table cell and the value into another cell. Figure 4-1 shows the

result as viewed in a typical web browser.

Figure 4-1. Output of the countries and languages example (counts of unique values)

Notice that the keys of this array are the unique values from the original array. In other words,

array_keys($language_count) is identical to array_values(array_unique($countries)).

Finding and Working with Array Values
If you know the key for a given array element, whether the key is a string or an integer, finding

the matching value is trivial. Doing the opposite is not that difficult, but it does require a bit

more effort. In this section, we will show you how to answer questions such as these:

• Does an element with a given value exist in an array?

• Does an array contain an element with a given key?

• At what position can you find an element with a desired value in an array? That is, what

key or keys correspond to the value being sought?

4-27 ■ GETTING AND DISPLAYING COUNTS OF ARRAY VALUES162

• How can you find the elements in an array whose values meet a set of criteria or pass a

certain test?

• What is the best way to find the maximum or minimum value in an array?

• How do you apply a function to all the elements in an array?

PHP has functions that can help you with all these issues. In addition, we will show you

a programming algorithm or two that might be beneficial in solving some of these problems

and maybe slip in one or two other bits of useful array-related functionality.

4-28. Determining Whether an Element Is in an Array

Often you will need to find out whether a set of values contains one value in particular. Recall

the internationalization example (see recipe 4-26); you have data reflecting the countries from

which website visitors originated, and the languages spoken in those countries, represented

by the following array:

$countries = array('USA' => 'English', 'Spain' => 'Spanish',

'Brazil' => 'Portuguese', 'UK' => 'English',

'Mexico' => 'Spanish', 'Germany' => 'German',

'Colombia' => 'Spanish', 'Canada' => 'English',

'Russia' => 'Russian', 'Austria' => 'German',

'France' => 'French', 'Argentina' => 'Spanish');

A natural question might be, do any of the site’s visitors speak Spanish? To obtain an

answer, you might be tempted to use brute force by traversing the $countries array and test-

ing each element’s value in turn until you either find a match for the desired value or exhaust

all of the array’s elements. Fortunately, PHP has a function that does this for you.

The following example tests in_array() by using the $countries array defined previously

as a “haystack” in which to search for a couple of likely values.

The Code

<?php

$countries array previously defined in text

$language = 'Spanish';

printf("<p>%s of our visitors speak %s.</p>\n",

in_array($language, $countries) ? 'Some' : 'None',

$language);

$language = 'Swahili';

printf("<p>%s of our visitors speak %s.</p>\n",

in_array($language, $countries) ? 'Some' : 'None',

$language);

?>

4-28 ■ DETERMINING WHETHER AN ELEMENT IS IN AN ARRAY 163

The output from this bit of code is as follows:

Some of our visitors speak Spanish.

None of our visitors speak Swahili.

How It Works

in_array() takes two arguments, a value to be matched and the array to be searched for the

value. It returns TRUE if the value is found and FALSE if it is not. Here is the function’s prototype:

bool in_array(mixed $value, array $array[, bool $strict])

The matching of strings is case-sensitive; in other words, spanish is not considered a

match for Spanish. The optional $strict parameter, if TRUE, forces this function to use strict

equality (as with ===) in making any comparisons rather than allowing type conversions to

occur (as if the function were using ==). In other words, if you use strict mode, then the num-

ber 12 will not match the string "12".

This function works just as well with indexed arrays as it does with associative arrays; we

used an associative array in the previous example to emphasize that in_array() matches val-

ues and not keys. We will show how to do that in the next recipe.

4-29. Testing for the Existence of a Key in an Array

Sometimes you need to answer a question such as, is there an item number 5 in this set? Or

you might ask, does the information for this customer include a postcode? If the datasets in

question are arrays, then PHP makes it simple to find the answer. To determine whether an

array contains an element with a given key or index, all you need to do is use the

array_key_exists() function.

Once again, using the $countries array defined in the previous section (and assuming

that this array includes language data for all countries from which the site has had hits), this

example asks and answers the question, has our site had any visitors from Country X?

The Code

<?php

$countries array from previous recipe

$country = 'Kazakhstan';

printf("<p>%s of our visitors are from %s.</p>\n",

array_key_exists($country, $countries) ? 'Some' : 'None',

$country);

$country = 'Argentina';

printf("<p>%s of our visitors are from %s.</p>\n",

array_key_exists($country, $countries) ? 'Some' : 'None',

$country);

?>

4-29 ■ TESTING FOR THE EXISTENCE OF A KEY IN AN ARRAY164

None of our visitors are from Kazakhstan.

Some of our visitors are from Argentina.

How It Works

The prototype for array_key_exists() is as follows:

bool array_key_exists(mixed $key, array $array)

If an element with a key matching $key is found in $array, the function returns TRUE;

otherwise, it returns FALSE. The comparisons made by this function are case-sensitive but not

strict. In other words, a search for a "usa" key will not match a "USA" key, but a search for a "2"

key (string value) will return TRUE if the array contains an element with the index 2 (integer).

4-30. Obtaining Array Keys with a Given Value

Another common task involves obtaining one or more keys of array elements with a known

value. In other words (harking back once again to the $countries array you have been using in

the past few sections), you want to know the answer to the question, in which of the countries

where you have users is Spanish spoken? No built-in function gives you this sort of informa-

tion, but you can write one of your own easily enough.

The Code

<?php

Note: $countries array as previously defined

prototype: mixed array_get_keys(mixed $search, array $array)

function array_get_keys($search, $array)

{

$keys = array(); # array to contain keys for output

foreach($array as $key => $value) # traversing the array...

if($value == $search) # if the current value matches $search

$keys[] = $key; # append the current key to the output array

if(count($keys) == 0) # if no keys were appended to $keys

$keys = FALSE; # set its value to boolean FALSE

return $keys;

}

$language = 'Spanish';

$spoken = array_get_keys($language, $countries);

4-30 ■ OBTAINING ARRAY KEYS WITH A GIVEN VALUE 165

printf("<p>Countries where %s is spoken: %s.</p>\n",

$language,

$spoken ? implode(', ', $spoken) : 'None');

$language = 'Tagalog';

$spoken = array_get_keys($language, $countries);

printf("<p>Countries where %s is spoken: %s.</p>\n",

$language,

$spoken ? implode(', ', $spoken) : 'None');

?>

How It Works

You have defined array_get_keys() in such a way that it returns FALSE if no matching keys are

found on the premise that most code calling this function would need to test this in any case.

Of course, if you prefer, you could always rewrite the printf() statement (and get rid of the

intermediate variable $spoken) using something like this:

printf("<p>Countries where %s is spoken: %s</p>",

$language,

array_key_exists($language)

? implode(', ', array_get_keys($language, $country))

: 'None');

In any case, the output from the example code is as follows:

Countries where Spanish is spoken: Spain, Mexico, Colombia, Argentina.

Countries where Tagalog is spoken: None.

4-31. Finding the Greatest and Least Values in an Array

One common task in computing is to find the minimum and maximum among a set of

values. In PHP, the min() and max() functions work not only on sets of values (for example,

$max = max(2, 8, 6, -3, 17)) but also on arrays.

The Code

<?php

$prices = array(12.95, 24.5, 10.5, 5.95, 7.95);

printf("<p>Highest price: \$%.2f; lowest price: \$%.2f.</p>\n",

max($prices), min($prices));

?>

4-31 ■ FINDING THE GREATEST AND LEAST VALUES IN AN ARRAY166

Here is the output:

Highest price: $24.50; lowest price: $5.95.

Variations

These functions also work with associative arrays:

<?php

$clothes = array('hats' => 75, 'coats' => 32, 'shoes' => 102,

'gloves' => 15, 'shirts' => 51, 'trousers' => 44);

uasort($clothes, 'evenfirst');

var_export($clothes);

printf("<p>Most items: %d; least items: %d.</p>\n",

max($clothes), min($clothes));

?>

This is the output:

Most items: 102; least items: 15.

Because they do not provide access to array keys, these functions are mostly useful with

one-dimensional, indexed arrays. In many cases, you are better off using one of the sorting

techniques later in this chapter. For example:

<?php

$clothes = array('hats' => 75, 'coats' => 32, 'shoes' => 102,

'gloves' => 15, 'shirts' => 51, 'trousers' => 44);

$names = array_keys($clothes);

$items = array_values($clothes);

array_multisort($items, $names);

$num = count($clothes) - 1;

printf("<p>Most items: %s (%d); least items: %s (%d).</p>\n",

$names[$num], $items[$num], $names[0], $items[0]);

?>

This is the output:

Most items: shoes (102); least items: gloves (15).

4-31 ■ FINDING THE GREATEST AND LEAST VALUES IN AN ARRAY 167

Another problem with trying to get by on min() and max() is that they assume all values

passed to them are numeric, which means strings are coerced to zero. For more about sorting

arrays, see the “Sorting Arrays” section of this chapter.

4-32. Finding the Sum and Average of the Values in an Array

Obtaining the sum of a set of numbers in PHP is trivially easy, thanks to the array_sum() func-

tion, which adds all of the array’s values and returns the total. For example, this code returns

the value 12:

array_sum(array(2, 2, 8))

This function attempts to convert any non-numeric values to numbers. This may or may

not be desirable behavior, depending upon your circumstances, so keep this in mind when-

ever you use this function.

■Note In older versions of PHP (through PHP 4.2.1), a bug in array_sum() caused this function to perform

a type conversion of numbers of all the elements in the array it was used on, with the result that string values

could be converted to zero. In PHP 5 this is not an issue, and you may safely use array_sum() on an array

without having to worry about creating a copy for fear of modifying the original.

Calculating the average value is also fairly simple, since all you need are the sum of the

array values and how many of them there are. Then you just perform a straightforward divi-

sion. The following array_average() function does this. It also checks for the argument type

and makes sure the array has at least one element so you do not get tripped up by a possible

division-by-zero error.

The Code

<?php

obtain the average value of an array's elements

prototype (returns a number or FALSE if an average cannot be calculated):

mixed array_average(array $array)

function array_average($array)

{

$retval = FALSE;

if(is_array($array) && count($array)) # if the argument is an array

with at least one element...

$retval = array_sum($array) / count($array); # divide the sum of the element

values by the number of values

return $retval;

}

4-32 ■ FINDING THE SUM AND AVERAGE OF THE VALUES IN AN ARRAY168

test the function

$scores = array('Bill' => 87.5, 'Jan' => 94.8, 'Terry' => 80.0,

'Andy' => 91.5, 'Lisa' => 95.5);

printf("<p>There are %d scores, totaling %.2f and averaging %.2f.</p>",

count($scores), array_sum($scores), array_average($scores));

?>

The result of this test is as follows:

There are 5 scores, totaling 449.30 and averaging 89.86.

Applying Functions to Arrays
If you need to make a uniform alteration in all the elements of an array (that is, apply a func-

tion to each element in the array), you could traverse the array using a for, foreach, or while

loop. Similarly, if you need to select elements from an array that meet a given condition, you

could traverse the array, applying a test to each element in turn and then copying that element

into a new array if it meets the test or (if you want to alter the original array) unsetting the ele-

ment if it fails to meet a converse test. PHP provides alternatives for both of these tasks, which

you will investigate in the following two recipes.

PHP 5 has two ways you can apply a function to each of the elements in an array; such

a function is a callback function (or simply a callback). Your choice depends on whether you

want to act upon the array’s elements already in place or create a new array consisting of the

elements from the original after they have been modified. In the former case, you will want

to use the array_walk() function (see recipe 4-34); in the latter, the proper function to use is

array_map() (see recipe 4-35).

Both array_walk() and array_map() can be powerful and useful, so we encourage you to

spend some time experimenting with them—you will be amazed at what you can accomplish

with them. Here is a quick summary of the differences between them:

array_walk() works on a single array in place; you can think of it as walking through an

array, changing it as it goes. It returns a value of only TRUE or FALSE to indicate success or

failure. It modifies element values and can access array keys as well as a value supplied by

the programmer, although it cannot modify the keys themselves. The callback function

used with array_walk() does not need to return a value and must include a reference to

the value of an array element in its signature. If the callback includes a user-supplied

value in its signature, the signature must also include a parameter corresponding to an

element’s key, even if the key is not used within the callback function.

array_map() works on one or more arrays; think of it as mapping from one array (or set of

arrays) to another array. It does not modify the original array(s) and can access only the

values of the array(s), not the keys. In addition, you can’t pass a user value to it. The call-

back function used with array_map() must return a value, and array_map() itself returns

an array. If more than one array is used, the arrays do not need to be the same size; if they

are not, array_map() will pad any “missing” values with nulls.

4-32 ■ FINDING THE SUM AND AVERAGE OF THE VALUES IN AN ARRAY 169

Another way in which functions can be applied to arrays is by filtering them. When we

speak of filtering arrays, we mean the process of inspecting each element in an array to see

whether it meets a certain test or set of conditions and retaining the element for subsequent

use or tossing it into the trash bin, so to speak, as result of that test. In the array_filter()

function, which is used for filtering arrays, you have another example of a PHP language con-

struct that can save you a great deal of time and energy that would otherwise be spent writing

and debugging loops.

In the recipes that follow, we will demonstrate how to use array_walk(), array_map(), and

array_filter().

4-33. Applying Functions to Array Elements Using array_walk()

The following example shows the simplest case for using array_walk() to apply a function to

each element of an array; you will apply a function named modify() to each element of an

array named $array. The outcome you are trying to achieve in this case is to multiply each

number in $array by a constant without writing a loop. Let’s look at the code first, and then

we will provide some explanation and elaborate on this theme.

The Code

<?php

function array_display($array, $pre=FALSE)

{

$tag = $pre ? 'pre' : 'p';

printf("<%s>%s</%s>\n", $tag, var_export($array, TRUE), $tag);

}

In this case, you are not using the array key for anything, and you are not passing in any

values to the callback, so its signature requires only a single parameter (a reference to the cur-

rent array element’s value).

function modify(&$value)

{

$value *= 1.5;

}

$array = array(10, -3.5, 2, 7); # array containing some numbers

array_display($array, TRUE); # display it as defined

array_walk($array, 'modify'); # apply modify() to all the elements in $array

array_display($array, TRUE); # display the modified array

?>

4-33 ■ APPLYING FUNCTIONS TO ARRAY ELEMENTS USING ARRAY_WALK()170

Here is the output of this script, showing that the values stored in $array have indeed

been updated by the callback function:

array (

0 => 10,

1 => -3.5,

2 => 2,

3 => 7,

)

array (

0 => 15,

1 => -5.25,

2 => 3,

3 => 10.5,

)

How It Works

The prototype for array_walk() is as follows:

bool array_walk(array &$array, string $funcname[, mixed $data])

This function returns TRUE if successful and FALSE in the event of failure. When called,

the function named funcname acts on the elements of an array. The prototype for the callback

function is generally of the following form:

void funcname(mixed &$value[, $mixed $key[, mixed $data]])

The callback does not return a value; instead, it acts on each array value in place (indicated

by the & operator), which it expects to receive as the first argument. The second argument is the

element’s key. An optional third argument representing data to be used in the function may also

be present. Note that if the callback uses a data parameter, then a key parameter must be pres-

ent in the callback’s signature whether or not it is actually used in the callback function.

■Tip If for some reason you need to pass more than one user value to the callback function, you will need

to pass it via some structure such as an array, as there can be only one data variable.

4-33 ■ APPLYING FUNCTIONS TO ARRAY ELEMENTS USING ARRAY_WALK() 171

Variations

Here is a slightly more complex example that uses both the array key and a passed-in value to

modify each element value:

<?php

function change(&$element, $key, $mark)

{

$element = "$markkeymark, the $element";

}

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

array_display($dogs, TRUE);

array_walk($dogs, 'change', '*');

array_display($dogs, TRUE);

?>

The output, which displays the $dogs array before and after modification, is as follows:

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

'Snoopy' => 'Beagle',

)

array (

'Lassie' => '*Lassie*, the Collie',

'Bud' => '*Bud*, the Sheepdog',

'Rin-Tin-Tin' => '*Rin-Tin-Tin*, the Alsatian',

'Snoopy' => '*Snoopy*, the Beagle',

)

Of course, the actual names you assign to the callback function’s parameters are not

important as long as you know which one is which and use them appropriately.

■Caution A callback function used by array_walk() may not modify the array, only the values of the

array’s elements. In other words, the callback may not insert or delete elements, and it may not modify

any keys.

4-33 ■ APPLYING FUNCTIONS TO ARRAY ELEMENTS USING ARRAY_WALK()172

4-34. Applying Functions to Array Elements Using array_map()

Now let’s look at applying a function to array elements using array_map(). This time we will

also apply a slightly more complex callback function to create a negative-safe square root

function, which tests the input value to see whether it is a negative number and takes appro-

priate action if it does.

The Code

<?php

function array_display($array, $pre=FALSE)

{

$tag = $pre ? 'pre' : 'p';

printf("<%s>%s</%s>\n", $tag, var_export($array, TRUE), $tag);

}

function safe_sqrt($num)

{

return sqrt(abs($num)) . ($num < 0 ? 'i' : '');

}

$values = array(3, 8, -3, 0, 14, -4);

$roots = array_map('safe_sqrt', $values);

print '<p>Values:</p>';

array_display($values, TRUE);

print '<p>Square roots:</p>';

array_display($roots, TRUE);

?>

Here is the output generated by this example:

Values:

array (

0 => 3,

1 => 8,

2 => -3,

3 => 0,

4 => 14,

5 => -4,

)

4-34 ■ APPLYING FUNCTIONS TO ARRAY ELEMENTS USING ARRAY_MAP() 173

Square roots:

array (

0 => '1.7320508075689',

1 => '2.8284271247462',

2 => '1.7320508075689i',

3 => '0',

4 => '3.7416573867739',

5 => '2i',

)

How It Works

The callback function safe_sqrt() is applied to each number from the $values array in turn. As

you might recall from mathematics classes, the square root of a negative number can be repre-

sented using i or j (a so-called imaginary number equal to the square root of -1). Using this

notation, you can represent the square root of -4 as 2i, so that 2i * 2i = (2 * 2) * (i * i) = 4 * -1 = -4.

As already mentioned, the array_map() function returns a new array whose elements are

the modified values of the array it acts upon. Its prototype is as follows:

array array_map(string $funcname, array $arr1[, array $arr2...])

The arguments to this function are the name of the callback function followed by one or

more array variables. This callback function works somewhat differently than the one that is

used by array_walk(). Its prototype is as follows:

mixed funcname(array $arr1[, array $arr2[, array $arr3[, ...]]])

In other words, the callback takes one or more array variables as parameters, and these

parameters must be the same number of array variables as passed to array_map(). When you

pass an array variable to array_map(), the callback function actually “sees” a single element of

this array at a time.

Also, do not forget that the first argument to array_map() is a string and must be quoted.

This means that since the name of the callback function in the example is safe_sqrt, you need

to refer to it as "safe_sqrt" (including the quotation marks) when calling it from array_map().

■Tip You are not limited to user-defined functions with array_map(); you can also employ native PHP

functions. For example, if you need to check the sort order for some special characters, you can generate a

string containing all the printable characters available in the Extended ASCII character set, in order, with this

bit of code that uses the chr() function: $chars = implode('', array_map('chr', range(32, 255)));.

You can also use the array_map() function without any callback function to generate

nested arrays. See recipe 4-24 for an example.

4-34 ■ APPLYING FUNCTIONS TO ARRAY ELEMENTS USING ARRAY_MAP()174

4-35. Filtering Arrays Using array_filter()

In the previous two sections, you had a chance to see how you can use a function to modify all

the elements of an array. Now you will look at a slightly different way to apply a function to an

array’s elements: you will subject each element to a test and derive a new array containing

only those elements that have passed the test.

If you recall the website internationalization scenario from a few sections back, you will

remember that you were working with a list of countries and the languages spoken in those

countries, defined like so:

$countries = array('USA' => 'English', 'Spain' => 'Spanish',

'Brazil' => 'Portuguese', 'UK' => 'English',

'Mexico' => 'Spanish', 'Germany' => 'German',

'Colombia' => 'Spanish', 'Canada' => 'English',

'Russia' => 'Russian', 'Austria' => 'German',

'France' => 'French', 'Argentina' => 'Spanish');

Let’s say you want a list of only those countries in which romance languages are spoken.

You can also represent these as an array: ('French', 'Spanish', 'Portuguese', 'Italian').

What you want to do is check each country (element in $countries) in turn and see whether

its value is one of the values in this array of romance language names. You might recall that

to determine whether a given value is found in an array, you can use the in_array() function

somehow. Rather than write a loop that uses that function, there is a better way to use in_array().

The Code

function is_rom($lang)

{

return in_array($lang, array('French', 'Spanish', 'Portuguese', 'Italian')));

}

Now let’s put this altogether:

<?php

function array_display($array, $pre=FALSE)

{

$tag = $pre ? 'pre' : 'p';

printf("<%s>%s</%s>\n", $tag, var_export($array, TRUE), $tag);

}

function is_romance($lang)

{

return in_array($lang, array('French', 'Spanish', 'Portuguese', 'Italian'));

}

$countries = array('USA' => 'English', 'Spain' => 'Spanish',

'Brazil' => 'Portuguese', 'UK' => 'English',

'Mexico' => 'Spanish', 'Germany' => 'German',

'Colombia' => 'Spanish', 'Canada' => 'English',

4-35 ■ FILTERING ARRAYS USING ARRAY_FILTER() 175

'Russia' => 'Russian', 'Austria' => 'German',

'France' => 'French', 'Argentina' => 'Spanish');

$rom_countries = array_filter($countries, 'is_romance');

array_display($rom_countries, TRUE);

?>

Here is the output:

array (

'Spain' => 'Spanish',

'Brazil' => 'Portuguese',

'Mexico' => 'Spanish',

'Colombia' => 'Spanish',

'France' => 'French',

'Argentina' => 'Spanish',

)

How It Works

The function prototype for array_filter looks like this:

array array_filter(array $array, string $funcname)

This function filters an array represented by the variable $array using a callback function

whose name is funcname. The callback acts on an element of this array and returns a boolean

value. In this case, when array_filter() is invoked, it calls is_rom() for each value in

$countries one after another. If is_rom() returns TRUE, then that element is appended to the

output of array_filter(). As you can see by examining the output of this example, the origi-

nal array keys are preserved.

The callback function can be virtually anything you like, as long as it takes a single input

parameter (corresponding to an array element’s value) and returns a boolean. The only other

restriction is that the original array may not be altered by the callback function.

Variations

A quick way to rid an array of “empty” array elements is to call array_filter() with no call-

back function. This has the effect of providing a copy of the original array except for those

elements whose values evaluate to FALSE, as shown here:

<?php

array_display() function as was defined previously

$arr = array(2, 'two', 0, 'NULL', NULL, 'FALSE', FALSE, 'empty', '');

$copy = array_filter($arr);

$reindexed = array_values($copy);

4-35 ■ FILTERING ARRAYS USING ARRAY_FILTER()176

print '<p>Original:</p>';

array_display($arr, TRUE);

print '<p>Filtered:</p>';

array_display($copy, TRUE);

print '<p>Filtered and reindexed:</p>';

array_display($reindexed, TRUE);

?>

Notice that when you want to use array_filter() in this way, you simply omit the call-

back parameter. Once again, you can see that the original keys are preserved. If you want the

elements to be reindexed, you can always use array_values(), as discussed earlier in this

chapter (see recipe 4-25).

Original:

array (

0 => 2,

1 => 'two',

2 => 0,

3 => 'NULL',

4 => NULL,

5 => 'FALSE',

6 => false,

7 => 'empty',

8 => '',

)

Filtered:

array (

0 => 2,

1 => 'two',

3 => 'NULL',

5 => 'FALSE',

7 => 'empty',

)

Filtered and reindexed:

array (

0 => 2,

1 => 'two',

2 => 'NULL',

3 => 'FALSE',

4 => 'empty',

)

4-35 ■ FILTERING ARRAYS USING ARRAY_FILTER() 177

Sorting Arrays
PHP 5 has a rich collection of sorting functions that allow you to sort by values and keys and

even use your own comparison algorithms. Variants on most of these functions facilitate sort-

ing in forward or reverse order and provide you with the option of preserving or resetting the

associations between array keys and values. In this section of the chapter, we will show you

how to sort arrays in all these ways and perhaps one or two more.

■Note All of PHP’s array sorting functions work on arrays in place and return TRUE to indicate success or

FALSE in the event of failure.

4-36. Sorting an Array by Its Values

To order an array’s elements using their values, use the sort() function. This function takes as

its arguments the array to be sorted and an optional sort flag, and, like PHP’s other sorting

functions, this one sorts the array in place.

The Code

<?php

$nums = array(15, 2.2, -4, 2.3, 0);

sort($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

$words = array('bird', 'fish', 'George', 'Aden');

sort($words);

printf("<pre>%s</pre>\n", var_export($words, TRUE));

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

sort($dogs);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

?>

Let’s look at the output produced by this code:

array (

0 => -4,

1 => 0,

2 => 2.2,

3 => 2.3,

4-36 ■ SORTING AN ARRAY BY ITS VALUES178

4 => 15,

)

array (

0 => 'Aden',

1 => 'George',

2 => 'bird',

3 => 'fish',

)

array (

0 => 'Alsatian',

1 => 'Beagle',

2 => 'Collie',

3 => 'Sheepdog',

)

How It Works

The array $nums, whose values are numbers, is sorted in numerical order. The second array,

$words, consists of string values. These are sorted in the order of the characters’ ASCII codes, so

capital letters come before lowercase ones. (If you do not have a list of characters in their ASCII

ordering handy, use the ord() function to obtain the ASCII codes for the characters in ques-

tion.) The values from $dogs, being strings, are also sorted in the order of their ASCII codes.

Variations

What has become of the keys from the associative array $dogs? You appear to have a bit of a

problem. Because sort() resets all the indexes, you have lost the original keys. To get around

this issue, you can use the asort() function instead. This works in the same way as sort()

except in one respect: it preserves the array’s original key/value associations.

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

asort($dogs);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

?>

array (

'Rin-Tin-Tin' => 'Alsatian',

'Snoopy' => 'Beagle',

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

)

4-36 ■ SORTING AN ARRAY BY ITS VALUES 179

In general, as you can see, when you need to sort arrays by value, you are most likely to

want to use sort() with indexed arrays and asort() with associative arrays.

For sorting an array by value in reverse order, see recipe 4-39 later in this chapter.

4-37. Sorting an Array by Its Keys

Particularly with regard to associative arrays, it is just as important to be able to sort arrays by

their keys as it is by their values. The ksort() function accomplishes this while maintaining

the relationship between keys and values. The next example should suffice to demonstrate

how to use this function.

The Code

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

ksort($dogs);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

?>

Here is the output:

array (

'Bud' => 'Sheepdog',

'Lassie' => 'Collie',

'Rin-Tin-Tin' => 'Alsatian',

'Snoopy' => 'Beagle',

)

Extension

Of course, you can also sort an indexed array by index using this function; one situation in

which you might need this is after using asort() to return the array’s elements to their original

order:

<?php

$nums = array(15, 2.2, -4, 2.3, 0);

asort($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

ksort($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

?>

4-37 ■ SORTING AN ARRAY BY ITS KEYS180

array (

2 => -4,

4 => 0,

1 => 2.2,

3 => 2.3,

0 => 15,

)

array (

0 => 15,

1 => 2.2,

2 => -4,

3 => 2.3,

4 => 0,

)

It is also possible to sort an array by key in reverse order using krsort(); see recipe 4-38

for particulars.

4-38. Reversing an Array Using arsort()

To sort an associative array by value in reverse order, use arsort(). Like asort(), this function

preserves the array’s keys, as you can see in the following code.

The Code

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

arsort($dogs);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

?>

Here is the output:

array (

'Bud' => 'Sheepdog',

'Lassie' => 'Collie',

'Snoopy' => 'Beagle',

'Rin-Tin-Tin' => 'Alsatian',

)

4-38 ■ REVERSING AN ARRAY USING ARSORT() 181

4-39. Reversing an Array Using krsort()

The krsort() function sorts an array by key in reverse order.

The Code

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

krsort($dogs);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

?>

array (

'Snoopy' => 'Beagle',

'Rin-Tin-Tin' => 'Alsatian',

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

)

As you can see, krsort() preserves the relationship between keys and values.

4-40. Reversing an Array Using array_reverse()

The array_reverse() function does just what you would expect; it reverses the order in which

the elements of an array are listed.

The Code

<?php

$dogs = array('Lassie' => 'Collie', 'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian', 'Snoopy' => 'Beagle');

array_reverse($dogs);

printf("<pre>%s</pre>\n", var_export($dogs, TRUE));

$nums = array(15, 2.2, -4, 2.3, 0);

array_reverse($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

?>

Like the array sorting functions, array_reverse() works on an array in place. It leaves all

key/value associations intact.

array (

'Lassie' => 'Collie',

'Bud' => 'Sheepdog',

'Rin-Tin-Tin' => 'Alsatian',

4-39 ■ REVERSING AN ARRAY USING KRSORT()182

'Snoopy' => 'Beagle',

)

array (

0 => 15,

1 => 2.2,

2 => -4,

3 => 2.3,

4 => 0,

)

4-41. Randomizing an Array Using shuffle(), kshuffle(), and

array_rand()

To reorder an array’s elements so they are in random order, PHP provides the shuffle() func-

tion. Like the sort functions, shuffle() acts on the array in place and can be called repeatedly

without obtaining the same result over and over, as shown in the next example.

The Code

<?php

$nums = array(15, 2.2, -4, 2.3, 0);

shuffle($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

shuffle($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

shuffle($nums);

printf("<pre>%s</pre>\n", var_export($nums, TRUE));

?>

Some example output follows. You should keep in mind that if you run the same code on

your own PHP installation, the results will be similar, but almost certainly not identical to this:

array (

0 => 2.3,

1 => -4,

2 => 0,

3 => 2.2,

4 => 15,

)

array (

0 => 0,

1 => -4,

4-41 ■ RANDOMIZING AN ARRAY USING SHUFFLE() , KSHUFFLE() , AND ARRAY_RAND() 183

2 => 2.3,

3 => 2.2,

4 => 15,

)

array (

0 => 15,

1 => 2.3,

2 => -4,

3 => 2.2,

4 => 0,

)

4-42. Sorting an Array Using Comparison Functions

It is also possible to set your own criteria for sorting by using a comparison function that you

have written yourself. PHP has three functions—usort(), uasort(), and uksort()—that make

this a much less painful exercise than it might be otherwise. (If you have ever taken a C or C++

programming class in which you were required to write routines from scratch for sorting

strings according to custom rules, you will know what we are talking about here.)

Suppose you want to sort some numbers so that even numbers will be sorted first, followed

by odd numbers, with the numbers sorted from highest to lowest within each of the two groups.

You will write a function evenfirst() to do this and then apply evenfirst() when sorting an array

that represents inventory in a clothing shop. The reason you want to perform the custom sort is

because the shop is having a two-for-one sale, and you want to know at a glance which categories

of items will have leftovers, as well as which categories have the most items. (Admittedly this is a

bit silly, but forgive us for the sake of the example.) You will call the array representing the shop’s

current inventory $clothes. Let’s look first at the code used to perform the sort and then discuss

how it does its job.

The Code

<?php

function evenfirst($i, $j)

{

$value = 0; # default return value (do nothing)

if($i % 2) $value++;

if($j % 2) $value--;

if($value == 0) $value = $j > $i;

return $value;

}

$clothes = array('hats' => 75, 'coats' => 32, 'shoes' => 102,

'gloves' => 15, 'shirts' => 51, 'trousers' => 44);

usort($clothes, 'evenfirst');

var_export($clothes);

?>

4-42 ■ SORTING AN ARRAY USING COMPARISON FUNCTIONS184

How It Works

The usort() function takes two arguments, an array to be sorted in place and the name of a

comparison function. The comparison function takes two parameters—two array elements to

be compared—and returns an integer whose value is interpreted according to the following

rules:

• If the result is negative, then the first argument is considered to be less than the second,

and the first argument is sorted first.

• If the result is positive, then the first argument is considered to be greater than the

second, and the second argument is sorted first.

• If the result is zero, then the order of the arguments is left unchanged in the array.

The function firsteven() might look a bit odd (if you will excuse the pun), but what it

does is this: it takes two values, $i and $j, to be compared; these represent adjacent values

from the array to be sorted. In this case, if $i is even and $j is odd, then $value will be positive

1, and $i will be sorted first; if $j is even and $i is odd, then $value will be negative 1, and $j

will be sorted first. If both $i and $j are odd, or if both are even, then $value is 0, and nothing

is changed (yet). If both $i and $j are odd, or if both are even, then you want to see whether $j

is greater than $i; if it is, then you want $j to be sorted first. You do this by setting $value equal

to $j > $i, which will evaluate as 1 if the condition is true and 0 if it is not. Finally, you return

$value to the sort function, which takes the appropriate action based on its value.

array (0 => 102, 1 => 44, 2 => 32, 3 => 75, 4 => 51, 5 => 15,)

Variations

usort() performed the sort but did not preserve the keys, which would be much more helpful.

To do this, use uasort() instead:

uasort($clothes, 'evenfirst');

var_export($clothes);

Here is the output:

array ('shoes' => 102, 'trousers' => 44, 'coats' => 32, 'hats' => 75,

'shirts' => 51, 'gloves' => 15,)

This is a bit more useful, since it still tells you which amounts go with which items of

clothing.

To perform a custom sort on the keys of an array, you can use the uksort() function in the

same way as we have shown you with usort() and uasort(), the only difference being that

your comparison function will be comparing keys rather than values.

4-42 ■ SORTING AN ARRAY USING COMPARISON FUNCTIONS 185

4-43. Sorting Multidimensional Arrays

Not all arrays are one-dimensional, and PHP recognizes this with a function that can be used

to sort multiple-dimensional arrays. array_multisort() takes a number of arrays as argu-

ments, each followed optionally by one or more sort flags. This can be useful in cases such as

sorting through database result sets.

Let’s return to the website internationalization scenario and expand upon it a bit. First,

let’s suppose you have retrieved the visitor/country/language data from a database using a

query along the lines of this:

SELECT country, language, visitors FROM visits v;

A result set row from such a query might look something like this:

array('country'=>'Spain', 'language'=>'Spanish', 'visitors'=>1289)

You might assemble a multidimensional array called $data using a construct such as this:

$data = array();

while($row = $result->fetch_assoc())

$data[] = $row;

For this example, suppose that $data is populated as shown in the following code. The

objective here is to sort that array in the order of language, then country, and then number of

visitors.

The Code

<?php

$data

= array(

array('country'=>'Spain', 'language'=>'Spanish', 'visitors'=>1289),

array('country'=>'France', 'language'=>'French', 'visitors'=>984),

array('country'=>'Argentina', 'language'=>'Spanish', 'visitors'=>812),

array('country'=>'UK', 'language'=>'English', 'visitors'=>3111),

array('country'=>'Germany', 'language'=>'German', 'visitors'=>2786),

array('country'=>'Canada', 'language'=>'English', 'visitors'=>2331),

array('country'=>'Austria', 'language'=>'German', 'visitors'=>1102),

array('country'=>'Mexico', 'language'=>'Spanish', 'visitors'=>1071)

);

printf("<pre>%s</pre>\n", var_export($data, TRUE));

$cols = array();

foreach($data as $row)

{

foreach($row as $key => $value)

{

4-43 ■ SORTING MULTIDIMENSIONAL ARRAYS186

if(!isset($cols[$key]))

$cols[$key] = array();

$cols[$key][] = $value;

}

}

$data = $cols;

array_multisort($data['language'], $data['country'], $data['visitors']);

printf("<pre>%s</pre>\n", var_export($data, TRUE));

?>

Here is the output:

array (

'country' =>

array (

0 => 'Canada',

1 => 'UK',

2 => 'France',

3 => 'Austria',

4 => 'Germany',

5 => 'Argentina',

6 => 'Mexico',

7 => 'Spain',

),

'language' =>

array (

0 => 'English',

1 => 'English',

2 => 'French',

3 => 'German',

4 => 'German',

5 => 'Spanish',

6 => 'Spanish',

7 => 'Spanish',

),

'visitors' =>

array (

0 => 2331,

1 => 3111,

2 => 984,

3 => 1102,

4 => 2786,

5 => 812,

6 => 1071,

4-43 ■ SORTING MULTIDIMENSIONAL ARRAYS 187

7 => 1289,

),

)

How It Works

To be effective, array_multisort() requires that multidimensional arrays be arranged in a

columnar fashion. You can convert $data from an array of rows to an array of columns, as

shown here:

$cols = array();

foreach($data as $row)

{

foreach($row as $key => $value)

{

if(!isset($cols[$key]))

$cols[$key] = array();

$cols[$key][] = $value;

}

}

$data = $cols;

$data now looks like this:

array(

'country' => array('Spain', 'France', 'Argentina', 'UK',

'Germany', 'Canada', 'Austria', 'Mexico'),

'language' => array('Spanish', 'French', 'Spanish', 'English',

'German', 'English', 'German', 'Spanish'),

'visitors' => array(1289, 984, 812, 3111, 2786, 2331, 1102, 1071)

)

Now comes the easy part. To sort this array by language and then country, you merely call

array_multisort(), like so:

array_multisort($data['language'], $data['country'], $data['visitors']);

Then you output the sorted array using var_export(). Note that the values in all three

columns have been sorted into their correct positions relative to one another. The data has

been sorted first by language, then by country, and then by number of visitors.

You can change the order simply by changing the order of the columns in the call to

array_multisort(). You can also sort by a column in reverse order by following that column

with a comma and SORT_DESC. For example, to perform the same sort except with the lan-

guages in reverse order, you could use this:

4-43 ■ SORTING MULTIDIMENSIONAL ARRAYS188

array_multisort($data['language'], SORT_DESC,

$data['country'], $data['visitors']);

Try this on your own, and experiment with it a bit. You will be surprised at how many

ways you can use it.

■Caution When using array_multisort(), you must specify all columns you want to sort. Any omitted

columns will be left in their original order (this means omitted columns will not participate in the sort and

cannot be used reliably). If you do not intend to use values from that column, then this is not a problem, but

we usually include all columns, just in case we later change our minds.

4-44. Sorting Multiple Arrays

You can also use array_multisort() with multiple arrays. Consider a set of arrays that serves

as a sort of mini-dictionary that contains four words in each of four languages. Each lan-

guage’s words are contained in an array, and the corresponding digits are stored in a fifth

array. The objective is to sort the arrays so that the words from one language appear in alpha-

betical order and the corresponding words in the other three languages match up with them.

The Code

<?php

$eng = array('one', 'two', 'three', 'four'); # 1-4 in English

$esp = array('uno', 'dos', 'tres', 'cuatro'); # 1-4 in Spanish

$deu = array('eins', 'zwei', 'drei', 'vier'); # 1-4 in German

$rus = array('odin', 'dva', 'tri', 'chetire'); # 1-4 in Russian

$digits = range(1,4);

array_multisort($rus, $esp, $deu, $eng, $digits);

foreach(range(0, 3) as $j)

printf("<p>Russian: %s (%d); Spanish: %s; German: %s; English: %s.</p>",

$rus[$j], $digits[$j], $esp[$j], $deu[$j], $eng[$j]);

?>

Here is the output:

Russian: chetire (4); Spanish: cuatro; German: vier; English: four.

Russian: dva (2); Spanish: dos; German: zwei; English: two.

Russian: odin (1); Spanish: uno; German: eins; English: one.

Russian: tri (3); Spanish: tres; German: drei; English: three.

4-44 ■ SORTING MULTIPLE ARRAYS 189

How It Works

All that is required is to list all the arrays as arguments to array_multisort(). The first array

is sorted in normal order, and the corresponding elements of the other arrays are sorted to

match. The only restriction is that all the arrays must have the same number of elements.

Finding Permutations and Combinations

In order to understand recursion, one first must understand recursion.

—Anonymous

Both combinations and permutations of a set of values involve different arrangements of

those values. In this section, we will define what these terms mean and show you how to do

the following:

• Calculate numbers of possible permutations and combinations of an array’s elements

• Generate permutations and combinations

4-45. Finding All Permutations of an Array’s Elements

An array’s permutations are defined as the set of all possible combinations of the elements in

that array. For example, suppose you have defined an array like this:

$letters = array('a', 'b', 'c');

This array has six permutations: abc, bca, cab, cba, bac, and acb.

Assuming that all an array’s elements can be uniquely identified, the number of permuta-

tions is equal to the factorial of the number of elements in the array. In this case, since there

are three elements, the number of permutations is three factorial, written as so:

3! = 3 * 2 * 1 = 6

More generally, the factorial of a positive integer N is defined as follows:

N! = N * (N-1) * (N-2) * ... * 3 * 2 * 1

where N! is read as “N factorial.” The factorial of 0 is defined to be 1, and the factorial of a neg-

ative number is undefined.

This is a natural consequence of a mathematical principle known as the Law of Counting,

which can be stated as follows:

If something can be chosen, or can happen, or be done, in m different ways, and, after

that has happened, something else can be chosen in n different ways, then the number of

ways of choosing both of them is m* n.

4-45 ■ FINDING ALL PERMUTATIONS OF AN ARRAY’S ELEMENTS190

For example, say you have five cards, and each one is printed with one of the letters a, b, c,

d, and e. If you pick one card, there are exactly five different possible outcomes—one outcome

per letter. If you select one of the remaining four cards, there are four possible outcomes of

that event, regardless of which card was selected in the first draw. Thus, there are twenty out-

comes when two cards are drawn from five. At this point, there are three cards remaining and

hence three choices, or sixty possible outcomes. This may also be expressed as N!/(N – k)!,

where N is the total number of objects and k the number of objects chosen from amongst

them. For five cards, taken two at a time, there are 5! / (5 – 2)! = 120 / 6 = 20 possible outcomes,

and for five cards taken three at a time, there are 5! / (5 – 3)! = 120 / 2 = 60 possible outcomes.

■Caution Factorials increase in size extremely quickly as the base increases. 5! equals 120. 10! equals

3628800. 20! equals approximately 2.43E+18, which is rather larger than the maximum acceptable size of

an integer on most systems.

We can sum up this discussion in two rules:

• The total number of permutations of N objects is N!.

• The number of permutations of N objects taken k objects at a time is N! / (N – k)!.

Now that you know what permutations are and how many a given set of elements has, the

following example shows how you can generate them.

The Code

<?php

function array_permutations($input, $num)

{

$perms = $indexed = $output = array();

$base = count($input);

$i = 0;

foreach($input as $in)

$indexed[$i++] = $in;

foreach(range(0, pow($base, $num) - 1) as $i)

$perms[] = sprintf("%'0{$num}d", base_convert($i, 10, $base));

foreach(array_filter($perms, 'catch_duplicate_chars') as $perm)

{

$temp = array();

foreach(str_split($perm) as $digit)

$temp[] = $indexed[$digit];

4-45 ■ FINDING ALL PERMUTATIONS OF AN ARRAY’S ELEMENTS 191

$output[] = $temp;

}

return $output;

}

function catch_duplicate_chars($val)

{

$arr = str_split($val);

return $arr == array_unique($arr);

}

$test = array_permutations(array('a', 'b', 'c'), 2);

$display = '';

foreach($test as $row)

$display .= implode('', $row) . "\n";

print "<pre>$display</pre>";

?>

Here is the output:

ab

ac

ba

bc

ca

cb

How It Works

You can reduce the rule for permutations to make it more efficient. Both the numerator and

denominator will contain the terms (N – k) * (N – (k – 1)) * (N – (k – 2)) * ... * (N – 1), which

means that the result consists of the series N * (N – 1) * (N – 2) * ... * (N – (k + 1)). For example,

if you are taking five objects, three at a time, then the number of permutations is 5 * 4. The

permutations() function acts recursively to find the number of permutations for $total

objects taken $num at a time. It multiplies the current value of $total by $total minus 1 and

then calls itself using $total minus 1 until $total is no longer greater than $limit, which is set

equal to the difference of the original value of $total and $num.

function permutations($total, $num)

{

$limit = func_num_args() == 2 ? $total - $num : func_get_arg(2);

return $total > $limit ? $total * permutations($total - 1, $num, $limit) : 1;

}

4-45 ■ FINDING ALL PERMUTATIONS OF AN ARRAY’S ELEMENTS192

That takes care of the number of permutations. To generate the permutations themselves,

you take a slightly different tack. array_permutations() takes two arguments: an array $input

and the number $num of elements from that array you want to take at a time. First, you get the

number of elements in the array and use that as a base for generating a sequence of numbers

with $num digits, which you then store in an array $perms. For example, for five objects taken

three at a time, you generate all the three-digit numbers to the base 5. You filter $perms to

remove all elements with duplicate digits using catch_duplicate_chars(), which splits up

each number into separate digits and then compares the resulting array with the same array

after array_unique() is applied to it; if the two arrays are not the same, you know that the

number contains one or more repeated digits, so it is dropped from $perms. Once the numbers

with duplicate digits are removed from $perms, you can iterate through $perms and, for each

number in this array, assemble a string from the elements corresponding to each digit. This

string is then appended to the array that is returned by array_permutations().

■Caution Exercise prudence when using these scripts (or similar ones) to generate listings of all possible

permutations or combinations for large values of N; it is not difficult to bog down your server quickly. This

should not be too surprising when you consider, for example, that there are 311,875,200 permutations of 52

playing cards drawn 5 at a time and 2,598,960 unique combinations. Either one of these figures represents

quite a lot of records to display or to save to a file.

4-46. Finding All Combinations of an Array’s Elements

The difference between permutations and combinations is that combinations represent

unique subsets regardless of order. For example, the groupings abc and acb are two different

permutations, but because they contain the same elements, they are not considered to be sep-

arate combinations.

The Code

<?php

depends array_permutations() function

defined in previous section

function array_combinations($input, $num)

{

$combos = array();

foreach(array_permutations($input, $num) as $row)

{

$copy = $row;

sort($copy);

$combos[implode('', $row)] = implode('', $copy);

}

return array_keys(array_unique($combos));

}

4-46 ■ FINDING ALL COMBINATIONS OF AN ARRAY’S ELEMENTS 193

$array_combinations = array_combinations(array('a', 'b', 'c', 'd'), 3);

$display = '';

foreach($array_combinations as $row)

$display .= "$row\n";

print "<pre>$display</pre>"

?>

Here is the output:

abc

abd

acd

bcd

How It Works

You simply leverage the permutation generation function from the previous section for gener-

ating combinations, since all you need to do is throw out any duplicates. You do this using the

array_unique() function provided by PHP 5.

Summary
Different programming languages call arrays by different names and have different methods

for manipulating them, but any programming language worth using provides some means of

working with sets of data. PHP is no different in this regard. In fact, as you had the chance to

see in this chapter, PHP excels in its array-handling capabilities. What PHP refers to simply as

an array really encompasses two related but different structures—ordered and unordered lists.

In this chapter, we covered PHP arrays and array functions, starting with creating and

populating them and then looking at different techniques for adding elements to existing

arrays and removing elements from them either singly or in groups. We also discussed how

to determine whether a given element exists in an array, how to access that element once

you have made that determination, and how to traverse an array in a systematic fashion.

You also saw some techniques for outputting arrays in formats that are easy to read, as

well as for obtaining information about the array as a whole, such as its size and the sum and

average of its values.

From there you learned about ways to manipulate arrays using functions acting on all or

selected array elements, as well as ways to filter arrays to retrieve or remove elements that do

or do not meet your criteria. By now, you should also have a fair idea of how you can combine

arrays in several ways; you can append them to one another in a linear fashion or use one

array as the keys and another as the values of a new array.

In the last few sections of this chapter, you had the opportunity to see some sophisticated

uses of arrays, such as PHP’s ability to sort arrays according to different criteria or according to

completely arbitrary rules that you can implement by using callback functions. This includes

an extremely powerful technique for sorting multiple arrays and multidimensional arrays with

4-46 ■ FINDING ALL COMBINATIONS OF AN ARRAY’S ELEMENTS194

the aid of the array_multisort() function. Finally, we showed you some techniques for deter-

mining how many permutations and combinations of elements are possible for a given

dataset and how to generate them.

Looking Ahead
In Chapter 5, we will discuss PHP 5’s handling of times and dates. We will give you a guided

tour of the most important functions available for this purpose and show you some ways you

can use these functions to perform tasks such as outputting formatted times and dates; calcu-

lating differences between different times and dates; accounting for time zones, locales, and

Universal Time, Coordinated (UTC); and finding out what day of the week a given date is. We

will also share with you a Date class, based on the ECMA standard, that we have developed in

our work and that we have upgraded to PHP 5 for this book.

4-46 ■ FINDING ALL COMBINATIONS OF AN ARRAY’S ELEMENTS 195

Working with Dates and Times

Dates and times are quite unlike most other sorts of data you are likely to encounter when

programming with PHP 5. Arrays, whether they are indexed arrays or associative arrays, are

nicely structured. So are strings. Numbers are—well, they are numbers, and despite a few

bumps here and there because of issues such as rounding, you are still obliged to work with

a fairly limited set of mathematical operations and formatting functions. However, dates are

rather messy with respect to both calculation and representation, and one is about as bad as

the other.

Quick question: what were the date and time exactly 101 hours, 44 minutes, and 15 sec-

onds prior to 7:35 p.m. on September 17, 1989? And what day of the week was that? If you can

answer that in 30 seconds or less unaided, then you are a rare individual indeed. The prob-

lems with calculating that date and time the rest of us experience arise because humans have

so far resisted adopting something like the metric system for dates and times. Instead, we

have conventions such as 60 seconds per minute, 60 minutes per hour, 24 hours per day, and

7 days per week. And if that is not bad enough, when we get to that point, we throw all sem-

blance of regularity out the window. Months have differing numbers of days, and weeks do

not match up precisely with either months or years. People cannot even agree on which day

of the week comes first. And it does not end there: sooner or later, we have to deal with time

zones and daylight-saving time.

Then there are the issues of representation and localization. Consider the following dates

and times:

• 2:50:30 p.m., 17 March 2005

• 2005-03-17 14:50:30

• 2:50:30 p.m. 17/03/2005

• March 17, 2005, 2:50:30 p.m.

• 1111035030000

• Nine-and-a-half minutes before 3 o’clock on Thursday afternoon

197

C H A P T E R 5

■ ■ ■

Each of these is a common and valid way of representing the same time and date. All of

them are equally precise, except for the last one, which depends upon the context in which it

is being used for accuracy. (If it is used sometime between March 11 and March 16, 2005, then

it will be taken to mean the same as the others.)

It is not that difficult for humans to sort these things out (although most people would

balk at 1111035030000). For instance, 17/03/2005 is pretty obviously March 17, 2005—even if

you are accustomed to writing the month first—since there is no 17th month in the year. Com-

puters, being fairly literal, do not have it quite so easy. They prefer it if dates and times are

more consistent.

Fortunately, PHP has a number of functions to help you keep dates and times simple for

computers. In the first part of this chapter, we will show you how to use some of these func-

tions to perform tasks such as the following:

• Obtaining the current date and time

• Accounting for time zones

• Converting between different date and time formats

• Performing calculations involving dates and times (the earlier “quick question” being

one example)

• Determining whether a given date and time representation is a valid one

Some or all of these functions might be familiar to you from PHP4. While PHP’s built-in

date and time functions are easy enough for computers to work with, they are somewhat

cumbersome for humans, for reasons we will discuss in due course. So, we will devote the

latter portion of this chapter to leveraging some of PHP 5’s new object-oriented capabilities;

specifically, we will show how to create and use a couple of classes that will vastly simplify

reading, writing, and performing calculations with dates. Because we will be dealing with

Date objects having clearly defined properties and methods that dispense with some of the

crypticness of PHP’s built-in functions, you should find these classes much easier to use and

remember than the functions PHP provides for this purpose.

Overview of PHP 5’s Date and Time Functions
The PHP 5 date and time function library makes up a core part of the language. The library is

included by default, and no special compilation or configuration directives are required to use

these functions: they are available in any working PHP installation. No external dependencies

such as shared libraries need to be installed on the server in addition to PHP. Also, this library

does not define any special constants or resource types.

OVERVIEW OF PHP 5’S DATE AND TIME FUNCTIONS198

■Note GMT stands for Greenwich mean time, which is standard time at the Greenwich meridian at zero

degrees of longitude (so-called because it passes through the old Royal Observatory at Greenwich, England).

Zero degrees of longitude is also sometimes referred to as the prime meridian. UTC, which stands for Uni-

versal Time, Coordinated, means basically the same thing. (Actually, a GMT second is defined as 1/86,400

of the time required for the earth to complete one rotation, while a UTC second is based on a more accurate

unit as determined by an atomic clock. However, for these purposes this makes no appreciable difference.)

Many institutions that must deal with multiple time zones, such as weather bureaus and military establish-

ments, use GMT/UTC, and many if not most computers running Unix operating systems base their dates and

times on GMT/UTC.

Table 5-1 lists the functions included in the date and time library.

Table 5-1. PHP 5 Date/Time Functions

Function Description

checkdate() Validates set of Gregorian year, month, and day values (for example, 2005, 3, 17).

date_sunrise() Returns time of sunrise for a given day and location (new in PHP 5).

date_sunset() Returns time of sunset for a given day and location (new in PHP 5).

date() Formats a local date/time, given a Unix timestamp (for example, 1111035030000
from the introduction to this chapter) and a formatting string.

getdate() Given a Unix timestamp, returns an associative array containing date and time
information (defaults to current time).

gettimeofday() Returns an associative array containing information about the current system
time. In PHP 5.1, it is possible for this function to return a float as well.

gmdate() Formats a GMT/UTC date/time. Uses the same formatting characters as the
date() function.

gmmktime() Converts a set of GMT date/time values into a Unix timestamp (analogous to
mktime()).

gmstrftime() Formats a GMT/UTC date/time according to locale settings (similar to
strftime() except the time used is GMT/UTC).

idate() Formats a local time/date value as an integer. Uses many of the same formatting
characters as the date() function (those that produce numeric output). However,
idate() accepts just one formatting character (new in PHP 5).

localtime() Given a Unix timestamp, returns an array of date/time values. In PHP 5, this
array can be returned as an associative array as well as an indexed array.

microtime() Returns a string representation of the current Unix timestamp with
microseconds. In PHP 5, this function can also return a float.

mktime() Converts a set of local date/time values into a Unix timestamp.

strftime() Given a timestamp and a formatting string, returns a representation of a local
date/time according to locale settings.

strptime() Given a date/time string generated with strftime() and the formatting string
used to generate it, returns a Unix timestamp (new in PHP 5.1).

strtotime() Converts an English textual date/time description into a Unix timestamp.

time() Returns the current system date and time as a Unix timestamp.

OVERVIEW OF PHP 5’S DATE AND TIME FUNCTIONS 199

Most of these functions depend on the concept of a Unix timestamp. Simply, a Unix time-

stamp reflects the time elapsed since the beginning of what is known as the Unix epoch, that

is, midnight on January 1, 1970, GMT. Usually this is expressed in seconds, although some-

times milliseconds or microseconds are used.

■Note When we refer to local time, we really mean the web server’s time. Since PHP is a server technol-

ogy, it has no way to obtain a web client’s local time (at least, not directly). If you want a website visitor’s

local time, you will need to use a client-side technology such as JavaScript to accomplish this task.

In the next few sections, you will learn how to use some of these functions to accomplish

typical date-related tasks.

Displaying Dates and Times
The three functions that you most need to be familiar with for displaying human-readable

dates in English are time(), mktime(), and date(). time() and mktime() provide ways to repre-

sent date/time values that are locale independent and easy for computers to use.

• Locale independent: You do not have to worry about whether 06-04-2005 means April 6

(as most Britons and Australians would interpret it) or June 4 (as most Americans would

understand it to mean).

• Easy for computers to use: Both of these functions return integer values, and it does

not get much easier than that for a computer.

Each of these functions returns a time expressed as seconds since the Unix epoch. The

difference between time() and mktime() is that time() does not take any arguments and

always returns a value corresponding to the current system time, whereas mktime() retrieves

a Unix timestamp for an arbitrary date and time. This latter function takes from zero to seven

arguments; when you call it without any arguments, it acts just like time() and uses the cur-

rent system date and time. The arguments, along with their usual ranges of values, are as

follows (in the order you must specify them):

• hour (0–23).

• minute (0–59).

• second (0–59).

• month (1–12).

• day (1–28|29|30|31).

• Year (four-digit year recommended). It is important to note that on Windows operating

systems the range of possible years for a PHP date extends from only 1970 to 2038 UTC.

This is because, unlike Unix systems where PHP can accommodate years between 1901

and 2038, Windows does not support negative values for timestamps.

• is_daylight (boolean). This is TRUE or 1 for daylight-saving time and FALSE or 0 for stan-

dard time.

DISPLAYING DATES AND TIMES200

It is possible to omit arguments, but the arguments that are used must start with the hour

argument and continue in the order shown previously, without skipping any in between. In

other words, if you specify the day, you must specify the hour, minute, second, and month as

well. It is also possible to use out-of-range values (except for years, on Windows); we will show

what happens in these cases in a moment.

■Note If you use floating-point numbers where PHP’s date and time functions expect integers, any

digits to the right of the decimal point are ignored. For example (in our current time zone), date('r',

mktime(2.5, 0, 0, 3, 15, 2005)) yields Tue, 15 Mar 2005 02:00:00 +1000.

5-1. Displaying Human-Readable Dates and Times

To obtain a timestamp for the current system date and time, it is necessary only to call the

time() function, as shown here:

<?php

echo time();

?>

In a web browser, this produces output such as the following:

1110638611

This is not helpful for users, who are likely to be expecting something more along the lines

of May 23, 2005, 12:25 p.m. For obtaining a human-readable date and time, PHP provides the

date() function. When called with a single argument (a formatting string), this function returns

a string representation of the current date and/or time. The optional second argument is a

timestamp. The following example shows a few ways you can use various formatting strings

with date().

The Code

<?php

$time = time();

$formats = array(

'U',

'r',

'c',

'l, F jS, Y, g:i A',

'H:i:s D d M y',

'm/j/y g:i:s O (T)'

);

foreach($formats as $format)

echo "<p>$format: " . date($format, $time) . "</p>\n";

?>

5-1 ■ DISPLAYING HUMAN-READABLE DATES AND TIMES 201

How It Works

Here is the output of this script as it might be viewed in a browser:

U: 1110643578

r: Sun, 13 Mar 2005 02:06:18 +1000

c: 2005-03-13T02:06:18+10:00

l, F jS, Y, g:i A: Sunday, March 13th, 2005, 2:06 AM

H:i:s D d M y: 02:06:18 Sun 13 Mar 05

m/j/y g:i:s a O (T): 03/13/05 2:06:18 am +1000 (E. Australia Standard Time)

As you may have guessed from comparing the formatting strings to the corresponding

lines in the output, the letters stand for various portions of a date or time; punctuation char-

acters including period (.), comma (,), hyphen (-), colon (:), parentheses (()), and slash (/)

are inserted directly into the output. The function is defined in such a way that any characters

not recognized as formatting characters are passed through as is, but best practice in this

regard is that any letters intended to be displayed verbatim in the output of date() should be

escaped using a backslash, whether or not they are listed as formatting characters. Table 5-2

lists the most useful formatting characters, grouped according to the units involved.

Table 5-2. Formatting Characters for the date() Function

Character Description

Month

F Full name of the month (January, February, and so on).

M Three-letter abbreviation for the month (Jan, Feb, and so on).

m Numeric representation for the month, with leading zero (two digits).

n Numeric representation for the month (no leading zero).

Day

d Day of the month, with leading zeros (two digits).

j Day of the month (no leading zeros).

S Ordinal suffix for the day of the month, two characters (st, nd, th); most
commonly used in combination with j.

l (lowercase L) Full name of the day of the week (Monday, Tuesday, and so on).

D A textual representation of a day, three letters (Mon, Tue, and so on).

w Numeric representation of the day of the week (0 = Sunday, 6 = Saturday).

5-1 ■ DISPLAYING HUMAN-READABLE DATES AND TIMES202

Character Description

Year

y Two-digit year.

Y Four-digit year.

Hour

h Hour in 12-hour format, with leading zero (two digits).

g Hour in 12-hour format (no leading zero).

H Hour in 24-hour format, with leading zero (two digits).

G Hour in 24-hour format (no leading zero).

a am/pm (lowercase).

A AM/PM (uppercase).

O (uppercase o) String representation of the difference in hours between local time and
GMT/UTC (for example, +1000, –0500).

Minute

i Minute, with leading zero (two digits).

j Minute (no leading zero).

Second

s Second, with leading zero (two digits).

Z Integer representation of the difference in seconds between local time and
GMT/UTC (for example, 36000 for GMT+1000 and –18000 for GMT–0500).

Complete Date and Time

c ISO-8601 format (YYYY-MM-DDTHH:MM:SS±HHMM, for example,
2005-03-14T19:38:08+10:00).

r RFC-2822 format WWW, DD MMM YYYY HH:MM:SS ±HHMM, for example, Mon,
14 Mar 2005 19:38:08 +1000).

U Seconds since the Unix epoch. Calling date('U') with no timestamp argument
produces the same output as the time() function.

We will discuss some additional date() formatting characters in recipes 5-5, 5-9, and 5-12.

The difference between local time and GMT/UTC is always positive for points east of

Greenwich and always negative for locations to its west. For example, Eastern Australia Stan-

dard Time is GMT+1000 and U.S. Eastern Standard Time is GMT–0500, as shown in Figure 5-1.

5-1 ■ DISPLAYING HUMAN-READABLE DATES AND TIMES 203

Figure 5-1. Points east of Greenwich add to GMT; points west of it subtract from GMT.

5-2. Displaying Arbitrary Dates and Times

Displaying arbitrary dates and times requires passing the Unix timestamp for the desired

date and time to the date() function as its second parameter. As already mentioned, you can

obtain this with mktime(), which is pretty straightforward to use. In this example, you can get

the Unix timestamp for 6:30 p.m. on August 10, 1997, and test the result by passing it to the

date() function.

The Code

<?php

$timestamp = mktime(18, 30, 0, 8, 10, 1997);

echo date('r (T)', $timestamp);

?>

How It Works

The output from this on our server is as follows:

Sun, 10 Aug 1997 18:30:00 +1000 (E. Australia Standard Time)

Of course, if the locale for your machine is different, you will see something different in

place of +1000 (E. Australia Standard Time). Note that the string supplied for T probably

will vary according to your operating system and other environmental factors.

5-2 ■ DISPLAYING ARBITRARY DATES AND TIMES204

■Tip The rules for daylight-saving time vary from country to country and are not necessarily uniform even

within countries. (For example, Arizona in the United States and Queensland in Australia do not observe day-

light-saving time.) In the Southern hemisphere, the height of the summer comes in late December (when it

is mid-winter in the United States and Europe), and daylight-saving time in those countries is generally

observed from October through March. Helsinki and Johannesburg are both in the GMT +0200 time zone,

but in July, Helsinki is an hour ahead of Johannesburg because of Summer Time (daylight-saving time) in

Europe; in January, it is the other way around. A good starting place for more information about daylight-

saving time and when it is in effect for different countries and regions is http://webexhibits.org/

daylightsaving/g.html.

5-3. Converting Human-Readable Dates Into Unix Timestamps

Using strtotime()

Of course, you are not limited to employing mktime() to obtain a timestamp for use with the

date() function. You can also convert dates in the form of English-language strings into Unix

timestamps using the strtotime() function. This function is surprisingly flexible and can

accept nearly any sensible string as an argument:

• You can use two-digit years (00–69 = 2000s, 70–99 = 1900s) and four-digit years. An

unformatted four-digit number in isolation will be treated as a time; that is, 2004 used

by itself will be interpreted as 20:04 (8:04 p.m.).

• Numeric days and months are accepted in either one- or two-digit formats. Note that

numbers cannot be spelled out.

• You can use names of months in full or the standard three- and four-letter abbrevia-

tions for months. For instance, both 24 Sep 1990 and 24 September 1990 will be

interpreted correctly.

• Days of the week are allowed, either spelled out in full or as three-letter abbreviations.

• Numeric dates in the formats [[yy]y]y-[m]m-[d]d or [m]m/[d]d/[yy]yy are permitted.

That is, 05-01-25, 05-1-5, and 2005-1-05 are all interpreted as January 5, 2005, and so

are 01/05/05 and 1/5/2005. Unformatted five- or six-digit numbers will be interpreted

as a date in (y)y-mm-dd format; 020430 and 20430 will both be resolved to the time-

stamp equivalent of April 30, 2002. (A single digit in the year position will be taken to

mean the year ending in that digit from the current decade.)

• If you need a timestamp for the beginning of a month, do not use a zero for the day of

the month; this will be parsed as the last day of the previous month. Use 1 or 01 as the

first day of the month.

• You can use 24-hour times and 12-hour times with the am/pm or AM/PM indicator.

Leading zeroes are optional for hours, minutes, and seconds, which must be separated

with a colon (:).

5-3 ■ CONVERTING HUMAN-READABLE DATES INTO UNIX T IMESTAMPS USING STRTOTIME() 205

• You can use units such as hour, day, week, fortnight, month, year, and so on, and the

symbols + and - (the + is optional) along with numerals to indicate future and past.

Note that any numbers you use in this fashion cannot be spelled out.

• You can use many (English-speaking!) ordinary words relating to dates and times, such

as now, last, today, yesterday, ago, and so on.

The following example shows how this works.

The Code

<table>

<?php

$mydatestrings = array(

"now", "today", "tomorrow", "yesterday",

"Thursday", "this Thursday", "last Thursday",

"+2 hours", "-1 month", "+10 minutes",

"30 seconds", "+2 years -1 month", "next week",

"last month", "last year", "2 weeks ago"

);

// remember: strtotime() returns a timestamp

foreach($mydates as $mydate)

echo "<tr><td>$mydate:</td><td>" . date('r', strtotime($mydate)) .

"</td></tr>\n";

?>

</table>

How It Works

The output of this loop in a browser is as follows (for the time, date, and time zone shown in

the first line):

now: Tue, 15 Mar 2005 15:23:52 +1000

today: Tue, 15 Mar 2005 15:23:52 +1000

tomorrow: Wed, 16 Mar 2005 15:23:52 +1000

yesterday: Mon, 14 Mar 2005 15:23:52 +1000

Thursday: Thu, 17 Mar 2005 00:00:00 +1000

this Thursday: Thu, 17 Mar 2005 00:00:00 +1000

last Thursday: Thu, 10 Mar 2005 00:00:00 +1000

+2 hours: Tue, 15 Mar 2005 17:23:52 +1000

-1 month: Tue, 15 Feb 2005 15:23:52 +1000

+10 minutes: Tue, 15 Mar 2005 15:33:52 +1000

-3 weeks: Tue, 22 Feb 2005 15:23:52 +1000

+2 years -1 month: Thu, 15 Feb 2007 15:51:46 +1000

last month: Tue, 15 Feb 2005 15:23:52 +1000

last year: Mon, 15 Mar 2004 15:23:52 +1000

2 weeks ago: Tue, 1 Mar 2005 16:05:24 +1000

5-3 ■ CONVERTING HUMAN-READABLE DATES INTO UNIX T IMESTAMPS USING STRTOTIME()206

As you can see, it is even possible to combine some of these. For example, -1 year -1

month will produce the same results as -13 months. Also note that the s suffix for the plural

forms is optional, so -13 month will produce the same result as -13 months.

■Caution You can use the word next with strtotime(), but this can be interpreted a bit oddly, in that

it will sometime skip a unit. For example, given the current date March 15, 2005 (a Tuesday), then next

Friday will yield Friday, March 25, 2005, which is probably what you would expect, given that most people

would refer to Friday, March 18 as this Friday, but next year will return a date in 2007 rather than 2006.

This behavior is known to occur in PHP versions 4.3.0 through 5.0.3.

■Note Generally speaking, relative words relating to time were misinterpreted in PHP versions through and

including 5.0.2, and timestamps derived by using them were calculated in terms of midnight on the current

date. This has been corrected in PHP 5.0.3, which was the current version when this book was written.

5-4. Finding the Date for a Weekday

By combining date() and strtotime(), it is possible get the day for any desired weekday in a

given month. For example, suppose that your firm’s sales employees are supposed to turn in

their monthly sales reports on the first Tuesday of each month. The following example shows

how you can determine the date of the first Tuesday in the month following the current one.

The Code

<?php

$nextmonth = date('Y-' . (date('n') + 1) . '-01');

$nextmonth_ts = strtotime($nextmonth);

$firsttue_ts = strtotime("Tuesday", $nextmonth_ts);

echo 'Today is ' . date('d M Y') . '.
\n';

echo 'The first Tuesday of next month is ' . date('d M Y', $firsttue_ts) . '.';

?>

How It Works

Here is some sample output in a browser:

Today is 15 Mar 2005.

The first Tuesday of next month is 05 Apr 2005.

5-4 ■ FINDING THE DATE FOR A WEEKDAY 207

Let’s step through the script line by line to see what is happening:

$nextmonth = date('Y-' . (date('n') + 1) . '-01');: The inner call to date() returns

an integer corresponding to the current month, to which you add 1. You then use this as

part of the argument to another date() call, which returns the string 2005-4-01.

$nextmonth_ts = strtotime($nextmonth);: This stores the timestamp equivalent to

2005-4-01 in $nextmonth_ts.

$firsttue_ts = strtotime("Tuesday", $nextmonth_ts);: Using the timestamp just

obtained as the second argument to strtotime(), you get a new timestamp, $firsttue_ts.

Since the first argument to strttime() is simply the string Tuesday, the function looks for

the first date following the date corresponding to $nextmonth_ts that falls on a Tuesday.

(As you will see in the next example, the range of dates searched includes the original

date.) The timestamp corresponding to this date is stored as $firsttue_ts.

echo 'Today is ' . date('d M Y') . '.
\n';: To provide a basis for comparison,

you output the current date in dd-MM-yyyy format.

echo 'The first Tuesday of next month is ' . date('d M Y', $firsttue_ts) . '.';:

Finally, you feed the $firsttue_ts timestamp to date() and output the result in

dd-MM-yyyy format.

Variations

“All this is nice,” you might be saying, “but what happens when the current month is Decem-

ber?” As it turns out, that’s not a problem: PHP’s time and date functions are fairly forgiving

when it comes to arguments that are out of range. Let’s put this assertion to the test by creat-

ing a list of the first Tuesdays in each of the next 12 months:

<?php

echo 'Today is ' . date('d M Y') . '.';

for($i = 1; $i <= 12; $i++)

{

$nextmonth = date('Y-' . (date('n') + $i) . '-01');

$nextmonth_ts = strtotime($nextmonth);

$firsttue_ts = strtotime("Tuesday", $nextmonth_ts);

echo '\n
The first Tuesday in ' . date('F', $firsttue_ts)

. ' is ' . date('d M Y', $firsttue_ts) . '.';

}

?>

5-4 ■ FINDING THE DATE FOR A WEEKDAY208

This is similar to the previous example, except that you add a successively larger integer

to the result of the call to date('n') each time through the loop. Here is the output of this

script when it was run on March 15, 2005:

Today is 15 Mar 2005.

The first Tuesday of April is 05 Apr 2005.

The first Tuesday of May is 03 May 2005.

The first Tuesday of June is 07 Jun 2005.

The first Tuesday of July is 05 Jul 2005.

The first Tuesday of August is 02 Aug 2005.

The first Tuesday of September is 06 Sep 2005.

The first Tuesday of October is 04 Oct 2005.

The first Tuesday of November is 01 Nov 2005.

The first Tuesday of December is 06 Dec 2005.

The first Tuesday of January is 03 Jan 2006.

The first Tuesday of February is 07 Feb 2006.

The first Tuesday of March is 07 Mar 2006.

When the number corresponding to the month is set to 13, the month and year roll over

to January 2006. PHP handles this internally, so you do not have to worry about it.

Let’s conclude this section by writing a generic function to find the Xth weekday of a given

month:

<?php

function find_weekday($month, $year, $weekday, $offset=1)

{

$month_ts = strtotime("$year-$month-01");

if(--$offset > 0)

$month_ts = strtotime("+$offset week", $month_ts);

$month_ts = strtotime($weekday, $month_ts);

return $month_ts;

}

?>

This function takes four arguments: $month and $year are both integers, and $month is

the number for the desired month. The string $day is the name or three-letter abbreviation

for the day of the week. The optional fourth argument, $offset, determines whether to look

for the first such weekday in the month, the second, and so on, and defaults to a value of 1.

The return value is a timestamp representing the desired date.

5-4 ■ FINDING THE DATE FOR A WEEKDAY 209

Let’s test this function by finding the first, second, third, and fourth Fridays in May 2000:

<?php

// (find_weekday() function as defined previously goes here...)

// omit optional $offset; should be 1st Friday

echo date('d M Y', find_weekday(5, 2000, "Friday")) . "
";

// specify the 1st Friday explicitly

echo date('d M Y', find_weekday(5, 2000, "Friday", 1)) . "
";

// 2nd Friday, using the 3-letter abbreviation

echo date('d M Y', find_weekday(5, 2000, "Fri", 2)) . "
";

// 3rd and 4th Fridays

echo date('d M Y', find_weekday(5, 2000, "Friday", 3)) . "
";

echo date('d M Y', find_weekday(5, 2000, "Friday", 4));

?>

When this is run, the result is as follows:

05 May 2000

05 May 2000

12 May 2000

19 May 2000

26 May 2000

Validating this output is as easy as checking any desktop calendar program, as shown in

Figure 5-2.

Figure 5-2. Fridays in the month of May 2000

With a small bit of work, you can adapt this function to accept names of months and two-

digit years instead of the argument types specified here or (by testing the argument types and

branching appropriately) even in addition to those.

Finding the day of the week for a given date is even easier. If you want the result as a

string, you can use date('D', $ts) or date('l', $ts), where $ts is a timestamp correspon-

ding to the desired date. For example, to find the day of the week on which July 4 will fall in

2007, you can use something such as this:

$ts = strtotime('04 Jul 2007');

5-4 ■ FINDING THE DATE FOR A WEEKDAY210

or this:

$ts = mktime(0, 0, 0, 7, 4, 2007);

followed by either this:

$day = date('D', $ts); // $day = 'Wed'

or this:

$day = date('l', $ts); // $day = 'Wednesday';

If you need the name of this day in a language other than English, you can call setlocale()

with the appropriate language/locale string and then use strftime('%a', $ts) (abbreviated) or

strftime('%A', $ts) (full weekday name). We will discuss some localization issues in recipes

5-12 and 5-13.

To obtain a number corresponding to the day of the week, use getdate() instead:

<?php

$ts = strtotime('04 Jul 2007'); // or: $ts = mktime(0, 0, 0, 7, 4, 2007);

$gd = getdate($ts);

$day = $gd["wday"]; // $day = 3;

Do not forget that getdate() reports the weekday number as 0–6, corresponding to

Sunday–Saturday.

■Tip For a complete description of date and time formats accepted by strtotime(), see Chapter 7 of the

GNU Tar Manual at http://www.gnu.org/software/tar/manual/html_chapter/tar_7.html.

5-5. Getting the Day and Week of the Year

Obtaining the day of the year is fairly simple; you need use only a lowercase z in the first argu-

ment to the date() function.

The Code

<?php

$mydates = array('2005-01-01', '2005-06-30', '2005-12-31');

foreach($mydates as $mydate)

{

$ts = strtotime($mydate);

echo 'Day ' . date('d M Y: z', $ts) . "
\n";

}

?>

5-5 ■ GETTING THE DAY AND WEEK OF THE YEAR 211

How It Works

This shows the output, which illustrates a little “gotcha”:

01 Jan 2005: Day 0

30 Jun 2005: Day 180

31 Dec 2005: Day 364

The numbering of the days of the year as derived using date('z') begins with 0, which

means you will likely need to add 1 to the result before displaying it.

Getting the number of the week in the year is also quite simple: all that is required is to

pass an uppercase W as a formatting character to date(). This brief example illustrates its use

and what to expect from it in the way of output:

<?php

$mydates = array('2005-01-01', '2005-01-03', '2005-05-22', '2005-05-23',

'2005-12-31');

foreach($mydates as $mydate)

echo date("D d M Y: \w\e\e\k W", strtotime($mydate)) . "
\n";

?>

Notice how the characters making up the word week have been escaped using backslashes

in order to prevent them from being parsed as formatting characters. Since w is the only for-

matting character in the word week, this could have been written as \week, but we prefer to

escape all letter characters that are not to be parsed, for two reasons:

• Doing so helps make your scripts forward-compatible. In the event that new formatting

characters are added in future releases—as c was in PHP 5—you do not have to worry

about your date() calls producing output you never intended at a later, well, date.

• Unless you know all the formatting characters by heart (and we freely admit that we do

not remember them all), it saves you the time of checking the list in the PHP manual to

make sure that you do not use one accidentally.

This shows what happens when you run the script:

Sat 01 Jan 2005: week 53

Mon 03 Jan 2005: week 1

Sun 22 May 2005: week 20

Mon 23 May 2005: week 21

Sat 31 Dec 2005: week 52

If the first line of the output looks a bit strange, it is because week numbers are calculated

according to the ISO-8601 standard, which means Monday is considered the first day of the

week, and week 1 of the year is the first full week of the year, that is, the first week containing a

Monday. For a year beginning on a day other than Monday, any days prior to the first Monday

in January are considered to be part of week 53 from the previous year.

5-5 ■ GETTING THE DAY AND WEEK OF THE YEAR212

■Tip For a good overview of the ISO-8601 standard for dates and times, see Marcus Kuhn’s summary at

http://www.cl.cam.ac.uk/~mgk25/iso-time.html.

5-6. Determining Whether a Given Year Is a Leap Year

The date() function employs another one-letter argument; it uses L to determine if a given

year is a leap year. When this is used, date() returns 1 if the year in question is a leap year and

0 if it is not. Rather than make repeated calls to date() and strtotime(), you can wrap this in a

simple function that takes the year to be tested as an argument, as shown in the following

example.

The Code

<?php

// takes a 2- or 4-digit year,

// returns 1 or 0

function is_leap_year($year)

{

$ts = strtotime("$year-01-01");

return date('L', $ts);

}

// test the function for a set of 11 consecutive years

for($i = 2000; $i <= 2010; $i++)

{

$output = "$i is ";

if(!is_leap_year($i))

$output .= "not ";

$output .= "a leap year.
\n";

echo $output;

}

?>

How It Works

The result of the test loop is as follows:

2000 is a leap year.

2001 is not a leap year.

2002 is not a leap year.

2003 is not a leap year.

2004 is a leap year.

2005 is not a leap year.

2006 is not a leap year.

5-6 ■ DETERMINING WHETHER A GIVEN YEAR IS A LEAP YEAR 213

2007 is not a leap year.

2008 is a leap year.

2009 is not a leap year.

2010 is not a leap year.

A final note regarding leap years: you should remember that years ending in 00 are leap

years only if the first two digits of the year taken as a two-digit number are evenly divisible

by 4. This means that although 2000 was a leap year (20 % 4 = 0), 1900 and 2100 are not

(19 % 4 = 3; 21 % 4 = 1).

5-7. Getting Times and Dates of Files

PHP supplies the function getlastmod() that returns the time and date the current file was last

modified in the form of a Unix timestamp that can be used with date(), as shown in the fol-

lowing example.

The Code

<?php

echo 'This file was last updated on '

. date('l d F Y, \a\t H:i:s T', getlastmod())

. '.';

?>

How It Works

The sample output is as follows:

This file was last updated on Wednesday 16 March 2005, at 15:07:33

E. Australia Standard Time.

Variations and Fixes

However, getlastmod() can have problems on some servers, which arise when PHP and Apache

are compiled with different values for the –DFILE_OFFSET_BITS variable. (Do not worry about

what this actually means, but if the values you are getting for the last modified date seem to be

off, this is probably why. Ask your server administrator to be sure.) In this case, you can use the

following workaround:

<?php

$lastmod = filemtime($_SERVER['SCRIPT_FILENAME']);

echo 'This file was last updated on '

. date('l d F Y, \a\t H:i:s T', $lastmod)

. '.';

?>

5-7 ■ GETTING T IMES AND DATES OF F ILES214

filemtime() returns a Unix timestamp, so this will produce the same sort of output as the

version using getlastmod() did. You can also use this technique to obtain the last modified

date and time for a file other than the current one:

<?php

$file = "testfile.html";

echo "The file $file was last updated on "

. date('l d F Y, \a\t H:i:s T', filemtime("./$file"))

. '.';

?>

The stat() function also returns Unix timestamps for the date and time data that it pro-

vides relating to files:

<?php

$file = 'testfile.html';

$data = stat($file);

$accessed = $data['atime'];

$modified = $data['mtime'];

$created = $data['ctime'];

echo "The file $file was...
\n"

. 'last accessed ' . date('l d F Y, \a\t H:i:s', $accessed) . ',
\n'

. 'last modified ' . date('l d F Y, \a\t H:i:s', $modified) . ',
\n'

. 'and created ' . date('l d F Y, \a\t H:i:s', $created)

. '.';

?>

The output of this script might look something like this:

The file testfile.html was...

last accessed Wednesday 16 March 2005, at 17:34:57,

last modified Wednesday 16 March 2005, at 17:34:57,

and created Wednesday 16 March 2005, at 17:08:02.

In sum, you can use the values provided by getlastmod(), filemtime(), and stat() with

date() in the same way you can use the values obtained from time() and mktime(). You should

be able to turn the previous code snippet into a reusable function that takes the filename and

path as its argument and outputs the information it provides in a format of your choosing. You

might even want to consider making it a method of a File class; see Chapter 7 for more ideas

and examples of this sort.

5-7 ■ GETTING T IMES AND DATES OF F ILES 215

5-8. Setting Time Zones and GMT/UTC

The time(), mktime(), and strtotime() functions return timestamps based on the server’s

local time. This is fine if your PHP application lives on an intranet or the majority of your users

are in the same time zone as your server. However, consider the situation we found ourselves

in when building an e-commerce site hosted on a server located in the United States for an

Australian client (who was in a different time zone in Australia from us). The client did not

want his customers (all in eastern Australia) to have to contend with times that were 15 or 16

hours different from their own. This presented a type of problem you may encounter.

You might think of solving this by adding or subtracting the difference between the server

time and that of your users whenever you need to display times and dates to them. However,

this is likely to become cumbersome and error-prone, even if you write your own wrapper

functions to handle the differences. Fortunately, you can handle this in a much easier way. You

can change the effective time zone for a PHP script using a single function call, as shown here:

putenv('TZ=Australia/Melbourne');

Let’s look at this in action in a slightly more complete example.

The Code

<?php

$ts = time();

echo date('r', $ts) . "
\n";

putenv('TZ=Australia/Melbourne');

echo date('r', $ts) . "
\n";

?>

How It Works

When we ran this script on a Linux server observing U.S. Eastern Standard Time, this was the

result:

Wed, 16 Mar 2005 06:49:31 -0500

Wed, 16 Mar 2005 22:49:31 +1100

That was pretty easy, was it not? In general, you can use the name of the country and the

nearest large city in the same time zone, separated by a slash, for the TZ value. These values are

not standardized (they can vary slightly even between different Linux distributions), so you

may have to experiment. If all else fails, consult the documentation for your operating system

or a C programming manual for developers who write software for the platform on which your

server runs.

5-8 ■ SETTING T IME ZONES AND GMT/UTC216

■Caution A significant difference exists in the behavior between Unix and Windows platforms when

using putenv() to adjust the time zone setting. On Unix, the change remains in effect for the duration of

the current script only, and you must make a new call to putenv() at the beginning of each PHP page.

On Windows, once the time zone setting is changed using putenv(), the server ignores any subsequent

attempts to change the time zone in this way, and the new setting remains in effect until the web server is

restarted. This is true whether you are running Apache or IIS.

Variations and Fixes

You should be aware of one potential stumbling block. It is possible for PHP to be configured

so that scripts cannot change this setting. If the safe_mode_protected_env_vars configuration

variable includes the TZ variable and safe mode is enabled, then you cannot change the time

zone using putenv().

When your site has visitors from many different time zones, and especially if your audi-

ence is likely to be somewhat more technically savvy than the norm, you might want to display

dates and times using GMT/UTC. To get a GMT timestamp for the current GMT time and date,

just use the gmmktime() function, which acts identically to and takes the same arguments as

mktime(), with two exceptions:

• The optional is_dst argument has no effect on the return value.

• The return value is a Unix timestamp representing the equivalent to the GMT time

values passed to gmmktime().

The second item may be a bit confusing, so let’s illustrate it with this example:

<?php

echo 'Output of <code>mktime()</code>: ' . mktime() . ".
\n";

echo 'Output of <code>gmmktime()</code>: ' . gmmktime() . ".
\n";

echo 'Local time zone: ' . date('O') . ".
\n";

?>

The output from this bit of code is as follows:

Output of mktime(): 1111041977.

Output of gmmktime(): 1111077977.

Local time zone: +1000.

This is what is happening: in the absence of any other arguments, both mktime() and

gmmktime() base their output on the current local (system) time. Notice that the server’s time

zone is GMT plus ten hours, so PHP adds this amount of time to what is produced by mktime()

in order to arrive at a value to return for gmmktime(). Here is the same code run on a server

keeping U.S. Eastern Standard Time:

5-8 ■ SETTING T IME ZONES AND GMT/UTC 217

Output of mktime(): 1111043160.

Output of gmmktime(): 1111025160.

Local timezone: -0500.

In this case, the local time is GMT minus five hours, so PHP subtracts 5 * 3600 = 18,000

seconds from the local timestamp to derive the output of gmmktime(). In other words, PHP

uses the local date and time value for both functions but with different time zone settings:

the timestamp corresponding to 5:02 p.m. on March 17, 2005, Eastern Australian Time

(GMT+1000) is 1111043160 (the value returned by mktime()), and the timestamp correspon-

ding to 5:02 p.m. on March 17, 2005, GMT is 1111025160 (the value returned by gmmktime()).

The reason we are taking a somewhat circuitous route in explaining this is in order to

clear up a common misconception. Those who are new to working with dates and times in

PHP often seem to think that gmmktime() returns a GMT timestamp for a set of local date and

time values. In other words, they think, “gmmktime() will give me the timestamp for the GMT

corresponding to the current time on my server.” In fact, what gmmktime() does is to give the

timestamp for the current local clock time as if that were the current GMT time.

■Tip mktime() actually produces a GMT timestamp. Keep that thought in mind—we will cover it in a

moment, in this recipe, and use it in the next few recipes as well.

We will now talk about another PHP function, gmdate(), which is a GMT-specific function

analogous to date(). Like date(), it takes a format string and an optional timestamp as argu-

ments. It returns a GMT time and date string. Some potential for confusion exists when it

comes to using date(), gmdate(), mktime(), and gmmktime() in combination. To make this

clearer, the following expands the previous example:

<?php

echo 'Output of <code>mktime()</code>: ' . mktime() . ".
\n";

echo 'Output of <code>gmmktime()</code>: ' . gmmktime() . ".
\n";

echo 'Local timezone: ' . date('O') . ".
\n";

echo 'date/mktime: ' . date('r', mktime()) . ".
\n";

echo 'date/gmmktime: ' . date('r', gmmktime()) . ".
\n";

echo 'gmdate/mktime: ' . gmdate('r', mktime()) . ".
\n";

echo 'gmdate/gmmktime' . gmdate('r', gmmktime()) . ".
\n";

?>

When you run this on two servers set to different time zones, you will see something like

Figure 5-3.

5-8 ■ SETTING T IME ZONES AND GMT/UTC218

Figure 5-3. The date()/gmdate()/mktime()/gmktime() matrix

In both cases, the correct local time is displayed using the timestamp produced by

mktime() with the date() function or the timestamp produced by gmmktime() with gmdate().

The current GMT date and time is displayed when you use the timestamp produced by

mktime() as the second argument to gmdate(). As you can see, it is the same on both servers.

■Caution We have worked on a couple of Red Hat Linux servers running various 4.x versions of PHP

where the time() function did not produce the same timestamp values as mktime() and strtotime() but

was an hour ahead of them. We have not observed this behavior on any installation of PHP 5, but it cannot

hurt to play it safe and check for this when starting development work on a given PHP installation for the

first time. Other than this case, all three functions produce a timestamp based on local time, which can be

used with gmdate() or gmstrftime() to output a current GMT/UTC time and date string.

5-9. Displaying Times and Dates in Other Languages

So far, all the date and time output has been in English. From the point of view of someone for

whom English is the primary language, this is not necessarily a bad thing. However, quite a lot

of people in the world use other languages and prefer to use websites in those languages. You

do not want to display something like “Guten Morgen! Heute is Monday, der 15th March” to

users of a German-language news portal any more than English-speaking users would want to

see something like “Good Morning! It’s Montag, the 15. of März” on an English-language site!

5-9 ■ DISPLAYING T IMES AND DATES IN OTHER LANGUAGES 219

You might consider writing your own functions to deal with this type of situation, but this

is not very appealing, not only because it is extra work for a German-language site but because

the same task would then have to be repeated for each language. Fortunately, a much better

way to accomplish this task exists. You can use the setlocale() function to change PHP’s lan-

guage and related settings in a number of ways. Here you are concerned primarily with how

dates and times are represented, but if internationalization is of any concern to you in your

work with PHP, you should investigate this function more thoroughly.

setlocale() takes two arguments: a category (a predefined constant) and a language code (a

string). To localize time and date settings, you can use either LC_ALL or LC_TIME for the category.

You can determine whether the locale was set successfully by testing the return value of

setlocale(), which is either the language string on success or FALSE on failure. The languages

or locales actually supported will vary from system to system; if you cannot find a value for a

desired language or locale, check with your system administrator or consult the operating sys-

tem documentation. On Unix systems, you can often find out what is supported by examining

the contents of the /usr/share/locale directory. On Windows, use Regional Settings in the

Control Panel.

If you do not know ahead of time what is supported, you can pass multiple

language/locale strings to setlocale(), and PHP will test each one in succession until (you

hope) one is used successfully. For example:

<?php

if($lc = setlocale(LC_ALL, "de_DE", "de_DE@euro", "deu", "deu_deu", "german"))

echo "<p>Locale setting is \"$lc\".</p>";

else

echo "<p>Couldn't change to a German locale.</p>";

?>

Once you have set the locale, you are ready to output dates and times in the target lan-

guage without resorting to brute-force translation (and possible transliteration). However,

you cannot use date() for this. Instead, you must use a separate function, strftime(). This

function is similar to date() in that it takes a format string and an optional timestamp as

arguments. Unfortunately, the similarity ends there, because the formatting characters are

quite unlike those used by date(). Table 5-3 lists the characters you are most likely to need,

arranged by the part of the date or time they represent. Note that not all of these are available

on all platforms, and Windows has some of its own. See http://msdn.microsoft.com/

library/en-us/vclib/html/_crt_strftime.2c_.wcsftime.asp for a complete listing.

Table 5-3. Format Characters Used by the strftime() Function

Character Description

Day

%A Full weekday name.

%a Abbreviated weekday name.

%u Weekday number (1 = Monday, 7 = Saturday).

%d Day of the month, with leading zero.

5-9 ■ DISPLAYING T IMES AND DATES IN OTHER LANGUAGES220

Character Description

%e Day of the month, with leading space.

%j Day of the year (001–366). Note that numbering begins with 1 and not 0.

Week

%U Number of the week of the year, with Sunday as the first day of the week.

%V ISO-8601 number of the week of the year, with Monday as the first day of the
week (01–53).

%W Number of the week of the year, with Monday as the first day of the week
(decimal number).

Month

%B Full name of the month.

%b or %h Abbreviated name of the month.

%m Number of the month, with leading zero.

Year

%g Two-digit year for ISO-8601 week of the year.

%G Four-digit year for ISO-8601 week of the year.

%y Two-digit year.

%Y Four-digit year.

Hour

%H Hour (00–23).

%I Hour (01–12)

Minute

%M Minute.

Second

%S Second.

Full Date and/or Time

%c Preferred date and time representation for the current locale.

%D Current date; equivalent to %m/%d/%y.

%p a.m./p.m. indicator.

%R Time in 24-hour notation.

%r Time in 12-hour (am/pm) notation.

%T Current time; equivalent to %H:%M:%S.

%x Preferred date representation.

%X Preferred time representation.

%z or %Z Time zone.

Formatting Characters

%n New line.

%t Tab.

%% The percent character.

5-9 ■ DISPLAYING T IMES AND DATES IN OTHER LANGUAGES 221

Now you are ready to put this together in a simple working example. Actually, since

browsers have problems displaying more than one character set in a single page, we will

use three examples.

The Code

<?php

if($loc_de = setlocale(LC_ALL, 'de_DE@euro', 'de_DE', 'deu_deu'))

{

echo "<p>Preferred locale for German on this system is \"$loc_de\".
";

echo 'Guten Morgen! Heute ist ' . strftime('%A %d %B %Y', mktime()) . ".</p>\n";

}

else

echo "<p>Sorry! This system doesn't speak German.</p>\n";

?>

<?php

if($loc_ru = setlocale(LC_ALL, 'ru_RU.utf8', 'rus_RUS.1251', 'rus', 'russian'))

{

echo "<p>Preferred locale for Russian on this system is \"$loc_ru\".
\n";

echo 'Доброе '

. 'Утро! '

. 'Сегодня '

. strftime('%A %d %B %Y', mktime()) . ".</p>\n";

}

else

echo "<p>Couldn't set a Russian locale.</p>\n";

?>

<?php

if($loc_zh = setlocale(LC_ALL, 'zh_ZH.big5', 'zh_ZH', 'chn', 'chinese'))

{

echo "<p>Preferred locale for Chinese on this system is \"$loc_zh\".
\n";

echo '???! ???... ' . strftime('%A %d %B %Y', mktime()) . ".</p>\n";

}

else

{

echo "<p>Sorry! No Chinese locale available on this system.</p>\n";

$lc_en = setlocale(LC_TIME, 'en_US', 'english');

echo "<p>Reverting locale to $lc_en.</p>\n";

}

?>

5-9 ■ DISPLAYING T IMES AND DATES IN OTHER LANGUAGES222

How It Works

Figure 5-4 shows the output in a web browser from each of these scripts when run on a

Windows system that supports German and Russian locales but no Chinese locale.

Figure 5-4. Output from the three setlocale()/strftime() examples

■Note LC_TIME changes only the way in which dates and times are reported but does not change other

locale-dependent items such as character sets. If you use an English-language locale and need to display

dates in a language (German or Spanish, for example) that uses the Latin-1 character set or a close relative

such as ISO-8559-1, ISO-8859-15, or Windows-1252, you may be able to use LC_TIME. However, in the

case of a language that uses non-Latin characters (such as Russian, Chinese, and some Eastern European

languages with special characters not represented in Western European character sets), you will most likely

have to use LC_ALL. Be aware that using setlocale() with LC_ALL will change all locale settings, not just

those related to dates and times. If you will be working with currency, numbers, or sorting of strings, be sure

to check the PHP manual for setlocale() and understand what all the implications might be before doing so.

The format of the language string differs between Unix and Windows systems. On Unix

systems, this varies somewhat but generally takes the form lc_CC.charset, where lc repre-

sents the two-letter language code, CC represents the two-letter country code, and charset

is the designation of the character set to be used. (The charset designation—including the

period—is often optional.) For example, pt_BR.ISO-18859-1 might be used to represent Brazil-

ian Portuguese. On Windows, you can use either Microsoft's three-letter language codes or the

names of the languages, for example, deu or german for German-language dates and times.

5-9 ■ DISPLAYING T IMES AND DATES IN OTHER LANGUAGES 223

5-10. Generating Localized GMT/UTC Time and Date Strings

It is important to remember that using setlocale() to set LC_ALL or LC_TIME does not handle

time zone differences for you, as this example illustrates:

<?php

$ts = mktime();

echo '<p>' . date('r (T)', $ts) . "</p>\n";

if($loc_de = setlocale(LC_ALL, 'de_DE@euro', 'de_DE', 'deu_deu'))

echo 'Guten Abend! Heute ist ' . strftime('%A %d %B %Y, %H.%M Uhr', $ts)

. ".</p>\n";

else

echo "<p>Sorry! This system doesn't speak German.</p>\n";

?>

The following shows the output for the date and time in standard format, along with the

name of the time zone, and then it shows a greeting, date, and time in German. As you can see

here, the time may be in German, but it is not German time that is being reported:

Fri, 18 Mar 2005 17:14:30 +1000 (E. Australia Standard Time)

Guten Abend! Heute ist Freitag 18 März 2005, 17.14 Uhr.

To report local time for any Germans who might be viewing this page, you have to calcu-

late the time zone offset yourself:

<?php

$ts_au = mktime(); // local time in Brisbane (GMT +1000)

$ts_de = $ts_au - (9 * 3600); // Berlin time is GMT +0100; difference is 9 hours

echo 'Good evening from Brisbane, where it\'s ' . date('H:m \o\n l d m Y', $ts_au)

. ".
";

setlocale(LC_ALL, 'de_DE', 'german');

echo 'Guten Morgen aus Berlin. Hier ist es '

. strftime('%H.%M Uhr, am %A dem %d %B %Y', $ts_de) . '.';

?>

The output from the previous code snippet should look something this:

Good evening from Brisbane, where it's 18:03 on Friday 18 03 2005.

Guten Morgen aus Berlin. Hier ist es 09.30 Uhr, am Freitag dem 18 März 2005.

5-10 ■ GENERATING LOCALIZED GMT/UTC T IME AND DATE STRINGS224

To generate a localized GMT/UTC time and date string, you can use the gmstrftime()

function. It works in the same way as strftime(), except it produces a date and time string in

accordance with GMT/UTC rather than local time.

■Tip For more information about language and other codes that can be used with the setlocale()

function, see the following URLs:

• C-1766, “Tags for the Identification of Languages”: http://www.faqs.org/rfcs/rfc1766

• ISO-639, “3-Letter Language Codes”: http://www.w3.org/WAI/ER/IG/ert/iso639.htm

• You can find identifiers available on Windows systems for languages, countries, and regions here:

• MSDN, “Language Strings (Visual C++ Libraries)”:

http://msdn.microsoft.com/library/en-us/vclib/html/_crt_language_strings.asp

• MSDN, “Run-Time Library Reference: Country/Region Strings”:

http://msdn.microsoft.com/library/en-us/vclib/html/_crt_country_strings.asp

One final note before moving on: most if not all Hypertext Transfer Protocol (HTTP) head-

ers use GMT/UTC dates and times that are expressed in English. Generally speaking, these

must conform to the RFC-1123 format ddd, dd mmm yyyy HH:mm:ss GMT, such as Mon,

28 Mar 2005 12:05:30 GMT. Here is an example showing how to generate a Content-Expires

header that tells user agents that a page should be considered “stale” exactly ten days after it

has been served by your site:

header('Expires: ' . gmdate('D, d M Y H:i:s', strtotime("+10 days")) . ' GMT');

The same is true for If-Modified-Since, If-Unmodified-Since, Last-Modified, and other

time- and date-sensitive HTTP headers. To generate these programmatically, you should

always use gmdate() and not strftime() and not gmstrftime(), as the latter two may contain

locale-specific information or be in a language other than English.

■Note For definitions of HTTP 1.1 headers, see http://www.w3.org/Protocols/rfc2616/

rfc2616-sec14.html.

5-11. Obtaining the Difference Between Two Dates

As you have already had the chance to see, altering a date by a given interval is not difficult.

Getting the difference between two dates is a bit more complicated.

5-11 ■ OBTAINING THE DIFFERENCE BETWEEN TWO DATES 225

The Code

<?php

$date1 = '14 Jun 2002';

$date2 = '05 Feb 2006';

$ts1 = strtotime($date1);

$ts2 = strtotime($date2);

printf("<p>The difference between %s and %s is %d seconds.<p>\n",

$date1, $date2, $ts2 - $ts1);

?>

How It Works

The output looks like so:

The difference between 14 Jun 2002 and 05 Feb 2006 is 115084800 seconds.

This is an answer, and you can verify that it is a correct one (a bit more than three years),

but it is not really a good answer—unless you know for certain that your users will not object

to performing a bit of long division.

Variations and Fixes

Let’s create a function that you can use to obtain the difference between two dates and times

and to present the results in a manner humans can easily understand. This function, which we

will call date_diff(), normally takes one or two arguments, each of which is either an integer

representing a timestamp or a time/date string in a format understood by strtotime(). (Actu-

ally, it can be called without any arguments, but the results will not be terribly interesting or

useful; also, you can set an optional third argument to enable debugging output.) This func-

tion returns an array consisting of three elements—two arrays and an integer, which will be

described for you in a moment.

We are breaking up the code listing here in order to provide some commentary as you

read through it, but you can get it in the single file date_diff.php in the chapter5 directory of

the code download package that accompanies this book and that you can download for free

from the Downloads section of the Apress website at http://www.apress.com/.

<?php

function date_diff($date1=0, $date2=0, $debug=FALSE)

{

The first task is to check the argument types passed to this function. (Note that they both

default to zero.) For each of the values, you check its type using is_numeric(). If it is a number,

you treat it as an integer and thus a timestamp; otherwise, you treat it as a string to be passed

to strtotime(). In production, you may want to perform some additional checks (for instance,

on a Windows system, you need to make sure that neither of the first two arguments repre-

sents a date prior to the Unix epoch), but this is sufficient for the current purposes.

5-11 ■ OBTAINING THE DIFFERENCE BETWEEN TWO DATES226

Once you have decided how to handle the input parameters and have converted any

strings to timestamps, you assign the timestamps to the variables $val1 and $val2 and then

subtract one from the other. To avoid problems with negative values, you can actually obtain

the absolute value of the difference. This value is then assigned to the variable $sec.

$val1 = is_numeric($date1) ? $date1 : strtotime($date1);
$val2 = is_numeric($date2) ? $date2 : strtotime($date2);

$sec = abs($val2 - $val1);

// **DEBUG **
if($debug)
printf("<p>Date 1: %s ... Date2: %s</p>\n",

date('r', $val1), date('r', $val2));

The reason for getting the absolute value is so that you can pass it to getdate(), assigning

the value that is returned by this function to the variable $units. You also create an array

named $output, which you will use for storing the data to be returned from this function.

$units = getdate($sec);

// **DEBUG**
if($debug)
printf("<pre>%s</pre>\n", print_r($units, TRUE));

$output = array();

Before continuing, let’s see what sort of data $units contains at this point by calling the

function with the $debug argument set to TRUE:

<?php
date_diff('12 Sep 1984 13:30:00', '10 Sep 1984 09:15:45', TRUE');

?>

This is the output:

Date 1: Wed, 12 Sep 1984 13:30:00 +1000 ... Date2: Mon, 10 Sep 1984 09:15:45 +1000

Array
(

[seconds] => 15
[minutes] => 14
[hours] => 14
[mday] => 3
[wday] => 6
[mon] => 1
[year] => 1970
[yday] => 2
[weekday] => Saturday
[month] => January
[0] => 188055

)

5-11 ■ OBTAINING THE DIFFERENCE BETWEEN TWO DATES 227

We also need to talk about the output from this function. As we have said already, the

return value is an array consisting of three elements:

components: This is an array whose elements are the difference between the dates when

expressed as a single quantity broken down into years, months, days, hours, minutes, and

seconds. Given the two dates shown previously, you would expect this to be 0 years, 0

months, 2 days, 4 hours, 14 minutes, and 15 seconds. But some obvious discrepancies

exist between those values shown; we will return to this issue and discuss these shortly.

elapsed: This element is also an array, whose elements are named for years, months,

weeks, days, hours, minutes, and seconds. However, each of these is a stand-alone value;

in other words, the elements of this array will—in the case of the dates used previously—

make it possible to express the difference as (approximately) .0060 years, or 0.073 months,

or 0.31 weeks, or 2.2 days, or 52.24 hours, or 3,134.25 minutes, or 188,055 seconds.

order: This is simply an integer value: -1 if the second date is earlier than the first and 1 if

otherwise.

You will look at the complete output of date_diff() a bit later in this recipe. Right now,

we will discuss how to reconcile the output you just saw with what you know ought to go into

the array $output["components"]. Keep in mind that what you are doing is treating a value

representing elapsed time as though it were a timestamp and using getdate() to get an

approximation of the number of years, months, days, and so on, that it breaks down into.

Let’s start with the hours, because they are a bit tricky. getdate() handles a timestamp

with the same attitude (so to speak) as mktime(), in that the values it returns are calculated in

terms of system time. What this means is that the difference in hours between system time

and GMT is added to $units["hours"], and you need to subtract the same amount in order to

correct for this. You can get the difference in seconds by obtaining date('Z'); then you just

divide this amount by 3600 to get the difference in hours and subtract the result from

$units["hours"] to find the value for $hours.

$hours = $units["hours"] – (date('Z') / 3600);

You also have to consider that half the time zones on the planet are negative with respect

to GMT, and thus what will actually happen is that some number of hours will be added to

$units["hours"]. This means you could end up with a value greater than 24. To handle this

possibility, you need to test whether the number of hours is greater than 24; if it is, then you

will have to increment the number of days and subtract 24 from $hours:

$days = $units["mday"];

while($hours > 23)

{

$days++;

$hours -= 24;

}

Now you are ready to actually assign values to keys in the $outputs["components"] array.

To get an accurate number of years, you need to subtract 1970 (the base year for timestamps)

from $units["years"].

5-11 ■ OBTAINING THE DIFFERENCE BETWEEN TWO DATES228

■Note If your system uses a time zone west of Greenwich (chiefly, the Americas), you will need to take into

account that the Unix epoch will be represented as something such as 31 December 1969 19:00:00 for U.S.

Eastern Standard Time (GMT–0500). In this case, the value of the years element would be 1969.

Now consider the situation when the time difference between the two dates that were

passed to date_diff() is less than one month; getdate() will return a value of 1 for the

months, where you actually want a value of 0 (no months elapsed). The same is true of days.

Putting this together, you can now assign values to all the elements of $output["components"]:

$epoch = getdate(0); // the Unix epoch in the server's local time zone

$output["components"] = array(

"years" => $units["year"] - $epoch["year"],

"months" => --$units["mon"],

"days" => --$days,

"hours" => $hours,

"minutes" => $units["minutes"],

"seconds" => $units["seconds"]

);

Let’s look at the second element in $output, the $output["elapsed"] array. This is actually

fairly straightforward, since all that is required is to divide the total number of seconds elapsed

by the number of seconds in a year, in a month, in a week, and so on, and assign these values

appropriately:

$output["elapsed"] = array(

"years" => $sec / (365 * 24 * 60 * 60),

"months" => $sec / (30 * 24 * 60 * 60),

"weeks" => $sec / (7 * 24 * 60 * 60),

"days" => $sec / (24 * 60 * 60),

"hours" => $sec / (60 * 60),

"minutes" => $sec / 60,

"seconds" => $sec

);

Finally, you set $output["order"] equal to -1 if the second date is earlier than the first and

to 1 if it is not, and then you return the $output array to the calling code:

$output["order"] = $val2 < $val1 ? -1 : 1;

return $output;

}

?>

Let’s test this function with a couple of sample values. Note that you can omit the $debug

argument—in fact, you might want to take the debugging portions from the function when

using it in production, but we will leave that decision up to you. First we will use print_r() to

output a sample array and then write a message that tells the reader exactly how long our last

5-11 ■ OBTAINING THE DIFFERENCE BETWEEN TWO DATES 229

stay in New Zealand was. We have saved the following test file as ch5/date-diff-test.php in

this book’s code download:

<?php

require('./date-diff.php');

$arrived = mktime(11, 30, 0, 6, 9, 2002);

$departed = mktime(17, 20, 0, 6, 22, 2002);

$holiday = date_diff($arrived, $departed);

// display the entire $holiday array

printf("<pre>%s</pre>\n", print_r($holiday, TRUE));

$components = $holiday["components"];

$output = array();

//

foreach($components as $period => $length)

if($length > 0)

$output[] = "$length $period";

printf("<p>My holiday in Auckland began on %s, and lasted %s.</p>\n",

date('l, jS F Y', $arrived), implode($output, ', '));

?>

The following is the output:

Array

(

[components] => Array

(

[years] => 0

[months] => 0

[days] => 13

[hours] => 5

[minutes] => 50

[seconds] => 0

)

[elapsed] => Array

(

[years] => 0.036282343987823

[months] => 0.44143518518519

[weeks] => 1.8918650793651

[days] => 13.243055555556

[hours] => 317.83333333333

5-11 ■ OBTAINING THE DIFFERENCE BETWEEN TWO DATES230

[minutes] => 19070

[seconds] => 1144200

)

[order] => 1

)

My holiday in Auckland began on Sunday, 9th June 2002, and lasted 13 days,

5 hours, 50 minutes.

■Tip If you need to work with dates including years outside the range 1901–2038 on Unix platforms or

1970–2038 on Windows, or if you need to work with negative timestamp values, you might want to try the

ADOdb Date library. This library provides replacements for the regular PHP date and time functions that work

much like their counterparts, except that the function names are all prefixed with adodb_, and a few of the

formatting characters used with date(), gmdate(), strftime(), and gmstrftime() are not supported by

their ADOdb analogs. However, the library adds some extended functionality for setting and tracking day-

light-saving time, so it seems a fair trade. You can download this library and read its documentation at

http://phplens.com/phpeverywhere/adodb_date_library.

5-12. Project: Constructing and Using a Date Class

PHP’s date functions are quite flexible but can be somewhat frustrating to use. In a recent con-

versation with a friend who is the author of a popular book on PHP and MySQL, we mentioned

to him that we wanted to include a date-related class or two in this chapter. His response was,

“Great! I hope you’ll come up with something that’s easier to remember than all those format-

ting characters—I can’t believe how often I still have to look them up.”

Lots of formatting characters is not the only issue. date() and gmdate() use a different set

of formatting characters than strftime() and gmstrftime(), and there is not a one-to-one cor-

respondence between the two sets. Moving further afield, you will find that the getdate() and

gettimeofday() functions (as well as localtime(), which we did not really cover in this chap-

ter) have made a couple of attempts to offer a more structured representation of a date using

arrays. The problem with these is that the arrays have different structures. Basically, PHP’s

date and time functions do not present a unified picture of dates and times, other than them

all relating to Unix timestamps.

In the following sections, we will offer a solution to some of these problems by creating a

couple of date- and time-related classes that expose a well-defined and consistent interface,

as well as methods that are easy to use and to remember.

A Model: The ECMA Date Class

Different programming languages can be better at doing certain things than others. For exam-

ple, Python provides some extremely powerful functionality for handling arrays (or lists and

tuples, as they are known in that language), Perl is handy for string processing, C is good for

building data structures, and so on. We have always found the Date class provided in

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 231

JavaScript (or, more properly, EMCAScript) to offer a simple, unambiguous, no-frills way to

work with dates. This class, which bears some resemblance to Java 1.0’s java.util.Date, is

defined in the ECMAScript Standard, third edition, also known as EMCA-262, which can be

found at http://www.ecma-international.org/publications/standards/ECMA-262.htm. The

class has three properties—all private—and about three dozen public methods that are used

to get and set these properties according to different criteria. This may sound like a lot of

methods, but they are really quite straightforward. You can see a complete listing of these,

as we have adapted them for use in PHP 5, in Figure 5-5.

Figure 5-5. Base Date class members, showing input parameters and return types

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS232

The Date class provides two static methods that we will discuss shortly. All the remaining

methods exposed by Date are instance methods and can be grouped according to two differ-

ent criteria:

• Get vs. set methods: Each instance method either gets or sets the value of a different

component of a date and time object represented by an instance of Date, such as hours,

minutes, years, months, and so on.

• Local vs. UTC: Each instance method references a Date object expressed as either a

local (system) or as a UTC (GMT) time.

For example, you can obtain the hours portion of a local date and time by calling the cor-

responding Date object’s getHours() method and the same time in terms of UTC by calling its

getUTCHours() method. To set the hours portion of a local date and time, call its setHours()

method. To set the hours portion of a Date instance in UTC, use the setUTCHours() method.

All Date instance methods, without exception, return integers. No methods are provided

for the purpose of adding leading zeroes for single-digit values. And no methods return names

of months or days of the week. Times are expressed in 24-hour format only. We will show you

how to take care of these last two issues later in this recipe by extending the Date class. Other

than in the case of the toLocaleString() method, ECMA-262 dates do not support localiza-

tion. Because localization in PHP depends on so many factors external to the language itself,

we have chosen not to attempt to make provisions for it here; however, we will offer some sug-

gestions on how you might extend Date in different circumstances to accommodate at least

some of your localization needs.

One other point needs to be addressed before continuing. If you are familiar with

ECMAScript in one or more of its incarnations—browser JavaScript, Flash ActionScript,

Microsoft JScript, and so on—then you are probably aware that ECMA-262 dates are stored

internally as millisecond timestamps. That is, an ECMAScript date that complies with the

specification is supposed to be stored as a number of thousandths of a second elapsed since

the Unix epoch. Because PHP does not provide a ready means to obtain milliseconds for any

date and time other than the current one, we have chosen to define Date using whole seconds

only.

Now let’s look at the class; the source code is included in this book’s code download pack-

age in the file ch5/Date.class.inc.php.

The Code

<?php

// file: Date.class.inc.php

// purpose: implements an ECMA-style Date class for PHP 5

class Date

{

This defines two class variables, both of which are protected so that they cannot be

accessed directly by the user of the class but are accessible by subclasses. (You will see why

you want to control access in this fashion later in this chapter in recipe 5-13, when we look at

extending the Date class.)

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 233

■Note If you are not familiar with protected class members, see Chapter 2 for an explanation.

The $time variable stores the local date’s internal representation in seconds (a Unix time-

stamp). $offset stores the number of minutes by which $time differs from UTC. Note that this

value is negative for time zones west of Greenwich.

protected $time;

protected $offset;

Next, let’s look at the two static methods mentioned previously. Date::parse() takes an

RFC-1123 date as its argument and returns a timestamp (in seconds). We have used strtotime()

to implement this method, so you could in theory use any string accepted by that function, but

we advise against doing so.

// STATIC METHODS

public static function parse($date)

{

return strtotime($date);

}

The other static method, Date::UTC(), returns the UTC timestamp in seconds for a local

date and time passed to it as a set of three to six arguments. These arguments are as follows,

in order:

• $year: A four-digit year.

• $month: The number of the month (January = 0; December = 11). Note that all Date

methods number the months of the year beginning with 0.

• $day: The day of the month (1–31).

• $hours: Hours (0–23).

• $minutes: Minutes (0–59).

• $seconds: Seconds (0–59).

The $year, $month, and $day parameters are required. Each of the remaining three argu-

ments is optional, but those that are used must be present in the order listed. Note that this

method does not work on Windows for dates/times previous to January 1, 1970, 12 a.m. UTC.

public static function UTC($year, $month, $day)

{

$hours = $minutes = $seconds = 0;

$num_args = func_num_args();

if($num_args > 3)

$hours = func_get_arg(3);

if($num_args > 4)

$minutes = func_get_arg(4) + ((int)date('Z') * 60);

if($num_args > 5)

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS234

$seconds = func_get_arg(5);

return mktime($hours, $minutes, $seconds, ($month + 1), $day, $year);

}

The Date constructor is a bit tricky to implement in PHP, because (as indicated in Figure 5-4)

it can take varying types and numbers of arguments. It has four options in this regard:

• No arguments: In this case, the Date instance corresponds to the current local date and

time.

• One argument, of type int: The argument is interpreted as a local timestamp in seconds.

• One argument, of type string: The argument is interpreted as a local date and time in

RFC-1123 format (for example, Wed, 8 May 1996 17:46:40 -0500).

(See http://www.ietf.org/rfc/rfc1123.txt for details of the specification.)

• Two to six arguments, all of type int: Similar to the way in which Date::parse handles

its arguments, these are interpreted in the following order:

• Four-digit year

• Month (0 = January, 11 = December)

• Day (0–31)

• Hours (0–23)

• Minutes (0–59)

• Seconds (0–59)

In addition, because you might want to extend this class later, and because you do not

know ahead of time what the number and type(s) of argument(s) might be, it is also necessary

to allow for the possibility that the arguments might be passed in the form of an array.

The following is the code for the class constructor. No input parameters are specified in the

declaration; instead, you will use func_num_args() to find the number of arguments passed to

the constructor and the array returned by func_get_args() to access the arguments. (For more

about these functions, see Lee Babin’s Chapter 11.)

// CONSTRUCTOR

public function __construct()

{

You can determine how many arguments were passed to the constructor with this:

$num_args = func_num_args();

If the constructor has been called with at least one argument, then you assign the argu-

ments array to a variable named $args:

if($num_args > 0)

{

$args = func_get_args();

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 235

Here is where you have to perform a bit of sleight of hand. If the Date constructor has

been called by a child class of Date, then the Date constructor will have been invoked with a

single argument, an array whose elements are the arguments that were passed to the child

class constructor. Fortunately, it is not difficult to find out if this is the case: just use the

is_array() function to test whether this is so.

■Tip When you need to determine a value’s type in production code, you should always use the is_*()

functions, such as is_array(), is_int(), is_string(), and so on, in preference to gettype(). The rea-

son for this is that the strings returned by gettype() are not guaranteed always to have the same values as

PHP evolves. In other words, if you performed a test such as if(gettype($somevar) == 'integer')...,

it might work today on your server, but a few versions down the road, or on a different platform, gettype()

might return int rather than integer , so the test would fail even if $somevar really does hold an integer

value. Writing the test as if(is_int())... avoids this problem.

Here is where the sleight of hand comes in. If the first element of $args is itself an array,

then you assign this array to the variable $args and update $num_args to hold the number of

arguments in this array.

if(is_array($args[0]))

{

$args = $args[0];

$num_args = count($args);

}

If $num_args is greater than 1, then you know that multiple arguments representing the

different portions of a date (seconds, minutes, hours, day, and so on) were passed to the con-

structor, and you create and initialize variables to hold these values.

if($num_args > 1)

$seconds = $minutes = $hours = $day = $month = $year = 0;

}

Now you can continue, using a switch case to set the values of the variables that

were passed in, in order. For instance, if six arguments are passed in, then you know the sixth

argument corresponds to seconds and assign its value to $seconds; if there are at least five

arguments, then you assign the value of the fifth to $minutes, and so on. If there are two argu-

ments, you know they correspond to the month and year, respectively. You might notice that

there are no break statements for any of the cases until you reach the case where the number

of arguments is equal to 2. At this point, you have set all the temporary variables, so now you

can use them in making a call to mktime() and setting the class $time variable to the result.

If a single argument is passed to the constructor, you check to see if it is an integer or

a string. If it is an integer, you assume that it is a timestamp and set $time to that value.

Otherwise, if it is a string, you assume that it represents an RFC-formatted date, pass this to

strtotime(), and set $time equal to the value that is returned by that function. It is important

to remember that if the value is neither an integer nor a string, then $time will never get set.

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS236

This is something we might fix in a future version of this class—or that you can change your-

self if you want—but for now we have left it as it is.

If no arguments are passed to the constructor, then $time is set to the default value

returned by mktime() when called without any input parameters. In other words, the resulting

Date instance will in this case represent the current system date and time.

switch($num_args)

{

case 6:

$seconds = $args[5];

case 5:

$minutes = $args[4];

case 4:

$hours = $args[3];

case 3:

$day = $args[2];

case 2:

$month = $args[1];

$year = $args[0];

$this->time = mktime($hours, $minutes, $seconds, ($month + 1), $day , $year);

break;

case 1:

if(is_int($args[0]))

{

$this->time = $args[0];

}

elseif(is_string($args[0]))

{

$this->time = strtotime($args[0]);

}

break;

case 0:

$this->time = mktime();

break;

}

Now you have two tasks remaining for the constructor: you need to get the time zone off-

set, which you can obtain using PHP’s built-in gettimeofday() function; as we noted earlier,

this function returns an array, so you need to set the class variable $offset to the value of this

array’s "minuteswest" element. That completes what is required of the constructor.

$temp = gettimeofday();

$this->offset = (int)$temp["minuteswest"];

}

You may have noticed that it ought to be possible to change the time zone setting for a

date and time directly, and it is—the ECMA specification includes appropriate methods for

doing this, and as you will see shortly, we have implemented them in this class. But let’s not

get ahead of ourselves.

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 237

Before proceeding to the Date class’s get*() and set*() methods, you need to take care of

one more ECMA requirement, which is also just a good idea for any class representing a com-

plex data structure. The toString() method should return an implementation-dependent

string representation of the local date and time that is human-readable but that does not use

locale-specific formatting. We have chosen to use a MySQL-style DATETIME for this purpose,

which you can derive from the output of date('c') quite easily, as you can see here:

public function toString()

{

return str_replace('T', ' ', date('c', $this->time));

}

Now you are ready for some getter methods. The first seven of these are quite straightfor-

ward; except in the case of getTime() and getTimeZoneOffset(), all that is necessary is to map

each to the appropriate date() call. (You could also use the idate() function for this purpose.)

getTime() and getTimeZoneOffset() merely return the values stored as the instance variables

$time and $offset, respectively. Note that the ECMA getMilliseconds() method is not imple-

mented (for reasons we have already given). For particulars, see the code comments

preceding each method definition.

// returns day of month (1-31)

public function getDate()

{

return (int)date("j", $this->time);

}

// returns day of week (0=Sunday, 6=Saturday)

public function getDay()

{

return (int)date("w", $this->time);

}

// returns 4-digit year

// JS 1.0 defined a getYear() method as well, but it has been deprecated

// in favor of this one because it was not defined or implemented very well

public function getFullYear()

{

return (int)date("Y", $this->time);

}

// returns hours field (0-23)

public function getHours()

{

return (int)date("H", $this->time);

}

// returns minutes field (0-59)

public function getMinutes()

{

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS238

return (int)date("i", $this->time);

}

// returns month (0=January, 11=December)

public function getMonth()

{

$temp = (int)date("n", $this->time);

return --$temp;

}

// returns seconds field (0-59)

public function getSeconds()

{

return (int)date("s", $this->time);

}

// returns a complete Date as elapsed seconds

// since the Unix epoch (midnight on January 1, 1970, UTC)

// note that this is not actually ECMA-compliant since

// it returns seconds and not milliseconds

public function getTime()

{

return $this->time;

}

// returns difference between local time and UTC

// as measured in minutes

// (east of Greenwich = positive, west of Greenwich = negative)

public function getTimezoneOffset()

{

return $this->offset;

}

The UTC-specific get*() methods are defined in much the same way except you use

gmdate() rather than date(). Once again, just see the comment preceding each method

definition for any required explanations.

// returns day of month (1-31) (UTC)

public function getUTCDate()

{

return (int)gmdate("j", $this->time);

}

// returns day of week (0=Sunday, 6=Saturday) (UTC)

public function getUTCDay()

{

return (int)gmdate("w", $this->time);

}

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 239

// returns the 4-digit year (UTC)

public function getUTCFullYear()

{

return (int)gmdate("Y", $this->time);

}

// returns the hours field (0-59) (UTC)

public function getUTCHours()

{

return (int)gmdate("H", $this->time);

}

// returns minutes field (0-59) (UTC)

public function getUTCMinutes()

{

return (int)gmdate("i", $this->time);

}

// returns month (0=January, 11=December) (UTC)

public function getUTCMonth()

{

$temp = (int)gmdate("n", $this->time);

return ($temp - 1);

}

// returns seconds field (0-59) (UTC)

public function getUTCSeconds()

{

return (int)gmdate("s", $this->time);

}

/*

// deprecated in JS 1.2 in favor of Date.getUTCFullYear()

// because it was so badly implemented in JS 1.0/1.1

// We have chosen not to do so here

function getUTCYear()

{

}

*/

The get*() methods let you read the components of a Date object in both local and UTC

time. However, Date will be much more useful if you are able to set these component values

(year, month, day, and so on) as well. Let’s look at the setDate() method as an example, as the

remaining set*() methods will follow the same pattern.

This method sets the day of the month for a given Date object. It takes a single integer

argument that should be the number of the desired day of the month. As mandated by

ECMA-262 for all the Date class set*() methods, it returns the updated value for this Date

instance’s $time variable. setDate() works by calling the built-in mktime() function and using

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS240

the Date’s get*() methods to derive current values for all components of the date and time

except for the day of the month, for which it uses the value supplied as $date. It then sets the

$time value for the Date to the resulting timestamp value from the mktime() call.

// set day of month (1-31)

public function setDate($date)

{

$this->time = mktime(

$this->getHours(),

$this->getMinutes(),

$this->getSeconds(),

$this->getMonth() + 1,

$date,

$this->getFullYear()

);

return $this->time;

}

// set 4-digit year

public function setFullYear($year)

{

$this->time = mktime(

$this->getHours(),

$this->getMinutes(),

$this->getSeconds(),

$this->getMonth() + 1,

$this->getDate(),

$year

);

return $this->time;

}

// set hours (0-23)

public function setHours($hours)

{

$this->time = mktime(

$hours,

$this->getMinutes(),

$this->getSeconds(),

($this->getMonth() + 1),

$this->getDate(),

$this->getFullYear()

);

return $this->time;

}

// set minutes (0-59)

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 241

public function setMinutes($minutes)

{

$this->time = mktime(

$this->getHours(),

$minutes,

$this->getSeconds(),

($this->getMonth() + 1),

$this->getDate(),

$this->getFullYear()

);

return $this->time;

}

// set month (0-11)

public function setMonth($month)

{

$this->time = mktime(

$this->getHours(),

$this->getMinutes(),

$this->getSeconds(),

$this->getMonth() + 1,

$this->getDate(),

$this->getFullYear()

);

return $this->time;

}

// set seconds (0-59)

public function setSeconds($seconds)

{

$this->time = mktime(

$this->getHours(),

$this->getMinutes(),

$seconds,

$this->getMonth() + 1,

$this->getDate(),

$this->getFullYear()

);

return $this->time;

}

The setTime() and setTimeZoneOffset() methods set the $time and $offset variables,

respectively. Do not forget that $offset is measured in minutes to accommodate time zones

that are not defined in whole hours. India, for example, uses GMT+0530, and some parts of

Australia use GMT+0930 for local times. Also note that $offset is negative for points west

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS242

of Greenwich. This means that the offset is added to local time to find the equivalent UTC date

and time and subtracted from UTC to get the local date and time.

// set time in seconds since the Unix epoch

// note that in ECMA-262 this should actually

// be a value in milliseconds, not seconds

public function setTime($time)

{

$this->time = $time;

return $this->time;

}

// set time zone offset in minutes

// (negative values for points west of Greenwich,

// positive values are east of it)

public function setTimeZoneOffset($offset)

{

$this->offset = $offset;

return $this->time;

}

The next methods of this class set dates and times in terms of their UTC equivalents.

These are quite similar to the set*() methods you have already seen for Date, except that

you subtract the time zone offset from the value returned by getUTCMinutes() and pass this

adjusted value to mktime().

// set day of month (1-31) (UTC)

public function setUTCDate($date)

{

$this->time = mktime(

$this->getUTCHours(),

$this->getUTCMinutes() - $this->offset,

$this->getUTCSeconds(),

$this->getUTCMonth() + 1,

$date,

$this->getUTCFullYear()

);

return $this->time;

}

// set 4-digit year (UTC)

public function setUTCFullYear($year)

{

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 243

$this->time = mktime(

$this->getUTCHours(),

$this->getUTCMinutes() - $this->offset,

$this->getUTCSeconds(),

$this->getUTCMonth() + 1,

$this->getUTCDate(),

$year

);

return $this->time;

}

// set hours (0-23) (UTC)

public function setUTCHours($hours)

{

$this->time = mktime(

$hours,

$this->getUTCMinutes() - $this->offset,

$this->getUTCSeconds(),

$this->getUTCMonth() + 1,

$this->getUTCDate(),

$this->getUTCFullYear()

);

return $this->time;

}

In the case of setUTCMinutes(), the time zone adjustment is made to the value that has

been passed to this method for the $minutes argument:

// set minutes (0-59) (UTC)

public function setUTCMinutes($minutes)

{

$this->time = mktime(

$this->getUTCHours(),

$minutes - $this->offset,

$this->getUTCSeconds(),

$this->getUTCMonth() + 1,

$this->getUTCDate(),

$this->getUTCFullYear()

);

return $this->time;

}

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS244

// set month (0-11) (UTC)

public function setUTCMonth()

{

$this->time = mktime(

$this->getUTCHours(),

$this->getUTCMinutes() - $this->offset,

$this->getUTCSeconds(),

$month + 1,

$this->getUTCDate(),

$this->getUTCFullYear()

);

return $this->time;

}

// set seconds (0-59) (UTC)

public function setUTCSeconds($seconds)

{

$this->time = mktime(

$this->getUTCHours(),

$this->getUTCMinutes() - $this->offset,

$seconds,

$this->getUTCMonth() + 1,

$this->getUTCDate(),

$this->getUTCFullYear()

);

return $this->time;

}

■Note The ECMA specification originally defined the methods getYear() and setYear() that were used

to get and set the year portion of a date. setYear() could accept either a two-digit or a four-digit year.

However, because of ambiguities in the definitions of these methods, and because of differing implementa-

tions of them, they were eventually deprecated in favor of getFullYear() and setFullYear(), which

always act with regard to four-digit years. Because of this, and because we think it is a more sensible prac-

tice always to work with four-digit years whenever possible, we have chosen not to implement the older

methods. If you really want, you can always implement a getShortYear() method to return a two-digit

year in a child class, such as the DateExtended class you will look at in recipe 5-13. We recommend not

implementing a method to set two-digit years.

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 245

The next three methods return a date in two different formats. Both toGMTString() and

toUTCString() return the current local date and time expressed in UTC and in RFC-1123 format.

In fact, they are synonymous; an earlier version of the ECMA specification named this method

toGMTString(), but this was later deprecated in favor of toUTCString(). The toLocaleString()

method returns a date and time formatted according to local conventions. We have chosen to

express this as the string returned by date('r').

public function toGMTString()

{

return $this->toUTCString();

}

// returns the date formatted according to local

// conventions and using local time

public function toLocaleString()

{

return date('r', $this->time);

}

// returns RFC-formatted date (see toGMTString())

public function toUTCString()

{

return date("D d M Y H:i:s", ($this->time + ($this->offset * 60))) . " UTC";

}

Finally, the ECMA specification defines a valueOf() method that returns a numeric repre-

sentation of the local date and time. (Although ECMA uses milliseconds, we have used seconds.)

This is a good programming practice, even though in this case this method is really just an alias

for getTime().

// this is an alias for getTime()

// once again ECMA specifies milliseconds rather than seconds

// as it's implemented here

public function valueOf()

{

return $this->time;

}

}

// end class Date

?>

Trying It Out

Here is some code that demonstrates how to use this class. It should be fairly self-explanatory.

<?php

// file: ch5/date-class-test.php

require("./Date.class.inc.php");

$today = new Date();

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS246

printf("<p>Current date and time: %s</p>\n", $today->toLocaleString());

echo "<p>'Get' methods:</p>";

printf("<p>Month: %d.</p>\n", $today->getMonth());

printf("<p>Day of month: %d.</p>\n", $today->getDate());

printf("<p>Day of Week: %d.</p>\n", $today->getDay());

printf("<p>Year: %d.</p>\n", $today->getFullYear());

printf("<p>Hours: %d.</p>\n", $today->getHours());

printf("<p>Minutes: %d.</p>\n", $today->getMinutes());

printf("<p>Seconds: %d.</p>\n", $today->getSeconds());

echo "<p>UTC 'get' methods used on the same <code>Date()</code> instance...</p>";

printf("<p>UTC Month: %d.</p>\n", $today->getUTCMonth());

printf("<p>UTC Day of month: %d.</p>\n", $today->getUTCDate());

printf("<p>UTC Day of Week: %d.</p>\n", $today->getUTCDay());

printf("<p>UTC Year: %d.</p>\n", $today->getUTCFullYear());

printf("<p>UTC Hours: %d.</p>\n", $today->getUTCHours());

printf("<p>UTC Minutes: %d.</p>\n", $today->getUTCMinutes());

printf("<p>UTC Seconds: %d.</p>\n", $today->getUTCSeconds());

$timezone = $today->getTimeZoneOffset();

printf("Value returned by <code>getTimeZoneOffset()</code>: %d",

$timezone);

$date = "Sat, 5 April 2003 15:15:25 +1000";

$timestamp = Date::parse($date);

printf("<p>Test date: %s; <code>Date::parse()</code> yields: %d.</p>\n",

$date, Date::parse($date));

printf("<p><code>Date::UTC()</code> method: %d</p>\n", ➥

Date::UTC(2002, 3, 4, 23, 30));

printf("<p>Using <code>toUTCString()</code>: %s</p>", $today->toUTCString());

echo "<p>Now for some 'set' methods...</p>";

echo "<p>Let's try advancing the date by one day... :";

$today->setDate($today->getDate() + 1);

echo $today->toLocaleString() . "</p>";

echo "<p>Now let's try advancing that date by one year... :";

$today->setFullYear($today->getFullYear() + 1);

echo $today->toLocaleString() . "</p>";

echo "<p>Now we're going to set the month for that date to 0 (January):";

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 247

$today->setMonth(0);

echo $today->toLocaleString() . ".</p>\n";

echo "<p>Now we're going to set the month for that date to 13

(should be February of the following year):";

$today->setMonth(13);

echo $today->toLocaleString() . ".</p>\n";

echo "<p>Now for <code>setMinutes()</code> and <code>setSeconds()</code>:</p>\n";

echo "<p>Test code: <code>\$today->setMinutes(30);

\$today->setSeconds(45);</code>.</p>\n";

$today->setMinutes(30);

$today->setSeconds(45);

printf("<p>Date is now: %s.</p>\n", $today->toLocaleString());

echo "<p>Using the <code>toString()</code> method

on the same date yields: " . $today->toString() . ".</p>\n";

echo "Finally, let's try some other ways to call the constructor...</p>";

echo "First, the RFC-formatted date <code>24 Sept 2005</code>: ";

$myBirthday = new Date("24 Sept 2005");

echo $myBirthday->toString() . "</p>.\n";

echo "<p>And now we'll try it with

<code>\$xmas2k = new Date(2000, 11, 25);</code>

followed by

<code>echo \$xmas2k->toLocaleString();</code>

and then

<code>echo \$xmas2k->toUTCString();</code>...</p>";

$xmas2k = new Date(2000, 11, 25);

echo "<p>" . $xmas2k->toLocaleString() . "</p>";

echo "<p>" . $xmas2k->toUTCString() . "</p>";

echo "<p>Now for some UTC methods, using <code>\$xmas2k</code>...</p>\n";

echo "Calling <code>\$xmas2k->setUTCDate(30);</code></p>\n";

$xmas2k->setUTCDate(30);

printf("<p>UTC date: %s; local date: %s</p>\n",

$xmas2k->toUTCString(),

$xmas2k->toLocaleString());

echo "Calling <code>\$xmas2k->setUTCHours(48);</code></p>\n";

$xmas2k->setUTCHours(48);

printf("<p>UTC date: %s; local date: %s</p>\n",

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS248

$xmas2k->toUTCString(),

$xmas2k->toLocaleString());

echo "Calling <code>\$xmas2k->setUTCFullYear(2008);</code></p>\n";

$xmas2k->setUTCFullYear(2008);

printf("<p>UTC date: %s; local date: %s</p>\n",

$xmas2k->toUTCString(),

$xmas2k->toLocaleString());

?>

The output from this file is as follows:

Current date and time: Fri, 25 Mar 2005 21:49:37 +1000

'Get' methods:

Month: 2.

Day of month: 25.

Day of Week: 5.

Year: 2005.

Hours: 21.

Minutes: 49.

Seconds: 37.

UTC 'get' methods used on the same Date() instance...

UTC Month: 2.

UTC Day of month: 25.

UTC Day of Week: 5.

UTC Year: 2005.

UTC Hours: 11.

UTC Minutes: 49.

UTC Seconds: 37.

Value returned by getTimeZoneOffset(): -600

Test date: Sat, 5 April 2003 15:15:25 +1000; Date::parse() yields: 1049519725.

Date::UTC() method: 1147527000

Using toUTCString(): Fri 25 Mar 2005 11:49:37 UTC

Now for some 'set' methods...

Let's try advancing the date by one day: Sat, 26 Mar 2005 21:49:37 +1000

Now let's try advancing that date by one year: Sun, 26 Mar 2006 21:49:37 +1000

Setting the month for that date to 0 (January): Thu, 26 Jan 2006 21:49:37 +1000

Setting the month for that date to 13 (should be February of the following year):

Mon, 26 Feb 2007 21:49:37 +1000.

Now for setMinutes() and setSeconds()...

Test code: $today->setMinutes(30);

$today->setSeconds(45);.

5-12 ■ PROJECT: CONSTRUCTING AND USING A DATE CLASS 249

Date is now: Mon, 26 Feb 2007 21:30:45 +1000.

Using the toString() method on the same date yields: 2007-02-26 21:30:45+10:00.

Finally, let's try some other ways to call the constructor...

First, the RFC-formatted date 24 Sept 2005: 2005-09-24 00:00:00+10:00.

And now we'll try it with

$xmas2k = new Date(2000, 11, 25); followed by

echo $xmas2k->toLocaleString();

echo $xmas2k->toUTCString();

Mon, 25 Dec 2000 00:00:00 +1000

Sun 24 Dec 2000 14:00:00 UTC

Now for some UTC methods, using $xmas2k...

Calling $xmas2k->setUTCDate(30);

UTC date: Sat 30 Dec 2000 14:00:00 UTC; local date: Sun, 31 Dec 2000 00:00:00 +1000

Calling $xmas2k->setUTCHours(48);

UTC date: Mon 01 Jan 2001 00:00:00 UTC; local date: Mon, 1 Jan 2001 10:00:00 +1000

Calling $xmas2k->setUTCFullYear(2008);

UTC date: Tue 01 Jan 2008 00:00:00 UTC; local date: Tue, 1 Jan 2008 10:00:00 +1000

This may seem like a lot of work just to get and set dates, but the payoff comes from hav-

ing a clear and well-defined interface for dealing with a complex structure. However, so far,

you are able to use this class to work with dates only as numbers or sets of numbers. What

about being able to output dates in a more conventional format, such as March 15, 2005, 8:25

p.m.? Do you have to sacrifice PHP’s capabilities in this regard in order to have a “nice” pro-

gramming construct? The answer to this question is, “No, you do not.” As you saw in Chapter 2,

it is possible to extend classes to provide additional functionality. This is exactly what you are

going to do in the next example.

5-13. Extending the Date Class

PHP’s native date and time functions provide lots of output options, which the Date class you

developed in the previous section does not really let you take advantage of. You could go back

and add new methods to that class to take care of this shortcoming, but you do not really want

to do this for a couple of reasons:

The Date class, having more than two dozen methods, is already fairly long and complex.

Any advantage you might gain from adding methods to it is likely to be offset by increased

difficulty in maintaining it.

As it is now, the class comes close to being a complete implementation of a class that is a

recognized and open standard. (It is actually a subset of the standard, since there are four

methods, all relating to milliseconds, which the Date class does not include.) By leaving its

class members as they are, you help guarantee its interoperability. Someone else can

5-13 ■ EXTENDING THE DATE CLASS250

implement an ECMA-compliant Date class with different internals, and code written

against our Date class should still work.

However, you can leverage the capabilities of the existing class in a new class that extends

Date. You will call this new class DateExtended, and in it you will provide methods for displaying

names and abbreviations for the months and for the days of the week, a method for displaying

times in formats that humans are accustomed to reading, a method for obtaining the interval

between two dates/times, and a couple of other methods based on information that you can

obtain readily from calling PHP’s native date() function with different arguments. This class also

implements one static method and adds no new class variables to the two defined by the parent

class (which are available to DateExtended because they were declared as protected in Date). Fig-

ure 5-6 shows a description of the methods exposed by this class, all of which are public methods.

Figure 5-6. DateExtended class members, with input parameters and return types

Without further ado, let’s look at the code for this new class, which you can find in the

code download for this book as ch5/Date-Extended.class.inc.php.

5-13 ■ EXTENDING THE DATE CLASS 251

The Code

<?php

// file: Date-Extended.class.inc.php

// purpose: provide additional output methods for

// the ECMA-compliant Date class (Date.class.inc.php)

Since this class extends the existing Date class, you need to include the file containing the

Date class definition and use extends Date in the declaration line of the DateExtended class:

require_once('./Date.class.inc.php');

class DateExtended extends Date

{

Sometimes it is necessary to determine whether a given year is a leap year. Since

PHP’s date() function provides an easy way to do that, you will wrap it in a static method

of DateExtended. Why use a static method instead of an instance method? It is a matter of

convenience and economy. Since you are concerned with a year value only, no other date or

time values affect the outcome. It does not matter if you are talking about 8:32 p.m. on July 24,

2001, or 12:05 a.m. on April 15, 2001; either 2001 is a leap year or it is not. It therefore seems

easier to write a function or method that requires you to supply the year only than to create a

Date or DateExtended instance with dummy arguments. (In fact, passing some meaningless

arguments is exactly what is needed in order to invoke date('L') for an arbitrary year.) By

implementing isLeapYear() as a static method, you do not have to worry about performing

either of these tasks. If you do need to test the year component of an existing Date, you can

use something like this:

if(DateExtended::isLeapYear($someDate->getFullYear())){...}

Of course, if you find yourself using isLeapYear() in this fashion more often than not,

you can always reimplement it as an instance method. In any case, this method does its job by

invoking mktime() to create a timestamp for the first day of the year passed to isLeapYear() as

$year and using this timestamp as the second argument for a call to date(). date('L'), as you

will recall from earlier in the chapter, returns 1 if the year is a leap year and 0 if it is not, and

you use a tertiary operator on this result to force the return of a boolean TRUE or FALSE to the

calling code.

// takes a 4-digit year and returns TRUE or FALSE

// depending on whether the year is a leap year

public static function isLeapYear($year)

{

return date('L', mktime(0, 0, 0, 1, 1, $year)) == 1 ? TRUE : FALSE;

}

You might notice here that we have implemented this method using mktime() rather than

strtotime() as we did in the stand-alone is_leap_year() function. Is there any particular rea-

son for that? Well, yes and no: we did it differently to show that when you call this method, it

does not really make any difference, as long as it accepts the expected parameters and returns

correct values. (So, if you prefer, you can reimplement the method using strtotime(). It makes

no difference to anyone using it, as long as what goes in and what comes out remain the same.)

5-13 ■ EXTENDING THE DATE CLASS252

Unlike the constructor for its parent class, the constructor for DateExtended is simple. In

fact, all it does is invoke the Date class constructor and pass on any arguments it receives as an

array by means of the func_get_args() function. This is necessary because you do not know

ahead of time how many arguments the DateExtended constructor will be called with. This also

helps explain the sleight of hand you performed in the Date constructor in order to accommo-

date the possibility that it might be invoked on an array of arguments.

// class constructor: passes whatever arguments it

// receives back to the parent class constructor

public function __construct()

{

parent::__construct(func_get_args());

}

The first instance method of DateExtended provides the option to override the parent’s

toLocaleString() method and output a formatted date in a more verbose form, such as

Wednesday, 24th February 2010, 8:25 a.m. To specify this behavior, pass TRUE to the method.

Passing FALSE or no argument at all will produce the same output as the parent’s toLocaleString()

method, for example, Wed, 24 Feb 2005 08:25:20 +1000.

public function toLocaleString($long=FALSE)

{

$output = "";

if($long)

{

$day = $this->getDayFullName();

$date = $this->getOrdinalDate();

$month = $this->getMonthFullName();

$year = $this->getFullYear();

$time = $this->getClockTime(TRUE, TRUE, FALSE);

$output = "$day, $date $month $year, $time";

}

else

$output = date('r', $this->getTime());

return $output;

}

We wrote the getClockTime() method to simplify the task of displaying a time in human-

readable format. It takes four optional parameters:

• $twelve: If this is TRUE, display the time using 12-hour format with an a.m./p.m. indica-

tor; if FALSE, display the time using 24-hour format. The default value is TRUE.

• $uppercaseAMPM: If this parameter is TRUE, display the a.m./p.m. indicator in uppercase

or in lowercase if FALSE. The default value is TRUE. Note that setting this parameter has

no effect on the output if the value of $twelve is FALSE.

5-13 ■ EXTENDING THE DATE CLASS 253

• $includeSeconds: If this is TRUE, then seconds are included in the output. The default is

TRUE.

• $separator: The character to use as the hours/minutes/seconds separator. The default

value is ':' (a colon).

Here is the code:

public function getClockTime($twelve = TRUE, $uppercaseAMPM = TRUE,

$includeSeconds = TRUE, $separator = ':')

{

$am_pm = "";

$hours = $this->getHours();

if($twelve)

{

$am_pm = " " . ($hours >= 12 ? "pm" : "am");

if($uppercaseAMPM)

$am_pm = strtoupper($am_pm);

if($hours > 12)

$hours -= 12;

}

else

{

if($hours < 10)

$hours = "0$hours";

}

$minutes = $this->getMinutes();

if($minutes < 10)

$minutes = "0$minutes";

$minutes = "$separator$minutes";

$seconds = "";

if($includeSeconds)

{

$seconds = $this->getSeconds();

if($seconds < 10)

$seconds = "0$seconds";

$seconds = "$separator$seconds";

}

return "$hours$minutes$seconds$am_pm";

}

5-13 ■ EXTENDING THE DATE CLASS254

The next three methods are basically wrappers for the date() function (merely calling it

with different formatting characters) and should be explained adequately by the comments

preceding each one.

// returns full English name of day of week

// (e.g. Sunday, Monday, etc.)

public function getDayFullName()

{

return date('l', $this->time);

}

// returns 3-letter abbreviation for day of week

// (Sun, Mon, etc.)

public function getDayShortName()

{

return date('D', $this->time);

}

// returns number of days in current month

public function getDaysInMonth()

{

return date('t', $this->time);

}

The getDifference() method is a reimplementation of the stand-alone date_difference()

function, which calculates the difference between dates in years, months, and days. Since this

version is now a method of DateExtended, it requires only a single argument—a Date object to

compare with the current one. Of course, nothing is stopping you from passing another instance

of DateExtended to this method instead of a Date, since it inherits all the requisite Date class

methods.

public function getDifference(Date $date)

{

$val1 = $this->getTime();

$val2 = $date->getTime();

$sec = abs($val2 - $val1);

$units = getdate($sec);

$hours = abs($units["hours"] - (date('Z') / 3600));

$days = $units["mday"];

if($hours > 23)

{

$days++;

$hours %= 24;

}

$output = array();

5-13 ■ EXTENDING THE DATE CLASS 255

$output["components"] = array(

"years" => $units["year"] - 1970,

"months" => --$units["mon"],

"days" => --$days,

"hours" => $hours,

"minutes" => $units["minutes"],

"seconds" => $units["seconds"]

);

$output["elapsed"] = array(

"years" => $sec / (365 * 24 * 60 * 60),

"months" => $sec / (30 * 24 * 60 * 60),

"weeks" => $sec / (7 * 24 * 60 * 60),

"days" => $sec / (24 * 60 * 60),

"hours" => $sec / (60 * 60),

"minutes" => $sec / 60,

"seconds" => $sec

);

$output["order"] = $val2 < $val1 ? -1 : 1;

return $output;

}

The getMonthFullName() and getMonthShortName() methods are wrappers for date('F')

and date('M'), respectively.

// returns full English name of month

// (January, February, etc.)

public function getMonthFullName()

{

return date('F', $this->time);

}

// returns 3-letter abbreviation for month

// (Jan, Feb, etc.)

public function getMonthShortName()

{

return date('M', $this->time);

}

The next method, getOrdinalDate(), returns the day of the month with an ordinal suffix,

for example, 1st, 2nd, 3rd, and so on. It is a wrapper for date('jS'); note that it does not

include leading zeroes for days of the month before the tenth.

public function getOrdinalDate()

{

return date('jS', $this->time);

}

5-13 ■ EXTENDING THE DATE CLASS256

The methods in the group that follows should be adequately explained by the comments

preceding the methods.

// returns name or abbreviation of current time zone

public function getTimeZoneName()

{

return date('T', $this->time);

}

// returns ISO week number

public function getISOWeek()

{

return (int)date('W', $this->time);

}

// returns TRUE if current date/time is daylight-saving time, FALSE if not

public function isDST()

{

return date('I', $this->time) == 1 ? TRUE : FALSE;

}

// returns TRUE if day is a weekday (Mon-Fri), FALSE if not

public function isWeekDay()

{

$w = $this->getDay();

return ($w > 0 && $w < 6) ? true : FALSE;

}

// returns ISO representation of date and time

// e.g., 2005-03-26T18:59:07+10:00

public function toISOString()

{

return date('c', $this->time);

}

We have also included UTC versions of the methods described previously. They differ

from their local counterparts only in that they either use the Date class’s getUTC*() methods

instead of the get*() methods or invoke gmdate() in place of the date() function.

// returns "friendly" representation of UTC time

// see getClockTime() for parameters

public function getUTCClockTime($twelve = TRUE, $uppercaseAMPM = TRUE,

$includeSeconds = TRUE, $separator = ':')

{

$am_pm = "";

$hours = $this->getUTCHours();

if($twelve)

5-13 ■ EXTENDING THE DATE CLASS 257

{

$am_pm = " " . ($hours >= 12 ? "pm" : "am");

if($uppercaseAMPM)

$am_pm = strtoupper($am_pm);

if($hours > 12)

$hours -= 12;

}

else

{

if($hours < 10)

$hours = "0$hours";

}

$minutes = $this->getUTCMinutes();

if($minutes < 10)

$minutes = "0$minutes";

$minutes = "$separator$minutes";

$seconds = "";

if($includeSeconds)

{

$seconds = $this->getUTCSeconds();

if($seconds < 10)

$seconds = "0$seconds";

$seconds = "$separator$seconds";

}

return "$hours$minutes$seconds$am_pm";

}

// returns full English name for day of the week (UTC)

public function getUTCDayFullName()

{

return gmdate('l', $this->time);

}

// returns 3-letter abbreviation for day of the week (UTC)

public function getUTCDayShortName()

{

return gmdate('D', $this->time);

}

// returns number of days in month (UTC)

public function getUTCDaysInMonth()

5-13 ■ EXTENDING THE DATE CLASS258

{

return gmdate('t', $this->time);

}

// returns full English name of month (UTC)

public function getUTCMonthFullName()

{

return gmdate('F', $this->time);

}

// returns 3-letter abbreviation for month (UTC)

public function getUTCMonthShortName()

{

return gmdate('M', $this->time);

}

// returns ordinal form for day of the month (UTC)

public function getUTCOrdinalDate()

{

return gmdate('jS', $this->time);

}

// returns time zone name or abbreviation (UTC)

public function getUTCTimeZoneName()

{

return 'UTC';

}

// returns ISO week number (UTC)

public function getUTCWeek()

{

return gmdate('W', $this->time);

}

// returns TRUE/FALSE depending on whether day is a weekday (UTC)

public function isUTCWeekDay()

{

$w = $this->getUTCDay();

return ($w > 0 && $w < 6);

}

// returns ISO representation of date (UTC)

public function toUTCISOString()

{

return gmdate('c', $this->time);

}

} // end class DateExtended

?>

5-13 ■ EXTENDING THE DATE CLASS 259

Trying It Out

Let’s take this class for a spin. Remember that since it extends the Date class, an instance of

DateExtended can access any of the methods exposed by the parent class. Here is the source

of the test file, ch5/date_ext_test.php, which is included in the code download that accompa-

nies this book:

<?php

// file: date_ext_test.php

// demonstrating the DateExtended class

// include the class file

require_once("Date-Extended.class.inc.php");

// create a new instance, using the current date and time

$today = new DateExtended();

printf("<p>Current date and time (long toLocaleString()): %s.</p>\n",

$today->toLocaleString(TRUE));

printf("<p>Current date and time (parent toLocaleString()): %s.</p>\n",

$today->toLocaleString());

printf("<p>Current date and time (ISO format): %s.</p>\n",

$today->toISOString());

printf("<p>Current UTC date and time: %s %s %s %s %s</p>\n",

$today->getUTCDayShortName(),

$today->getUTCDate(),

$today->getUTCMonthShortName(),

$today->getUTCFullYear(),

$today->getUTCClockTime());

printf("<p>Today is %s (%s).</p>\n",

$today->getDayFullName(),

$today->getDayShortName());

printf("<p>Today is %s %s, %d.</p>\n",

$today->getOrdinalDate(),

$today->getMonthFullName(),

$today->getFullYear());

printf("<p>12-hour time: %s.</p>\n", $today->getClockTime(TRUE, TRUE, FALSE));

printf("<p>24-hour time: %s (%s).</p>\n",

$today->getClockTime(FALSE, TRUE, TRUE, '.'),

$today->getTimeZoneName());

echo "<p>";

for($year = 2000; $year <= 2010; $year++)

{

5-13 ■ EXTENDING THE DATE CLASS260

printf("%s is %sa leap year.
\n",

$year,

DateExtended::isLeapYear($year) ? '' : 'not ');

}

echo "</p>";

$past = new DateExtended(1997, 6, 4, 15, 30, 45);

printf("<p>Past date is %s.</p>\n", $past->toLocaleString());

$diff = $today->getDifference($past);

$components = $diff["components"];

$output = array();

foreach($components as $period => $length)

if($length > 0)

$output[] = "$length $period";

printf("<p>Difference in dates is: %s.</p>", implode($output, ', '));

printf("<p>Difference in dates is: %s years.</p>", $diff["elapsed"]["years"]);

?>

Here is the output from this script:

Current date and time (long toLocaleString()): Sunday, 27th March 2005, 1:44 AM.

Current date and time (parent toLocaleString()): Sun, 27 Mar 2005 01:44:39 +1000.

Current date and time (ISO format): 2005-03-27T01:44:39+10:00.

Current UTC date and time: Sat 26 Mar 2005 3:44:39 PM

Today is Sunday (Sun).

Today is 27th March, 2005.

12-hour time: 1:44 AM.

24-hour time: 01.44.39 (E. Australia Standard Time).

2000 is a leap year.

2001 is not a leap year.

2002 is not a leap year.

2003 is not a leap year.

2004 is a leap year.

2005 is not a leap year.

2006 is not a leap year.

2007 is not a leap year.

2008 is a leap year.

2009 is not a leap year.

2010 is not a leap year.

5-13 ■ EXTENDING THE DATE CLASS 261

Past date is Friday, 4th July 1997, 3:30 PM.

Difference in dates is: 7 years, 8 months, 22 days, 10 hours,

13 minutes, 54 seconds.

Difference in dates is: 7.732674847793 years.

So, why exactly did we go to the trouble of writing these classes? In part it is because it

is somewhat easier to remember something like echo $mydate->getOrdinalDate(); than it is

something like echo date('jS', $mydate);. You might argue that being able to write a single

statement such as echo date('M jS, Y', strtotime('+2 weeks')); makes for more compact

code than the alternatives offered by the Date and DateExtended classes. We will not claim that

terseness is not a virtue, but like any good thing, it can be counterproductive when carried to

extremes.

You do not have to stop with what we have given you here. In general, if you find yourself

reusing the same block of code repeatedly in an application, it is a good idea to turn it into a

function. If invoked using methods of the Date or DateExtended classes, there is no reason why

you cannot extend DateExtended further. For example, if it is often the case that you are adding

or subtracting complex intervals to or from different times, maybe it is time to write a method

that does that, with a signature such as that shown here:

void public function addInterval(int $hours=0, int $minutes=0, int $seconds=0){}

(Or you might decide that you need a $days parameter and maybe one for weeks as well. It

is really up to you and depends on what you require.) It is usually not a good idea to modify

the interface provided by a base class such as Date, but you could make this a method of

DateExtended. Or you might decide to create a CustomDate class that extends DateExtended.

Again, this depends on your circumstances: if this is the only method you would like to add

for your application, and it will not adversely affect any existing code, then you might be able

to get away with modifying DateExtended. If you are planning on adding a lot of new function-

ality, and especially if you need to override existing methods, then you are better off extending

an existing class.

This latter approach is probably a good one when it comes to localization issues. Because

localization in PHP depends on what is available in the server environment, and this can vary

widely from one server to the next, we will just provide part of such a class here and let you “fill

in the blanks” as is appropriate to your requirements and what is available to you.

class DateLocalised extends Date

{

static protected $locale;

public function __construct()

{

parent::__construct(func_get_args());

}

public function getLocaleFullDay

{

return strftime('%A', $this->time);

}

5-13 ■ EXTENDING THE DATE CLASS262

public function getLocaleShortDay()

{

return strftime('%a', $this->time);

}

// ...

public function getLocale()

{

return $self::locale;

}

public function setLocale($lc_strings)

{

$self::locale = setlocale(LC_ALL, $lc_strings);

}

}

This might represent an acceptable implementation on a Linux or other Unix server where

it is possible to control the locale on a script-by-script basis. When on a Windows-based server,

when in safe mode or other circumstances prevent you from changing the locale, or when a

desired locale is not available, you might have to set up constants or static variables containing

the names of days and months in various languages.

You can accommodate daylight-saving time in a similar fashion, say, by adding a $dst

variable and the setDST() and isDST() methods to DateExtended or to your own extension of

this class or of the Date class.

Summary
Dates are probably the most complex data types that programmers commonly have to deal

with, and you will seldom if ever find any quick miracles for working with them or performing

date arithmetic. PHP, like most if not all modern programming languages, reduces this com-

plexity to timestamps internally, but even though PHP takes care of much of the overhead for

you, turning these into human-readable formats can still be a tricky proposition.

In the first part of this chapter, you looked at the most important and useful functions

that PHP provides for displaying dates and times, including the date(), time(), and mktime()

functions. Also, certain functions exist for working with dates and times in UTC as opposed

to local or server time (gmdate() and gmmktime()), and you saw how to use these to convert

between local and UTC/GMT dates and times. In addition, PHP provides some ways to local-

ize formatted dates and times (using the strftime() function).

You also did some date arithmetic, taking advantage of some of the relative, ordinary-

language arguments (such as +1 week or -3 days) that can be used with the strtotime()

function. This technique can be handy; it can take care of rollover issues so you do not have

to worry about what happens when, for instance, you add 12 hours to 8 p.m. and the resulting

time is on the following day.

However, PHP’s date and time functions have some drawbacks, in particular with regard

to those used to output formatted dates. In the first place, the arguments used for these are

5-13 ■ EXTENDING THE DATE CLASS 263

somewhat cryptic and can be difficult to remember. In addition, the formatting characters

used with local dates and times (used with date()) and those for locale-specific dates and

times (those used as arguments to strftime()) are not at all consistent with one another; in

fact, the two sets of formatting characters do not even come close to mapping to one another.

The second half of this chapter was devoted to taking care of the first of these problems by

developing a couple of classes to provide a clear and consistent means of working with dates

that does not involve having to look up formatting characters, many of which are not espe-

cially memorable but are easily confused with one another. The Date class implements a

well-known interface that is defined in a recognized international standard (ECMA-262), pro-

viding the means to define Date instances and to set and to retrieve aspects of them (such as

months and hours) that are easily recognizable to human beings. Since this class in and of

itself does not provide much flexibility in formatting dates for output, you extended it in a

DateExtended class that does a better job at making this functionality available to the program-

mer. These classes also simplify the tasks of converting between local time and UTC as well as

other time zones.

In wrapping things up, we also gave you some suggestions for taking the PHP 5 classes in

this chapter and building on them to handle issues such as extended date arithmetic. We also

sketched the outline of a class you might want to write that would extend Date and DateExtended

for localization purposes. In any case, we have been using these classes and their predecessors

for a couple of years now in our own projects. They have let us handle many of the date and time

tasks we have needed to accomplish much more quickly and easily than by using the native PHP

functions alone, and we hope you will also find them to be beneficial in your own work and that

they will serve as a basis you can build upon to meet your needs.

Looking Ahead
In Chapter 6, Lee Babin will show you some tips and tricks for solving common problems that

PHP programmers encounter when working with strings, including putting strings together and

splitting them up. He will also cover accessing specific portions of strings (substrings), removing

them, replacing them, and inserting them into other strings. He will also discuss some issues

that often come up in displaying web pages and text, such as trimming and wrapping text.

Finally, he will show you how to wrap many of these techniques into your own String class,

which you can use as is or modify for your work with strings in PHP.

5-13 ■ EXTENDING THE DATE CLASS264

Working with Strings

Considered pretty much a staple of any programming language, the ability to work with,

maneuver, and ultimately control strings is an important part of a daily programming routine.

PHP, unlike other languages, has no trouble using data typing to handle strings. Thanks to the

way PHP is set up—that is to say, that when a value is assigned to a variable, the variable auto-

matically typecasts itself—working with strings has never been easier. PHP 5 has not done

much to improve upon, or modify, the way strings are handled in PHP itself, but it has pro-

vided you with new and improved class functionality so you can more readily create tools to

help support PHP’s somewhat clunky string function naming conventions.

This chapter’s focus will be threefold. First, we will offer a bit of a refresher course on how

PHP’s versatile string functions can be quite an asset to the aspiring developer. Second, we

will display some real-world examples not just on how using strings is both important and

practical while deploying applications but also on how to use them to your best advantage.

Last, we will use what we have learned and apply it towards a fully functional, working exam-

ple of a possible string dilemma (see Table 6-1).

Table 6-1. PHP 5 String Functions

Function Description

substr_count() Counts the number of substring occurrences

strstr() Finds the first occurrence of a string

strchr() Can be used as an alias of strstr()

strrchr() Finds the last occurrence of a character in a string

stristr() Performs the same functionality as strstr() but is case-insensitive

substr_replace() Replaces text within a portion of a string

strpos() Finds the position of the first occurrence of a string

substr() Returns a piece of a string

strlen() Returns the length of a string

strtok() Splits a string into smaller tokens

explode() Returns an array of substrings of a target string, delimited by a specific
character

implode() Takes an array of items and puts the items together, delimited by a
specific character

Continued

265

C H A P T E R 6

■ ■ ■

Table 6-1. Continued

Function Description

join() Acts as an alias to implode()

str_split() Converts a string to an array

strtoupper() Converts an entire string to uppercase characters

strtolower() Converts an entire string to lowercase characters

ucfirst() Changes a given string’s first character into uppercase

ucwords() Changes a given string’s first character of each word into uppercase

trim() Strips whitespace from the beginning and end of a string

chop() Acts as an alias for rtrim()

rtrim() Strips whitespace from the end of a string only

ltrim() Strips whitespace from the beginning of a string only

strcmp() Performs a string comparison

Manipulating Substrings
One of the common occurrences developers will come across is the problem of deducing what

is needed, where certain aspects are, or even what order is necessary from a string. Substrings

make up part of a full string. Since manipulating different portions of a string is a common

task while building applications, PHP has granted you the use of some rather powerful func-

tions. None of the string functions need to be included, and the basic string functions are

prepackaged with the PHP 5 release, thus removing the problem of including them as exten-

sions or packaging them with libraries. Table 6-2 lists the functions that prove useful (and

sometimes quite invaluable) when working with substrings.

Table 6-2. PHP 5 Substring Functions

Function Description

substr_count() Counts the number of substring occurrences

strstr() Finds the first occurrence of a string

strchr() Can be used as an alias of strstr()

strrchr() Finds the last occurrence of a character in a string

stristr() Performs the same functionality as strstr() but is case-insensitive

substr_replace() Replaces text within a portion of a string

strops() Finds the position of the first occurrence of a string

substr() Returns a piece of a string

MANIPULATING SUBSTRINGS266

6-1. Testing for Substrings

The first thing you might do when working with substrings is test a string for occurrences of a

specific substring. You can put this sort of functionality to use in almost any kind of applica-

tion. The most obvious usage of this sort of algorithm would be when building a search engine.

Depending on what exactly it is you are building the search engine to do, testing for substrings

manually with PHP may not always be the most efficient plan. For instance, if you were search-

ing something in a database, more than likely it would be beneficial to do a query comparison

using the built-in SQL engine to find whether a substring exists, but certainly sometimes you

will not have the luxury of letting another system’s workhorse do the brunt of the task for you.

Obviously, if you were going to do a search within a given block of text using PHP, it might

be a smart move to check whether any instances of the search query appear within the text;

there is no point in proceeding with your search algorithm if you find no instance of the search

term. Thankfully, PHP has a nicely built function, substr_count(), that is perfect for the task. The

standard definition for the substr_count() function is as follows:

int substr_count (string haystack, string needle)

That is to say, you provide the block of text you want to search as the first parameter for

the function (string haystack), and then you provide the substring you want to obtain as the

second parameter (string needle). The function will then provide you with a return value of

the number of occurrences of the needle parameter from the haystack search block.

The following block of code is basically a mundane search engine.

The Code

<?php

function searchtext ($haystack, $needle){

//First, let's deduce whether there is any point in going on with our little

//string hunting charade.

if (substr_count ($haystack, $needle) == 0){

echo "No instances were found of this search query";

} else {

//Now, we will go through the haystack, find out the

//different positions that the string occurs at, and then output them.

//We will start searching at the beginning.

$startpos = 0;

//And we will set a flag to stop searching once there are no more matches.

$lookagain = true;

//Now, we search while there are still matches.

while ($lookagain){

if ($pos = strpos ($haystack, $needle, $startpos)){

echo "The search term \"$needle\" was found at position: ➥

$pos

";

//We increment the position we are searching in order to continue.

$startpos = $pos + 1;

} else {

6-1 ■ TESTING FOR SUBSTRINGS 267

//If there are no more matches, then we want to break out of the loop.

$lookagain = false;

}

}

echo "Your search for \"$needle\" within \"$haystack\" ➥

returned a total of \"" . substr_count ($haystack, $needle) . "\" matches.";

}

}

searchtext ("Hello World!","o");

?>

The search term "o" was found at position: 4

The search term "o" was found at position: 7

Your search for "o" within "Hello World!" returned a total of "2" matches.

How It Works

The previous function is a bare-bones search engine that is primed to take a block of text and

then output not only whether there are any matches within the block of text but exactly where

those matches occur. For ease of use and cleanliness, the total number of matches found is

displayed at the bottom. Take a moment to review the function, and we will discuss how

exactly it does what it does by using the built-in PHP string functions.

By using substr_count() to make sure there are no instances of the substring, you let the

user know that there were no matches if, indeed, you find no matches.

The next matter that this function attends to is the meat and potatoes of this function; it

actually loops through the search string and outputs the position of all instances of the sub-

string.

//Now, we search while there are still matches.

while ($lookagain){

if ($pos = strpos ($haystack, $needle, $startpos)){

echo "The search term \"$needle\" was found at position: $pos

";

//We increment the position we are searching in order to continue.

$startpos = $pos + 1;

} else {

//If there are no more matches, then we want to break out of the loop.

$lookagain = false;

}

}

By using the strpos() function, which outputs the position within the string of the given

substring, you can go through the entire block of search text, outputting where exactly the

search term falls.

6-1 ■ TESTING FOR SUBSTRINGS268

Now, this is a scaled-down idea for a search engine, but by using these basic concepts you

can see the power you get by taking advantage of built-in string functions.

6-2. Counting the Occurrences of a Substring

As discussed in the previous recipe, counting the number of occurrences of a substring within

a search string is a simple process. PHP has included the function substr_count() that does

the work for you. Naturally, there are more manual ways of doing this (consider adding a

counter to the previous script as it loops), but since this is a stable function that has been

around for some time, there is no need to reinvent the wheel. Thus, when it comes time in

the previous function to output a total search tally, you simply call the substr_count() func-

tion, as in the following example.

The Code

<?php

//Let's find the number of o's in our string.

$counter = substr_count ("Hello World!","o");

echo "There are " . $counter . " instance (s) of \"o\" in Hello World!.";

?>

There are 2 instances of "o" in Hello World!.

How It Works

As you can see, by providing the substr_count() function with a needle substring and a

haystack string to search through, you can determine quickly and easily how many instances

of a given substring exist within the supplied string.

6-3. Accessing Substrings

A fairly common day-to-day activity you might be required to perform while programming

would be to access, and then do something with, a certain substring. PHP has a rather versa-

tile and powerful function that will allow you to do just that. Aptly named substr(), this

function will allow you to access any part of a string using the concise method detailed here:

string substr (string string, int start [, int length])

Basically, the function substr() takes as arguments the string you want to divide, the

position you want to begin dividing from, and (optionally) the end point at which you want to

stop dividing. The function then returns a nicely packaged (in the form of a string) substring

ready for your use and (potentially) abuse.

As you can imagine, the substr() function is a handy tool. You can use it in many real-

world applications, and it is a great help with everything from validation to properly formatted

output. Imagine, for instance, that you have been tasked with building a content management

system (CMS) that takes in information from a client and then outputs it onto the home page

of a website. Sound easy? Now imagine that the design for the website has been built so the

6-2 ■ COUNTING THE OCCURRENCES OF A SUBSTRING 269

height of the block where the text is supposed to be output is big enough to handle only 300

characters of text. If the amount of text outputted exceeds that, the site could potentially

“break,” causing the entire design to look flawed; this is not good considering this is an impor-

tant client.

In addition, consider that the client is not sure at all how many characters to use and even

if you had informed them to use only 300, there is still a real chance they would try their luck

anyway. How then can you guarantee that the design will not break? Well, this sounds like a

lovely test for our good friend Mr. substr() and his buddy Ms. strlen().

The Code

<?php

$theclientstext = "Hello, how are you today? I am fine!";

if (strlen ($theclientstext) >= 30){

echo substr ($theclientstext,0,29);

} else {

echo $theclientstext;

}

?>

Hello, how are you today? I a

How It Works

The first thing this block of code does is check to make sure the text provided by the client is

within the length you need it to be:

if (strlen ($theclientstext) >= 30){

If it happens to fall outside the range of acceptable length, you then use the lovely substr()

function to echo only the portion of the text that is deemed acceptable. If the client has entered

a proper block of text, then the system merely outputs the text that was entered, and no one is

the wiser.

By using the function substr(), you have averted a potential disaster. People browsing the

site will see nothing but a slightly concatenated set of verbiage, so the site’s integrity remains

sound. This sort of rock-solid validation and programming can save business relationships, as

clients are seldom fond of having their site appear “broken” to potential customers or

intrigued individuals.

6-4. Using Substring Alternatives

You can consider the substr() function as something of a jack of all trades. It can get you

whatever you are looking for in a string with the greatest of ease. Sometimes, however, it may

not be necessary to go to the trouble of using such a versatile function. Sometimes it is just

6-4 ■ USING SUBSTRING ALTERNATIVES270

easier to use a more specialized function to accomplish a task; fortunately, PHP has a fairly

decent selection of such methods.

For instance, if you are interested in using only the first instance of a substring, you can use

the function strstr() (or strchr(), which is merely an alias of the former), which takes a block

of text and a search value as arguments (the proverbial haystack and needle). If you are not con-

cerned with the case of the subjects, the function stristr() will take care of any problems you

may have. Alternatively, you may be interested in obtaining the last instance of a substring within

a block of text. You can accomplish this particular maneuver with the strrchr() function, also

available from PHP. The prototypes for strstr() and stristr() are as follows:

string strstr (string haystack, string needle)

string stristr (string haystack, string needle)

The Code

<?php

$url = "www.apress.com";

$domain = strstr ($url, ".");

echo $domain;

?>

.apress.com

How It Works

In this example in which you are attempting to find the domain name of the current string,

the strstr() function finds the first instance of the dot (.) character and then outputs every-

thing starting with the first instance of the dot. In this case, the output would be “.apress.com”.

6-5. Replacing Substrings

How often do you find yourself using the search-and-replace function within your word

processor or text editor? The search-and-replace functionality found within such applications

is a testament to how much easier it is to do things using a computer rather than manually.

(How helpful would it be to have such a function while, say, skimming the local newspaper for

classified ads?) Thankfully, PHP has heard the cries of the people and has provided a function

called substr_replace() that can quickly turn the tedious task of scanning and editing a large

block of text into a lofty walk through the park where you let PHP do your task for you while

you grab yourself another coffee (preferably a white-chocolate mocha…). The

substr_replace() function is defined as follows:

string substr_replace (string str, string replacmnt, int start [, int len])

The function substr_replace() is a powerful and versatile piece of code. While you can

access the core functionality of it easily and painlessly, the depth and customization you can

accomplish through the function is rather daunting. Let’s start with the basics. If you want to

simply make a replacement to the substring, and you want to start from the beginning and

6-5 ■ REPLACING SUBSTRINGS 271

replace the entire instance (say, by changing the ever-so-clichéd “Hello World!” into the more

“l33t” phrase “H3110 W0r1d!” and hence proving your “l33t” status), you could simply invoke

the substr_replace() function as shown in the following example.

The Code

<?php

//By supplying no start or length arguments,

//the string will be added to the beginning.

$mystring = substr_replace("Hello World", "H3110 W0r1d!", 0, 0);

echo $mystring . "
"; //Echoes H3110 W0r1d!Hello World

//Where if we did this:

$mystring = substr_replace("Hello World", "0 w0", 4, 4);

echo $mystring; //Echoes Hell0 w0rld.

?>

H3110 W0r1d!Hello World

Hell0 w0rld

How It Works

This is not all that useful, is it? Happily, the substr_replace() function can do much more

than that. By changing the third argument (the start position) and the last argument (which

is optional and represents a length of characters that you want to replace), you can perform

some pretty powerful and dynamic operations. Let’s say you simply want to add the catchy

“H3110 W0r1d!” phrase to the front of a string. You could perform this operation by simply

using the substr_replace() function as follows:

<?php

substr_replace("Hello World", "H3110 W0r1d!", 0, 0);

?>

You can also do some pretty fancy operations by changing the start and length arguments

of the function from positive to negative values. By changing the start value to a negative

number, you can start the function counting from the end of the string rather than from the

beginning. By changing the length value to a negative number, the function will use this num-

ber to represent the number of characters from the end of the given string argument at which

to stop replacing the text.

6-5 ■ REPLACING SUBSTRINGS272

Processing Strings
Now that we have gone into how to manipulate and use the more intricate substrings con-

tained within a string value, it is only natural to get right into using strings for more powerful

applications. In any given piece of software, it is likely that some sort of string processing will

be involved. Be it a block of text that is being collected from an interested Internet user (for

example, an e-mail address for a newsletter) or a complete block of text for use in a CMS, text

is here to stay, so it is important to be able to put it to good use.

Of particular note in this day and age is security. No matter what form of content is being

submitted, and no matter the form it takes (query strings, post variables, or database submit-

tal), it is important to be able to validate both when collecting the necessary information and

when outputting it. By knowing what is available to you in the form of string processing, you

can quickly turn a security catastrophe into a well-managed, exception-handled occurrence.

In the next recipes, we will show what you can do with the current string functions available

through PHP and what you can do to help preserve the integrity of a data collection.

6-6. Joining and Disassembling Strings

The most basic functionality of strings is joining them. In PHP joining strings is easy. The sim-

plest way to join a string is to use the dot (.) operator. For example:

<?php

$string1 = "Hello";

$string2 = " World!";

$string3 = $string1 . $string2;

?>

The end result of this code is a string that reads “Hello World!” Naturally, this is the easiest

way to do things; in the real world, applications will likely call for a more specific approach.

Thankfully, PHP has a myriad of solutions available to take care of the issue.

A common, and rather inconvenient, dilemma that rears its ugly head is dealing with

dates. With the help of Jon Stephen’s date class (see Chapter 5), you will not have to deal with

this issue; rather, you may have to deal with date variables coming from the database. Gener-

ally, at least in MySQL, dates can either be stored as type date or be stored as type datetime.

Commonly this means they will be stored with a hyphen (-) delimiting the month from the

day from the year. So, this can be annoying when you need just the day or just the month from

a given string. PHP has the functions explode(), implode(), and join() that help you deal with

such situations. The prototypes for the functions implode() and explode() are as follows:

string implode (string glue, array pieces)

array explode (string separator, string string [, int limit])

6-6 ■ JOINING AND DISASSEMBLING STRINGS 273

Consider the following block of code:

<?php

//Break the string into an array.

$expdate = explode ("-","1979-06-23");

echo $expdate[0] . "
"; //echoes 1979.

//Then pull it back together into a string.

$fulldate = implode ("-", $expdate);

echo $fulldate; //Echoes 1979-06-23.

?>

1979

1979-06-23

This block of code will create an array called $expdate that will contain three values: 1979,

06, and 23. Basically, explode() splits a string at every occurrence of the character specified

and packs the individual contents into an array variable for ease of use. Now, if you want to

simply display the year an individual was born (a famous author perhaps?), you can easily

manage to do so, like this:

<?php

echo $expdate[0];

?>

1979

Similarly, if you then want to repackage the contents of an array into a delimited string,

you can use the function implode() by doing something like this:

<?php

$fulldate = implode ("-", $expdate);

echo $fulldate;

?>

1979-06-23

The result of this line of code will repackage the array of date fragments back into a fully

functioning string delimited by whatever character you choose as an argument, in this case

the original hyphen. The join() function acts as an alias to implode() and can be used in the

same way; however, for the sake of coherence, the explode()/implode() duet is probably

the better way to do things if for nothing more than clarity’s sake.

6-6 ■ JOINING AND DISASSEMBLING STRINGS274

By using explode() and implode() to their fullest, you can get away with some classy and

custom maneuvers. For example, if you want to group like fields into just one hidden field,

perhaps to pass along in a form, you can implode them into one string value and then pass

the string value in the hidden field for easy explosion when the data hits your processing

statement.

The strtok() function performs a similar task to explode(). Basically, by entering strings

into the strtok() function, you allow it to “tokenize” the string into parts based on a dividing

character of your choosing. The tokens are then placed into an array much like the explode()

function. Consider the following prototype for strtok():

string strtok (string str, string token)

The Code

<?php

$anemail = "lee@babinplanet.ca";

$thetoken = strtok ($anemail, "@");

while ($thetoken){

echo $thetoken . "
";

$thetoken = strtok ("@");

}

?>

Lee

babinplanet.ca

How It Works

As you can see, the strtok() function skillfully breaks the string down into highly useable

tokens that can then be applied to their desired task.

In this example, say you want to tokenize the string based upon the at (@) symbol. By

using strtok() to break the string down at the symbol, you can cycle through the string out-

putting the individual tokens one at a time. The strtok() function differs from the explode()

function in that you can continue to cycle through the string, taking off or outputting different

elements (as per the dividing character), where the explode() function simply loads the indi-

vidual substrings into an array from the start.

Further, sometimes you will probably prefer to split a string up without using a dividing

character. Let’s face it, strings don’t always (and in fact rarely do) follow a set pattern. More

often than not, the string will be a client- or customer-submitted block of text that reads

coherently across, left to right and up to down (just like the book you currently hold in your

hands). Fortunately, PHP has its answer to this as well; you can use a function called

str_split(). The definition of str_split() is as follows:

array str_split (string string [, int split_length])

6-6 ■ JOINING AND DISASSEMBLING STRINGS 275

Basically, str_split() returns an array filled with a character (or blocks of characters)

that is concurrent to the string that was placed as an argument. The optional length argument

allows you to break down a string into chunks of characters. For example, take note of the fol-

lowing block of code:

<?php

$anemail = "lee@babinplanet.ca";

$newarray = str_split($anemail);

?>

This instance would cause an array that looks like this:

Array {

[0] => l

[1] => e

[2] => e

[3] => @

[4] => b

[5] => a

[6] => b

[7] => i

[8] => n

[9] => p

[10] => l

[11] => a

[12] => n

[13] => e

[14] => t

[15] => .

[16] => c

[17] => a

}

You can also group the output into blocks of characters by providing the optional length

argument to the function call. For instance:

$newarray = str_split ("lee@babinplanet.ca",3);

In this case, the output array would look like this:

Array {

[0] => lee

[1] => @ba

[2] => bin

[3] => pla

[4] => net

[5] => .ca

}

6-6 ■ JOINING AND DISASSEMBLING STRINGS276

6-7. Reversing Strings

While we are on the subject of working with strings, we should note that you can also reverse

strings. PHP provides a bare-bones, yet highly functional, way to take a string and completely

reverse it into a mirror image of itself. The prototype of the function strrev(), which performs

the necessary deed, is as follows:

string strrev (string string)

Therefore, you can take a basic string, such as the fan favorite “Hello World,” and completely

reverse it by feeding it into the strrev() function as an argument.

The Code

<?php

$astring = "Hello World";

echo strrev ($astring);

?>

dlroW olleH

How It Works

The output for such code would change the value of “Hello World” into the rather more convo-

luted “dlroW olleH” string. Quite apart from those who prefer to read using a mirror, the

strrev() function can come in handy in a myriad of ways ranging from using encryption to

developing Internet-based games.

6-8. Controlling Case

From time to time, it can be important to control the case of text strings, particularly from

user-submitted data. For instance, if you have created a form that allows a customer to create

an account with your site and allows them to enter their preferred username and password,

it is probably a good idea to force a case-sensitive submittal. Confusion can occur if a client

creates a password that contains one wrongly created capital letter, especially when using a

password field (with all characters turned into asterisks). If the client meant to enter “mypass”

but instead entered “myPass” accidentally, an exact string match would not occur.

PHP has several ways to control the case of a string and hence remove the potential for such

a disaster. The ones most relevant to the previous problem are the functions strtoupper() and

strtolower(). The prototypes for these two functions are as follows:

string strtoupper (string string)

string strtolower (string str)

These functions do what you would expect them to do. The function strtoupper() turns

an entire block of text into uppercase, and strtolower() changes an entire string into lower-

case. By using either of these functions, you can quickly turn troubles with case sensitivity into

things of the past.

6-7 ■ REVERSING STRINGS 277

The Code

<?php

//The value passed to use by a customer who is signing up.

$submittedpass = "myPass";

//Before we insert into the database, we simply lowercase the submittal.

$newpass = strtolower ($submittedpass);

echo $newpass; //Echoes mypass

?>

mypass

How It Works

This code will work fine if there was a user mistake when entering a field or if you want all the

values in your database to be a certain case, but what about checking logins? Well, the code

can certainly apply there as well; the following block of code will check for a valid username

and password match:

<?php

if (strcmp (strtolower ($password), strtolower ($correctpassword) == 0){

//Then we have a valid match.

}

?>

This function also uses the strcmp() function, which is described in more detail later in

this chapter (see recipe 6-12).

By turning both the correct password and the user-submitted password into lowercase,

you alleviate the problem of case sensitivity. By comparing the two of them using the strcmp()

function (which returns a zero if identical and returns a number greater than zero if the first

string is greater than the second, and vice versa), you can find out whether you have an exact

match and thusly log them in properly.

Besides turning an entire block of text into a specific case, PHP can also do some interest-

ing things regarding word-based strings. The functions ucfirst() and ucwords() have the

following prototypes:

string ucfirst (string str)

string ucwords (string str)

Both functions operate on the same principle but have slightly differing scopes. The ucfirst()

function, for instance, changes the first letter in a string into uppercase. The ucwords() does some-

thing slightly handier; it converts the first letter in each word to uppercase. How does it determine

what a word is? Why, it checks blank spaces, of course. For example:

6-8 ■ CONTROLLING CASE278

<?php

$astring = "hello world";

echo ucfirst ($astring);

?>

Hello world

This would result in the function outputting the “Hello world” phrase. However, if you

changed the function slightly, like so:

<?php

$astring = "hello world";

echo ucwords ($astring);

?>

you would get the (far more satisfying) result of a “Hello World” phrase:

Hello World

As you can see, controlling the case of strings can be both gratifying and powerful; you

can use this feature to control security in your applications and increase readability for your

website visitors.

6-9. Trimming Blank Spaces

A potentially disastrous (and often overlooked) situation revolves around blank spaces. A fre-

quent occurrence is for website visitors (or CMS users) to enter content that contains a myriad

of blank spaces into forms. Of particular frequency is the copy-and-paste flaw. Some people

may compose text in a word processor or perhaps copy text from another web browser. The

problem occurs when they then try to paste the submission into a form field. Although the

field may look properly filled out, a blank space can get caught either at the beginning or at

the end of the submittal, potentially spelling disaster for your data integrity goal. PHP has a

few ways to deal with this.

The more common way of removing blank space is by using PHP’s trim(), ltrim(), and

rtrim() functions, which go a little something like this:

string trim (string str [, string charlist])

string ltrim (string str [, string charlist])

string rtrim (string str [, string charlist])

The trim() function removes all whitespace from the front and back of a given string;

ltrim() and rtrim() remove it exclusively from the front or back of a string, respectively. By

providing a list of characters to remove to the optional charlist argument, you can even spec-

ify what you want to see stripped. Without any argument supplied, the function basically

strips away certain characters that should not be there; you can use this without too much

concern if you are confident about what has to be removed and what does not.

6-9 ■ TRIMMING BLANK SPACES 279

The Code

<?php

$blankspaceallaround = " somepassword ";

//This would result in all blank spaces being removed.

echo trim ($blankspaceallaround) . "
";

//This would result in only the blank space at the beginning being trimmed.

echo ltrim ($blankspaceallaround) . "
";

//And, as you can imagine, only the blank space at the end would be trimmed here.

echo rtrim ($blankspaceallaround) . "
";

?>

How It Works

For security purposes and all-around ease of use, it makes sense to use trim() on pretty much

any field you encounter. Blank spaces cannot be seen and more often than not will cause trou-

ble for the individual who entered them. Particularly disastrous are login fields that can be

next to impossible to decipher should some unruly blank spaces make their appearance. It is

highly recommended that you take care of any information that is integral to the system (vali-

dation, please!), and using the trim functions provides the means to an end in that regard.

As a side note, data storing is not the only place this sort of validation can come in handy.

Pretty much any form consisting of user submittal can benefit from a little extra cleanliness.

Search queries with blank spaces accidentally entered at the beginning or end of a search term

can provide a frustrating experience for visitors to your website, for instance.

6-10. Wrapping Text

Sometimes it is not always a matter of ensuring a proper submittal of data that makes string

manipulation so important; it is frequently important to ensure that strings are displaying

properly to the end user. There is no point in having a beautiful set of information that dis-

plays in a choppy, chunky manner. Once again, PHP comes to your rescue by providing a

couple of clever text formatting functions.

We will first talk about the function nl2br(), whose prototype is as follows:

string nl2br (string string)

Basically, nl2br() changes any new line characters found in the data string into

Hypertext Markup Language (HTML) code. This can be extremely handy when building CMS

type systems with end users who are unfamiliar with HTML code. Which would you consider

easier out of the following two choices? First, is it easier teaching clients who have absolutely

no technical expertise whatsoever (and no time for any) how to use the cryptic
 every

time they want a new line, or, second, is it easier just telling them to hit the Enter key when-

ever they want a new line? If you chose the second option, go grab yourself a cookie (we

recommend the white-chocolate, macadamia-nut variety).

Basically, the nl2br() function can be a lifesaver because it allows your client (or whoever

is entering information) to enter text into a text area in a way that looks normal to them. Then,

rather than displaying one big chunk of run-on text on the website, you can allow the already

formatted text to “automagically” display using this function.

6-10 ■ WRAPPING TEXT280

The Code

<?php

$astring = "Hello\nWorld\n\nHow are you?";

echo nl2br ($astring);

?>

This block of code would result in something that looks like this:

Hello

World

How are you?

How It Works

The nl2br() function is nice if the person submitting the data is aware of carriage returns and

whatnot, but what if they just feel like copying and pasting a huge block of text into your painstak-

ingly prepared web layout? Well, there is a simple way of dealing with this sort of occurrence as

well, using the highly useful wordwrap() function that has the following prototype:

string wordwrap (string str [, int width [, string break [, bool cut]]])

By using this function, you can set a block of text to wrap to a width of your choosing and

then even choose the character you want to break it with. Consider the following block of code

as an example:

<?php

$textblock = "See spot run, run spot run. See spot roll, roll spot roll!";

echo wordwrap ($textblock, 20, "
");

?>

This would create a paragraph whereby the text block would go only to a width of 20 and

then break into a new line. Not only does this help lay out the page in a more readable format,

it can also be a lifesaver in certain circumstances. The output would look something like this:

See spot run, run

spot run. See spot

roll, roll spot roll!

Unfortunately, while HTML layout elements such as tables or divs can contain text and

wrap the text automatically, they do have one interesting flaw. Basically, HTML will wrap text

only if there is a blank space contained (that is, a new word). Sadly, this does not encompass

the end result of someone entering a word that is really long and does not contain a blank

space. For example:

<?php

$alongstring = "Hellllllllllllllllllllllllllllllloooooooooooo World";

?>

6-10 ■ WRAPPING TEXT 281

Now, if the very long “Hello” happened to be contained by a certain design HTML wrap-

per and it exceeded the length of the wrapper, the design could potentially break. But if you

put the wordwrap() function to good use, you should be safe even in such an eventuality.

6-11. Checking String Length

A common occurrence that is quite easily handled in PHP is attempting to find out how long a

string is. This can come in handy in multitudes of places, including validation of form elements,

output of user-submitted data, and even database insertion preparation. PHP’s strlen() func-

tion will instantly retrieve for you the length of any given string. The prototype for strlen() is

as follows:

int strlen (string string)

Since validation and security are such vital issues, it is important to know a few common

string types that should always be checked for proper length. First up is data that will soon be

inserted into a database and that has been submitted from a form by a user. Without going too

in depth into MySQL (Chapter 15 goes into more detail in that regard), we will just begin by

saying that certain data fields in a database can handle only a certain size field. If a string field,

for instance, goes into a database field that cannot take the length of the string, an error will

definitely be generated; and that is no fun for anyone. What is the simple way around this

problem? You can simply validate the string’s length using strlen(), as shown in the following

example.

The Code

<?php

//Define a maximum length for the data field.

define ("MAXLENGTH", 10);

if (strlen ("Hello World!") > MAXLENGTH){

echo "The field you have entered can be only " ➥

. MAXLENGTH . " characters in length.";

} else {

//Insert the field into the database.

}

?>

The field you have entered can be only 10 characters in length.

How It Works

As you can see, by checking to make sure the length of the string is less than the maximum

length that your database field will allow, you prevent a potential tragedy. You can use this in

many occasions such as making sure a password submitted by a user is at least a certain num-

ber of characters in length and when outputting user-submitted text that could potentially

break a design to which a CMS has been applied.

6-11 ■ CHECKING STRING LENGTH282

6-12. Comparing Strings

No matter what language you are programming in, comparing values becomes a common

dilemma. Unlike in most programming languages, however, PHP makes comparing easy, at

least on the surface. The easiest way to compare two strings is with the == operator. The ==

operator, in PHP, basically determines an exact equal match when using a conditional state-

ment. The following block of code shows how to use it.

The Code

<?php

$stringone = "something";

$stringtwo = "something";

if ($stringone == $stringtwo){

echo "These two strings are the same!";

}

?>

These two strings are the same!

How It Works

However, sometimes a simple string comparison as shown previously just will not cut it.

Sometimes a more precise comparison is in order; once again PHP has given you an answer

in the form of strcmp().

int strcmp (string str1, string str2)

The function strcmp() does slightly more than your average == operator as well. Not only

does it check for an exact binary match between strings, but it can also return a result that lets

you know if a string is greater than or less than the other. More specifically, if the value returned

is less than zero, then string 1 is less than string 2; and, as you might expect, if the returned value

is greater than zero, then string 1 is greater than string 2.

A real-world way in which you may want to use a full-on binary comparison function

such as strcmp() is when dealing with usernames and passwords. Quite realistically, it is not

good enough for a string to be “almost” the same as the other one. What we mean by that is

if blank spaces get in the way or some such circumstance, occasionally the == operator will

return a match even when the two strings are not completely identical. By using the strcmp()

function, you can be assured that if the two values are not a complete and absolute match, the

function will not return you a zero.

PHP also has a few other cousin functions to the mighty strcmp() that are a little more

advanced and provide slightly different functionality. The more similar function available is

the strncmp() function, which does almost the same thing as strcmp() but adds the benefit of

being able to choose the length of the characters you want to compare. The strncmp() func-

tion has a prototype that looks like this:

int strncmp (string str1, string str2, int len)

6-12 ■ COMPARING STRINGS 283

Similarly, should you not be interested in case sensitivity when comparing strings, you

can use the functions strcasecmp() and strncasecmp(), which look like this:

int strcasecmp (string str1, string str2)

int strncasecmp (string str1, string str2, int len)

Basically, these two functions do exactly what their case-sensitive counterparts do,

only they completely ignore case sensitivity. The slightly confusing part of the strncmp()

and strncasecmp() functions is the len argument. What this means is that it will compare

len amount of characters from the first string with the second string. For example:

<?php

if (strncmp ("something","some",4) == 0){

echo "A correct match!";

}

?>

A correct match!

6-13. Comparing Sound

A common use for comparing strings has always been a search engine. By entering appropriate

terms as arguments, you can then compare them against similar fields using string comparison.

In quite a few modern-day applications, direct string comparisons may not be enough to satisfy

the ever-growing need for a powerful search application.

To help make search engines a touch friendlier, a concept was created that will allow you

to return accurate search results even if the search term is pronounced in a similar tone. PHP 5

has a function that can determine matching strings based on something called a soundex key.

The function soundex() has the goal of identifying a match based on pronunciation. The pro-

totype for the function is as follows:

string soundex (string str)

The Code

<?php

echo soundex ("Apress") . "
";

echo soundex ("ahhperess") . "
";

echo soundex ("Lee") . "
";

echo soundex ("lhee") . "
";

echo soundex ("babin") . "
";

echo soundex ("bahbeen") . "
";

6-13 ■ COMPARING SOUND284

//Now, say I wanted to buy a xylophone online but had no idea how to spell it.

echo soundex ("xylophone") . "
";

//Here is a common misspelling no doubt.

echo soundex ("zilaphone");

//Note, how the end 3 numbers are the same? That could be used to perform a match!

?>

A162

A162

L000

L000

B150

B150

X415

Z415

How It Works

As you can see, similar-sounding pronunciations can result in similar (if not exact) results. The

first character returned is the first letter used in the query, and the next set of three numerical

values is the soundex key that is based on how the word sounds. By integrating this sort of

functionality into your search engines, you can return a set of potential results with much

greater accuracy than if you were using exact matches.

Project: Creating and Using a String Class
It is certainly one thing to show how string functions could be used but quite another to apply

them to a real-world example. String manipulation is a common solution to many program-

ming dilemmas, and sometimes the ability to put string functionality to use on the fly can

mean the difference between a botched project and a fully functional web solution. In the

next example, we have created an actual real-world project that draws on string functionality

to process a wide range of applications.

6-14. Using a Page Reader Class

One of the more amusing algorithms that you can use is a web page reader, more commonly

referred to as a spider. Basically, the point of the pagereader class is to read a web page that is

located somewhere on the Internet and then parse it for appropriate or interesting information.

The next class’s intent is to read a page and uncover a listing of all links, e-mails, and

words contained within a given web page. The same sort of functionality is applied to many

modern-day, large-scale operations including web search engines and, sadly, spam e-mail col-

lectors. The following class will show you the basics of using a wide variety of string functions

to process an effective application.

6-14 ■ USING A PAGE READER CLASS 285

The Code

<?php

//Class to read in a page and then output various attributes from said page.

class pagereader {

protected $thepage;

//The constructor function.

public function __construct (){

$num_args = func_num_args();

if($num_args > 0){

$args = func_get_args();

$this->thepage = $args[0];

}

}

//Function to determine the validity of a file and then open it.

function getfile () {

try {

if ($lines = file ($this->thepage)){

return $lines;

} else {

throw new exception ("Sorry, the page could not be found.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to return an array of words found on a website.

public function getwords (){

$wordarray = array ();

$lines = $this->getfile ();

//An array of characters we count as an end to a word.

$endword = array ("\"","<",">"," ",";","(",")","}","{");

//Go through each line.

for ($i = 0; $i < count ($lines); $i++){

$curline = $lines[$i];

$curline = str_split ($curline);

for ($j = 0; $j < count ($curline); $j++){

//Then start counting.

$afterstop = false;

$afterstring = "";

$counter = 0;

6-14 ■ USING A PAGE READER CLASS286

for ($k = $j; $k < count ($curline); $k++){

$counter++;

if (!$afterstop){

if (!in_array ($curline[$k],$endword)){

$afterstring = $afterstring . $curline[$k];

} else {

$afterstop = true;

//Set j to the next word.

$j = $j + ($counter - 1);

}

}

}

if (trim ($afterstring) != ""){

$wordarray[] = $afterstring;

}

}

}

return $wordarray;

}

//Function to deliver an array of links from a website

public function getlinks (){

//Read the file.

$lines = $this->getfile ();

$impline = implode ("", $lines);

//Remove new line characters.

$impline = str_replace ("\n","",$impline);

//Put a new line at the end of every link.

$impline = str_replace("","\n",$impline);

//Then split the impline into an array.

$nlines = split("\n",$impline);

//We now have an array that ends in an anchor tag at each line.

for($i = 0; $i < count($nlines); $i++){

//Remove everything in front of the anchor tag.

$nlines[$i] = eregi_replace(".*<a ","<a ",$nlines[$i]);

//Grab the info in the href attribute.

eregi("href=[\"']{0,1}([^\"'>]*)",$nlines[$i],$regs);

//And put it into the array.

$nlines[$i] = $regs[1];

}

//Then we pass back the array.

return $nlines;

}

//Function to deliver an array of e-mails from a site.

6-14 ■ USING A PAGE READER CLASS 287

public function getemails (){

$emailarray = array ();

//Read the file.

$lines = $this->getfile ();

//Go through each line.

for ($i = 0; $i < count ($lines); $i++){

//Then, on each line, look for a string that fits our description.

if (substr_count ($lines[$i],"@") > 0){

//Then go through the line.

$curline = $lines[$i];

//Turn curline into an array.

$curline = str_split ($curline);

for ($j = 0; $j < count ($curline); $j++){

if ($curline[$j] == "@"){

//Then grab all characters before and after the "@" symbol.

$beforestring = "";

$beforestop = false;

$afterstring = "";

$afterstop = false;

//Grab all instances after the @ until a blank or tag.

for ($k = ($j + 1); $k < count ($curline); $k++){

if (!$afterstop){

if ($curline[$k] != " " && $curline[$k] != "\"" ➥

&& $curline[$k] != "<"){

$afterstring = $afterstring . $curline[$k];

} else {

$afterstop = true;

}

}

}

//Grab all instances before the @ until a blank or tag.

for ($k = ($j - 1); $k > 0; $k--){

if (!$beforestop){

if ($curline[$k] != " " && $curline[$k] != ">" ➥

&& $curline[$k] != ":"){

$beforestring = $beforestring . $curline[$k];

} else {

$beforestop = true;

}

}

}

//Reverse the string since we were reading it in backwards.

$beforestring = strrev ($beforestring);

$teststring = trim ($beforestring) . "@" . trim ($afterstring);

if (preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])➥

+(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$teststring)){

6-14 ■ USING A PAGE READER CLASS288

//Only include the e-mail if it is not in the array.

if (!in_array ($teststring,$emailarray)){

$emailarray[] = $teststring;

}

}

}

}

}

}

//Then we pass back the array.

return $emailarray;

}

}

$myreader = new pagereader ("http://www.apress.com");

//None found ;).

?><p style="font-weight: bold;">Emails:</p><?php

print_r ($myreader->getemails ());

//Whoa, a few links.

?><p style="font-weight: bold;">Links:</p><?php

print_r ($myreader->getlinks ());

//Hold on to your hats, this will take a while...

?><p style="font-weight: bold;">Words:</p><?php

print_r ($myreader->getwords ());

?>

How It Works

The pagereader class’s core functionality is based around reading a web page on the Internet

and then performing operations on the read. Therefore, it comes with the validated method

getfile(), whose sole purpose is to attempt to read in a web page using the file() function.

If the function receives a valid read, then you can begin work on the received information.

The class has three main functions, and they all perform somewhat differently to accom-

plish their goals. The getwords() method is perhaps the simplest of the three merely because

of its somewhat global goal. The purpose of the getwords() method is to collect an array filled

with all words contained on a website. The problem is, what constitutes a word? The answer to

such a question will probably vary from user to user, so an array filled with characters that will

be omitted when determining the end of a word has been instantiated. By changing the values

contained within this array, you can determine what constitutes a word and thus change the

way the script reads in a word list.

The way it works after that is quite simple. The script takes in each line of the received file

individually and then splits it into an array. It then parses through the array and waits until it

finds a character that is not in the current array of end characters. After it finds such a character,

6-14 ■ USING A PAGE READER CLASS 289

it loops through the string of characters found after the start character and waits until it finds

another character in the array, adding to a final string as it goes. Once it reaches a final character,

it stores the “word” into an array to be returned when the script has finished processing.

The getemails() method works similarly to the getwords() method, except it bases every-

thing upon the @ symbol. So, although it also goes through each line received from the file and

breaks it down, it instead breaks it down according to the @ symbol. When a valid symbol has

been found, it cycles through all characters before and after the symbol and quits cycling once

an end character has been found. Once an end character has been found before and after the

@ symbol, a full string is concocted and compared against a valid e-mail string using the

preg_match() function. (For more information, see Nathan A. Good’s Chapter 9.) If a valid

match is received, the e-mail is returned in an array filled with e-mail addresses.

The last method in this class also differs the most. It combines string functionality with

regular expressions to create a link targeting script. Basically what this method does is break

the received lines down into a single line and kill off all new line characters. Then, it searches

for any instances of an anchor tag and places a new line character after the closing anchor

tag. Then, with an array of anchor tags delimited by a new line character in place, it strips out

everything from in front of the leading anchor tag and grabs all information from within the

href argument. At this point, the data contained within is stored into an array for returning.

As you can see, you can perform a wide range of functionality using the received file infor-

mation; what is shown here is only a small glimpse. With the wide range of functionality

available in the form of string functions, anything is possible.

Summary
So, as you can see, strings will always be a rather important subject when dealing with a pro-

gramming language such as PHP. Thankfully, because of PHP 5’s new class functionality, it is

becoming easier to take matters into your own hands and concoct some truly powerful classes

to help make your life just a little easier. It is important to experiment and use the tools avail-

able to you. As you can see from the real-world example in this chapter of a pagereader class,

the ability to use string functionality on the fly is a learned and highly appreciated skill.

Looking Ahead
In the next chapter, we will go through the ins and outs of working with your current file system.

This is a handy set of functionality that will likely serve you well in your quest for the perfect web

application. While operating systems and server configurations may differ, the ability to react to

such changes, with a bit of help from this book, will define you as the master programmer that

you are.

6-14 ■ USING A PAGE READER CLASS290

Working with Files
and Directories

Although a web page may appear as a nicely collected and displayed grouping of images

and text, the actual underlying structure comprises a wide collection of files that are sorted

amongst (we hope) well-structured directories. Website file structures generally consist of

specifically formatted files that run on a server-enabled computer.

Just as you would explore your current computer using some form of command (perhaps

Windows Explorer for Windows-based operating systems or something such as the ls com-

mand in Linux), so too can you use PHP to navigate the internal structure of the computer

from which it is currently processing.

PHP 5 is truly effective not just at navigating and browsing the file structure of a given

server but also at manipulating it. Capable of creating, navigating, deleting, and modifying,

PHP is a powerful tool for maintaining a web directory from a dynamic level.

Further, PHP can work with and manipulate the underlying file structure of a server, and

it can provide functionality to independent files. No matter what it is you are attempting to

do with your script, you generally need a way to pass along values from one script to another.

Multiple ways exist for doing this, including storing and retrieving data to and from a database

or even in the virtual memory of the server (sessions), but one popular way, certainly before

the advent of secure database functionality, is using text files (referred to as flat files).

Working with Files
PHP 5 is more than adept at opening, closing, reading, writing, and manipulating text files,

including Hypertext Markup Language (HTML), JavaScript, and Extensible Markup Language

(XML) files. The list of reasons you would want to use PHP to manipulate text files is rather

vast, but in this chapter we will go with a basic one and assume you want to create a visitor

counter for your website.

7-1. Opening Files

The first task you must accomplish when working with a file (be it a .txt file, an .xml file, or

another file) is to open the file. Naturally, since you are a sound-minded developer and realize

that exceptions may occur, you must validate such an occurrence against mishaps. Keep in

mind that a file that is to be opened must have proper permissions set to allow it to be read or

written to, so those working on a Linux server should CHMOD the file to read (and potentially
291

C H A P T E R 7

■ ■ ■

write, as in this case) values. Those on a Windows server should check the read/write permis-

sion setting. As a general rule, if you are not concerned too heavily about the security behind

a particular file, you cannot go wrong by setting it to 777. If you are concerned about the secu-

rity of a given writable file, however, you should consider a more advanced method of

protecting your files (such as htaccess).

The following example uses two pertinent file-related functions: file_exists() checks

(relatively) for a file’s existence, and fopen() attempts to open a file. The prototypes for the

functions are as follows:

bool file_exists (string filename)

resource fopen (string fname, string mode [, bool useincpth [, resource zcontext]])

The Code

<?php

//sample7_1.php

//First, declare the file you want to open.

$file = "samplefile1.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($file)){

//Then you attempt to open the file, in this case for reading.

try {

if ($readfile = fopen ($file, "r")){

//Then you can work with the file.

echo "File opened successfully.";

} else {

//If it fails, you throw an exception.

throw new exception ("Sorry, the file could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

} else {

echo "File does not exist.";

}

?>

File opened successfully.

7-1 ■ OPENING FILES 292

How It Works

As you can see, you first confirm that the file does in fact exist and then try to open the file for

reading. By using PHP 5’s new exception handling, you take care of the eventuality that the file

might not have the proper permissions to read. Table 7-1 shows many other ways of opening a

file. Should you neglect to supply an argument to the fopen() function designating how to

open it, PHP will supply a warning, and the file will not open correctly.

Table 7-1. PHP 5 Arguments for Opening a File

Argument Description

r Opens a file for reading

r+ Opens a file for both reading and writing

w Opens a file for writing only

w+ Opens a file for reading and writing

a Opens a file for appending (write-only)

a+ Opens a file for appending (read/write)

X Creates a file and opens it for writing only

x+ Creates a file and opens it for reading and writing

7-2. Reading from Files

PHP 5 has a nice way of reading from files. Not only can you open a file for reading, but you

can also have PHP attempt to create the file for you and then open it. Created files are owned

by the server by default (on Linux servers) and should thus be given proper permissions by

the script to ensure that you (and your script) can access the file later. Similarly, when reading

files, you can go about doing this in a few ways. Which way you choose to use depends on

what the goal of your script is. You need to ask yourself exactly what it is you want to accom-

plish by reading in data from the text file.

The most common means of acquiring information from a text file is by using the func-

tions fgetc(), fgets(), and fread(). Each of these functions is similar in use but has its own

separate strengths and weaknesses; the idea is to pick the right one for the job. The methods

are as follows:

• string fgetc (resource handle)

• string fgets (resource handle [, int length])

• string fread (resource handle, int length)

The function fgetc() returns a character from a line in a file, fgets() returns a single line

from a file, and fread() returns a requested amount of bytes worth of data from a file. Typi-

cally, if you are on the lookout for only one character at a time, use the fgetc() method. If you

need access to the entire line of a file, use the fgets() function; should you need a specific set

of information for a line in a file, use the fread() method.

7-2 ■ READING FROM FILES 293

In the case of the sample script, since we have no idea how large the counter could get,

the example will use the fread() function combined with the filesize() function (which

returns the size of the file in question) to read the entirety of the current counter so as to

handle any eventuality.

The Code

<?php

//sample7_2.php

//First, declare the file you want to open.

$file = "samplefile1.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($file)){

//Then you attempt to open the file, in this case for reading.

try {

if ($readfile = fopen ($file, "r")){

//Then you can work with the file.

//Get the current value of the counter by using fread().

$curvalue = fread ($readfile,filesize($file));

//Then you can output the results.

echo $curvalue;

} else {

//If it fails, throw an exception.

throw new exception ("Sorry, the file could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

} else {

echo "File does not exist.";

}

?>

The result would be a numerical value such as the following:

9

How It Works

Notice the following line:

$curvalue = fread ($readfile,filesize($file));

In this line, you simply read in the current value of the counter using the fread() func-

tion. The variable $curvalue will now be assigned the value at which the counter is currently

sitting.

7-2 ■ READING FROM FILES294

7-3. Writing to Files

When working with files, you will also need to know how to make changes to them, that is,

how to write to files. Similar with reading from files, you can write to files in a multitude of

ways. The most common way of accomplishing this task is by using the function fwrite(),

but several methods exist:

• int fwrite (resource handle, string string [, int length])

• int file_put_contents (string filename, mixed data [, int flags [, resource

context]])

• fputs (alias of fwrite())

Generally, the fwrite() function acts as a simple way to write something to a file and

should be used if you are opening and closing a file using the fopen() and fclose() functions.

The (new-to-PHP 5) function file_put_contents() allows you to open, write to, and then

close a file—all at the same time. Lastly, the function fputs() merely acts as an alias to

fwrite() and can be used in the same manner.

Since writing to files is a little more sensitive than reading from them (because you

wouldn’t want any script to overwrite sensitive information), you have to perform a few more

checks to ensure that you can actually write to the file in question. Thankfully, PHP 5 supports

the function is_writable(), which will return a boolean value that lets you know whether you

can write to a file. As a careful and methodic programmer, it is your duty to perform this sort

of validation. Consider the following addition to the counter script, which will update the

counter by 1 and then write the new value to the file.

The Code

<?php

//sample7_3.php

//First, declare the file you want to open.

$file = "samplefile1.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($file)){

//Then you attempt to open the file, in this case for reading.

try {

if ($readfile = fopen ($file, "r")){

//Then you can work with the file.

//Get the current value of the counter by using fread().

$curvalue = fread ($readfile,filesize($file));

//Increment our counter by 1.

$curvalue++;

//Then attempt to open the file for writing, again validating.

if (is_writable ($file)){

try {

if ($writefile = fopen ($file, "w")){

//Then write the new value to the file.

7-3 ■ WRITING TO F ILES 295

fwrite ($writefile, $curvalue);

echo "Wrote $curvalue to file.";

} else {

throw new exception ("Sorry, the file could not be opened");

}

} catch (exception $e){

echo $e->getmessage();

}

} else {

echo "File could not be opened for writing";

}

} else {

//If it fails, you throw an exception.

throw new exception ("Sorry, the file could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

} else {

echo "File does not exist.";

}

?>

Wrote 11 to file.

How It Works

Note how you now increment the counter and then write to the file the new value of the

counter. This means when the next person to visit your site loads the counter script, they

will find the new value written to the file and subsequently increment that by 1, increasing

the counter. Also note the error handling involved once again.

7-4. Closing Files

The last thing you must do, once you have finished working with your file, is to clean up the

mess. By this we mean that you must close the current file pointer. Those of you paying careful

attention to the previous scripts will note the distinct lack of any cleanup operations, which is

just a poor way of handling code.

Closing a file in PHP is just as simple as opening one; you simply need to invoke the

fclose() method, which will close the file pointer link. This is the prototype for fclose():

bool fclose (resource handle)

The following example finalizes the counter code by outputting the value of the counter

to the website (hence making it a functional script) and cleaning up your work with the

fclose() function.

7-4 ■ CLOSING FILES296

The Code

<?php

//sample7_4.php

//First, declare the file you want to open.
$file = "samplefile1.txt";
//Now, you use the file_exists() function to confirm its existence.
if (file_exists ($file)){
//Then you attempt to open the file, in this case for reading.
try {
if ($readfile = fopen ($file, "r")){
//Then you can work with the file.
//Get the current value of our counter by using fread().
$curvalue = fread ($readfile,filesize($file));
//Close the file since you have no more need to read.
fclose ($readfile);
//Increment the counter by 1.
$curvalue++;
//Then attempt to open the file for writing, and again, validating.
if (is_writable ($file)){
try {
if ($writefile = fopen ($file, "w")){
//Then write the new value to the file.
fwrite ($writefile, $curvalue);
//Close the file, as you have no more to write.
fclose ($writefile);
//Then lastly, output the counter.
echo $curvalue;

} else {
throw new exception ("Sorry, the file could not be opened");

}
} catch (exception $e){
echo $e->getmessage();

}
} else {
echo "File could not be opened for writing";

}
} else {
//If it fails, throw an exception.
throw new exception ("Sorry, the file could not be opened.");

}
} catch (exception $e) {
echo $e->getmessage();

}
} else {
echo "File does not exist.";

}
?>

12

7-4 ■ CLOSING FILES 297

How It Works

Notice these lines:

fclose ($readfile);

fclose ($writefile);

Both of these lines finalize the reading and writing business by closing the file pointer

links. With that out of the way, you can simply output the current count, and there you have

it—a fully functional, PHP 5–driven, heavily validated counter script.

7-5. Reading and Writing Comma-Separated Data

A frequent operation you will need to perform, particularly in this day and age of standardiz-

ing data, is the process of removing data from a source to convert it into another format. With

XML arising as a common form of storing data, and database interactivity becoming easier

and cheaper every year, it is rather commonplace to have to take data from an antiquated

source (such as a point-of-sale system) and convert it into a more usable, modern-day form

of data storage.

One way that many point-of-sale systems export data (and most database applications as

well) is in the form of comma-delimited files. In other words, each row of every table (or what-

ever it is that is being used to store the data) can be exported and then delimited by a comma,

typically in the form of a text file. This is a universal way to export data, and most database

systems have features that allow them to read such a file.

Luckily, reading and writing comma-separated data with PHP 5 is simple, quick, and effi-

cient. By using some of the functions from the previous example, plus the explode() string

function, you can quickly and efficiently parse or create a set of comma-delimited data.

For this example, we have created a text file that will represent a dump of a book repository

database. Each row in the theoretical table contains a unique ID number, the name of the book,

and the author who wrote the book. For clarity’s sake, we have written only three lines to the text

file, but in real life, it could very well be 30,000 lines; this script will take care of it either way.

The text file looks like this:

1,Book 1,An Author

2,Book 2,Another Author

3,Book 3,Yet Another Author

The Code

<?php

//sample7_5.php

//First, find the comma-separated file.

$commafile = "samplefile2.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($commafile)){

7-5 ■ READING AND WRITING COMMA-SEPARATED DATA298

//In this case, you will use the file() function to read an entire file

//into an array.

$rows = file ($commafile);

for ($i = 0; $i < count ($rows); $i++){

//You use the explode function to break the current row into the sum

//of its comma-delimited parts.

$exprow = explode (",", $rows[$i]);

//Normally at this point you would insert the data into a database

//or convert it into XML. In this case, for brevity, you will simply

//output it.

echo "ID: " . $exprow[0] . "
";

echo "Name: " . $exprow[1] . "
";

echo "Author: " . $exprow[2] . "
";

echo "<hr />";

}

} else {

echo "File does not exist.";

}

//Reading the data back into a comma-delimited file is just as easy.

//Generally you would do this from a database, but in this case, you

//will create a set of arrays to output.

$idarray = array ("1","2","3");

$namearray = array ("Book 1","Book 2","Book 3");

$authorarray = array ("An Author","Another Author","Yet Another Author");

$newfile = "samplefile2.txt";

//You will open it in such a way that it creates a new file if one

//does not exist.

try {

if ($readfile = fopen ($newfile, "w")){

//You then go through the array and write a line at a time.

for ($i = 0; $i < count ($idarray); $i++){

$writestring = $idarray[$i] . "," . $namearray[$i] . ","➥

. $authorarray[$i] . "\n";

fwrite ($readfile, $writestring);

}

fclose ($readfile);

} else {

//If it fails, you throw an exception.

throw new exception ("Sorry, the file could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

7-5 ■ READING AND WRITING COMMA-SEPARATED DATA 299

ID: 1

Name: Book 1

Author: An Author

ID: 2

Name: Book 2

Author: Another Author

ID: 3

Name: Book 3

Author: Yet Another Author

How It Works

In this case, you use a function called file() that reads the contents of a file into an array

effectively, one line at a time. The file() function’s prototype is as follows:

array file (string filename [, int use_include_path [, resource context]])

7-6. Reading Fixed-Width Delimited Data

Sometimes you will have to build an algorithm that allows you to read exact coordinates in a

text file. For example, variables could have been set within a text file and flat files could have

been created to hold information in lieu of a proper database. In this sort of occurrence, you

must take a few more precautions when reading and writing the data in the file, because it

must be done rather precisely. Figure 7-1 shows an inventory listing where the fields are kept

within two exact coordinates in a text file.

Figure 7-1. A fixed-width, delimited data text file

In this example, the name of the inventory item is being kept within the first 20 characters

of each line in a text file, and the next 20 characters contain the amount of inventory remain-

ing in the system. By using a handy string function (discussed in more detail in Chapter 6)

called substr(), you can cycle through the text file, use the method to break the required

parts of the file into appropriate variables, and proceed to perform the needed algorithm.

7-6 ■ READING FIXED-WIDTH DELIMITED DATA300

The Code

<?php

//sample7_6.php

$flatfile = "samplefile3.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($flatfile)){

//In this case, you will use the file() function to read an entire file

//into an array.

$rows = file ($flatfile);

for ($i = 0; $i < count ($rows); $i++){

//Now, you use the substr() function to parse out the appropriate parts.

$item = substr ($rows[$i],0,20);

$amount = substr ($rows[$i],20,40);

//Note that you trim the end spaces just in case.

echo "Item: " . rtrim ($item) . " has " . rtrim ($amount)➥

. " unit (s) left.
";

}

} else {

echo "File does not exist.";

}

?>

How It Works

Using this particular flat file, you will end up with a result that looks something like this:

Item: Soap has 8 unit (s) left.

Item: Towels has 11 unit (s) left.

Item: Body Lotion has 3 unit (s) left.

The method for handling this functionality is quite efficient when using the substr()

function. By pulling in each line of the text file and then parsing out the appropriate sections

of the file using the substr() function, you are left with only the data in which you are inter-

ested. With this data in hand, it is simply a matter of what to do with it; in this case, you merely

output the results.

7-7. Reading and Writing Binary Data in a File

Reading and writing binary data in a file is quite similar to performing the same functionality

demonstrated previously but is slightly more portable across different platforms. Binary files

can be read on pretty much any platform and can be a composition of any type of file format

(rather than just text files). You can typically see what a binary file might look like by opening

an image or music file in a text editor such as Notepad. You will notice that most of the charac-

ters are nonalphabetic and look rather like gibberish to the untrained eye (or computer).

The functions fopen(), fread(), fwrite(), and fclose() will still work just fine with binary

files. The function fgets(), however, will not work exactly as planned because of its reliance

7-7 ■ READING AND WRITING BINARY DATA IN A F ILE 301

on string types. The fread() function is generally the function of choice for reading from

binary files.

Basically, the major change when working with binary files is to add a b to the end of the

argument you assign when opening the file. The following example showcases how to read

and write to a forced binary file.

The Code

<?php

//sample7_7.php

//First, dictate a file.

$binfile = "samplefile4.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($binfile)){

//Then open the file for binary read and writing.

try {

if ($readfile = fopen ($binfile, "rb+")){

//Now, you can read an write in binary.

$curtext = fread ($readfile,filesize($binfile));

echo $curtext; //Hello World!

//Then you can write to it.

fwrite ($readfile, "Hi World!");

//Then you close the file.

fclose ($readfile);

}

} catch (exception $e) {

echo $e->getmessage();

}

} else {

echo "Sorry, file does not exist.";

}

?>

Hello World!Hi World!

How It Works

As you can see, reading and writing with binary files is quite similar to reading or writing nor-

mal text-based files. The big difference comes into play within the fopen() function, as you

must tell the system to read in the file as a binary file. With the binary option in place (in this

case rb+, or reading a binary file and creating it if it does not exist), the system is now free to

read in whatever binary file has been specified.

7-7 ■ READING AND WRITING BINARY DATA IN A F ILE302

7-8. Getting the Number of Lines in a File

Finding the number of lines in a file is also quite handy. Luckily, with PHP it is also rather easy

to accomplish. Because the file() function creates an array filled with each line in a separate

index, you can simply read a file into an array and use count() to retrieve what is essentially

the number of lines in a file.

The Code

<?php

//sample7_8.php

//First, dictate a file.

$afile = "samplefile5.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($afile)){

//Read it using the file() function.

$rows = file ($afile);

//You can then use the count() function to tell you the number of lines.

echo count ($rows) . " lines in this file"; //Outputs 4 in this case

} else {

echo "Sorry, file does not exist.";

}

?>

4 lines in this file

How It Works

The highly useful nature of the file() function really shows itself with this example. Because

the file() function reads each line of a file into an array, all you need to do to find the number

of lines in the file is to call the count() function to determine an array size. Since each index in

the array would be filled with one line from the file, the count() function will retrieve the line

number with no issue whatsoever.

7-8 ■ GETTING THE NUMBER OF L INES IN A F ILE 303

7-9. Getting the Number of Characters, Words,

or Paragraphs in a File

Working with PHP and files allows for some rather powerful functionality. Consider, for exam-

ple, that you want to find the number of characters, the number of words, or even the number

of paragraphs within a certain text file. Naturally, performing this in any conventional way

could potentially take forever. Fortunately, while harnessing the power of PHP 5, you can loop

your way through the text file, stopping only when you get to the end of a file using the func-

tion feof(), whose prototype is as follows:

bool feof (resource handle)

The following example counts all three of the previous queries (characters, words, and

paragraphs) as it runs through the file. Assume a paragraph is separated by an end line charac-

ter, and a word is separated by a blank character. Naturally, you will accept any character for

the character count.

The Code

<?php

//sample7_9.php

//First, dictate a file.

$afile = "samplefile6.txt";

//Now, you use the file_exists() function to confirm its existence.

if (file_exists ($afile)){

try {

$charcounter = 0;

$wordcounter = 0;

//You default the paragraph counter to 1, as there is bound to be at least 1 line.

$paragraphcounter = 1;

$haveanewline = false;

if ($readfile = fopen ($afile, "r")){

while (!feof ($readfile)){

$curchar = fgetc ($readfile);

$charcounter++;

//If you have a blank character, that's a word.

if ($curchar == " "){

$wordcounter++;

}

//If you have a new line, then you increment the counter.

if ($curchar == "\n"){

$paragraphcounter++;

}

}

//Now, you close the file.

fclose ($readfile);

7-9 ■ GETTING THE NUMBER OF CHARACTERS, WORDS, OR PARAGRAPHS IN A F ILE304

//And output the results.

echo "Number of characters: " . $charcounter . "
";

echo "Number of words: " . $wordcounter . "
";

echo "Number of paragraphs: " . $paragraphcounter;

} else {

throw new exception ("Sorry, the file could not be opened");

}

} catch (exception $e){

echo $e->getmessage();

}

} else {

echo "Sorry, file does not exist.";

}

?>

Number of characters: 1343

Number of words: 204

Number of paragraphs: 3

How It Works

As you can see, the output created is a handy listing of the number of characters, words, and

paragraphs found within the file. Naturally, you could customize this script for some specific

features such as instances of each letter within a file, special characters, and many other intri-

cate uses.

The actual work involved with gathering statistics from a text file is strictly a matter of

taste. For all the figures, you merely loop through the entire file and compile a list of what the

script finds. Of course, any character it finds will be added to a character counter because

the example considered something a new word instance only if the previous character was a

space. Finding the number of paragraphs is a little trickier. We prefer to think of a new line as

a new paragraph, but some, no doubt, prefer to include a paragraph only after two new line

characters; the choice is up to you. In any case, the script continues to read the file until it

reaches the end and then outputs the results as shown previously.

7-10. Project: Creating and Using a File Class

When dealing with files, you will spend a lot of time checking to make sure a file is open, is

closed, exists, and so on. Because validation is key when dealing with text files, and because a

hefty amount of validation is needed at all times, it makes sense to create a more usable class

that does all the legwork for you. The following cfile class takes most of the guesswork and

validation out of working with files. You simply create a new instance of the class by pointing

it to a specified file path, and the system takes care of the rest. You can easily read, write, or

append, and the class and PHP 5’s handy new exception handling system handles all the

validation.

7-10 ■ PROJECT: CREATING AND USING A F ILE CLASS 305

The Code

<?php

//sample7_10.php

// Copyright 2005, Lee Babin (lee@thecodeshoppe.com)
// This code may be used and redistributed without charge
// under the terms of the GNU General Public
// License version 2.0 or later -- www.gnu.org
// Subject to the retention of this copyright
// and GPL Notice in all copies or derived works

class cfile {

//The path to the file you want to work with.
protected $thepath;

//Error messages in the form of constants for ease of use.
const FOUNDERROR = "Sorry, the file in question does not exist.";
const PERMERROR = "Sorry, you do not have the proper permissions on this file";
const OPENERROR = "Sorry, the file in question could not be opened.";
const CLOSEERROR = "Sorry, the file could not be closed.";

//The constructor function.
public function __construct (){

$num_args = func_num_args();

if($num_args > 0){
$args = func_get_args();
$this->thepath = $args[0];

}
}

//A function to open the file.
private function openfile ($readorwrite){
//First, ensure the file exists.
try {
if (file_exists ($this->thepath)){
//Now, you need to see if you are reading or writing or both.
$proceed = false;
if ($readorwrite == "r"){
if (is_readable($this->thepath)){
$proceed = true;

}
} elseif ($readorwrite == "w"){
if (is_writable($this->thepath)){
$proceed = true;

}

7-10 ■ PROJECT: CREATING AND USING A F ILE CLASS306

} else {
if (is_readable($this->thepath) && is_writable($this->thepath)){
$proceed = true;

}
}
try {
if ($proceed){
//You can now attempt to open the file.
try {
if ($filepointer = fopen ($this->thepath, $readorwrite)){
return $filepointer;

} else {
throw new exception (self::OPENERROR);
return false;

}
} catch (exception $e) {
echo $e->getmessage();

}
} else {
throw new exception (self::PERMERROR);

}
} catch (exception $e) {
echo $e->getmessage();

}
} else {
throw new exception (self::FOUNDERROR);

}
} catch (exception $e) {
echo $e->getmessage();

}
}

//A function to close a file.
function closefile () {
try {
if (!fclose ($this->thepath)){
throw new exception (self::CLOSEERROR);

}
} catch (exception $e) {
echo $e->getmessage();

}
}

//A function to read a file, then return the results of the read in a string.
public function read () {
//First, attempt to open the file.
$filepointer = $this->openfile ("r");

//Now, return a string with the read data.

7-10 ■ PROJECT: CREATING AND USING A F ILE CLASS 307

if ($filepointer != false){
//Then you can read the file.
return fread ($filepointer,filesize ($this->thepath));

}

//Lastly, close the file.
$this->closefile ();

}

//A function to write to a file.
public function write ($towrite) {
//First, attempt to open the file.
$filepointer = $this->openfile ("w");

//Now, return a string with the read data.
if ($filepointer != false){
//Then you can read the file.
return fwrite ($filepointer, $towrite);

}

//Lastly, close the file.
$this->closefile ();

}

//A function to append to a file.
public function append ($toappend) {
//First, attempt to open the file.
$filepointer = $this->openfile ("a");

//Now, return a string with the read data.
if ($filepointer != false){
//Then you can read the file.
return fwrite ($filepointer, $toappend);

}

//Lastly, close the file.
$this->closefile ();

}

//A function to set the path to a new file.
public function setpath ($newpath) {
$this->thepath = $newpath;

}

}

?>

7-10 ■ PROJECT: CREATING AND USING A F ILE CLASS308

The code and the comments speak for themselves. The only truly complicated part of this

class has already been discussed in the earlier examples. The way that the class can work for

you is the rather exciting part. Consider the following example, for instance:

<?php

//Include the class.

require_once ("file.class.inc.php");

//Then create a new instance of the class.

$myfile = new cfile ("sample7_9.txt");

//Now, let's try reading it.

echo $myfile->read();

//Then let's try writing to the file.

$myfile->write ("Hello World!");

//Then, let's try appending.

$myfile->append ("Hello Again!");

?>

Hello World!Hello Again!

How It Works

As you can see, reading and writing has been completely simplified. You simply instantiate a

cfile object, and from there you can read and write by simply passing the appropriate argu-

ments. The read() function returns a complete string from the text file, the write() method

automatically writes the specified verbiage into the file, and the append() method adds the

text you specify to the end of the file. All in all, writing $myfile->read() is much easier and

more efficient than validating the opening and closing of the file every time.

Working with Directories
Just like with files, PHP 5 also does an effective job of parsing and reading directories. In fact,

the amount of flexibility is rather daunting when you consider you could effectively search

and output an entire directory structure by using recursive functionality. This sort of algorithm

can be a valuable use of your time as a developer. The following are several examples of just

how powerful PHP can be when working with a file server’s directory listing.

PHP 5 consists of some handy directory parsing functions. opendir() opens a directory

for reading, is_dir() verifies the existence of a directory, readdir() parses through a directory,

closedir() closes an opened directory, and scandir() allows you to scan through a directory

to retrieve an array of files within the directory. The prototypes for these useful functions are

as follows:

7-10 ■ PROJECT: CREATING AND USING A F ILE CLASS 309

resource opendir (string path)

bool is_dir (string path)

string readdir (resource dir_handle)

void closedir (resource dir_handle)

array scandir (string directory [, int sorting_order [, resource context]])

7-11. Listing All Files in the Current Directory

A handy script you may find yourself in need of is a script with the ability to list all the files

within a directory. This sort of dynamic script can be helpful when dealing with mass client-

submitted uploads or multiple XML files. PHP is set up to handle such occurrences, and the

result is an effective way of handling the directory and file structure that you have within your

server. The following example creates a function that will read through a directory of choice

and output all the files within the directory.

The Code

<?php

//sample7_11.php

function numfilesindir ($thedir){

//First, you ensure that the directory exists.

if (is_dir ($thedir)){

//Now, you scan the files in this directory using scandir.

$scanarray = scandir ($thedir);

//Then you begin parsing the array.

//Since scandir() counts the "." and ".." file navigation listings

//as files, you should not list them.

for ($i = 0; $i < count ($scanarray); $i++){

if ($scanarray[$i] != "." && $scanarray[$i] != ".."){

//Now, you check to make sure this is a file, not a directory.

if (is_file ($thedir . "/" . $scanarray[$i])){

echo $scanarray[$i] . "
";

}

}

}

} else {

echo "Sorry, this directory does not exist.";

}

}

//You then call the function pointed to the directory you want to look through.

echo numfilesindir ("sample1");

?>

1.txt

2.txt

7-11 ■ LISTING ALL F ILES IN THE CURRENT DIRECTORY310

How It Works

This example is a combination of exception handling and the scandir() function. It is always

important when dealing with files or directories to validate and ensure that a file or directory

is present before you begin working with it. In this case you ensure a valid directory and then

move through it using the scandir() function. As the script moves through the directory, it

checks to ensure a valid file and then outputs the filename if it exists.

7-12. Listing All Files of a Certain Type

While you are working on displaying directory and file structure, you might find that display-

ing all the files of a certain type is useful. For instance, let’s assume you have been hired to

create a content management system (CMS) in which the client is allowed to log in and then

browse a list of editable files within the current directory. By harnessing the power of PHP, you

can output the files for selection from the client, and you can even prechoose which file types

you will allow them to see.

You can use a similar block of code to what you saw in recipe 7-11, but this time you will

create an array of allowable file types. The system will then check the file type of the current

file that is being scanned and determine whether it is a file you want to display to the client.

By doing this, you allow common file types to be worked on while maintaining a sense of

directory integrity.

The Code

<?php

//sample7_12.php

function outputfiles ($allowedtypes, $thedir){

//First, you ensure that the directory exists.

if (is_dir ($thedir)){

//Now, you scan the files in this directory using scandir.

$scanarray = scandir ($thedir);

//Then you begin parsing the array.

//Since scandir() counts the "." and ".." file navigation listings

//as files, you should not list them.

for ($i = 0; $i < count ($scanarray); $i++){

if ($scanarray[$i] != "." && $scanarray[$i] != ".."){

//Now, you check to make sure this is a file, not a directory.

if (is_file ($thedir . "/" . $scanarray[$i])){

//Now, since you are going to allow the client to edit this file,

//you must check if it is read and writable.

if (is_writable ($thedir. "/" . $scanarray[$i]) &&➥

7-12 ■ LISTING ALL F ILES OF A CERTAIN TYPE 311

is_readable($thedir . "/" . $scanarray[$i])){

//Now, you check to see if the file type exists➥

within the allowed type array.

$thepath = pathinfo ($thedir . "/" . $scanarray[$i]);

if (in_array ($thepath['extension'], $allowedtypes)){

//If the file follows your stipulations,➥

then you can proceed to output it.

echo $scanarray[$i] . "
";

}

}

}

}

}

} else {

echo "Sorry, this directory does not exist.";

}

}

//You then call the function pointed to the directory you want to look through.

//In this case you pass it an array with allowed file extensions.

//You want them to edit only .txt files.

$allowedtypes = array ("txt","html");

echo outputfiles ($allowedtypes, "sample2");

?>

test.html

test1.txt

test2.txt

How It Works

You will notice we have thrown a couple of new functions into the fray. The functions

is_readable() and is_writable() tell you whether the file in question will allow you to read

or write to it, respectively, and the function pathinfo() provides you with an array containing

the prominent features of the file path. These three functions have prototypes as follows:

bool is_readable (string filename)

bool is_writable (string filename)

array pathinfo (string path [, int options])

As you can see, you can edit the $allowedtypes array to completely customize the allowed

types that will appear in the list. This can be handy, as some clients will no doubt be provided

different privileges than others.

7-12 ■ LISTING ALL F ILES OF A CERTAIN TYPE312

7-13. Sorting Files by Date

Just as you can sort a directory using your operating system in a number of ways, so too may it

be important to be able to sort a directory of files using certain parameters. PHP is rather pow-

erful in its ability to access files; you can acquire a wide range of information about a file using

some of the prebuilt PHP functionality. Obviously, several ways exist to sort a directory of files

(size, modified date, type, and so on), but in this recipe we will show you a quick and easy way

to sort all the files in a directory by date.

We have already gone over how to list files in a directory, so now you just need to imple-

ment an algorithm that will take the listing and return it in a date-sorted fashion. This solution

simply requires a little bit of ingenuity; rather than actually outputting the list directly, you will

do this in the form of a function that returns a sorted array of filenames (by date, of course).

The Code

<?php

//sample7_13.php

function sortfilesbydate ($thedir){

//First, you ensure that the directory exists.

if (is_dir ($thedir)){

//Now, you scan the files in this directory using scandir.

$scanarray = scandir ($thedir);

$finalarray = array();

//Then you begin parsing the array.

//Since scandir() counts the "." and ".." file navigation listings

//as files, you should not list them.

for ($i = 0; $i < count ($scanarray); $i++){

if ($scanarray[$i] != "." && $scanarray[$i] != ".."){

//Now, you check to make sure this is a file, not a directory.

if (is_file ($thedir . "/" . $scanarray[$i])){

//Now what you need to do is cycle the data into an associative array.

$finalarray[$thedir . "/" . $scanarray[$i]] =➥

filemtime ($thedir . "/" . $scanarray[$i]);

}

}

}

//Finally, when you have gone through the entire array,➥

you simply asort() it.

asort ($finalarray);

return ($finalarray);

} else {

echo "Sorry, this directory does not exist.";

}

}

//You then call the function pointed to the directory➥

you want to look through.

7-13 ■ SORTING F ILES BY DATE 313

$sortedarray = sortfilesbydate ("sample3");

//You could then output it as such:

while ($element = each ($sortedarray)){

echo "File: " . $element['key'] . " last modified: " . ➥

date ("F j, Y h:i:s", $element['value']) . "
";

}

?>

File: sample3/test1.txt was last modified: April 12, 2005 06:04:18

File: sample3/test2.txt was last modified: April 12, 2005 06:04:26

File: sample3/test.html was last modified: April 12, 2005 06:05:10

File: sample3/test.php was last modified: April 12, 2005 06:05:18

How It Works

In this particular function, you use a couple of new concepts. For starters, you use an associative

array that is discussed in more detail in Jon Stephen’s Chapter 4. By using an associative array, you

can assign the filename to the key value and associate it with the file modification date stored in

the value portion. To actually retrieve the last modified time, you use the filemtime() function,

which returns a Unix timestamp of the last time the file was modified. You could have also used

the filectime() function, which returns pretty much the same thing; however, filemtime()

seems to work better on a multitude of platforms, while filectime() does not seem to work

properly on all Windows servers.

Notice the use of the asort() function that sorts the array. Should you want to sort the

array in reverse order, the arsort() function can take care of that predicament for you.

The prototypes for all these new functions are as follows:

int filemtime (string filename)

int filectime (string filename)

bool asort (array &array [, int sort_flags])

bool arsort (array &array [, int sort_flags])

7-14. Generating a Recursive Directory Listing

Naturally, a powerful application that can be extremely useful for outputting a complete direc-

tory listing is the infamous recursive directory listing. Basically what this example shows is

how to take a function that outputs all files in a directory and use it recursively by allowing it

to call itself if it hits another directory. It is something of an age-old script that has been writ-

ten a million times; however, we show how to do it the PHP 5 way and bring things up-to-date.

The following example recursively outlines an entire directory with all the files and directories

beneath it.

7-14 ■ GENERATING A RECURSIVE DIRECTORY L ISTING314

The Code

<?php

//sample7_14.php

function recurdir ($thedir) {

//First attempt to open the directory.

try {

if ($adir = opendir ($thedir)){

//Scan through the directory.

while (false !== ($anitem = readdir ($adir))){

//Do not count the . or .. in a directory.

if ($anitem != "." && $anitem != ".."){

//Now, if it is another directory, then you indent a bit

//and go recursive.

if (is_dir ($thedir . "/" . $anitem)){

?><?php echo $anitem; ?><?php

?><div style="margin-left: 10px;"><?php

recurdir ($thedir . "/" . $anitem);

?></div><?php

} elseif (is_file ($thedir . "/" . $anitem)){

//Then echo the file.

echo $anitem . "
";

}

}

}

} else {

throw new exception ("Sorry, directory could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Run the function.

recurdir ("sample4");

?>

7-14 ■ GENERATING A RECURSIVE DIRECTORY L ISTING 315

How It Works

As you can see, the function uses exception handling to run the validation and then outputs

all files unless it hits a directory, in which case it then calls itself to do the same thing with a

new path. The result is a recursive function that will output an entire directory listing. The

following shows how the output might look:

test1

test1_1

2levelsdown.txt

2levelsdownagain.txt

2levelsdown.txt

test2

test2.txt

test0.txt

test01.txt

7-15. Using the SPL DirectoryIterator Object

The Standard PHP Library (SPL) set of classes and interfaces is a truly promising step toward

enforcing a bit of conformity among PHP developers. By bringing together some truly func-

tional and helpful methods contained within some easy-to-use classes, PHP developers from

all around the globe can begin to write reusable applications that conform to the same stan-

dard. The SPL set of classes is an overlooked piece of functionality in the PHP 5 build, in which

it is now included by default.

Although the SPL is constantly expanding, it already contains a good amount of functional-

ity ready for use. Of particular note in regard to this chapter are the DirectoryIterator and

RecursiveDirectoryIterator objects. You can clean up much of the redundant code you have

been writing by using a set of methods designed specifically for the purpose at hand. Although

the following small example cannot cover the entirety of the functionality contained within

these objects, Table 7-2 lists all the methods available (currently). You can obtain more research

at http://www.php.net/spl.

Table 7-2. PHP 5 SPL DirectoryIterator and RecursiveDirectoryIterator Methods

Method Description

DirectoryIterator::__construct Constructs a new directory iterator from a path

DirectoryIterator::current Returns this (needed for the Iterator interface)

DirectoryIterator::getATime Gets last access time of file

DirectoryIterator::getCTime Gets inode modification time of file

DirectoryIterator::getChildren Returns an iterator for the current entry if it is a
directory

DirectoryIterator::getFilename Returns filename of current directory entry

DirectoryIterator::getGroup Gets file group

7-15 ■ USING THE SPL DIRECTORYITERATOR OBJECT316

Method Description

DirectoryIterator::getInode Gets file inode

DirectoryIterator::getMTime Gets last modification time of file

DirectoryIterator::getOwner Gets file owner

DirectoryIterator::getPath Returns directory path

DirectoryIterator::getPathname Returns path and filename of current directory
entry

DirectoryIterator::getPerms Gets file permissions

DirectoryIterator::getSize Gets file size

DirectoryIterator::getType Gets file type

DirectoryIterator::isDir Returns true if file is directory

DirectoryIterator::isDot Returns true if current entry is . or ..

DirectoryIterator::isExecutable Returns true if file is executable

DirectoryIterator::isFile Returns true if file is a regular file

DirectoryIterator::isLink Returns true if file is symbolic link

DirectoryIterator::isReadable Returns true if file can be read

DirectoryIterator::isWritable Returns true if file can be written

DirectoryIterator::key Returns current directory entry

DirectoryIterator::next Moves to next entry

DirectoryIterator::rewind Rewinds directory back to the start

DirectoryIterator::valid Checks whether directory contains more entries

RecursiveDirectoryIterator::getChildren Returns an iterator for the current entry if it is a
directory

RecursiveDirectoryIterator::hasChildren Returns whether current entry is a directory and
not . or ..

RecursiveDirectoryIterator::key Returns path and filename of current directory
entry

RecursiveDirectoryIterator::next Moves to next entry

RecursiveDirectoryIterator::rewind Rewinds directory back to the start

RecursiveIteratorIterator::current Accesses the current element value

RecursiveIteratorIterator::getDepth Gets the current depth of the recursive iteration

RecursiveIteratorIterator::getSubIterator Gets the current active sub iterator

RecursiveIteratorIterator::key Accesses the current key

RecursiveIteratorIterator::next Moves forward to the next element

RecursiveIteratorIterator::rewind Rewinds the iterator to the first element of the
top-level inner iterator

RecursiveIteratorIterator::valid Checks whether the current position is valid

The following example takes the previous one and shows how it might look if you used the

RecursiveDirectoryIterator instead of the regular means.

7-15 ■ USING THE SPL DIRECTORYITERATOR OBJECT 317

The Code

<?php

//sample7_15.php

//Create a new instance of a recursivedirectoryiterator.

$di = new RecursiveDirectoryIterator ("sample4");

function dirrecurse ($di){

//Cycle through the directory.

for (; $di->valid(); $di->next()){

//Ensure that you have a directory and exclude the dots.

if ($di->isDir() && !$di->isDot()){

//Output the directories in bold.

?><?php echo $di->current(); ?><?php

?><div style="margin-left: 10px;"><?php

//Check if the current directory has any children.

if ($di->hasChildren()){

//And if so, run the function again.

dirrecurse ($di->getChildren());

}

?></div><?php

//Else, if you have a file.

} elseif ($di->isFile()){

//Then echo the file.

echo $di->current() . "
";

}

}

}

//Run the recursion.

dirrecurse ($di);

?>

How It Works

If this code runs correctly, you should see the same result as you did in recipe 7-14. This

code, however, is much smoother and abides much better by object-oriented guidelines. Our

favorite part of this code is how the object can check in advance for any children. If a child

entity exists (and keep in mind, it checks against the dots as well), then it can perform its duty.

All in all, we prefer the iterator means of handling directories and look forward to what the

PHP developers will come up with next.

7-15 ■ USING THE SPL DIRECTORYITERATOR OBJECT318

Summary
As it is, PHP 5 has no trouble in the slightest when it comes to dealing with files and directo-

ries. As the software continues to improve and more features are added, it may be time to

begin porting your code to the much more flexible, object-oriented SPL. As you saw, the SPL

can quickly and efficiently take care of any directory issues you may have.

In the meantime, however, you can put the regular PHP means of dealing with files and

directories to good use by writing your own classes and then extending them. The functional-

ity involved is quite robust and should enable a solution no matter what the problem entails.

It is important to remember to exception handle any potential trouble spots. When deal-

ing with files, especially on a Linux-based server, it is quite important to keep permissions in

mind, both when reading and writing. With a proper contingency plan in place, your code will

deal with potential issues in a much more competent manner.

Looking Ahead
In the next chapter, Chapter 8, you will learn the ins and outs of one of our favorite, and lesser

known, sets of PHP functionality: creating and maintaining images on the fly. PHP 5 provides

a nice base for working with images, and now that the GD libraries and font systems are in

place by default, it has never been easier to harness their power. See you in the next chapter.

7-15 ■ USING THE SPL DIRECTORYITERATOR OBJECT 319

Working with Dynamic Imaging

Working with dynamic images in PHP 5 is easier than it has ever been. PHP 5 includes the

GD extension right in the php.ini file. Simply remove the comment from the GD extension,

and you are set to go. The GD library included with PHP 5 happens to be the upgraded GD2

library, which contains some useful JPG functionality that allows for true-color imaging.

Dynamic imaging becomes especially handy when dealing with servers that do not

support PHP or when working with online applications that allow only Hypertext Markup

Language (HTML). Because PHP allows you to embed links into a PHP document within an

image’s SRC tag, you can pull dynamic images from a PHP-enabled server by simply putting

the uniform resource locator (URL) of the PHP document into the SRC tag. Using techniques

such as these, you can implement some imaginative solutions, including online polls and

visitor counters.

Working with Image Types
The first thing you need to know about dynamic imaging is that, like embedding an image

with a SRC tag, PHP needs to know what type of image you are going to be working with, and

it has pre-built functions that differ slightly depending on the image type. Although many

variations of image types exist, for the vast majority of your web career you will be concerned

mainly with GIFs, JPGs, and PNGs.

Each file type has its own strengths and weaknesses; and when working with images, you

will want to select the right tool for the job. For instance, GIF files are good for small, cartoon-

or icon-style graphics. JPGs are excellent for photorealism but are generally larger in file size.

PNGs, on the other hand, are quite a bit more powerful (being 16-bit rather than 8-bit) and

have a few features (such as lossless compression) that make them an excellent choice for

pretty much any task. It is important, however, to remember that PNGs are not fully sup-

ported yet on the Internet and should be deployed with relative caution (although newer

versions of popular browsers have no problem with PNGs).

8-1. Working with JPGs

Quite often, as a developer, you will find yourself working with JPGs. For crystal-clear imagery,

JPG (along with PNG) is the file type of choice. Because JPGs lend themselves well to photo

galleries and dynamic thumbnail generation tasks, you will commonly find JPGs to be the

right file type for the job.

321

C H A P T E R 8

■ ■ ■

The Code

<?php

//sample8_1.php

//The first thing to do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (200, 200)){

//Then you can create a new background color for this image.

$red = imagecolorallocate ($animage, 255, 0, 0);

//Then you can draw a rectangle on the canvas.

imagerectangle ($animage, 0, 0, 200, 200, $red);

//Then you output the new jpg.

imagejpeg ($animage);

//And then header the image.

header ("Content-type: image/jpeg");

//Finally you destroy the image.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be set up.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

How It Works

The first aspects of this code that you need to pay attention to are a few image-related func-

tions. In this code you are using a function called imagecreate() to create a blank image (using

the size specifications you give it). Note that you use PHP 5’s exception handling to take care

of any issues that may arise. Also, keep in mind that if the GD library is turned off, the code

will throw an exception.

The next thing to understand about images is that in order to deal with colors, you must

allocate a specific color to the image in every script in which you want to use color. Colors are

based on the red-green-blue (RGB) spectrum with a maximum value being 255 and a minimum

value being 0. In this case, you are trying to create a bright red, so you allocate the full 255 to the

red attribute of the function imagecolorallocate(), which you can then use for a wide variety of

tasks such as creating a red rectangle against the canvas using the imagerectangle() function.

Next, to actually display the image, you must designate what type of image you are using.

Since you are attempting to do some JPG work here, you use the imagejpeg() function to des-

ignate a JPG image and then use the header() function to output the image. Keep in mind that

headers must be outputted before any HTML or output is displayed, so here is where calling a

script from the SRC attribute of an IMG tag is highly efficient.

8-1 ■ WORKING WITH JPGS 322

Being the good developer you are, you now must clean up the mess. To take care of the

temporary image that is created, you merely call the function imagedestroy(), which, as per

its name, sends the temporary image to “sleep with the fishes.”

The following are the prototypes for the image functions you can use:

resource imagecreate (int x_size, int y_size)

int imagecolorallocate (resource image, int red, int green, int blue)

int imagerectangle (resource image, int x1, int y1, int x2, int y2, int col)

bool imagejpeg (resource image [, string filename [, int quality]])

void header (string string [, bool replace [, int http_response_code]])

bool imagedestroy (resource image)

Figure 8-1 shows the output for recipe 8-1.

Figure 8-1. Output of recipe 8-1

8-2. Working with GIFs

Working with GIF images is largely the same as working with JPG images but with fewer options.

For instance, you can sharpen the quality of a JPG image, but GIFs were not intended to be dis-

played in a photorealistic way and hence look slightly duller.

GIF has its share of history in the online community. Of particular note is when Com-

puServe (the creator of GIF) attempted to heavily enforce the use of the file format and

requested a tax of sorts. Lawsuits and the like went on for years but seem to have cooled down

in recent times.

In any case, the GIF is ideal for cartoon- or icon-type images, and it works similarly to JPGs.

8-2 ■ WORKING WITH GIFS 323

The Code

<?php

//sample8_2.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (200, 200)){

//Then you can create a new background color for this image.

$red = imagecolorallocate ($animage, 255, 0, 0);

//Then you can draw a rectangle on the canvas.

imagerectangle ($animage, 0, 0, 200, 200, $red);

//To make things more interesting, you can add text this time.

//Let's create a "white" color.

$white = imagecolorallocate ($animage, 255, 255, 255);

//Then write on the image.

imagestring($animage, 5, 45, 50, "Hello World!", $white);

//Then you output the new gif.

imagegif ($animage);

//And then header the image.

header ("Content-type: image/gif");

//Finally you destroy the image.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

How It Works

As you can see, there really isn’t much difference between creating and outputting a JPG image

and doing the same for a GIF image; you merely replace the imagejpeg() function with the

imagegif() function and then alter the header() function slightly. The important factor to note

here is the end file size of both of these images. The JPG image comes in at 1.34KB in size. While

this is hardly huge, consider that the same image, outputted in GIF format and with more fea-

tures (saying “hello” to the world is a feature), is only a third of the size at .45KB. This may not be

a substantial difference between these two images, but when the size and quality go up in both,

the correlation in size becomes much more evident.

8-2 ■ WORKING WITH GIFS324

You will notice a few more features in this particular image. First, note that you have

created a new color for use, white. You then take the newly assigned white color and use it

to write on the image with the imagestring() function. The result is the rather gaudy red GIF

image that displays a friendly greeting to the world.

The prototypes for the imagegif() and imagestring() functions are as follows:

bool imagegif (resource image [, string filename])

int imagestring (resource image, int font, int x, int y, string s, int col)

Figure 8-2 shows the output for recipe 8-2.

Figure 8-2. Output of recipe 8-2

8-3. Working with PNGs

Superior to GIF in almost every conceivable way, PNG is the file format of the future. You can

look at PNGs as something like higher-quality GIFs. Everything about them looks sharper than

GIFs, and they can be even smaller in size. The reaction to PNGs has been quite enthusiastic,

but sadly it is taking its time catching on, as the GIF format is so widely used amongst your

average computer user. The following example adds to the common theme of creating

dynamic images.

8-3 ■ WORKING WITH PNGS 325

The Code

<?php

//sample8_3.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (200, 200)){

//Then you can create a new background color for this image.

$red = imagecolorallocate ($animage, 255, 0, 0);

//Then you can draw a rectangle on the canvas.

imagerectangle ($animage, 0, 0, 200, 200, $red);

//Now, let's create a circle in the middle of the red rectangle.

//Let's make it black.

$black = imagecolorallocate ($animage, 0, 0, 0);

imagefilledellipse($animage, 100, 100, 150, 150, $black);

//To make things more interesting, you can add text this time.

//Let's create a "white" color.

$white = imagecolorallocate ($animage, 255, 255, 255);

//Then write on the image.

imagestring($animage, 5, 48, 95, "Hello World!", $white);

//Then you output the new png.

imagepng ($animage);

//And then header the image.

header ("Content-type: image/png");

//Finally you destroy the image.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

How It Works

As you can see, the major differences in outputting a PNG image are the calls to the header()

function and the imagepng() function. The important thing to note is the file size. Weighing in

at a mere .57KB in size, even with the addition of a circle, means that the PNG file is a smaller

file size even than the GIF file. Further, when you put the same circle into the GIF image, the

GIF’s size increases to .83KB. As you can see, the PNG file format is quite preferable for use,

whether you need photorealism or not. The prototype for imagepng() is as follows:

bool imagepng (resource image [, string filename])

8-3 ■ WORKING WITH PNGS326

Figure 8-3 shows some output of recipe 8-3.

Figure 8-3. Output of recipe 8-3

Working with Image Libraries
The most widely used and supported set of library functions for PHP 5 belongs to the GD

library. Currently, the GD2 library comes prepackaged in the ext folder with a fresh install of

PHP 5 and requires you only to remove the comment from the extension in the php.ini file

to make the functions available. Highly robust and well-tested (and hence relatively bug free),

the GD library can take care of pretty much any concern you may have with creating an image

from scratch.

To find out more information about what is enabled or disabled in your current

configuration, you can call the function gd_info(), which will return a listing of all pertinent

information to the library. For more information on the GD library, you should refer to the

PHP manual at http://www.php.net/gd. Far too many functions exist to mention in the scope

of this book, and the features list is quite extensive.

Creating an Image from Scratch
A common use for dynamic imaging is to take data and create a graph with it. Because there is

no need for an external image, you can create a blank canvas and then, based on information

collected from some source (a database perhaps), create a detailed bar chart or pie graph.

8-3 ■ WORKING WITH PNGS 327

8-4. Creating a Blank Canvas

Creating a blank canvas is rather easy in PHP; the tricky part is creating a size that will contain

the amount of data you want to display. Since you are dealing with pixels here, you have to

ensure that the canvas you create is meant to hold enough information. Over the next few

examples we will show you step by step how to create a bar graph image in PNG format.

The Code

<?php

//sample8_4.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (500, 500)){

//Now, let's allocate the background color and line color.

$white = imagecolorallocate ($animage, 255, 255, 255);

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, let's draw the rectangle over the background, and surround

//it with a black line.

imagefilledrectangle ($animage, 0, 0, 500, 500, $black);

imagefilledrectangle ($animage, 1, 1, 498, 498, $white);

//Designate the image.

imagepng ($animage);

//Then output it.

header ("Content-type: image/png");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

8-4 ■ CREATING A BLANK CANVAS328

How It Works

This particular example is a matter of aesthetics. By using the imagefilledrectangle() func-

tion, you create what is essentially a white image with a 1-pixel line around the edge. This will

serve as the basic template for outputting the bar graph, which we will explain in more detail

in the next example. The prototype for imagefilledrectangle() is as follows:

int imagefilledrectangle (resource img, int x1, int y1, int x2, int y2, int color)

Figure 8-4 shows some output of recipe 8-4.

Figure 8-4. Output of recipe 8-4

8-5. Creating and Using Colors

Because we are dealing with a graphical topic, the concept of what color to display it in is

a rather important one. As mentioned, colors for dynamic imaging are handled in an RGB

method. To apply colors to a particular element of a dynamic image, you must first allocate

the color to a variable resource that can then be used on other image elements. You use the

imagecolorallocate() function to facilitate this necessity. The following example shows how

to start using the new colors to create a title for the graph.

8-5 ■ CREATING AND USING COLORS 329

The Code

<?php

//sample8_5.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (500, 500)){

//Now, let's allocate the background color and line color.

//Here is the way to do it with RGB.

$white = imagecolorallocate ($animage, 255, 255, 255);

//And here is an example with hex.

$black = imagecolorallocate ($animage, 0x00, 0x00, 0x00);

//Now, let's draw the rectangle over the background, and surround

//it with a black line.

imagefilledrectangle ($animage, 0, 0, 500, 500, $black);

imagefilledrectangle ($animage, 1, 1, 498, 498, $white);

//Now, let's create some more colors for the title.

$blue = imagecolorallocate ($animage, 0, 0, 255);

$green = imagecolorallocate ($animage, 0, 255, 0);

//Now, let's center the text at the top of the image.

$title = "A Sample Poll";

imagestring ($animage, 4, ((500 - (strlen($title) * imagefontwidth(4))) / 2)➥

, 5, $title, $blue);

$copy = "Copyright Lee Babin";

imagestring ($animage, 4, ((500 - (strlen($copy) * imagefontwidth(4))) / 2)➥

, 25, $copy, $green);

//Designate the image.

imagepng ($animage);

//Then output it.

header ("Content-type: image/png");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

8-5 ■ CREATING AND USING COLORS330

How It Works

As you can see in this example, you are beginning to turn the little graphing system into a

more cohesive image. By using some green and blue color allocations, the image is starting to

obtain some style. Keep in mind that you can use hex values or numerical values when setting

up color allocations, so use what is most efficient for your project. Also note how easy it is to

center text. By using the function imagefontwidth(), you can determine how long each char-

acter will be using the current font. By using a little math, you can easily determine where the

X coordinate should begin in order to allow the text to sit squarely in the middle, regardless of

what that text may be. Figure 8-5 shows some output of recipe 8-5.

Figure 8-5. Sample output of recipe 8-5

8-6. Creating and Applying Different Shapes and Patterns

Using shapes and patterns is where the current application will begin to shine. By calculating

values from the current data, you can create bar graphs or pie graphs that will show off the

data in a usable format. PHP 5 supports a wide range of shapes and patterns including rectan-

gles, ellipses, lines, and polygons. Choose the best fit for the job and a couple of nice colors,

and away you go.

8-6 ■ CREATING AND APPLYING DIFFERENT SHAPES AND PATTERNS 331

The Code

<?php

//sample8_6.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (500, 500)){

//Now, let's allocate the background color and line color.

$white = imagecolorallocate ($animage, 255, 255, 255);

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, let's draw the rectangle over our background, and surround

//it with a black line.

imagefilledrectangle ($animage, 0, 0, 500, 500, $black);

imagefilledrectangle ($animage, 1, 1, 498, 498, $white);

//Now, let's create some more colors for the title.

$blue = imagecolorallocate ($animage, 0, 0, 255);

$green = imagecolorallocate ($animage, 0, 255, 0);

//Now, let's center the text at the top of the image.

$title = "A Sample Poll";

imagestring ($animage, 4, ((500 - (strlen($title) * imagefontwidth(4))) / 2)➥

, 5, $title, $blue);

$copy = "Copyright Lee Babin";

imagestring ($animage, 4, ((500 - (strlen($copy) * imagefontwidth(4))) / 2)➥

, 25, $copy, $green);

//Now, usually this data would come from a database, ➥

but since that is not within

//the scope of this chapter, you will assume you ➥

retrieved this array of data from

//someplace meaningful.

$myvalues = array ("4","7","1","9","5","8");

//Now, you need to do some calculations.

//Since you have 6 values here, you need to determine ➥

the ideal width each bar

//should be while leaving room on the sides for clarity.

$barwidth = (int) (500 / ((count ($myvalues) * 2)+ 1));

//You now have the width, so you need a height to represent the values.

//You take 30 pixels off the top to account for the title.

$barheightpernum = (int) (500 / 10);

//Now, you run through the values.

for ($i = 0; $i < count ($myvalues); $i++){

8-6 ■ CREATING AND APPLYING DIFFERENT SHAPES AND PATTERNS332

//And for every value you output the bar and a line around for aesthetics.

imagefilledrectangle ($animage, ((($barwidth * $i) * 2) + $barwidth)➥

- 1, 500 - (($barheightpernum * (int) $myvalues[$i]) - 35)➥

- 1,(((($barwidth * $i) * 2) + $barwidth) + $barwidth) + 1,498, $black);

imagefilledrectangle ($animage, ((($barwidth * $i) * 2) + $barwidth)➥

, 500 - (($barheightpernum * (int) $myvalues[$i]) - 35),(((($barwidth * $i) * 2)➥

+ $barwidth) + $barwidth),498, $green);

}

//Designate the image.

imagepng ($animage);

//Then output it.

header ("Content-type: image/png");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

How It Works

Here is where things get a tad tricky. Since you are dealing with a fixed-width table, you need

to create an algorithm that can deduce a maximum-sized bar to be displayed depending on

the number of values you need to display. After that, the script must be able to also figure out

a scale of sorts. Since in this case you are using a scale of one to ten, you can easily figure out

how many units of pixel height each increment in the number should indicate by taking the

maximum height and dividing it by ten. If you needed to create a scale on the fly, you could

simply create an algorithm that would check for the highest and lowest values in the data set

and then create a range from that.

Once you have figured out how wide and how tall each unit on the graph should be, it is a

simple matter to run through the array and create the appropriately sized bar. For aesthetics,

you can also apply a black outline to the bars to make them look nice. The black bar was easy

to apply after figuring out the original green bars, as it is simply a matter of setting the same

bar, just one pixel bigger. Figure 8-6 shows some output of recipe 8-6.

8-6 ■ CREATING AND APPLYING DIFFERENT SHAPES AND PATTERNS 333

Figure 8-6. Output of recipe 8-6

8-7. Outputting an Image

One of the more powerful features to note about PHP 5’s dynamic imaging is that you can call

a PHP script that outputs a dynamic image from within an IMG tag’s SRC attribute, even from a

server that is not currently set up to handle PHP. Time and again this sort of functionality has

allowed companies to produce web-ready applications that can be distributed even on web-

sites that support only HTML. You can even pass arguments in as $_GET values, which means

you can use the script on the receiving end to retrieve a value through the SRC attribute and

then display the image based on that argument.

For instance, you could have a polling system in place that will dynamically display the

results of a poll based on the ID number passed to the script. By doing this, you can recycle

code and have it ready for use by anyone who passes the script a correct argument. Naturally,

some validation will be in order, but you can begin to see just how powerful this can be. The

following example shows how to call the bar graph building function, but instead of getting

the values from an array, you will pass them into the script from the SRC attribute using a $_GET

method.

8-7 ■ OUTPUTTING AN IMAGE334

The Code

<?php

//sample8_7_script.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreate (500, 500)){

//Now, let's allocate the background color and line color.

$white = imagecolorallocate ($animage, 255, 255, 255);

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, let's draw the rectangle over the background, and surround

//it with a black line.

imagefilledrectangle ($animage, 0, 0, 500, 500, $black);

imagefilledrectangle ($animage, 1, 1, 498, 498, $white);

//Now, let's create some more colors for the title.

$blue = imagecolorallocate ($animage, 0, 0, 255);

$green = imagecolorallocate ($animage, 0, 255, 0);

//Now, let's center the text at the top of the image.

$title = "A Sample Poll";

imagestring ($animage, 4, ((500 - (strlen($title) * imagefontwidth(4))) / 2)➥

, 5, $title, $blue);

$copy = "Copyright Lee Babin";

imagestring ($animage, 4, ((500 - (strlen($copy) * imagefontwidth(4))) / 2)➥

, 25, $copy, $green);

//Now retrieve an array of values from the GET superglobal.

$myvalues = array ($_GET['v1'],$_GET['v2'],$_GET['v3'],$_GET['v4'],➥

$_GET['v5'],$_GET['v6']);

//Now, you need to do some calculations.

//Since you have 6 values here, you need to determine the ideal width each bar

//should be while leaving room on the sides for clarity.

$barwidth = (int) (500 / ((count ($myvalues) * 2)+ 1));

//You now have the width, so you need a height to represent the values.

//You take 30 pixels off the top to account for the title.

$barheightpernum = (int) (500 / 10);

//Now, you run through the values.

for ($i = 0; $i < count ($myvalues); $i++){

//And for every value you output the bar and a line around for aesthetics.

imagefilledrectangle ($animage, ((($barwidth * $i) * 2) + $barwidth)➥

- 1, 500 - (($barheightpernum * (int) $myvalues[$i]) - 35) - 1,➥

(((($barwidth * $i) * 2) + $barwidth) + $barwidth) + 1,498, $black);

imagefilledrectangle ($animage, ((($barwidth * $i) * 2) + $barwidth)➥

, 500 - (($barheightpernum * (int) $myvalues[$i]) - 35),(((($barwidth * $i) * 2)➥

+ $barwidth) + $barwidth),498, $green);

}

8-7 ■ OUTPUTTING AN IMAGE 335

//Designate the image.

imagepng ($animage);

//Then output it.

header ("Content-type: image/png");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 8-7</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

</div>

</body>

</html>

How It Works

The code for actually creating the image in this example has changed very little. The only

real change is where you actually obtain your values. If you look at the line of code where you

assign your value to the $myvalues array, you will notice that you are now loading the values in

dynamically from the $_GET superglobal. When you look at the second block of code, you will

notice that it references the script via the SRC attribute of the IMG tag. On top of all that, you

even pass the values to change the bar graph within the SRC tag.

By using this method, you can create all kinds of ingenious applications including web

counters, polling systems, and more. Try experimenting with this, and see how far your inge-

nuity and PHP 5’s dynamic imaging can take you.

Creating an Image from an Existing Image
One of the more powerful aspects of the GD library is the ability to take a premade image and

then add to or modify aspects of it on the fly using PHP 5’s dynamic imaging. The end result

can be some fancy functionality that you probably have already had the opportunity to witness.

Have you ever seen one of those forms on the Internet that allows you to enter a block of text

and then the text shows up on a sign within an image? Did you ever wonder how it was done?

Well, let us fill you in on a little secret—it is really not all that difficult.

8-7 ■ OUTPUTTING AN IMAGE336

8-8. Loading an Existing Image

In the following example, you will see piece by piece how to construct an image that will allow

you to write to a dialog box contained within the picture shown in Figure 8-7. Keep in mind

that the poor photo victim, Tiger, was neither actually drunk nor is quite as cool as he appears

to be. That being said, with the power of PHP 5, you can at least create something unique for

him to include in his conversation. To play with the code for the upcoming examples, please

feel free to download the image within the code download at the Apress website.

Loading the actual image is not much different from creating a blank image. The only

major difference is in the function call to create the image. Rather than using the generic func-

tion, imagecreate(), you use the imagecreatefrom… function depending on the file type of the

image. In the following example, you will use a JPG flavor because of its photorealism.

The Code

<?php

//sample8_8_script.php

//The first thing you do is check for GD compatibility.
try {
//First you create a blank canvas.
if ($animage = imagecreatefromjpeg ("images/tiger.jpg")){

//Designate the image.
imagejpeg ($animage);
//Then output it.
header ("Content-type: image/jpeg");
//Lastly, clean up.
imagedestroy ($animage);

} else {
throw new exception ("Sorry, the GD library may not be setup.");

}
} catch (exception $e) {
echo $e->getmessage();

}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<title>Sample 8-8</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<div align="center">

</div>
</body>
</html>

8-8 ■ LOADING AN EXISTING IMAGE 337

How It Works

The only real new function to learn (and, in fact, the function that makes this whole script

work) is imagecreatefromjpeg(). Creating a new image from an existing one is almost too

easy. You simply pass in the location of the file you want to work with, and there you have it—

instant image. The prototype for the function imagecreatefromjpeg() is as follows:

resource imagecreatefromjpeg (string filename)

Figure 8-7 shows some output from recipe 8-8.

Figure 8-7. Output of recipe 8-8

8-9. Applying Modifications to an Existing Image

Now that you know how to load an existing image, it is time to start doing something with the

image. Since the loaded image now acts as something of a canvas, all the tricks you have been

using up until now are still quite applicable. You can draw shapes, draw lines, and even write

words on your new canvas. The following example demonstrates how to write onto the new

canvas.

The Code

<?php

//sample8_9_script.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreatefromjpeg ("images/tiger.jpg")){

//For now, the font will be in black.

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, write to the speech balloon.

8-9 ■ APPLYING MODIFICATIONS TO AN EXISTING IMAGE338

//First, you need to designate the rectangular area you want to write to.

$topleftx = 479;

$toplefty = 35;

$bottomrightx = 741;

$bottomrighty = 90;

//Then get the length of the string.

$strlen = (strlen ($_GET['whattosay']) * imagefontwidth (5));

//Find the X coordinate to center it.

$xcoord = (((($bottomrightx - $topleftx) - $strlen) / 2) + $topleftx);

imagestring($animage, 5, $xcoord, 50, $_GET['whattosay'], $black);

//Designate the image.

imagejpeg ($animage);

//Then output it.

header ("Content-type: image/jpeg");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 8-9</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

</div>

</body>

</html>

How It Works

In this case, the desired canvas area happens to be within the speech balloon. To get centered

text within that balloon, open the image in an image-editing program such as MS Paint and

deduce the exact coordinates of where you want the text to be. As you can see from the vari-

ables $topleftx, $toplefty, $bottomrightx, and $bottomrighty, we have decided to keep the

text within those constraints.

By doing a little mathematical work, we have managed to make the text appear centered

within the constraints given. Naturally, in a real-world application, you would definitely man-

age the length of the string allowed, combined with the height of the string, but in this case,

which has been simplified a bit, it was not really necessary.

8-9 ■ APPLYING MODIFICATIONS TO AN EXISTING IMAGE 339

Figure 8-8 shows some output from recipe 8-9.

Figure 8-8. Sample output of recipe 8-9

8-10. Saving and Outputting the Modified Image

As part of this type of functionality, you may want to save the images you are dynamically

creating (particularly those generated as a result of user participation) to a folder. Once the

images have been saved, you can then access them at any time as a record of what was gener-

ated. Luckily, using PHP 5, you can copy the created image to a folder for later reference.

The Code

<?php

//sample8_10_script.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreatefromjpeg ("images/tiger.jpg")){

//For now, the font will be in black.

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, write to the speech balloon.

//First, you need to designate the rectangular area you want to write to.

$topleftx = 479;

$toplefty = 35;

$bottomrightx = 741;

$bottomrighty = 90;

//Then get the length of the string.

$strlen = (strlen ($_GET['whattosay']) * imagefontwidth (5));

//Find the X coordinate to center it.

$xcoord = (((($bottomrightx - $topleftx) - $strlen) / 2) + $topleftx);

8-10 ■ SAVING AND OUTPUTTING THE MODIFIED IMAGE340

imagestring($animage, 5, $xcoord, 50, $_GET['whattosay'], $black);

//Designate the image.

imagejpeg ($animage);

//Then output it.

header ("Content-type: image/jpeg");

//Now, you want to save it.

//Let's name the image after the current timestamp.

imagejpeg ($animage,"savedimages/" . time() . ".jpg");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 8-10</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

</div>

</body>

</html>

How It Works

As you can see, this script is not doing all that much more than the previous one. Fortuitously,

you can also pass the imagejpeg() function an argument to dictate where the image should

be output. By using it in this case to direct it to the save directory and name it as the current

timestamp, you ensure a unique image creation every time. Using this script you can quickly

and efficiently save a copy of the works of art that your user base will likely be creating for you.

Using TrueType Fonts
Although generating dynamic images can be fun and generally appealing to the eye, the font

selection and display can be somewhat less than aesthetically pleasing. But because of the

FreeType library, you can now integrate real fonts in your dynamic imaging. This is the final

touch for making your images looks as pristine as possible. Developed through the open-

source community, the FreeType library can either be downloaded from the website or, if you

are using PHP 5, be installed as part of the default GD library. If you must download it, the

website is at http://www.freetype.org/.

8-10 ■ SAVING AND OUTPUTTING THE MODIFIED IMAGE 341

8-11. Loading Fonts

To use TrueType fonts in PHP, you must first load the font you want to use. Loading a font is

a combination of a few different complexities. First, you must find where in your system the

font is located. In a typical Windows XP install, you can find them in the C:\WINDOWS\Fonts

folder. In the next example, you will begin the font loading process by locating the verdana.ttf

file that is stored in (on our particular operating system) the C:\WINDOWS\Fonts folder.

The Code

<?php

//sample8_11_script.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreatefromjpeg ("images/tiger.jpg")){

//For now, the font will be in black.

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, write to the speech balloon.

//First, you need to designate the rectangular area you want to write to.

$topleftx = 479;

$toplefty = 35;

$bottomrightx = 741;

$bottomrighty = 90;

//Give the location of the font you want to use.

$verdana = "C:\WINDOWS\Fonts\verdana.ttf";

//Designate the image.

imagejpeg ($animage);

//Then output it.

header ("Content-type: image/jpeg");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 8-11</title>

8-11 ■ LOADING FONTS342

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

</div>

</body>

</html>

How It Works

As you can see, loading fonts is as easy as showing the script where the font is located. On

a Windows machine, such as the one we are currently using, you can find them within the

C:\WINDOWS\Fonts\ folder generally. The nice thing about this is that you can even copy the

font and upload it relative to the script. By doing this you can place the fonts you enjoy using

in a fonts folder on your web server. This also gets around the problem of different machines

storing fonts in different places and makes your code a lot more portable.

8-12. Applying TrueType Fonts to an Image

Now that you know how to get fonts into your code, let’s begin the fun stuff, which is actually

outputting the font onto the dynamically created image. Doing so involves manipulating the

script slightly to center the text, as the imagefontwidth() function no longer works in this case.

A function called imagettfbbox() can do roughly the same thing but with even more options.

The Code

<?php

//sample8_12_script.php

//The first thing you do is check for GD compatibility.

try {

//First you create a blank canvas.

if ($animage = imagecreatefromjpeg ("images/tiger.jpg")){

//For now, the font will be in black.

$black = imagecolorallocate ($animage, 0, 0, 0);

//Now, write to the speech balloon.

//First, you need to designate the rectangular area you want to write to.

$topleftx = 479;

$toplefty = 35;

$bottomrightx = 741;

$bottomrighty = 90;

//Give the location of the font you want to use.

$verdana = "C:\WINDOWS\Fonts\verdana.ttf";

8-12 ■ APPLYING TRUETYPE FONTS TO AN IMAGE 343

//Then get the length of the string.

//First you need to the width of the font.

$dimensions = imagettfbbox (14,0,$verdana, $_GET['whattosay']);

$strlen = ($dimensions[2] - $dimensions[0]);

//Find the X coordinate to center it.

$xcoord = (((($bottomrightx - $topleftx) - $strlen) / 2) + $topleftx);

imagettftext($animage, 14, 0, $xcoord, 60, $black, $verdana➥

, $_GET['whattosay']);

//Designate the image.

imagejpeg ($animage);

//Then output it.

header ("Content-type: image/jpeg");

//Lastly, clean up.

imagedestroy ($animage);

} else {

throw new exception ("Sorry, the GD library may not be setup.");

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 8-12</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

</div>

</body>

</html>

How It Works

In this case, by using the imagettftext() function, you can perform roughly the same action

as the previous text display examples, only with TrueType font compatibility. The result speaks

for itself (see Figure 8-9), but by using some nice fonts you can truly make your dynamic image

look that much more professional. The prototypes for both TrueType functions are as follows:

array imagettfbbox (float size, float angle, string fontfile, string text)

array imagettftext (resource img,float size,float angl, int x, int y,➥

int color, string fontfile, string text)

8-12 ■ APPLYING TRUETYPE FONTS TO AN IMAGE344

Figure 8-9. Output of recipe 8-12

8-13. Project: Creating and Using a Dynamic Thumbnail Class

One of the more common uses of dynamic imaging is creating a dynamic thumbnail on the

fly. To create a photo gallery that allows the user to upload images, this task is almost certainly

a must. The reason this is so important is due in part to download speeds but mostly to user

error. We cannot count the number of times we have built a system that allows users to upload

images, and they upload their pictures straight from their digital cameras. Those of you who

own digital cameras know that the default setting on them is to output the images with huge

dimensions. Needless to say, even one of those large images would be enough to slow the site

down to a crawl, let alone a gallery of them.

Creating dynamic thumbnails and then displaying them is actually simpler than it sounds.

By creating a function that will deduce the new scaled-down size for you and then one that will

do the sizing for you, you can easily create thumbnails on the fly.

Note that it is important to remember that both the image that is to be resampled and the

folder that the resampled image will be saved to must have the proper writable (and readable)

permissions. For the sake of clarity, simply CHMOD them both to 777 for this example to work

properly.

The Code

<?php

//sample8_13.php

//This function takes in the current width and height of an image

//and also the max width and height desired.

//It then returns an array with the desired dimensions.

function setWidthHeight($width, $height, $maxwidth, $maxheight){

if ($width > $height){

if ($width > $maxwidth){

//Then you have to resize it.

8-13 ■ PROJECT: CREATING AND USING A DYNAMIC THUMBNAIL CLASS 345

//Then you have to resize the height to correspond to the change in width.

$difinwidth = $width / $maxwidth;

$height = intval($height / $difinwidth);

//Then default the width to the maxwidth;

$width = $maxwidth;

//Now, you check if the height is still too big in case it was to begin with.

if ($height > $maxheight){

//Rescale it.

$difinheight = $height / $maxheight;

$width = intval($width / $difinheight);

//Then default the height to the maxheight;

$height = $maxheight;

}

} else {

if ($height > $maxheight){

//Rescale it.

$difinheight = $height / $maxheight;

$width = intval($width / $difinheight);

//Then default the height to the maxheight;

$height = $maxheight;

}

}

} else {

if ($height > $maxheight){

//Then you have to resize it.

//You have to resize the width to correspond to the change in width.

$difinheight = $height / $maxheight;

$width = intval($width / $difinheight);

//Then default the height to the maxheight;

$height = $maxheight;

//Now, you check if the width is still too big in case it was to begin with.

if ($width > $maxwidth){

//Rescale it.

$difinwidth = $width / $maxwidth;

8-13 ■ PROJECT: CREATING AND USING A DYNAMIC THUMBNAIL CLASS346

$height = intval($height / $difinwidth);

//Then default the width to the maxwidth;

$width = $maxwidth;

}

} else {

if ($width > $maxwidth){

//Rescale it.

$difinwidth = $width / $maxwidth;

$height = intval($height / $difinwidth);

//Then default the width to the maxwidth;

$width = $maxwidth;

}

}

}

$widthheightarr = array ("$width","$height");

return $widthheightarr;

}

//This function creates a thumbnail and then saves it.

function createthumb ($img, $constrainw, $constrainh){

//Find out the old measurements.

$oldsize = getimagesize ($img);

//Find an appropriate size.

$newsize = setWidthHeight ($oldsize[0], $oldsize[1], $constrainw, $constrainh);

//Create a duped thumbnail.

$exp = explode (".", $img);

//Check if you need a gif or jpeg.

if ($exp[1] == "gif"){

$src = imagecreatefromgif ($img);

} else {

$src = imagecreatefromjpeg ($img);

}

//Make a true type dupe.

$dst = imagecreatetruecolor ($newsize[0],$newsize[1]);

//Resample it.

imagecopyresampled ($dst,$src,0,0,0,0,$newsize[0],$newsize[1],➥

$oldsize[0],$oldsize[1]);

//Create a thumbnail.

$thumbname = $exp[0] . "_th." . $exp[1];

8-13 ■ PROJECT: CREATING AND USING A DYNAMIC THUMBNAIL CLASS 347

if ($exp[1] == "gif"){

imagejpeg ($dst,$thumbname);

} else {

imagejpeg ($dst,$thumbname);

}

//And then clean up.

imagedestroy ($dst);

imagedestroy ($src);

return $thumbname;

}

$theimg = "images/tiger.jpg";

$thumb = createthumb ($theimg, 300, 300);

?><img src="<?php echo $thumb; ?>" style="border: none;" alt="" title="" /><?php

?>

How It Works

Basically, the setWidthHeight() function takes the current width and height and the desired

maximum width and height as arguments and then resizes the image proportionally. Those

who have changed an image size in Adobe Photoshop will have some idea of what we are talking

about. To keep the image from skewing, the height and width are downsized in proportional

amounts so the image still looks fairly decent, no matter what the size ends up being. The func-

tion then returns an array with two values, which are the width and the height that the new

image should be.

The next function in the script, createthumb(), accepts a maximum width and height and

the location of the image you want resized. It calls the setWidthHeight() function to find the

dimensions to resize the image to, and then it creates a duplicate of the image using the new

dimension measurements. The new image then gets saved to the same folder as the current

image but has a _th tacked on at the end to indicate a thumbnail.

Lastly, you simply call the function and feed it in the arguments of your choosing. The end

result is a nicely resized image that is generated on the fly. Rather than deal with enormous file

sizes, this method makes the web page a lot more manageable, particularly for those with a

dial-up Internet connection. Figure 8-10 shows some output for recipe 8-13.

8-13 ■ PROJECT: CREATING AND USING A DYNAMIC THUMBNAIL CLASS348

Figure 8-10. Output of recipe 8-13

Summary

In this chapter, we provided you with a quick overview of dynamic imaging. We find that

dynamic imaging is at its most efficient when being used for creative purposes. Working

with images can be rewarding if given the chance.

The most important aspect of this topic to keep in mind is what file format to do your

work in. If you ever find yourself at a loss, consider both the audience that will be using

your application and the type of effect you want. A general rule is to use the JPG file type

if you want something to be photorealistic, the GIF file format if you need a small image,

and the PNG file type if you need a clean or potentially transparent nonphotorealistic image.

Working with images requires some patience. A vast majority of your time can easily be

consumed by simply trying different pixel combinations to determine what size is the best

and where to position elements. With a little practice, however, you can quickly develop meth-

ods to get the job done with a minimal amount of work. You now have a good starting point

for working on your own exciting dynamic, image-driven applications.

Looking Ahead

In the next chapter, Nathan A. Good will explain one of the more difficult concepts in PHP,

regular expressions.

8-13 ■ PROJECT: CREATING AND USING A DYNAMIC THUMBNAIL CLASS 349

Using Regular Expressions

Sometimes when you are processing strings, you will run into a problem that is difficult

to solve with strcomp or other functions. For instance, you might have to validate an e-mail

address, which requires you to look at many difficult-to-check rules.

This is where regular expressions come in handy. Regular expressions are powerful,

concise groups of characters that can contain quite a bit of logic, especially considering

how short they are.

Think of regular expressions as mathematical expressions that work on strings. Like

mathematical expressions, regular expressions have certain characters that mean something

special. Like + says “plus” in a mathematical expression, a character such as ^ says “the begin-

ning of the line.”

If you are not familiar with regular expressions, it may become tempting to put them every-

where once you learn how to use them. But follow this general rule when deciding between using

strcomp and using regular expressions: if you are searching for something specific, with no fancy

rules, use strcomp and other string functions like it. If you are searching for something and are

using special rules, consider using regular expressions.

Overview of Regular Expression Syntax
An expression either can be a single atom or can be more than one atom joined together. An

atom is a single character or a metacharacter. A metacharacter is a single character that has a

special meaning other than its literal meaning. The letter a is an example of an atom; the sym-

bol ^ is an example of both an atom and a metacharacter (a metacharacter that I will explain

in a minute). You can put these atoms together to build an expression, like so: ^a.

You can put atoms into groups using parentheses, as shown in this expression: (^a). Putting

atoms in a group builds an expression that can be captured for back referencing, modified with a

qualifier, or included in another group of expressions.

(starts a group of atoms.

) ends a group of atoms.

351

C H A P T E R 9

■ ■ ■

Qualifiers

Qualifiers restrict the number of times the preceding expression may appear in a match. The

common single-character qualifiers are ?, +, and *.

? means “zero or one,” which matches the preceding expression found zero or one

time.

+ means “one or more.” An expression using the + qualifier will match the previous

expression one or more times, making it required but matching it as many times

as possible.

* means “zero or more.” You should use this qualifier carefully; since it matches zero

occurrences or the preceding expression, some unexpected results can occur.

The + and * qualifiers do greedy matching, which is covered in more detail in recipe 9-3.

Ranges

Ranges, like qualifiers, specify the number of times a preceding expression can occur in the

string. Ranges begin with { and end with }. Inside the brackets, either a single number or a

pair of numbers can appear. A comma separates the pair of numbers.

When a single number appears in a range, it specifies how many times the preceding

expression can appear. If commas separate two numbers, the first number specifies the least

number of occurrences, and the second number specifies the most number of occurrences.

{ specifies the beginning of a range.

} specifies the end of a range.

{n} specifies the preceding expression is found exactly n times.

{n,} specifies the preceding expression is found at least n times.

{n,m} specifies the preceding expression is found at least n but no more than m times.

Line Anchors

The ^ and $ metacharacters are line anchors. They match the beginning of the line and the

end of the line, respectively, but they do not consume any real characters. When a match

consumes a character, it means the character will be replaced by whatever is in the replace-

ment expression. The fact that the line anchors do not match any real characters is important

when making replacements, because the replacement expression does not have to be written

to put the ^ or $ metacharacter back into the string.

^ specifies the beginning of the line.

$ specifies the end of the line.

OVERVIEW OF REGULAR EXPRESSION SYNTAX352

An Escape

You can use the escape character \ to precede atoms that would otherwise be metacharacters

but that need to be taken literally. The expression \+, for instance, will match + and does not

mean \ is found one or many times.

\ indicates the escape character.

Saying OR

You use the | metacharacter as an OR operator in regular expressions. You use it between

expressions, which can consist of a single atom or an entire group.

| indicates OR.

Character Classes

Character classes are defined by square brackets ([and]) and match a single character, no

matter how many atoms are inside the character class. A sample character class is [ab], which

will match a or b.

You can use the - character inside a character class to define a range of characters. For

instance, [a-c] will match a, b, or c. It is possible to put more than one range inside brackets.

The character class [a-c0-2] will not only match a, b, or c but will also match 0, 1, or 2.

[indicates the beginning of a character class.

- indicates a range inside a character class (unless it is first in the class).

^ indicates a negated character class (if found first).

] indicates the end of a character class.

To use the - character literally inside a character class, put it first. It is impossible for it to

define a range if it is the first character in a range so that it is taken literally. This is also true for

most of the other metacharacters.

The ^ metacharacter, which normally is a line anchor that matches the beginning of a

line, is a negation character when it is used as the first character inside a character class. If it

is not the first character inside the character class, it will be treated as a literal ^.

The character classes \s, \t, and \n are examples of character classes supported by PCRE

expressions, which are explained next.

POSIX vs. PCRE
PHP supports two implementations of regular expressions—Portable Operating System

Implementation (POSIX) and Perl-Compatible Regular Expressions (PCREs). These imple-

mentations offer different features, which are outlined in the next sections.

OVERVIEW OF REGULAR EXPRESSION SYNTAX 353

POSIX

POSIX regular expressions comply to standards that make them usable with many regular

expression implementations. For instance, if you write a POSIX regular expression, you will be

able to use it in PHP, use it with the grep command, and use it with many editors that support

regular expressions.

Table 9-1 lists the POSIX regular expressions.

Table 9-1. POSIX Regular Expressions Character Classes

Expression Meaning

[[:alpha:]] A letter, such as A–Z or a–z

[[:digi:]] A number 0–9

[[:space:]] Whitespace, such as a tab or space character

4.60\< or \> Word boundaries

ereg and eregi

The ereg method accepts the regular expression and the string to search as arguments.

ereg("SEARCH", $inmystring)

It evaluates to true if the match is found, so you can use it inside if statements and while

loops to control flow.

if (ereg("FIND", $needleinahaystack))

{

print "Success!";

}

The eregi method is a case-insensitive alternative.

ereg_replace

The ereg_replace method also uses POSIX regular expressions. It takes the expression,

replacement expression, and string as arguments.

$mynewstring = ereg_replace("SEARCH", "REPLACE", $inmystring)

In this example, "SEARCH" is the string to search for, and "REPLACE" is the string that will be

put in the place of "SEARCH" if it is found. The variable $inmystring is the string that contains

the value that is to be replaced. To change Hello to Goodbye in a Hello World! example, use this:

$inmystring = "Hello World!";

$mynewstring = ereg_replace("Hello", "Goodbye", $inmystring);

OVERVIEW OF REGULAR EXPRESSION SYNTAX354

PCRE

On the other hand, PCREs are based on the regular expression syntax supported in Perl. PCREs

have more character classes that give you shortcuts, so PCREs are generally more powerful to use.

Table 9-2 lists the PCRE regular expression character classes.

Table 9-2. PCRE Regular Expressions Character Classes

Expression Meaning

\d A number 0–9

\b A word boundary

\w A word character, which matches anything A–Z, a–z, 0–9, and _

\s Whitespace, like a tab or a space

\t A tab

Another big advantage of using PCREs is that they support look-arounds. You can use a

look-around to match what is before or after an expression without capturing what is in the

look-around. For instance, you might want to replace a word but only if it is not preceded or

followed by something else.

(?= starts a group that is a positive look-ahead.

(?! starts a group that is a negative look-ahead.

(?<= starts a group that is a positive look-behind.

(?<! starts a group that is a negative look-behind.

) ends any of the previous groups.

A positive look-ahead will cause the expression to find a match only when what is inside

the parentheses can be found to the right of the expression. The expression \.(?=), for

instance, will match a dot (.) only if it is followed immediately by two spaces. The reason for

using a look-around is because any replacement will leave what is found inside the parenthe-

ses alone.

A negative look-ahead operates just like a positive one, except it will force an expression

to find a match when what is inside the parentheses is not found to the right of the expression.

The expression \.(?!), for instance, will match a dot (.) that does not have two spaces after it.

Positive and negative look-behinds operate just like positive and negative look-aheads,

respectively, except they look for matches to the left of the expression instead of the right.

Look-behinds have one ugly catch: many regular expression implementations do not allow

the use of variable-length look-behinds. This means you cannot use qualifiers inside look-

behinds.

OVERVIEW OF REGULAR EXPRESSION SYNTAX 355

preg_match

The preg_match method takes two to three parameters: the regular expression, the string to

search, and optionally a variable that holds the array of matches found.

preg_match("/FIND/", $mystr)

Alternatively, you could use the following:

preg_match("/FIND/", $mystr, $matchArray)

Notice that the regular expressions in the first parameter must start and end with a delim-

iter, which in this chapter will be /.

preg_replace

The preg_replace method accepts the regular expression for searching, the expression for

the replacement, and the variable containing the string to replace. The preg_replace method

returns the new string with the replacements made. The following is an example of using

preg_replace:

$newstring = preg_replace("/OLD/", "NEW", $original)

The PCREs in preg_replace support back references in the replacement by using \1 to

access the first group, \2 to access the second group, and so on.

When considering which implementation to use, keep in mind the skills of those who will

be maintaining the code after you write it, if that is not you. Also, think about whether you will

ever use the same expression elsewhere.

You can learn more about PCREs at http://www.pcre.org/pcre.txt.

Putting Regular Expressions to Work
The rest of this chapter contains recipes for using regular expressions, both POSIX and PCRE.

These recipes demonstrate practical examples of using regular expressions in PHP to find and

parse text.

9-1. Using String Matching vs. Pattern Matching

Usually, you should try to use the standard string-matching functions to keep things simple if

you are trying to match a known, simple value with no real logic behind the searching. A good

example is an internal value, such as an ID of some kind or a username or password. These

matches do not require anything special such as the ability to search for more than one word

or the ability to see what is before or after the string you are trying to match.

If you have rules that accompany your search, such as finding more than one of several

words in a search or making sure something is in a certain format, use regular expressions—

they allow you to define these rules. The following code shows how to look for a complete

word using strrpos vs. regular expressions.

9-1 ■ USING STRING MATCHING VS. PATTERN MATCHING356

The Code

<?php

$value = "my username";

// This won't match because the value contains more than just

// user.

if (strcmp($value, "user") == 0) {

echo "Found match in '" . $value . "' using strcmp.\n";

} else {

echo "Didn't find match in '" . $value . "' using strcmp.\n";

}

// Use strrpos to find out if user is somewhere in

// the string. Fair enough--this will return true because user

// will be found in username.

if (!(strrpos($value,"user") === false)) {

echo "Found match in '" . $value . "' using strrpos.\n";

} else {

echo "Didn't find match in '" . $value . "' using strrpos.\n";

}

// But what if you want to make sure user is a

// word all by itself, not part of username?

if (ereg("\<user\>", $value)) {

echo "Found match in '" . $value . "' using ereg.\n";

} else {

echo "Didn't find match in '" . $value . "' using ereg.\n";

}

?>

This is the output:

Didn't find match in 'my username' using strcmp.

Found match in 'my username' using strrpos.

Didn't find match in 'my username' using ereg.

How It Works

This example demonstrates how you can use regular expressions to introduce some logic into

your string comparisons—albeit simple logic in this case. In this example, you are looking for

the word user. The string in which you are searching for the word user is my username, so

although you will find user in username, you will not find user as a word by itself.

9-1 ■ USING STRING MATCHING VS. PATTERN MATCHING 357

This is where regular expressions come in handy, because they support functionality such

as word boundaries (\< and \> in the expression here). Since the word user is wrapped in these

word boundaries, a match would be found if the value was a user but not my username.

Perhaps you are thinking, “Well, that is easy! I will just add a space in front of user in the

strrpos function, and that will find it.” That is true, in this case. But what if user is by itself or

in quotes? The regular expression will still work in these cases, because it is smart about word

boundaries. Any punctuation, or the beginning or end of a line, is considered a word boundary.

9-2. Finding the nth Occurrence of a Match

One of the powerful capabilities the PCRE functions give you is the ability to get an array of

captures (a capture is the part that the pattern matched). This can be useful if you are trying to

do something such as extract the second occurrence of something.

The Code

<?php

// This function will put all of the matches found into

// the $matches array

preg_match("/\d/", "1 and 2 and 3 and 4", $matches);

// The 0 element of the $matches array holds another

// array of the matches.

echo "Value: " . $matches[0][2] . "\n";

?>

This is the output:

Value: 3

How It Works

When you call the preg_match function as shown here, the 0 element in the $matches array will

contain elements that are matched by the whole pattern, which in this case is just \d. If groups

exist in the pattern, then the matches that are captured by the groups get put into the other

elements of the array. Anything captured by the first group from left to right in the pattern

gets put into the 1 element of the array, and so on.

9-3. Matching with Greedy vs. Nongreedy Expressions

By default, regular expression engines perform greedy matching. This means as they are look-

ing through the string and searching for a match to the pattern, they will gobble up as much of

your string as they can while making the match.

This presents an interesting problem if you want to stop at the first occurrence of some-

thing in your string. The following block of code demonstrates the difference between greedy

and nongreedy matching. If you use nongreedy matching, you have to use PCREs.

9-2 ■ FINDING THE NTH OCCURRENCE OF A MATCH358

The Code

<?php

// The test string has two words in quotes. The

// greedy matching will replace everything from

// the first to the last quotes.

$teststring = '"Hello" and "Goodbye."';

// This result will contain

// "***"

// because everything from the first to the last " is replaced.

$greedyresult = preg_replace('/".*"/', '"***"', $teststring);

// This result will be:

// "***" and "***"

// because the match stops at the first " found.

$nongreedyresult = preg_replace('/".*?"/', '"***"', $teststring);

echo "Original: $teststring\n";

echo "Greedy Replace: $greedyresult\n";

echo "Nongreedy Replace: $nongreedyresult\n";

?>

This is the output:

Original: "Hello" and "Goodbye."

Greedy Replace: "***"

Nongreedy Replace: "***" and "***"

How It Works

Notice that the first preg_replace function uses the * qualifier to modify the . wildcard. The

.* combination matches anything and everything, so ".*" will match anything between two

double quotes (including other double quotes).

By contrast, the second expression uses the *? combination, which is the nongreedy ver-

sion of the * qualifier. So, ".*?" will match anything between two double quotes, but it will

stop making the match at the first sign of a double quote.

Table 9-3 lists the greedy qualifiers, and Table 9-4 lists the nongreedy qualifiers.

Table 9-3. Greedy Qualifiers

Qualifier What It Matches

* The preceding expression can be found any number of times, including one.

+ The preceding expression can be found one or more times.

? The preceding expression can be found at most once.

9-3 ■ MATCHING WITH GREEDY VS. NONGREEDY EXPRESSIONS 359

Table 9-4. Nongreedy Qualifiers

Qualifier What It Matches

*? The preceding expression can be found any number of times, but the matching will
stop as soon as it can.

+* The preceding expression can be found one or more times, but the matching will
stop as soon as it can.

9-4. Matching a Valid IP Address

Form validation, an area where you can use regular expressions to great effect, sometimes

requires more than matching just normal text characters. Sometimes it is necessary to do

something a little extra, such as finding ranges of numbers.

The following code shows how to verify Internet Protocol (IP) addresses with a regular

expression. IP addresses are in the form of four numbers separated by periods. Each number

can be at most 255, so an address such as 270.300.10.0 is a bad IP address.

The Code

<?php

$good_ip = "192.168.0.1";

$bad_ip = "1.334.10.10";

$regex = "^(([1-9]?[0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5]).){3}➥

([1-9]?[0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$"

if (ereg($regex, $good_ip)) {

echo "'" . $good_ip . "' is a valid ip address.\n";

} else {

echo "'" . $good_ip . "' is an INVALID ip address.\n";

}

if (ereg($regex, $bad_ip)) {

echo "'" . $bad_ip . "' is a valid ip address.\n";

} else {

echo "'" . $bad_ip . "' is a INVALID ip address.\n";

}

?>

This is the output:

'192.168.0.1' is a valid ip address.

'1.334.10.10' is a INVALID ip address.

9-4 ■ MATCHING A VALID IP ADDRESS360

How It Works

This example demonstrates a regular expression technique that can match numbers. You can

use the same technique to make sure a month is represented with a number less than 12 when

matching dates or that there are fewer than 31 days.

The regular expression ([1-9]?[0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5]) matches the

numbers 0–255. The range 0–255 breaks down into other ranges: 0–99, 100–199, 200–249, and

250–255. The expression to match this is ([1-9]?[0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5]) and

can be broken down into [1-9]?[0-9], which will match 0–99; 1[0-9]{2}, which will match

100–199; 2[0-4][0-9], which will match 200–249; and 25[0-5], which will match 250–255.

After taking out the IP address validation expression, the rest of it breaks down like this:

^ the beginning of the line…

(the beginning of a group that contains…

(…) the IP address expression explained previously…

\. a literal dot…

) the end of the group…

{3} occurring exactly three times…

(...) another occurrence of the IP address…

$ the end of the line.

This example uses the ereg function because the regular expression used here is POSIX

compliant. But with a little effort, you can change this expression to use the PCRE function

preg_match instead.

9-5.Validating Pascal Case Names

Using PHP, you might design web front ends or scripts that allow you to build classes or data-

base tables. If you are accepting input from users, you might want to verify that the input

follows certain naming conventions.

The following script shows how to inspect text to make sure it follows pascal case naming

convention rules, sometimes called upper camel case.

The Code

<?php

// This example will iterate through the array

// and check the values to see which one is a

// valid pascal case name.

$values = array(

"PascalCase", // Valid

"notPascalCase", // Invalid

"not_valid", // Valid

"Valid", // Valid

"ValidPascalName", // Valid

9-5 ■ VALIDATING PASCAL CASE NAMES 361

"_notvalid", // Not Valid

);

foreach ($values as $value) {

if(preg_match("/^([A-Z][a-z]+)+$/", $value)) {

printf("'%s' is a valid name.\n", $value);

} else {

printf("'%s' is NOT a valid name.\n", $value);

}

}

?>

This is the output:

'PascalCase' is a valid name.

'notPascalCase' is NOT a valid name.

'not_valid' is NOT a valid name.

'Valid' is a valid name.

'ValidPascalName' is a valid name.

'_notvalid' is NOT a valid name.

How It Works

This example demonstrates a couple techniques. The first is finding a string that starts with

a certain range of characters. In this case, the first character is an uppercase letter, A–Z.

Other regular expressions, however, can match variable names, domain names, or Extensible

Markup Language (XML) tag names (which all have rules that say they must begin with cer-

tain characters).

The other technique is using the uppercase letter as a delimiter that separates names. It is

the first character in a group that is modified by a qualifier, which in this case is +. You will see

a similar structure in recipe 9-5, where the , character is found first as a delimiter in groups of

numbers and - is used as a delimiter in the globally unique identifiers (GUIDs). This is the reg-

ular expression broken down into parts:

^ the beginning of the line, followed by...

(a group that contains...

[A-Z] the letters A through Z, followed by...

[a-z] the letters a through z (lowercase)...

+ found one or more times...

) the end of the group...

+ where the group is found one or more times...

$ the end of the line.

9-5 ■ VALIDATING PASCAL CASE NAMES362

9-6.Validating U.S. Currency

While doing validation on web forms, one relatively common task is to validate a number that

a user can enter based on a couple of rules. As an example to demonstrate this, we have cho-

sen to validate U.S. currency and have added a couple of rules. One is that the dollar sign ($)

is optional. The second is that there must be two decimal places in the number. The last rule is

that the comma used as a thousands separator is optional; however, if it is used, it must be

used correctly, which means 10,00.00 is an invalid number.

The Code

<?php

// This example will build an array of values and then

// iterate through that array to check each value against

// the regular expression. Each value below is marked

// Valid if it is expected to be valid and Invalid if it

// is an invalid value.

// Set up the regular expression as a variable.

$regex = "/^\\$?(\d{1,3}(,\d{3})*|\d+)\.\d\d$/";

$values = array(

"1,000.00", // Valid

"$100.00", // Valid

"$1.0", // Invalid

"1,0000.0", // Invalid

"$1,000,000.00", // Valid

"4", // Invalid

"1000.00" // Valid

);

// Now go through the array, and use preg_match to

// try to find a match in each value

foreach ($values as $value) {

if (preg_match($regex, $value)) {

echo "'" . $value . "' is a valid number.\n";

} else {

echo "'" . $value . "' is NOT a valid number.\n";

}

}

?>

9-6 ■ VALIDATING U.S. CURRENCY 363

This is the output:

'1,000.00' is a valid number.

'$100.00' is a valid number.

'$1.0' is NOT a valid number.

'1,0000.0' is NOT a valid number.

'$1,000,000.00' is a valid number.

'4' is NOT a valid number.

'1000.00' is a valid number.

How It Works

In this example, to easily demonstrate the values that would be matched with the regular

expression, you have built an array of strings that hold various values. The valid values in the

array are 1,000.00, $100.00, $1,000,000.00, and 1000.00 because these values match the vari-

ous rules you set for a valid U.S. currency format. The other values in the array—$1.0,

1,0000.0, and 4—are invalid.

The expression uses the | operator to match values with or without commas, as shown in

(\d{1,3}(,\d{3})*|\d+). The first condition, \d{1,3}(,\d{3})*, is explained here:

\d a number, zero through nine...

{1,3} found between one and three times...

(the beginning of a group that contains...

, a comma, followed by...

\d a number...

{3} found three times...

) the end of the group...

* where the group may be found any number of times...

\. a literal dot (.)...

\d a number...

\d another number...

$ the end of the line.

The group (,\d{3})* matches groups of three numbers preceded by a comma, such as

,999 and ,000. The * qualifier also means the group doesn’t have to appear at all. The expres-

sion before the group, \d{1,3}, captures between one and three digits, so numbers such as

1,999 and 22,000 are valid. Since the group of three numbers preceded by a comma is com-

pletely optional, numbers such as 1 and 12 are also valid. This expression requires at least one

leading number before the decimal point, which is still fine if the number is less than $1, such

as $0.34.

9-6 ■ VALIDATING U.S. CURRENCY364

The part of the expression after |, which is \d+, matches one or more digits without com-

mas. Before the group you have \\$?, which finds a literal dollar sign that is optional because

it is followed by the ? qualifier. After the group is \.\d\d$, which matches a period or decimal

followed by two digits (\d\d) and the end of the line ($).

9-7. Formatting a Phone Number

If you are building user interfaces with PHP, no doubt you will run across the situation when

you might have stored values that you want to format nicely before displaying them to a user.

An example is a phone number, which might be stored as 8005551234 in the data, but you

want to display the value to the user as (800) 555-1234. The following code will not only refor-

mat that number but will also reformat other “ugly” combinations such as 800.555.1234,

800-555-1234, and 800 555.1234.

The Code

<?php

// This example will build an array of values and then

// iterate through that array to replace each value with

// a formatted version of the number. The new formatted

// number is echoed out to the screen

// The regular expression is set to a variable.

$regex = "/^(\(?\d{3}\)?)?[- .]?(\d{3})[- .]?(\d{4})$/";

$values = array(

"8005551234", // (800) 555-1234

"800.555.1234", // (800) 555-1234

"800-555-1234", // (800) 555-1234

"800.555.1234", // (800) 555-1234

"800 5551234", // (800) 555-1234

"5551234", // () 555-1234

);

// Go through each one, and use preg_replace to

// reformat the number

foreach ($values as $value) {

$formattedValue = preg_replace($regex, "(\\1) \\2-\\3",

$value);

echo $formattedValue . "\n";

}

?>

9-7 ■ FORMATTING A PHONE NUMBER 365

This is the output:

(800) 555-1234

(800) 555-1234

(800) 555-1234

(800) 555-1234

(800) 555-1234

() 555-1234

How It Works

Back references are the key to the replacement string in this example. \\1, \\2, and \\3 put

what was found in the various groups back into the replacement, allowing you to introduce

formatting such as parentheses, spaces, and hyphens into a string without having to use sub-

string functions.

The group that captures the values for the \\1 back reference is (\(?\d{3}\)?)?. Because

the value is optional, a value such as the last line in the previous output may be printed, with

nothing in the parentheses. The group broken down is as follows:

(the parenthesis that captures the group for the back reference...

\(? a literal parenthesis that is optional…

\d{3} a number, zero to nine, found three times...

\)? an optional parenthesis...

) the close of the capturing group…

? where the group itself may be optional.

In the examples in the array, this expression will capture 800, no matter what it is sur-

rounded by.

Similar to the first group in the expression, the second group is (\d{3}). It is separated from

the first group by an optional character class [- .] that will match a hyphen, space, period, or

(since it is optional) nothing at all. This second group captures exactly three numbers.

The third group captures the last four numbers, (\d{4}), which is followed by the end

of the line, matched by the line anchor $. Like the second group, the third group is separated

by the one before it with a [- .] character class that has been marked as optional by the

? qualifier.

9-7 ■ FORMATTING A PHONE NUMBER366

9-8. Finding Repeated Words

You can use back references, as shown in the previous example, not only in replacements but

also in the searches themselves. When used in searches, they say, “Whatever you found there,

look for it here, too.” This provides an easy way to look for things such as repeated words and

Hypertext Markup Language (HTML) and XML tags.

The following code looks for repeated words, regardless of case. It will find a match in

strings such as The the and that that.

The Code

<?php

// This example will look for repeated words next to each

// other, regardless of case. The case insensitivity is

// provided by the i option, which is used to modify the

// expression given to preg_match.

// Here, a function is used to contain common code that

// will be run on each string down below.

function showMatchResults($str) {

if (preg_match("/\b(\w+)\s+\\1\b/i", $str)) {

echo "Match successful: '" . $str . "'\n";

} else {

echo "Match failed: '" . $str . "'\n";

}

}

showMatchResults("Hello World!");

showMatchResults("The the is repeated.");

showMatchResults("No match here");

showMatchResults("That that is that.");

showMatchResults("Goodbye World!");

?>

This is the output:

Match failed: 'Hello World!'

Match successful: 'The the is repeated.'

Match failed: 'No match here'

Match successful: 'That that is that.'

Match failed: 'Goodbye World!'

9-8 ■ FINDING REPEATED WORDS 367

How It Works

The most important aspect of this regular expression is the back reference, which is \1. The \

must be escaped in PHP, so in the example it appears as \\1. The back reference is just a way

of saying, “Whatever you found in the first group, look for it here.” The parentheses in the

expression define the group. Here is a breakdown of the expression:

\b is a word boundary, followed by…

(...) a group, then…

\s a space…

+ one or more times, then…

\1 whatever was found in the group, and lastly…

\b a word boundary.

The group is simply (\w+), which is as follows:

\w a word character…

+ found one or more times.

This will match a word. The expression begins and ends with a word boundary anchor.

This is to prevent the expression from matching a string such as password wordsmith. If the

word boundary anchors are removed, the expression will start matching subsections of words.

9-9. Finding Words Not Followed by Other Words

PCREs provide look-arounds, which are one of the many features not provided by POSIX

expressions. The following code shows a negative look-ahead, which will make a match if

what is inside the look-ahead does not appear in the string.

The Code

<?php

// This example uses a negative look-ahead,

// to make sure that the word "world" is not

// found after "hello".

$regex = "/\bhello\b(?!\sworld\b)/";

$valid = "hello";

$invalid = "hello world!";

if (preg_match($regex, $valid)) {

echo "Found match: '" . $valid . "'\n";

} else {

echo "No match: '" . $valid . "'\n";

}

9-9 ■ FINDING WORDS NOT FOLLOWED BY OTHER WORDS368

if (preg_match($regex, $invalid)) {

echo "Found match: '" . $invalid . "'\n";

} else {

echo "No match: '" . $invalid . "'\n";

}

?>

This is the output:

Found match: 'hello'

No match: 'hello world!'

How It Works

PCREs support negative look-aheads, which allow you to build a regular expression that finds

matches when the group is not found ahead of the expression. In this case, the match will be

made as long as the word world is not found after hello.

9-10. Matching a Valid E-mail Address

If you are using PHP in web development, you will probably have to do a lot of validation on

web forms. This is where regular expressions really work well, because there are a lot of rules

in validation, even with something simple such as an e-mail address where the exact input is

not known. You can find the specific rules that govern how a valid e-mail address is put

together in RFC-2882.

For instance, in an e-mail address, two parts of the address are separated by an @ sign. The

first part is the username, and the second part is the domain name. The first part can contain

almost any number of American Standard Code for Information Interchange (ASCII) charac-

ters except control characters, spaces, and a few other special characters. (See RFC-2882 for a

complete list.)

The domain name consists of one or more labels separated by periods. These labels must

start with either an ASCII letter or a number, must end with either an ASCII letter or a number,

and can contain letters, numbers, and hyphens in between. The following code shows how to

validate e-mail addresses.

The Code

<?php

// This example will build an array of values and then

// iterate through that array to replace each value with

// a formatted version of the number. The new formatted

// number is echoed out to the screen.

// The regular expression is set to a variable.

$regex = "/^[\w\d!#$%&'*+-\/=?^`{|}~]+(\.[\w\d!#$%&'*+-\/=?^`{|}~]+)*➥

@([a-z\d][-a-z\d]*[a-z\d]\.)+[a-z][-a-z\d]*[a-z]$/";

9-10 ■ MATCHING A VALID E-MAIL ADDRESS 369

$values = array(

"user@example.com", // Valid

"first.last@mail.example.com", // Valid

"user", // Invalid

"user@example", // Invalid

"user_name@my_example_com", // Invalid

"user0203@example.com", // Valid

);

// Go through each one, and use preg_replace to

// reformat the number

foreach ($values as $value) {

if (preg_match($regex, $value)) {

printf("Found valid address: %s\n", $value);

} else {

printf("INVALID address: %s\n", $value);

}

}

?>

This is the output:

Found valid address: user@example.com

Found valid address: first.last@mail.example.com

INVALID address: user

INVALID address: user@example

INVALID address: user_name@my_example_com

Found valid address: user0203@example.com

How It Works

In this example, the value entered into the input box is compared against a regular expression

to validate the e-mail address. The part of the expression that validates the username is

[\w\d!#$%&'*+-\/=?^`{|}~]+(\.[\w\d!#$%&'*+-\/=?^`{|}~]+)*, which although really long

basically matches only the characters that are allowed by RFC-2882 for an e-mail address. Part

of the expression, [\w\d!#$%&'*+-\/=?^`{|}~], is repeated twice after the beginning of the line

(^). It matches A–Z, a–z, 0–9, and _ (which are all matched by \w) and the rest of the characters

found inside the brackets: !, #, $, %, &, ', *, +, -, / (escaped), =, ?, ^, `, {, |, }, and ~. These are

all the ASCII characters that are not control characters, spaces, or other special characters.

This group is repeated a second time, but after a literal \. that allows groups of letters to

be separated by a dot.

The domain name follows the same technique. An ASCII letter or a number is matched

by using [a-z\d], which appears at the beginning and the end of a domain label. Between the

first and last characters in the domain label, a letter, a number, or a hyphen can appear. This

is represented by the character class [-a-z\d]. Notice that when the hyphen should be taken

literally inside a character class, it needs to be first.

9-10 ■ MATCHING A VALID E-MAIL ADDRESS370

Finally, the top-level domain (.com, .org, and so on, in the address) complies with slightly

different rules than labels in the domain name. The top-level domain can start with a letter

and end in a letter (no numbers allowed) and in between can have a hyphen, a letter, or a

number. The top-level domain is matched by the expression [a-z][-a-z\d]*[a-z]$.

9-11. Finding All Matching Lines in a File

Because you can open files and go through them line by line in PHP, you can combine regular

expressions with your searching to give you more flexibility than you would have with basic

string comparison functions.

The Code

<?php

// Open the file with the fopen command. The $file variable

// holds a handle to the file that will be used when

// getting the line from the file.

$file = fopen("testfile.txt", "r") or die("Cannot open file!\n");

// this will be false if you can no longer get a line from

// the file.

while ($line = fgets($file, 1024)) {

if (preg_match("/Hello(World!)?/", $line)) {

echo "Found match: " . $line;

} else {

echo "No match: " . $line;

}

}

// Make sure to close the file when you are done!

fclose($file);

?>

This is the output for the file contents:

Hello

Goodbye World

Hello World

Goodbye

This is the command output:

Found match: Hello

No match: Goodbye World

Found match: Hello World

No match: Goodbye

9-11 ■ FINDING ALL MATCHING L INES IN A F ILE 371

How It Works

This example demonstrates how to open a file, loop through the file line by line, and, while

you are looping through it, compare each line to a regular expression to see whether you can

find a match.

The fopen command opens the file specified by string, which in this case is testfile.txt.

The contents of the file are as follows:

Hello

Goodbye World

Hello World

Goodbye

Once the file is open, use the 20.370 fgets function to get the next line from the file and

assign it to a variable ($line). The loop will stop when there are no more lines in the file to get.

When you are done processing the file, make sure to close the file with the fclose command.

9-12. Finding Lines with an Odd Number of Quotes

Odd numbers of quotes on a line in source code or in text files can sometimes be difficult to

track down. Particularly if you’re using an editor that does not offer syntax highlighting, you

can spend a long time trying to track down lines with unmatched quotes in large files.

This script will isolate lines in a file that have unmatched quotes. It uses a regular expres-

sion to make sure that quotes are found in even numbers, if at all, in each line of a file and will

print lines that have unmatched quotes.

The Code

<?php

// Open a file in which to search for lines that may contain

// odd numbers of quotes.

$file = fopen("oddquotes.txt", "r") or die("Cannot open file!\n");

// lineNbr is used to keep track of the current line number

// so the user can get an informational message.

$lineNbr = 0;

// This will be false if you can no longer get a line from

// the file.

while ($line = fgets($file, 1024)) {

$lineNbr++;

if (preg_match("/^[^\"]*\"([^\"]*|([^\"]*\"[^\"]*\"[^\"]*)*)$/",

$line)) {

echo "Found match at line " . $lineNbr . ": " . $line;

}

}

// Make sure to close the file when you are done!

fclose($file);

?>

9-12 ■ FINDING L INES WITH AN ODD NUMBER OF QUOTES372

This is the output for the file contents:

"Valid"

"Invalid

"\"Invalid\"

"\"Valid\""

Valid

"Invalid "Closed" Invalid "Closed"

This is the command output:

Found match at line 2: "Invalid

Found match at line 3: "\"Invalid\"

Found match at line 6: "Invalid "Closed" Invalid "Closed"

How It Works

This expression begins at the start of a line and searches the rest of the line to make sure any

quote that is found is followed by either no more quotes (remember, you are searching for

lines with odd numbers of quotes here) or, if there are more quotes, an even number of them

found between the odd quote and the end of the line. The expression without the escaped

double quotes is ^[^"]*"([^"]*|([^"]*"[^"]*"[^"]*)*)$, and it is important to remember

that the escape characters in front of the double quotes are not used by the regular expression

interpreter.

The first few characters in the expression, ^[^"]*", match anything from the beginning of

the line up to the first double quote in the line. ([^"] matches any character that is not a quote.)

After that, the group ([^"]*|([^"]*"[^"]*"[^"]*)*) looks for either no quote between the one

found and the end of the line ([^"]*) or an even number of quotes (([^"]*"[^"]*"[^"]*)*). The

even number is grouped so that there can be closed quoted strings found in the line along with

an odd number somewhere.

9-13. Capturing Text Inside HTML or XML Tags

Like the preg_match function shown in recipe 9-2, the ereg function can put what it finds into

an array if one is passed as a parameter. The array is optional, so if you do not supply it, the

ereg will not put the matches it finds anywhere. The function returns the number of matches

found and will return 0 if no matches were found.

The following code demonstrates how to capture text and display it. The text that is going

to be captured by ereg is whatever is inside two HTML tags. You can easily modify the expres-

sion to get the text from any tag, including XML.

9-13 ■ CAPTURING TEXT INSIDE HTML OR XML TAGS 373

The Code

<?php

// Assign some sample text to a variable. The regular expression

// should pull out anything in between the two p tags.

$text = "<p>This is some text here \"</p>\".</p>";

// This expression is so long because it is doing this match without

// using lazy qualifiers. Plus, there are other things to think

// about, such as ignoring the </p> in double quotes above.

ereg("<p>(([^<\"]|[^<]*<[^\/][^<])*(\"[^\"]*\"([^<\"]|➥

[^<]*<[^\/][^<])*)*)?<\/p>", $text, $matches);

echo "Found text: " . $matches[1] . "\n";

?>

This is the output:

Found text: This is some text here "</p>".

How It Works

This example showcases a scenario where the rules for capturing text are a little more compli-

cated than when they first appear. For instance, in this case you want to ignore strings that

look like tags but really are not, such as tags within quotes. The tag shown in this example is

the <p> tag.

Inside the <p> tags, this regular expression looks for three conditions. The first is that a

less-than sign or a double quote is not found between the end of the opening tag and the

beginning of the closing tag. This part is relatively straightforward, as shown here:

[^<"] any character that is not a less-than sign or a double quote...

* found any number of times.

The next condition that the regular expression searches for is whether a less-than sign

exists. This can happen in script, where a less-than sign is in a comparison, such as i < 0.

Fortunately, there is no operator called </, so if a less-than sign is found, it cannot be followed

by a slash. This is what the second condition checks for:

(a group that contains...

[^<] a character class that matches anything but a less-than sign...

* found any number of times...

< a less-than sign, followed by...

[^/] any character except a slash...

[^<] any character except a less-than sign...

* found any number of times...

) the end of the group...

* where the group may appear any number of times.

9-13 ■ CAPTURING TEXT INSIDE HTML OR XML TAGS374

The third condition checks to make sure that if any quotes are found in the string, they

are closed before the ending script tag:

... the first group, followed by...

(a group that contains...

" a double quote, followed by...

[^"] a character class that matches anything that is not a double quote...

* found any number of times...

" a double quote...

... the group repeated again...

) the end of the group...

* where the group may be found any number of times.

This will allow several quoted strings within the script tags but will make sure the quotes

are closed before the ending tag.

For the sake of simplicity, this regular expression does not do a couple of things—the

point is to demonstrate the technique to get you started without being overwhelmed. After

you feel comfortable with the regular expression, you can modify it. For instance, aside from

double quotes, you could change the regular expression to also check for single quotes. Also,

you could modify the regular expression to look for HTML comments.

9-14. Escaping Special Characters

Sometimes you need to do some complicated replacements that involve looking at what you

are replacing to make sure you actually want to replace it. In this example, the string getting

replaced is > in HTML. It is getting replaced by <.

One thing to note is that certain functions are available to do a transformation that is sim-

ilar to this one—look at htmlspecialchars, for instance, This function will work most of the

time, but in this case you want to replace some of the > characters and leave others alone. The

htmlspecialchars function does not allow you to make this distinction. If htmlspecialchars

meets your needs, use it. You should always use a standard function that has been tested and

has been in use for a while rather than writing your own.

The Code

<?php

// This example shows how to escape a > character in HTML.

$html = "<p> replace > and >> and >>> </p>";

print "Original text was: '" . $html . "'\n";

// This is the part that gets a little difficult. Not even PCRE

// supports variable-length look-behinds, which would be

// necessary to make sure that the > is not part of an HTML tag.

// So, the technique here is to reverse the string and then make

// the substitution because variable-width look-aheads are

9-14 ■ ESCAPING SPECIAL CHARACTERS 375

// okay.

$html = strrev($html);

// Replace the >, but only if it is not inside or part of an

// HTML tag. With (?![^><]+?\/?<), you are looking for a tag

// that has been closed.

$newhtml = preg_replace("/>(?![^><]+?\/?<)/", ";tl&", $html);

$newhtml = strrev($newhtml);

print "New text is: '" . $newhtml . "'\n";

?>

This is the output:

Original text was: '<p> replace > and >> and >>> </p>'

New text is: '<p> replace < and << and <<< </p>'

How It Works

In this example, look-arounds escape the > character with the HTML escape <. Using look-

arounds has a problem, though: the +? nongreedy qualifier, which is necessary because you do

not know how many characters are between the beginning of the HTML tag and the special

character, makes the regular expression variable length. Look-behinds do not support variable-

length expressions, so you have to instead use a look-ahead, but that does not work well because

the reason you are using the look-around is to make sure the > you are replacing is not actually

part of an HTML tag.

The solution is to first reverse the string and then use a look-ahead to make sure the > is

not part of an unclosed HTML tag. Here the expression is broken down into parts:

> a > sign...

(?! a negative look-ahead that contains...

[^ a character class that does not include...

> a greater-than sign...

< or less-than sign...

+? found one or more times, but matching as little as possible...

\/ a forward slash (escaped for the PCRE)...

? found zero or one time...

< a less-than sign...

) the end of the look-ahead.

9-14 ■ ESCAPING SPECIAL CHARACTERS376

The look-ahead does not capture any text, so when the replacement is made, whatever

has been matched by the look-ahead will remain unaffected. The >, however, will be replaced

by < (well, ;tl& because it is still backward), as long as it is not followed by what looks like

an open HTML tag that has not been closed.

The expression [^<>]+?/?< matches an open HTML tag because it is looking for a < that

does not have a < or > after it.

9-15. Replacing URLs with Links

With PHP 5, you can build powerful web interfaces for almost any application. One cool fea-

ture to make available to users of applications such as forums is to automatically replace

Uniform Resource Locators (URLs) with hyperlinks to those URLs.

The Code

<?php

$hostRegex = "([a-z\d][-a-z\d]*[a-z\d]\.)*[a-z][-a-z\d]*[a-z]";

$portRegex = "(:\d{1,})?";

$pathRegex = "(\/[^?<>#\"\s]+)?";

$queryRegex = "(\?[^<>#\"\s]+)?";

$urlRegex = "/(?:(?<=^)|(?<=\s))((ht|f)tps?:\/\/" . $hostRegex . ➥

$portRegex . $pathRegex . $queryRegex . ")/";

$str = "This is my home page: http://home.example.com.";

$str2 = "This is my home page: http://home.example.com:8181/index.php";

echo $urlRegex . "\n";

$sample1 = preg_replace($urlRegex, "\\1", $str);

$sample2 = preg_replace($urlRegex, "\\1", $str2);

// Result will be:

//

// This is my home page: <a ➥

href="http://home.example.com">home.example.com.

echo $sample1 . "\n";

// Result will be:

//

// This is my home page: ➥

home.example.com:8181/index.php

echo $sample2 . "\n";

?>

9-15 ■ REPLACING URLS WITH L INKS 377

This is the output:

This is my home page: ➥

http://home.example.com.

This is my home page: ➥

http://home.example.com:8181/index.php

How It Works

The full regular expression is /(?:(?<=^)|(?<=\s))((ht|f)tps?:\/\/([a-z\d][-a-z\d]*

[a-z\d]\.)*[a-z][-a-z\d]*[a-z](:\d{1,})?(\/[^\s?]+)?(\?[^<>#"\s]+)?)/, but it has been

broken down in this example to make it a little easier to digest. Parts of the expression match

various parts of the URL, such as the hostname, port number, and path. We will break down

each part of the expression and explain why it works, starting with the expression assigned

to $hostRegex, which matches the hostname part of the URL.

RFC-1035, under the “Preferred Name Syntax” section, describes that domain labels

should begin with a letter, end with a letter or a digit, and contain a letter, a digit, or a hyphen.

In RFC-1123, the requirement for the first character in a domain label is relaxed to also

include a digit. In URLs, the domain label is delimited from the scheme by : and //.

Here’s the expression broken down:

(a group that contains...

[a-z\d] a character class that matches a letter or digit...

[-a-z\d]* another character class that matches a hyphen, letter, or digit...

[a-z\d] a character class that matches a letter or digit...

\. a dot (or period)...

) the end of the first group...

+ found one or more times.

The domain label is followed by the top-level domain, which has similar rules; according

to RFC-2396, it should start with a letter; contain a letter, a hyphen, or a digit; and end with a

letter or a digit. Here is that part of the expression broken down:

[a-z] a character class that matches a letter from a to z, followed by...

[-a-z\d] a character class that matches a hyphen, letter, or digit...

* found any number of times...

[a-z\d] a letter or digit.

9-15 ■ REPLACING URLS WITH L INKS378

After the hostname, a URL can optionally include a port if the site is found on a nonstan-

dard port such as 8181 in the example. According to RFC-2396, a port can contain only a

number and is delimited from the domain label by a colon. This makes the recipe relatively

short, as shown here:

: a colon, followed by...

(a group that contains...

\d a digit...

{1,} found one or more times...

) the end of the group.

The next part of the expression matches any valid URL characters, up to the ?, which is

the delimiter that separates the querystring from the rest of the URL, or a space (\s), which

is not allowed in URLs. (Delimiters are those characters mentioned earlier: <, >, #, and ".)

This is how that part breaks down:

(a group that contains...

[^?<>#\"\s] a character class that does not match a ?, , <, >, +, ", or whitespace...

+ found one or more times...

) the end of the group.

The last part of the URL is the querystring. The expression is basically the same one used

to match a path, with the exception of ?, which is not included in the negated character class,

as shown here:

\? a question mark, escaped so it represents a literal question mark...

(a group that contains...

[^<>#"] a character class that does not match the delimiters <, >, #, and "...

+ found one or more times...

) the end of the group.

When the parts of the expression are all put together, the entire expression will match

complete URLs including everything from the schema (http:// and https://) to the query-

string. You can use the expression to locate URLs and replace them with other text. In this

expression, the other text is simply the anchor tag <a> with the href set to the URL that was

captured by the expression. In PHP, the way to specify a back reference is \1, but you need

to use a second \ to escape the backward slash in the string. The replacement string is \\1, which will place the URL between the quotes in the href attribute and

inside the <a> tag.

9-15 ■ REPLACING URLS WITH L INKS 379

9-16. Replacing Smart Quotes with Straight Quotes

Some programs such as word processors can make automatic replacements that help you

with formatting. Smart quotes are quotes that have special formatting depending on whether

they are at the beginning or end of the quoted phrase. This means strings such as “Hello

World” will be replaced with "Hello World".

You can use the character \x that is used to find smart quotes in this example to replace

values such as trademark symbols, copyright symbols, and other special characters.

The Code

<?php

// If the form is being posted to itself, it will take

// the value inside the text box and print it back out

// to the HTML with the smart quotes replaced with straight

// quotes.

$orig = '“Hello world!”'

$mynewstr = preg_replace('/\x93|\x94/', '"', $orig);

print "$mynewstr\n";

?>

This is the output:

"Hello world!"

How It Works

The expression shown in the example uses the \x character class, which in the regular expres-

sions in PHP specifies characters by their hex values.

Other common replacements that you might make are the copyright symbol and the

trademark symbol, which are \x97 and \x99, respectively.

9-17. Testing the Complexity of Passwords

You can also use a regular expression to test the complexity of a password—for instance, to

make sure that the password is a certain length or has a combination of uppercase and lower-

case letters and numbers.

The Code

<?php

// This array holds different passwords, some good and

// some bad. The script will iterate through the

// array and use a regular expression to find the good

// passwords.

$values = array(

"password", // Bad

9-16 ■ REPLACING SMART QUOTES WITH STRAIGHT QUOTES380

"P4ssw0rd", // Good

"XRokzX0z12k", // Good`

"I5NB5YzW", // Good

"secret", // Bad

"12345", // Bad

);

// Go through the array of values, and look at each password

// to see if it is a good one.

foreach ($values as $value) {

if (! preg_match('/^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9]).{8,16}/', $value)) {

printf("Bad password: '%s'\n", $value);

} else {

printf("Good password: '%s'!\n", $value);

}

}

?>

This is the output:

Bad password: 'password'

Good password: 'P4ssw0rd'!

Good password: 'XRokzX0z12k'!

Good password: 'I5NB5YzW'!

Bad password: 'secret'

Bad password: '12345'

How It Works

This expression uses a feature available in PCREs called a look-ahead. Look-aheads are

anything inside (?=...). In this expression, each look-ahead will match any number of charac-

ters (.*) followed by uppercase characters ([A-Z]), lowercase characters ([a-z]), or numbers

([0-9]). At the end of the expression, there is a wildcard (.) that matches any character quali-

fied by {8,16} to make sure there are between eight and sixteen occurrences of any character.

9-18. Matching GUIDs/UUIDs

GUIDs/UUIDs are pseudorandom numbers that are “guaranteed” to be unique. They are not

really 100 percent guaranteed to be unique, but since the numbers are so large, the chance of

getting two of the same numbers is so distant that the risk is acceptable in most applications.

You can use GUIDs/UUIDs to uniquely identify objects in code.

The following code shows how to isolate GUIDs/UUIDs that are not valid. You can find the

rules used to know what a valid GUID/UUID looks like at http://en.wikipedia.org/wiki/GUID.

9-18 ■ MATCHING GUIDS/UUIDS 381

The Code

<?php

// This example will match valid GUIDs/UUIDs in

// the format specified at http://en.wikipedia.org/wiki/GUID

$uuid = "B15BC71E-D94C-11D9-9D71-000A95B70106";

$bad = "E34B13ED-D94C-11D9-9628-Z00A95B70106";

function printResults($str) {

// Alternatively, you could also add [0-9a-f]{32} with |

// to look for either format--with or without dashes.

if (eregi("^[0-9a-f]{8}(-[0-9a-f]{4}){3}-[0-9a-f]{12}$", $str)) {

printf("'%s' is a valid GUID/UUID.\n", $str);

} else {

printf("'%s' is NOT a valid GUID/UUID.\n", $str);

}

}

printResults($uuid);

printResults($bad);

?>

This is the output:

'B15BC71E-D94C-11D9-9D71-000A95B70106' is a valid GUID/UUID.

'E34B13ED-D94C-11D9-9628-Z00A95B70106' is NOT a valid GUID/UUID.

How It Works

Since GUIDs/UUIDs are in hexadecimal, each character will be either a number or a letter

between A and F. This is matched pretty easily with a character class: [0-9e-f]. If the GUID

has hyphens in it, it has eight characters, then three groups of four characters, and finally

twelve characters all separated by dashes.

9-19. Reading Records with a Delimiter

Reading records with a delimiter can be useful when providing rich features in an application

in PHP. By being able to parse records with delimiters, you can build applications that work

with comma-separated value (CSV) files, tab-delimited files, and even pipe-delimited files.

The techniques for working with these various files are the same; once you learn them, it

is easy to add more formats to your application. The following code shows how to work with

CSV files.

9-19 ■ READING RECORDS WITH A DELIMITER382

Before getting into the example, first be aware of what a properly formatted CSV file looks

like. The CSV format has many implementations, so for this example we will focus specifically

on the format that you will find if you export a CSV file in Microsoft Excel. This will probably

be the most common CSV file format you will see. Also, you will learn why a simple replace-

ment of a comma or a split on a comma into an array to get the fields does not cut it.

When a comma is included in a field in a CSV file, the field is wrapped with double

quotes. Since double quotes have special meaning as text qualifiers, they are escaped in a

CSV file by doubling them. You can find more about the makeup of a properly formed CSV file

at http://en.wikipedia.org/wiki/Comma-separated_values.

The Code

<?php

// Open the file with in read-only mode. This is the same

// code you will find in recipe 9-5.

$file = fopen("testfile.csv", "r") or die("Cannot open file!\n");

// this will be false if you can no longer get a line from

// the file.

while ($line = fgets($file, 1024)) {

preg_match_all("/[^,\"]+|\"([^\"]|\"\")*\"/", $line, $fields);

// Print out the second first and second fields, just to

// get an idea that it is working okay.

echo "First field is: " . $fields[0][0] . "\n";

echo "Second field is: " . $fields[0][1] . "\n";

}

// Make sure to close the file when you are done!

fclose($file);

?>

This is the output for the file contents:

"Doe, John",Anytown,MN,55555

"""Jon""",Anycity,NE,11111

"Doe, Jon ""Jon Boy""",Anytropolis,IA,77777

This is the command output:

First field is: "Doe, John"

Second field is: Anytown

First field is: """Jon"""

Second field is: Anycity

First field is: "Doe, Jon ""Jon Boy"""

Second field is: Anytropolis

9-19 ■ READING RECORDS WITH A DELIMITER 383

How It Works

To see how iterating through the file works, you can look at recipe 9-5 and recipe 9-2 for more

information about how preg_match_all works. In this example, we will focus specifically on

how the regular expression works.

When you are processing records in a file, you must define what a field is so that

preg_match_all can extract the fields. This is part of the technique that is the same for all

delimited records. In any delimited record, a field simply consists of characters that are not

the delimiter. If the delimiter is allowed to appear in the field, it must probably be escaped

somehow, or any application that processes the record will not be able to tell delimiters apart

from values inside fields. This is the case with CSV records—remember that fields separated

by a comma can actually include a comma as long as the field is wrapped in quotes to tell the

processor to ignore the comma inside the field.

In CSV files, you also have to be wary of double quotes, since they can also be in a field where

they are to be taken literally. To process this file, you use the expression [^,"]+|"([^"]|"")*".

Note that in the previous PHP example, the double quotes are escaped with a backward slash,

but it is important to make the distinction that escaping double quotes is not a requirement of

the regular expression interpreter; therefore, we will go through the expression as if they were

not there.

The first part of the expression is [^,"]+, which is a negated character class that matches

one or more characters that is not a comma or a double quote. In the example file, this

matches fields with values such as Anytown and 11111.

An OR operator, |, separates the first part from the second part of the expression, which is

"([^"]|"")*". This expression matches fields wrapped in quotes and is better explained like

this:

" a double quote, followed by...

(a group that contains...

[^"] any character that is not a double quote...

| or...

"" an escaped double quote, followed by...

) the end of the group...

* where the group is found any number of times, ending in...

" a double quote.

So, the expression "([^"]|"")*" will match any field in double quotes because it starts

and ends with a double quote and cannot contain another double quote inside of it unless the

double quote is escaped with another one. As long as the field is correctly wrapped in double

quotes, you do not have to care whether there is a comma inside of it. The first part of the

expression ([^,"]+) will make sure there is not one outside double quotes.

You can use this same technique to process tab-delimited files and other files that have

records with fields separated by a delimiter. Depending on the specification of the file, you might

have to tweak the expression just a little bit. The expression for dealing with tab-delimited files

as exported by Microsoft Excel is this: [^\t]+.

9-19 ■ READING RECORDS WITH A DELIMITER384

9-20. Creating Your Own RegExp Class

If you have worked with other languages that support a Regex or RegExp class of some kind,

you might miss the convenience of working with the class over calling various methods such

as ereg and preg_match. Fortunately, PHP 5 has many improved features that allow you to

build a similar class that supports finding matches and making replacements.

The following code demonstrates how to build a class called RegExp that will make work-

ing with regular expressions easier. This class allows you to define a pattern and find matches

in strings or make replacements. It even has a function for getting an array of matches from a

string.

The Code

<?php

class RegExp {

public $pattern;

// Constructor
// Creates a new instance of the RegExp object
// with the pattern given.
function __construct($pattern) {

$this->pattern = $pattern;
}

// prints the string representation of the RegExp object,
// which in this case is the pattern
function __toString() {

return $this->pattern;
}

// isMatch($str)
// Returns the number of matches found, so is 0 if
// no match is present.
function isMatch($str) {

$result = preg_match($this->pattern, $str);
return $result;

}

// getMatches($str)
// Returns an array of matches found in the string $str
function getMatches($str) {

preg_match_all($this->pattern, $str, $matches);
return $matches;

}

// replace($replaceStr, $str)
// Makes a replacement in a string
// -$replaceStr: The string to use as a replacement
// for the pattern.

9-20 ■ CREATING YOUR OWN REGEXP CLASS 385

// -$str: The string in which to make the replacement
function replace($replaceStr, $str) {

$result = preg_replace($this->pattern, $replaceStr, $str);
return $result;

}

}

$re = new RegExp('/Hello/');

// echo $re . "\n";
echo $re->pattern . "\n";

if ($re->isMatch('Goodbye world!')) {
echo "Found match!\n";

} else {
echo "Didn't find match!\n";

}

if ($re->isMatch('Hello world!')) {
echo "Found match!\n";

} else {
echo "Didn't find match!\n";

}

$res = $re->replace('Goodbye', 'Goodbye world!');
echo $res . "\n";

?>

How It Works

In this example, many new PHP 5 features are being used to build a powerful RegExp class that

you can use in your code. At the end of the example, code demonstrates how to use the new class.

The __construct constructor is used with the regular expression as an argument to the

constructor. When a new RegExp object is created, the pattern is kept inside the object to use

in its future matches and replacements. The class declaration and constructor are as follows:

class RegExp {

public $pattern;

// Constructor
// Creates a new instance of the RegExp object
// with the pattern given.
function __construct($pattern) {

$this->pattern = $pattern;
}

}

9-20 ■ CREATING YOUR OWN REGEXP CLASS386

To create an instance of the RegExp class, just create it using new as shown here and in the

test code at the bottom of the example:

$re = new RegExp('/Hello/');

In the previous example, '/Hello/' will be stored in the $pattern variable in the class.

The __toString method is declared in this class to print the regular expression in the pattern

variable, so using echo to print the object will print the pattern only:

echo $re;

This is the result:

/Hello/

Now that the object has been created and is storing a regular expression internally, the

isMatch function, shown next, will make it easy to see if there is a match found inside a string:

function isMatch($str) {

$result = preg_match($this->pattern, $str);

return $result;

}

As you can see, this class uses the PCRE function preg_match to look at the string to see if

there is a match, with $this->pattern used as the regular expression. This is why the example

regular expression /Hello/ includes the / delimiters. Likewise, the preg_match_all function is

used in getMatches to return an array of matches. The getMatches function is as follows:

function getMatches($str) {

preg_match_all($this->pattern, $str, $matches);

return $matches;

}

To complete the class’s functionality, a replace function is included that allows you to

make replacements using the RegExp class’s $pattern to search for a string to replace. The

replace function is as follows:

function replace($replaceStr, $str) {

$result = preg_replace($this->pattern, $replaceStr, $str);

return $result;

}

So far, this class uses PCRE to make its matches and replacements. But what if you want a

class that can use either PCRE or POSIX expressions? With additions in PHP 5 such as con-

stants, implementing this in a class is much cleaner than it would have been in prior versions

of PHP.

Modify the class to include a $mode variable in the constructor. If $mode is not defined, set

it to the value of the PCRE constant so PCRE methods are the default method of searching and

replacing. Inside the class, if $mode is set to PCRE, the class uses preg_match and preg_replace

to find matches and make replacements, and if $mode is set to POSIX, the class uses ereg and

ereg_replace.

9-20 ■ CREATING YOUR OWN REGEXP CLASS 387

The modified class is as follows, with the additions in bold:

<?php

class RegExp {

const POSIX = 'POSIX';

const PCRE = 'PCRE';

public $pattern;

public $mode;

// Constructor

// Creates a new instance of the RegExp object

// with the pattern given.

function __construct($pattern, $mode) {

$this->pattern = $pattern;

if (! $mode) {

// Defaults to PCRE if there is no mode defined

$this->mode = self::PCRE;

} else {

// In a real implementation, this $mode should be validated—check

// it against the PRCE and POSIX constants

$this->mode = $mode;

}

}

// prints the string representation of the RegExp object,

// which in this case is the pattern

function __toString() {

return $this->pattern;

}

// isMatch($str)

// Returns the number of matches found, so is 0 if

// no match is present.

function isMatch($str) {

if (strcmp($this->mode, self::PCRE)==0) {

$result = preg_match($this->pattern, $str);

} else {

$result = ereg($this->pattern, $str);

}

return $result;

}

// getMatches($str)

// Returns an array of matches found in the string $str

function getMatches($str) {

9-20 ■ CREATING YOUR OWN REGEXP CLASS388

if (strcmp($this->mode, self::PCRE)==0) {

preg_match_all($this->pattern, $str, $matches);

} else {

ereg($this->pattern, $str, $matches);

}

return $matches;

}

// replace($replaceStr, $str)

// Makes a replacement in a string

// -$replaceStr: The string to use as a replacement

// for the pattern.

// -$str: The string in which to make the replacement

function replace($replaceStr, $str) {

if (strcmp($this->mode, self::PCRE)==0) {

$result = preg_replace($this->pattern, $replaceStr, $str);

} else {

$result = ereg_replace($this->pattern, $replaceStr, $str);

}

return $result;

}

}

?>

The strcmp function compares the mode against the PCRE constants because it is a value

that needs exact matching, and strcmp is a more efficient method of doing this particular

comparison.

The following code uses this new and improved class that supports both PCRE and POSIX

regular expressions:

$re = new RegExp('/Hello/', RegExp::PCRE);

$re2 = new RegExp('Hello', RegExp::POSIX);

print "Using PCRE: \n\n";

print "Pattern: " . $re->pattern . "\n";

if ($re->isMatch('Goodbye world!')) {

echo "Found match!\n";

} else {

echo "Didn't find match!\n";

}

if ($re->isMatch('Hello world!')) {

echo "Found match!\n";

} else {

9-20 ■ CREATING YOUR OWN REGEXP CLASS 389

echo "Didn't find match!\n";

}

$res = $re->replace('Goodbye', 'Hello world!');

echo $res . "\n";

print "\n\nUsing POSIX: \n\n";

print "Pattern: " . $re2->pattern . "\n";

if ($re2->isMatch('Goodbye world!')) {

echo "Found match!\n";

} else {

echo "Didn't find match!\n";

}

if ($re2->isMatch('Hello world!')) {

echo "Found match!\n";

} else {

echo "Didn't find match!\n";

}

$re2s = $re2->replace('Goodbye', 'Hello world!');

echo $re2s . "\n";

When the code here is executed, the output will look like this:

Using PCRE:

Pattern: /Hello/

Didn't find match!

Found match!

Goodbye world!

Using POSIX:

Pattern: Hello

Didn't find match!

Found match!

Goodbye world!

Notice that the patterns are a little different between the two objects. This is because the

PCRE version of the regular expression requires delimiters at the beginning and the end of the

expression—in this case, the / character.

9-20 ■ CREATING YOUR OWN REGEXP CLASS390

Summary
PHP supports two implementations of regular expressions—POSIX and PCRE. PCREs support

more character classes and special features such as nongreedy matching and look-arounds.

Regular expressions allow you to do much more than simple searching and replacing

within strings. Using regular expressions in PHP, you can find strings according to specific

rules, validate user input, process files such as CSV and tab-delimited files, and make compli-

cated replacements in text. Combined with the other capabilities in PHP, the possibilities are

nearly endless.

For more about using regular expressions, see Regular Expression Recipes: A Problem-

Solution Approach (Apress, 2005) and Regular Expression Recipes for Windows Developers:

A Problem-Solution Approach (Apress, 2005).

Looking Ahead
In the next chapter, Frank M. Kromann explores the world of variables in PHP, showing some

advanced variable functions that you will find invaluable in your everyday programming.

9-20 ■ CREATING YOUR OWN REGEXP CLASS 391

Working with Variables

Variables are an important part of any programming language, and that goes for PHP too.

Variables are blocks of memory associated with a name and a data type, and variables contain

data to be used in calculations, program flow, presentation, and so on.

PHP is a loosely typed language where variables can be used without declarations and

where they can change type from line to line, in some cases without losing the content. This

makes programming much easier than in more strictly typed languages, but it can also make

it more difficult to debug the code.

All variable names in PHP start with a dollar ($) sign. This makes it easy for the scripting

engine, as well as the reader, to identify variables anywhere in the code, including when they

are embedded in strings. Also, using the $ sign allows the developer to use variable names

that would otherwise be reserved by the engine for function names and language constructs.

This means writing code where function names are used as variable names, such as

$strlen = strlen("This is a test");, is allowed.

The first character after the $ sign in a variable name must be a letter or an underscore

(_). The remaining characters can be letters, numbers, and underscores, and there is no limit

on the length of a variable name (but it makes sense to keep them short and meaningful to

ensure the readability of the code). Using short variable names means less typing when writ-

ing the code, and using longer names means more descriptive names. Valid letters are any of

the characters a–z, the characters A–Z, and any ASCII character from 127 to 255. This makes it

possible to use international characters when naming variables. $LøbeNummer is a valid vari-

able name but most likely readable only to Danish developers. We prefer to keep variable and

function names as well as all comments in English like all the language constructs and built-in

functions.

It is also important to note that although function names are case-insensitive in PHP, this

is not the case for variables. $MyVar and $myvar are two different variables in PHP, and this is

often the cause of scripting warnings. If PHP is configured to hide errors and warnings, it will

be difficult to catch programming errors caused by the misspelling of variables as well as other

mistakes. It is recommended to configure PHP (on the development system) to display all

errors and warnings; you can do this by defining these two values in php.ini:

error_reporting = E_ALL

display_errors = On

393

C H A P T E R 1 0

■ ■ ■

■Note On a production site it is good practice to hide most or all errors and warnings from the user, but

during development it makes sense to display as much information as possible so you can correct errors.

10-1. Using Variable Types

PHP implements a number of variable types. Any variable can be assigned a value of any of

these types or the special NULL value. The special NULL value is not case-sensitive, so NULL

and null are the same value. When a variable is assigned the NULL value, it does not have a

type, and it is considered to be empty. Table 10-1 lists all types that can be used in PHP.

Table 10-1. PHP Data Types

Type Description

Boolean Possible values are True and False.

Float Floating-point values.

Integer Integer values.

String Any series of ASCII characters 0–255. PHP strings are binary safe.

Array An indexed list of other values. All data types are allowed as values.

Object A class instance.

Resource A handle to an internal data structure. This can be a database connection or a
result set.

Variables of the types boolean, float, and integer use a fixed amount of memory, and the

remaining types use memory as needed; if additional memory is needed, the engine automat-

ically allocates it.

The internal representation of a string value has two parts—the string data and the

length. This causes the function strlen() to be very efficient, as it will return the stored length

value without having to count the number of characters in the string. It also allows a string to

contain any of the 256 available ASCII values, so you can use a string to store the content of

any file or other form of binary data.

PHP’s array implementation is an indexed list of values. The index is often called the key,

and it can be either an integer or a string value. If boolean or float values are used as keys, they

are converted to integers before the value is added or updated in the array. Using boolean or

floats as keys might lead to unexpected results. The value corresponding to each key can be of

any type, so it is possible to create arrays of arrays, and it is also possible to mix the types for

both keys and values (see the next section for some examples). More strictly typed languages

require that arrays are defined as lists of the same data type and that the memory must be

allocated before the arrays are used.

10-1 ■ USING VARIABLE TYPES394

Objects are usually created as an instance of a class or are generated by the engine, and

they will contain methods and/or properties. Properties and methods are accessed with the

-> indirection symbol, for example, $obj->property or $obj->method($a, $b).

Resources are a special type that can be created only by the engine (built-in or extension

functions). The data structure and memory usage is known only to a few functions used to

create, modify, and destroy the resource. It is not possible to convert any other type to a

resource type.

Operating in a loosely typed language can make it difficult to know the type of a variable.

PHP has a number of functions that can determine the current type of a variable (see Table 10-2).

Table 10-2. Functions to Check Data Type

Name Description

is_null() Returns true if the value is null (no type)

is_string() Returns true if the value is a string

is_int() Returns true if the value is an integer

is_float() Returns true if the value is a floating-point value

is_array() Returns true if the value is an array

is_object() Returns true if the value is an object

is_a() Deprecated; checks if an object is a specified class

instanceof() Checks if an object is an instance of a class

In addition to these functions, two more functions are important when variables are

checked. The isset() function checks if a variable has been defined, and the empty() function

checks if the value of a variable is empty. Using one of the is_*() functions will give a com-

piler notice if the variable is undefined. This is not the case for isset() and empty(). They will

return false and true if the variable is undefined. The next example shows what the empty()

function will return when passed different values.

The Code

<?php

// Example 10-1-1.php

$text = array(

"0", "1", "\"\"", "\"0\"", "\"1\"",

"true", "false", "array()", "array(\"1\")"

);

$values = array(0, 1, "", "0", "1", true, false, array(), array("1"));

foreach($values as $i=>$val) {

echo "empty(" . $text[$i] . ") is " . (empty($val) ? "True" : "False") . "\n";

}

?>

10-1 ■ USING VARIABLE TYPES 395

How It Works

This example defines two arrays with the same number of elements. The $text array prints the

values that are checked, and the second array, $values, is used in the loop to check the result

of a call to the empty() function. The output looks like this:

empty(0) is True

empty(1) is False

empty("") is True

empty("0") is True

empty("1") is False

empty(true) is False

empty(false) is True

empty(array()) is True

empty(array("1")) is False

Note that the values 0, "", "0", and array() all are considered empty.

10-2. Assigning and Comparing

Assigning a value to a variable takes place with one of the assignment operators: =, +=, -=, *=,

/=, %=, .=, &=, |=, ^=, <<=, or >>=. The simple form (=) creates a new variable of any type or

assigns a new value. The left side is the variable, and the right side is the value or an expres-

sion. The remaining assignment types are more complex; they all assume that the variable on

the left side is defined before the statement is reached. The result will be the current value of

the variable on the left side and the value on the right side after performing the operation

identified by the operator. $a += $b; is the same as $a = $a + $b;.

If the variable is in use when a value is assigned (with simple assignment using

the = operator), the old value will be discarded before the new variable is created. All the

other assignment operators will reuse the existing value to create a new value. If needed,

the existing value will be converted to the proper type before the calculation and assignment.

For instance, if $a is an integer and it is used with the string concatenation operator, then

$a .= "string value";.

PHP uses a reference-counting system on all variables, so you do not need to free variables

when they are no longer used. All allocated memory will be released at the end of the request,

but for scripts that use a lot of memory or long-running processes, such as command-line inter-

face (CLI) scripts or PHP-GTK scripts, it might be necessary to free unused variables to allow

other variables to use the memory. You can free any variable from memory by assigning it to

NULL ($a = NULL;) or by using the unset() function.

■Note If more than one variable name references the same variable, all of them must be unset before the

memory is released. Creating multiple references to the same data in memory is discussed in this recipe.

10-2 ■ ASSIGNING AND COMPARING396

You can add values to arrays in two ways. If the left side is a variable, the right side can be an

array definition like this: $a = array(9, 7, "orange", "apple");. This will create an array with

four elements, and the index or key values will be assigned automatically in numeric order start-

ing with 0. New values can be added, or existing values can be replaced with an expression where

the left side points to one of the values in the array. So, setting $a[2] = "pear"; will replace the

third element, orange, with pear because the key value of 2 was in use already. A new element

will be added to the array if the key does not exist already. Setting $a[5] = "orange"; will add

orange with the key 5, and the array will now have five elements. Note that this will not have an

element with the key 4. If you try to access or use $a[4], you will get an undefined variable notice.

You can use a special notation to let PHP assign the key values automatically. You do this by sim-

ply omitting the key in the assignment, such as $a[] = "apricot". This will create the key 6 and

assign it the value apricot. This notation will always use numeric indexes, and the next value will

be one higher than the highest numeric index value in the array.

You can also assign the key values to force a specific relation between keys and values, as

shown the following example, where both keys and values are mixed between numeric and

string values.

The Code

<?php

// Example 10-2-1.php

$a = array(

0=>1,

1=>2,

2=>"orange",

3=>"apple",

"id"=>7,

"name"=>"John Smith"

);

print_r($a);

?>

How It Works

In this example you create an array with six values where the keys are assigned with the =>

operator. The first four values are assigned numeric keys, and the last two are assigned string

keys. The output from this code looks like this:

Array

(

[0] => 1

[1] => 2

[2] => orange

[3] => apple

[id] => 7

[name] => John Smith

)

10-2 ■ ASSIGNING AND COMPARING 397

You can get rid of a single value in an array with the unset() function. This will remove

the value from the array but not rearrange any of the key values. The code unset($a[3]); will

remove apple from the array in the previous example. PHP implements many functions that

manipulate arrays. One of these requires special attention. It is the list() function, or lan-

guage construct. Like array(), it is not really a function but a way to tell the engine how to

handle special data. It is used on the left side of the assignment operator, when the right side

is an array or an expression that results in an array, and it can assign values to multiple vari-

ables at the same time.

■Note list() works only on numerical arrays and assumes numerical indexes start at 0.

The next example shows how to use the list() function.

The Code

<?php

// Example 10-2-2.php

$net_address = array("192.168.1.101", "255.255.255.0", "192.168.1.1");

list($ip_addr, $net_mask, $gateway) = $net_address;

echo "ip addr = $ip_addr\n";

echo "net mask = $net_mask\n";

echo "gateway = $gateway\n";

?>

How It Works

First, you define an array with three elements. This could be the return value from a function

call. Second, these values are extracted from the array and stored in individual variables with

a call to the list() function. Finally, the three new variables are printed to form this output:

ip addr = 192.168.1.101

net mask = 255.255.255.0

gateway = 192.168.1.1

When a variable is assigned a value, it will actually get a copy of that value. Using the spe-

cial & operator makes it possible to create a new variable that references the same value in

memory as another variable. This is best demonstrated with a small example, where two val-

ues are defined. In the first part of the code, $b is assigned a copy of $a, and in the second part,

$b is assigned a reference to $a.

10-2 ■ ASSIGNING AND COMPARING398

The Code

<?php

// Example 10-2-3.php

$a = 5;

$b = $a;

$a = 7;

echo "\$a = $a and \$b = $b\n";

$a = 5;

$b = &$a;

$a = 7;

echo "\$a = $a and \$b = $b\n";

?>

How It Works

In the first part, $a and $b will have independent values, so changing one variable will not

affect the other. In the second part, the two variables share the same memory, so changing

one variable will affect the value of the other.

$a = 7 and $b = 5

$a = 7 and $b = 7

When two or more variables share the same memory, it is possible to use the unset()

function on one of the variables without affecting the other variables. The unset() function

will simply remove the reference and not the value.

PHP has two kinds of comparison operators. The loose comparison operators will com-

pare values even if the two values are of different data types. The strict comparison operators

will compare both the values and the data types. So, if two variables are of different types, they

will always be different when compared to the strict operators, even if the values are identical

otherwise. Tables 10-3 and 10-4 explain the comparison operators.

Table 10-3. Loose Comparison Operators

Example Name Description

$a == $b Equal to True if $a is equal to $b

$a != $b Not equal to True if $a is not equal to $b

$a < $b Less than True if $a is less than $b

$a > $b Greater than True if $a is greater than $b

$a <= $b Less than or equal to True if $a is less than or equal to $b

$a >= $b Greater than or equal to True if $a is greater than or equal to $b

10-2 ■ ASSIGNING AND COMPARING 399

Table 10-4. Strict Comparison Operators

Example Name Description

$a === $b Equal to True if $a is equal to $b and they are of the same type

$a !== $b Not equal to True if $a is not equal to $b or they are not of the same type

When the loose operators are used and the data types are different, PHP will convert one

of the variables to the same type as the other before making the comparison.

To show how these different operators work, the next example creates a script that loops

through an array of different data types and compares all the values to each other.

The Code

<?php

// Example 10-2-4.php

$Values = array(

NULL,

True,

False,

1,

0,

1.0,

0.0,

"1",

"0",

array(1),

(object)array(1)

);

function dump_value($var) {

switch (gettype($var)) {

case 'NULL':

return "NULL";

break;

case 'boolean':

return $var ? "True" : "False";

break;

default :

case 'integer':

return $var;

break;

case 'double':

return sprintf("%0.1f", $var);

break;

case 'string':

return "'$var'";

break;

10-2 ■ ASSIGNING AND COMPARING400

case 'object':

case 'array':

return gettype($var);

break;

}

}

function CreateTable($Values, $type = "==") {

echo "<table border=1>";

echo "<tr><td>$type</td>";

foreach ($Values as $x_val) {

echo "<td bgcolor=lightgrey>" . dump_value($x_val) . "</td>";

}

echo "</tr>";

foreach ($Values as $y_val) {

echo "<tr><td bgcolor=lightgrey>" . dump_value($y_val) . "</td>";

foreach ($Values as $x_val) {

if ($type == "==") {

$result = dump_value($y_val == $x_val);

}

else {

$result = dump_value($y_val === $x_val);

}

echo "<td>$result</td>";

}

echo "</tr>";

}

echo "</table>";

}

echo "<html><body>";

CreateTable($Values, "==");

CreateTable($Values, "===");

echo "</body></html>";

?>

How It Works

The script defines the array with values of different types, a function to format the output, and

a function to create a Hypertext Markup Language (HTML) table with the result. The format-

ting function dump_value() is needed to print readable values for booleans and floats. The

CreateTable() function is called once for each comparison type. The output from this script,

viewed in a browser, looks like Figure 10-1 and Figure 10-2.

10-2 ■ ASSIGNING AND COMPARING 401

Figure 10-1. Comparing variables of different types with loose operators

Figure 10-2. Comparing variables of different types with strict operators

10-3. Typecasting

Typecasting is a method used to force the conversion of a variable from one type to another.

During typecasting, the value is preserved and converted if possible, or the result is assigned

a default value with the specified type. Converting a string with abc to an integer will give the

value 0. The next example shows how a string with a numeric value can be typecast to an inte-

ger and how an array, which has at least one element, is typecast to an integer that will result

in a value of 1.

10-3 ■ TYPECASTING402

The Code

<?php

// Example 10-3-1.php

$a = "10";

$b = (int)$a;

echo 'gettype($a) = ' . gettype($a) . "\n";

echo 'gettype($b) = ' . gettype($b) . ", \$b = $b\n";

$a = array(5,4,5);

$b = (int)$a;

echo 'gettype($a) = ' . gettype($a) . "\n";

echo 'gettype($b) = ' . gettype($b) . ", \$b = $b\n";

?>

How It Works

You define $a as a string and then $b as the integer value of $a. Then you use the gettype()

function to get a string representation of the variable type. The output from this script looks

like this:

gettype($a) = string

gettype($b) = integer, $b = 10

gettype($a) = array

gettype($b) = integer, $b = 1

■Note Converting from arrays and objects to integers is undefined by the engine, but it currently works as

if the variable was converted to a boolean and then to an integer. You should not rely on this, and you should

avoid typecasting arrays and objects to any other types.

When arrays are used with an if clause, they are implicitly converted to booleans. This is

useful when checking if an array has any elements. If $a is an array, then the code if ($a)

echo "$a has elements"; will print a statement only if $a is a nonempty array.

Jon Stephen’s Chapter 4 discussed numeric values and showed how an integer value could

change its type to floating point if the result of a calculation was outside the boundaries of an

integer.

In this chapter you have seen how you can convert string values with numeric content

into integers. You can apply the same conversion to floating-point values but not to boolean

values. For example, (bool)"true"; and (bool)"false"; will both return a true value. An

empty string will convert to false, and any nonempty string will convert to true when type-

cast to a boolean.

It is also possible to convert variables from arrays to objects and back again. You can do

this to change how elements/properties are accessed, as shown in the following example.

10-3 ■ TYPECASTING 403

The Code

<?php
// Example 10-3-2.php
$a = array(
"Name" => "John Smith",
"Address" => "22 Main Street",
"City" => "Irvine",
"State" => "CA",
"Zip" => "92618"

);
echo "Name = " . $a["Name"] . "\n";

$o = (object)$a;
echo "Address = $o->Address\n";?>

How It Works

First, you define an array with five elements. Each element is defined as a key and a value,

and all the keys are string values. Second, you use traditional array accessors to print the Name

value from the array. Finally, a new variable is created by typecasting the array to an object.

When elements/properties are accessed on an object, you use the -> symbol between the

object name and the property.

Name = John Smith

Address = 22 Main Street

Converting an object to an array will convert properties to elements of the resulting array

only (see recipe 10-5 for a discussion of the public, private, and protected properties).

The Code

<?php
// Example 10-3-3.php
class myclass {
public $name;
public $address;
private $age;
function SetAge($age) {
$this->age = $age;

}
}

$obj = new myclass;
$obj->name = "John Smith";
$obj->address = "22 Main Street";
$obj->SetAge(47);

$arr = (array)$obj;
print_r($arr);
?>

10-3 ■ TYPECASTING404

How It Works

The class myclass() has a couple of public properties, a private property, and a method used

to set the private property. When an object is created as an instance of myclass, you can use

-> to assign values to the public properties and use the SetAge() method to assign a value to

the private property. The object is then converted to an array and dumped with the print_r()

function.

Array

(

[name] => John Smith

[address] => 22 Main Street

[myclass age] => 47

)

Formatting output requires different types to be converted into strings before they are

sent to the client. You can do this by concatenating different values using the . operator. The

engine will automatically convert nonstring values to strings, if possible. Integer and floating-

point values are converted into a decimal representation, and booleans are converted into an

empty value or 1.

■Note If an expression is concatenated with other values or strings, you must enclose the expression in

(). For instance, $a = "test " . 5 + 7; is not the same as $a = "test " . (5 + 7);. The first will

calculate to the value 7, as the concatenation will take place before the addition, so the string "test 5" is

created and added to the value 7. The second expression will calculate to "test 12".

Arrays, objects, and resources contain values too complex to be converted to strings in a

unified and automated way, so these are converted into strings showing the data type.

It is also possible to embed variables directly into strings, when the string is created with

double quotes. A string with single quotes will not expand the value of any variable included

in the string. The next example shows how embedded variables are handled when the string is

created with single or double quotes.

The Code

<?php

// Example 10-3-4.php

$a = 10;

$b = 15.7;

echo "The value of \$a is $a and the value of \$b is $b\n";

echo 'The value of \$a is $a and the value of \$b is $b\n';

?>

10-3 ■ TYPECASTING 405

How It Works

This example will output two lines, where the first line will expand the values of $a and $b and

where the variable names are printed in the second line. The \ escapes the $ signs to prevent

the engine from converting the first $a into the value, and it just prints the variable name.

Note how the string with single quotes prints all the escape characters.

The value of $a is 10 and the value of $b is 15.7

The value of \$a is $a and the value of \$b is $b\n

The same example with the concatenation operator looks like the following.

The Code

<?php

// Example 10-3-5.php

$a = 10;

$b = 15.7;

echo "The value of \$a is " . $a . " and the value of \$b is " . $b . "\n";

echo 'The value of $a is ' . $a . ' and the value of $b is ' . $b . "\n";

?>

How It Works

Note how the last line combines strings created with single and double quotes. This allows you

to use $a without escaping the $ sign and the new line at the end of the line.

Embedding numbers and strings into other strings is simple, but what if the value is

stored in an array or object? It is still possible to embed these more complex types in strings,

but you need to follow a few rules:

• You can use only one dimension.

• You should not include key values in quotes, even if strings are used as keys.

• You can embed more complex values with the syntax ${}.

The next example shows how arrays embedded in strings will be converted.

The Code

<?php

// Example 10-3-6.php

$arr = array(

1 => "abc",

"abc" => 123.5,

array(1,2,3)

);

$key = "abc";

10-3 ■ TYPECASTING406

echo "First value = $arr[1]\n";

echo "Second value = $arr[abc]\n";

echo "Third value = $arr[2]\n";

echo "Third value = $arr[2][2]\n";

echo "Second value = ${arr['abc']}\n";

echo "Second value = ${arr["abc"]}\n";

echo "Second value = ${arr[$key]}\n";

?>

How It Works

After defining an array with three elements and a string value with the index of one of the ele-

ments, you use the different embedding methods to see how the values are resolved. The three

first lines in the output, shown next, shows how the simple embedding works. The first two of

these actually print the value of the element, but the third line prints Array. The same goes for

the fourth line where you tried to print a single value from a two-dimensional array. The last

three lines used the ${} syntax that allows embedding of more complex types, but this is lim-

ited to one-dimensional arrays. Use string concatenation if you want to combine values from

multidimensional arrays in a string.

First value = abc

Second value = 123.5

Third value = Array

Third value = Array[2]

Second value = 123.5

Second value = 123.5

Second value = 123.5

The following example is the same but with objects.

The Code

<?php

// Example 10-3-7.php

$arr = array(

"abc" => "abc",

"def" => 123.5,

"ghi" => array(1,2,3)

);

$key = "abc";

$obj = (object) $arr;

echo "First value = $obj->abc\n";

echo "Second value = $obj->def\n";

echo "Third value = $obj->ghi\n";

?>

10-3 ■ TYPECASTING 407

First value = abc
Second value = 123.5
Third value = Array

■Note It is important that the index values of the array are strings. Values that use an integer as an index

cannot be converted to a valid property name. Variable and property names must start with a letter or an

underscore.

10-4. Using Constants

You can use variables to define values that have one value for the duration of the script. The

nature of a variable allows the content to be changed, and this might lead to unexpected behavior

of the program. This is where constants become handy. Constants are identifiers for simple val-

ues. The value can be defined once, while the script is running, and never changed. The function

define() assigns a simple constant value (bool, int, float, or string) to a constant name. By

default the constant names are case-sensitive like variables, but a third optional argument to the

define() function makes it possible to create case-insensitive constant names. Constant names

are often defined as uppercase only to make it easier to identify them in the code. The define()

function will return true if the constant could be defined or false if it was defined already.

Unlike variables that start with a $ sign, constants are defined by name; this makes it

impossible for the engine to identify constants with the same name as language constructs

or functions. If a constant is defined with a name that is reserved for language constructs or

function names, it can be retrieved only with the constant() function. This function takes a

string as the argument and returns the value of the constant. The constant() function is also

helpful when different constants are retrieved by storing the constant name in a variable or

returning it from a function.

The Code

<?php
// Example 10-4-1.php
define('ALIGN_LEFT', 'left');
define('ALIGN_RIGHT', 'right');
define('ALIGN_CENTER', 'center');

$const = 'ALIGN_CENTER';
echo constant($const);
?>

How It Works

This example defines three constants and assigns the name of one of the constants to a string

that is used as the parameter to the constant() function. The result is the value of the constant.

center

10-4 ■ USING CONSTANTS408

You can use the function defined() to check if a constant is defined, before trying to

define it again or before using it to avoid undefined constants (which will generate a warning).

Using constants makes it easy to change the values used to control program flow without

having to break code. If you use hard-coded values and want to change one or more values,

you must make sure all the places you compare to each value are updated to match the new

values. If, on the other hand, you use constants, then you can get by with changing the value

in the constant definition, and all the places you use that constant will automatically have the

new value.

Consider an example where you have three values controlling the program flow and you

want to change the values for some reason. Your code could look like the following example.

The Code

<?php

// Example 10-4-2.php

switch($justify) {

case 1 : // left

break;

case 2 : // center

break;

case 3 : // right

break;

}

?>

How It Works

Each constant is used only once in the example, but you could have several functions that use

a justification value to print the content in different ways, and using numbers is less readable

than the constant names.

The Code

<?php

// Example 10-4-3.php

define('ALIGN_LEFT', 1);

define('ALIGN_CENTER', 2);

define('ALIGN_RIGHT', 3);

switch($value) {

case ALIGN_LEFT :

break;

case ALIGN_CENTER :

break;

case ALIGN_RIGHT :

break;

}

?>

10-4 ■ USING CONSTANTS 409

How It Works

So, to change the values of these constants, you need to change only the definitions, and

you get the benefit of writing more readable code without having to add a lot of comments.

PHP has a large number of predefined constants (M_PI, M_E, and so on, from the math

functions), and many extensions define and use constants (MYSQL_NUM, MYSQL_ASSOC, and

MYSQL_BOTH, to mention a few) that allow you to write more readable code.

It is not possible to define a constant as an array or object, but as discussed in recipe 10-4,

you can convert these data types into strings with the serialize() function. You can use the

result of this function, or any other function that returns a simple value, to define constant

values. These constants can then be accessed globally (as discussed in recipe 10-5). The only

downside is the need to unserialize the value before it can be used. The next example shows

how to use this technique to store an array in a constant and use that from within a function.

This makes it possible to access a global constant in the form of an array, without having to

use global $arr; or $GLOBALS['arr'];.

The Code

<?php

// Example 10-4-4.php

$arr = array("apple", "orange", "pear");

define('MYARRAY', serialize($arr));

function MyTest() {

print_r(unserialize(MYARRAY));

}

MyTest();

?>

How It Works

The variable $arr is assigned an array with three values, serialized (converted to string form),

and stored in a constant called MYARRAY. The constant is then used inside the function MyTest(),

where it is converted back to an array and the content is printed. The output looks like this:

Array

(

[0] => apple

[1] => orange

[2] => pear

)

10-4 ■ USING CONSTANTS410

10-5. Defining Variable Scope

Variables are visible and usable in the scope where they are defined, so if a variable is defined

in the global scope, it is visible there and not in any functions or class methods. If the variable

$a is defined globally, another variable with the same name might be defined in a function.

The two variables are not the same even though they share the same name.

The Code

<?php

// Example 10-5-1.php

$a = 7;

function test() {

$a = 20;

}

test();

echo "\$a = $a\n";

?>

How It Works

The variable $a is defined in the global scope and assigned the value 7. Inside the function

test() you define another variable with the same name but the value 20. When the code is

executed, you call the function test and then print the value of $a. The two versions of $a do

not share the same memory, so the output will be the original value of $a from the global

scope.

$a = 7

You have two ways to access global variables from within a function or method of a class.

You can use the global keyword to associate a variable inside a function with a global variable.

The variable does not need to be defined globally before the association is made, so if the line

$a = 7; in the following example is omitted, the result will still be 20.

The Code

<?php

// Example 10-5-2.php

$a = 7;

function test() {

global $a;

$a = 20;

}

test();

echo "\$a = $a\n";

?>

10-5 ■ DEFINING VARIABLE SCOPE 411

How It Works

The only change from the previous example is the line global a$; inside the function. This

line makes the two variables reference the same memory, so when you change the value inside

the function, you also change the value of the variable in the global scope.

$a = 20

The other way of accessing global variables is by using the true global or superglobal

variable called $GLOBALS. This is an associative array that is available in any scope, and it has

references to all variables defined in the global scope.

The Code

<?php

// Example 10-5-3.php

$a = 7;

function test() {

$GLOBALS['a'] = 20;

}

test();

echo "\$a = $a\n";

?>

How It Works

By using the superglobal $GLOBAL, it is possible to access or change any variable from the

global space, without defining it as global as you did in the previous example.

$a = 20

As in the previous example, it is possible to define variables in the global scope from

within a function or class method. Using $GLOBALS['newvar'] = 'test'; will create a variable

called $newvar in the global scope and assign it the string value 'test'.

You can use a few other PHP variables like this. These are in general called superglobals,

and they do not belong to any special scope (see Table 10-5).

10-5 ■ DEFINING VARIABLE SCOPE412

Table 10-5. PHP Superglobals

Name Description

$GLOBALS An associated array with references to every variable defined in the global scope

$_SERVER Variables set by the server

$_ENV Environment variables

$_GET Variables provided to the script via the Uniform Resource Locator (URL)

$_POST Variables provided to the script via HTTP POST

$_COOKIE Variables provided to the script via HTTP cookies

$_FILE Variables uploaded via HTTP POST file uploads

$_REQUEST A combination of variables provided by GET, POST, and COOKIE methods

$_SESSION Variables currently registered in the session

Constants are another form of true global data. If a script has a need for defining values

that should be accessed from any scope, constants might be a good way of defining these.

This, of course, requires that the values should remain constant for the duration of the script.

You can define constants in the global scope or in a function, but they will always belong to

the global scope, as shown in the next example.

The Code

<?php

// Example 10-5-4.php

define('CONST1', 1);

function MyTest() {

define('CONST2', 2);

}

MyTest();

echo "CONST1 = " . CONST1 . " and CONST2 = " . CONST2 . "\n";

?>

How It Works

In this example, you define a constant from the global scope and one from inside a function.

As the output shows, both constants are available in the global scope.

CONST1 = 1 and CONST2 = 2

10-5 ■ DEFINING VARIABLE SCOPE 413

Working with classes and objects introduces another form of variable called a property, or

a member. This is basically a normal PHP variable, but access to it can be restricted with one

of the keywords public, private, protected, or static. You can use the same keywords when

declaring functions or methods. Older versions of PHP (before version 5.x) used var to declare

members, and they were all considered to be public. When updating scripts from PHP 4 to

PHP 5, you should convert all var declarations to one of the new modifiers. Table 10-6 lists the

class member and method definitions.

Table 10-6. Class Member and Method Definitions

Name Description

Const Defines a constant member.

Public Accessible from any object of the class.

Protected Accessible from the class where it is defined and from inherited classes.

Private Accessible from the class where it is defined.

Static Modifier. When used alone, public is assumed.

The Code

<?php

// Example 10-5-5.php

class myclass {

public $a;

function set_value($val) {

$this->a = $val;

}

}

$obj = new myclass;

$obj->set_value(123);

echo "Member a = $obj->a\n";

$obj->a = 7;

echo "Member a = $obj->a\n";

?>

How It Works

This example declares a class called myclass(). It has the public member $a and a method

called set_value(). An object is defined as an instance of myclass(), and then you use the

set_value() method to assign a value to the member. This value is later changed by accessing

the member directly.

Member a = 123

Member a = 7

Changing the member $a to protected or private will give the following result.

10-5 ■ DEFINING VARIABLE SCOPE414

The Code

<?php

// Example 10-5-6.php

class myclass {

private $a;

function set_value($val) {

$this->a = $val;

}

}

$obj = new myclass;

$obj->set_value(123);

echo "Member a = $obj->a\n";

$obj->a = 7;

echo "Member a = $obj->a\n";

?>

How It Works

This small change will cause the script to fail.

Fatal error: Cannot access private property myclass::$a

in /Samples/11-5-5.php on line 12

This feature is useful when you develop classes that are used by other developers. It will

protect the class from being misused by accessing the members directly for both reading and

writing. The class should expose functions to set and get values that are supposed to be avail-

able (the class API) to other developers. So, you should modify this class as shown in the

following example.

The Code

<?php

// Example 10-5-7.php

class myclass {

private $a;

function set_value($val) {

$this->a = $val;

}

function get_value() {

return $this->a;

}

}

10-5 ■ DEFINING VARIABLE SCOPE 415

$obj = new myclass;

$obj->set_value(123);

echo "Member a = " . $obj->get_value() . "\n";

?>

How It Works

You can access the member $a only through one of the methods.

Member a = 123

This will allow read and write access to the member but will not allow direct access to

modify the member without calling a method. The method should check the value and return

a value indicating if the property could be set. If a member is private, it can be accessed only by

members of the class where it is created; if a member is protected, it can be modified only

by the class or any inherited classes.

You can use the static modifier to change a member or method so it is accessible without

instantiating the class. A static member will be defined only once regardless of the number of

instantiated objects of the class.

The Code

<?php

// Example 10-5-8.php

class myclass {

const MYCONST = 123;

static $value = 567;

}

echo 'myclass::MYCONST = ' . myclass::MYCONST . "\n";

echo 'myclass::$value = ' . myclass::$value . "\n";

?>

How It Works

In this example, a simple class defines two members. One is defined as a const, and the other

is defined as a static. Both members can be accessed with the name of the class and two

colons and the name of the member. As for normal PHP constants, the const members of a

class are read-only.

myclass::MYCONST = 123

myclass::$value = 567

Note how the constant definition automatically is considered a static member of the class

(only one copy will be stored in memory for all instances of the class) and how the static

modifier is used without a public, private, or protected keyword. This makes the variable

public. If the variable was defined as private static, it would not be possible to access it

directly, as shown in the next example.

10-5 ■ DEFINING VARIABLE SCOPE416

The Code

<?php

// Example 10-5-9.php

class myclass {

const MYCONST = 123;

private static $value = 567;

}

echo 'myclass::MYCONST = ' . myclass::MYCONST . "\n";

echo 'myclass::$value = ' . myclass::$value . "\n";

?>

How It Works

The first part of the code works as in the previous example, but when you try to access the pri-

vate member, the script will stop with a fatal error.

myclass::MYCONST = 123

Fatal error: Cannot access private property myclass::$value

in /Samples/10-5-9.php on line 9

10-6. Parsing Values to Functions

The function name and the number of parameters it takes define a function. Each parameter

can be defined as pass by value or pass by reference or can be assigned a default value. Using

default values makes it possible to call the function with fewer arguments, and parameters

with default values should always be placed at the end of the parameter list.

When a variable is passed by value, it means that the function will operate on a copy of

the variable. The function can change the content and type of the variable without affecting

the code that called the function (that is, that passed the argument). If a variable is passed by

reference, it means that the variable will share the same memory, and any changes to the con-

tent or type will affect the code that called the function. The next example shows two

functions that both take one variable as a parameter.

The Code

<?php

// Example 10-6-1.php

function by_value($a) {

$a *= 2;

}

function by_reference(&$a) {

$a *= 2;

}

$b = 5;

by_value($b);

10-6 ■ PARSING VALUES TO FUNCTIONS 417

echo "\$b is now $b\n";

by_reference($b);

echo "\$b is now $b\n";

by_value(&$b);

echo "\$b is now $b\n";

?>

How It Works

The two functions are almost identical. They both take the value passed as the argument and

multiply by 2. The difference is how the variable is passed. In the first function, the variable

is passed by value, so $a is considered a copy of the variable. The second function forces the

variable to be passed by reference. This makes the two variables share the same memory;

therefore, when the variable is changed inside the function, it affects the variable that was

passed. You can force parsing by reference at call time. You do this by adding the & sign in

front of the variable name. The output from this example looks like this:

$b is now 5

$b is now 10

$b is now 20

Passing values by reference is a useful way to have a function return more than one value.

A function that performs a database query to get a result set could also return information

about the columns selected, and the actual return value could be used to indicate success or

failure. To illustrate this, create an example with two functions. GetData() simulates a data-

base query, and ListData() creates an HTML table with the rows returned from GetData(). You

can also extend this example to include another function to present data, when only a single

row is returned from the GetData() function.

The Code

<?php

// Example 10-6-2.php

define('COLUMN_NAME', 0);

define('COLUMN_TYPE', 1);

define('COLUMN_STRING', 1);

define('COLUMN_INTEGER', 2);

function GetData(&$data, &$meta) {

$meta = array(

array(

COLUMN_NAME => "First Name",

COLUMN_TYPE => COLUMN_STRING

),

10-6 ■ PARSING VALUES TO FUNCTIONS418

array(

COLUMN_NAME => "Last Name",

COLUMN_TYPE => COLUMN_STRING

),

array(

COLUMN_NAME => "Age",

COLUMN_TYPE => COLUMN_INTEGER

)

);

$data = array(

array("John", "Smith", 55),

array("Mike", "Johnson", 33),

array("Susan", "Donovan", 29),

array("King", "Tut", 3346)

);

return sizeof($data);

}

function ListData($data, $meta) {

echo "<table border=1>";

foreach($data as $row) {

echo "<tr>";

foreach($row as $col=>$cell) {

switch ($meta[$col][COLUMN_TYPE]) {

case COLUMN_STRING :

echo "<td align=left>$cell</td>";

break;

case COLUMN_INTEGER :

echo "<td align=right>" . number_format($cell) . "</td>";

break;

}

}

echo "</tr>";

}

echo "</table>";

}

$d = array();

$m = array();

if (GetData($d, $m)) {

ListData($d, $m);

}

?>

10-6 ■ PARSING VALUES TO FUNCTIONS 419

How It Works

You define the two variables $d and $m. Both are assigned the value of empty arrays. The call to

GetData() defines the content of the two variables passed by reference. The two variables are

then passed to the ListData() function, which generates an HTML table showing the values,

as shown in Figure 10-3.

Figure 10-3. Getting and listing data

A special case of pass by value is used for arrays. Arrays can be very large, and in order to

improve speed these values are always passed by reference. If the definition is called for pass

by value, the array will be copied when the function first attempts to modify the content or

data type. This is called copy on write, so if an array is passed by value and the function never

changes the content of the array, you have no need to perform the copy.

You can define whether a variable is passed by value or reference either in the function

definition or when the function is called, as shown in the following example.

The Code

<?php

// Example 10-6-3.php

function f1($a) {

$a += 4;

}

function f2(&$a) {

$a += 10;

}

$b = 5;

f1(&$b);

10-6 ■ PARSING VALUES TO FUNCTIONS420

f2($b);

echo "\$b = $b\n";

?>

How It Works

This example defines two functions. The first function, f1(), takes an argument passed by

value, and the second function, f2(), takes one argument passed by reference. When the first

function is called, the value that is passed is a reference to $b, forcing the function to operate

on the same value in memory. When the second function is called, the value passed is the

actual value, but the function automatically converts that to a reference to the value.

$b = 19

10-7. Using Dynamic Variable and Function Names

You can use variable variables or variable function names to reduce the number of if, else, or

switch statements and make the code more readable. It is all about being able to calculate the

name of the variable to store (or get data from) or the name of the function to execute.

Calculating the index or key value for an array is useful if the data is stored in an array.

You can specify the key value with a hard-coded value or with a value stored in a variable or

returned from a function.

The Code

<?php

// Example 10-7-1.php

$fruits = array(

'apple', 'orange', 'pear', 'apricot',

'apple', 'apricot', 'orange', 'orange'

);

$fruit_count = array();

foreach ($fruits as $i=>$fruit) {

if (isset($fruit_count[$fruit])) {

$fruit_count[$fruit]++;

}

else {

$fruit_count[$fruit] = 1;

}

}

asort($fruit_count);

foreach ($fruit_count as $fruit=>$count) {

echo "$fruit = $count\n";

}

?>

10-7 ■ USING DYNAMIC VARIABLE AND FUNCTION NAMES 421

How It Works

The script produces this output:

pear = 1

apple = 2

apricot = 2

orange = 3

This example loops through an indexed array of fruit names and creates a new array with

the count of each fruit name. The $fruit_count array is filled with key and value pairs as you

loop through the $fruits array. For each fruit you test to see if it is a new name or if it already

exists in the array. This code can be written a little more compactly by using the @ modifier.

This will suppress any warnings from using the increment operator (++) on an undefined vari-

able. If a variable is undefined when the increment operator is used, a new variable will be

declared with a 0 value, and a warning will be issued. This warning can be suppressed by

adding @ in front of the statement. You can also use the @ modifier to suppress warnings

from function calls, but this will not suppress errors.

<?php

// Example 10-7-1a.php

$fruits = array(

'apple', 'orange', 'pear', 'apricot',

'apple', 'apricot', 'orange', 'orange'

);

$fruit_count = array();

foreach ($fruits as $i=>$fruit) {

@$fruit_count[$fruit]++;

}

asort($fruit_count);

foreach ($fruit_count as $fruit=>$count) {

echo "$fruit = $count\n";

}

?>

■Caution Using the @ modifier in front of variables or functions could hide warnings that may indicate a

programming error. You should use it with caution.

It is also possible to calculate the variable name for simpler variables and use that name

to access the value of that variable. You do this with the double $ sign. Adding another $ sign in

front of a variable will take the value of that variable and access the value of another variable

with that name. If $a = 'test';, then $$a will access a variable called $test. The following

example shows how a series of variables is accessed to print a string composed from the val-

ues of these variables.

10-7 ■ USING DYNAMIC VARIABLE AND FUNCTION NAMES422

The Code

<?php

// Example 10-7-2.php

$a0 = 'This';

$a1 = 'is';

$a2 = 'a';

$a3 = 'test';

for ($i = 0; $i < 4; $i++) {

$var = "a$i";

echo “${$var} ";

}

?>

How It Works

The script defines four variables that all start with $a and end with an integer. You then create

a loop from 0 to 3, and for each execution of the loop you output the value of the variable with

the name calculated from the contents of the string $var.

This is a test

The calculation of each variable is simple, but you could easily extend the same method

to include more advanced calculations or database lookups.

■Note When a variable is embedded in a string, it is necessary to use a different notation to avoid errors.

$$var becomes ${$var} when it is embedded in a string.

You can also use constants in the calculation of variable variables. You need to use a dif-

ferent modifier, because a $ sign in front of a constant would look like a variable. By putting {}

around the constant name and then applying the $ sign in front of it, you will create a refer-

ence to a variable with the name of the constant’s value.

The Code

<?php

// Example 10-7-3.php

define('CONST_A', 'test');

${CONST_A} = 27;

echo "\$test = $test\n";

?>

10-7 ■ USING DYNAMIC VARIABLE AND FUNCTION NAMES 423

How It Works

First you define a variable with the value test, and then you use that constant to calculate a

new variable name and assign that variable the value of 27. To avoid creating a new variable

called $CONST_A, you use the extended notation ${CONST_A} to tell the engine to use the con-

stant.

$test = 27

It is also possible to use the value of a variable to point to a function name and thereby

change the program flow without needing flow control. This might not always make the code

readable, but it makes it possible to create code where the flow control can be moved to a

database in the form of parameters.

The Code

<?php

// Example 10-7-4.php

function ShowSimple($val) {

echo "$val\n";

}

function ShowComplex($val) {

echo "The value is " . number_format($val) . "\n";

}

$v = 1234567;

$a = "ShowSimple";

$b = "ShowComplex";

$a($v);

$b($v);

?>

How It Works

You define two functions and assign the names of each function to a variable. When the new

variables are written as $a($v);, the system will convert $a to a function name and call that

function.

1234567

The value is 1,234,567

10-7 ■ USING DYNAMIC VARIABLE AND FUNCTION NAMES424

You can use this method to return the function name from a function call or calculation.

It might make the code less readable, and you can obtain the same effect by adding an extra

parameter to one function so it will be able to handle both simple and complex printing.

10-8. Encapsulating Complex Data Types

You can format numbers and strings and use them as output or store them in files or data-

bases without modifications. The more complex data types—arrays and objects—can also be

stored, but that generally requires some advanced formatting or multiple records in the data-

base (one for each element in the array). This was demonstrated in recipe 10-6, where one

function generated multiple arrays and another function presented the generated data in an

HTML table structure.

However, using user-defined functions to convert arrays and objects into data that can

be stored in a database or file is not the fastest or simplest solution. This is where the built-in

functions serialize() and unsearialize() become handy. These functions can convert an

array or an object into a string representation that can be stored in a single column in a data-

base (or a file) and later retrieved and converted to the original data type.

The serialize() function takes a PHP variable and converts it into a string representation,

and the unserialize() function takes a string (most often created with serialize()) and converts

it to its original type.

■Note Variables of the resource type cannot be serialized. They contain data created and maintained by

the engine. Any other type can be serialized.

The Code

<?php

// Example 10-8-1.php

$fruits = array(

'apple', 'orange', 'pear', 'apricot',

'apple', 'apricot', 'orange', 'orange'

);

$str = serialize($fruits);

echo "$str\n";

$new_fruits = unserialize($str);

$new_fruits[] = 'apple';

print_r($new_fruits);

?>

10-8 ■ ENCAPSULATING COMPLEX DATA TYPES 425

How It Works

This example uses the serialize() function to convert the contents of an array to a string.

The string is printed and then converted to a new array, where you add a new element.

a:8:{i:0;s:5:"apple";i:1;s:6:"orange";i:2;s:4:"pear";i:3;s:7:"apricot";i:4;

s:5:"apple";i:5;s:7:"apricot";i:6;s:6:"orange";i:7;s:6:"orange";}

Array

(

[0] => apple

[1] => orange

[2] => pear

[3] => apricot

[4] => apple

[5] => apricot

[6] => orange

[7] => orange

[8] => apple

)

Database-driven websites are often designed in a way so the content stored in a database

can be retrieved and presented without much formatting. When a web page is created from

numeric data and processing, it can be useful to cache the results for easy access and presen-

tation for the next user who requests the same page. You can do this by serializing the results,

storing them in the database or in a file, and then checking if a cached version exists before a

new page is generated.

The next example demonstrates how to build a class that can cache an array of values

between requests. The class will work on files, but you can easily change it to store the values

in a database. The caching class is stored in an include file (cache.inc) so it can be used in

many different applications.

Table 10-7 lists the methods.

Table 10-7. Caching Class Methods

Name Description

__construct() Class constructor. Initiates properties.

Check() Checks if the cache file exists and if it is still valid.

Save() Writes the cached value to the file.

SetValue() Adds or updates a value in the cache.

GetValue() Retrieves a value in the cache.

10-8 ■ ENCAPSULATING COMPLEX DATA TYPES426

The Code

<?php

// Example cache.inc

class Cache {

private $name = null;

private $value = array();

private $ttl;

function __construct($name, $ttl = 3600) {

$this->name = $name;

$this->ttl = $ttl;

}

function Check() {

$cached = false;

$file_name = $this->name . ".cache";

if (file_exists($file_name)) {

$modified = filemtime($file_name);

if (time() - $this->ttl < $modified) {

$fp = fopen($file_name, "rt");

if ($fp) {

$temp_value = fread($fp, filesize($file_name));

fclose($fp);

$this->value = unserialize($temp_value);

$cached = true;

}

}

}

return $cached;

}

function Save() {

$file_name = $this->name . ".cache";

$fp = fopen($file_name, "wt");

if ($fp) {

fwrite($fp, serialize($this->value));

fclose($fp);

}

}

function SetValue($key, $value) {

$this->value[$key] = $value;

}

10-8 ■ ENCAPSULATING COMPLEX DATA TYPES 427

function GetValue($key) {

if (isset($this->value[$key])) {

return $this->value[$key];

}

else {

return NULL;

}

}

}

?>

How It Works

This caching class is used in the next example, where a cache object is created from the caching

class and checked to see if the file exists. If not, the values are calculated and stored in the cache.

If cached data exists and it is valid, the data will be retrieved and displayed.

The Code

<?php

// Example 10-8-2.php

include 'cache.inc';

$cache = new Cache('data');

if ($cache->Check()) {

echo "Retrieving values from cache\n";

$arr = $cache->GetValue('arr');

$fruits = $cache->GetValue('fruits');

print_r($arr);

}

else {

$arr = array("apple", "orange", "apricot");

$fruits = sizeof($arr);

$cache->SetValue('arr', $arr);

$cache->SetValue('fruits', $fruits);

$cache->Save();

echo "Values are stored in cache\n";

}

?>

How It Works

The first time the script is executed, the output will look like this:

Values are stored in cache

10-8 ■ ENCAPSULATING COMPLEX DATA TYPES428

The second time, when the values are retrieved from the cache, it will look like this:

Array

(

[0] => apple

[1] => orange

[2] => apricot

)

10-9. Sharing Variables Between Processes

When a user is navigating through a web application, it is useful to store user- or session-

specific data on the web server so it is easy to access each time a page is requested. This

can be information about the user, user preferences, or data related to the application, such

as data in a shopping chart. Each time the user requests a page that contains a call to the

session_start() function, the server will start a new process (or reuse an idle), and the PHP

engine will look for a session ID in the query string or cookie data. This will fetch the saved

session data and build the $_SESSION array.

As mentioned in recipe 10-5, $_SESSION is a superglobal and can be accessed directly

from any code segment. When a session is active, it is possible to retrieve, add, update, and

delete values from the $_SESSION array. You do this like any other variable. The engine will

automatically store the values of the array when the script ends, unless it was stopped with an

error. The session data file will be locked to keep multiple processes from accessing (writing

to) the same data at the same time. If you have scripts that take a long time to execute or you

are loading multiple frames from the same server, it might optimize the application to use

session_write_close() or session_commit() to close the session data file. After either of

these commands are used, it is not possible to add new values to the $_SESSION array.

Shared memory is another way of sharing data between processes. This is used when the

two processes are running at the same time and might be started by different clients. Shared

memory will in most cases be faster than a shared file or a table in a database. To use shared

memory in PHP, it must be compiled with the –enable–shmop parameter.

■Note Using shared memory requires that the processes are persistent such as Apache modules, IIS ISAPI,

or PHP-GTK applications.

The shmop extension implements six simple functions, as shown in Table 10-8.

10-9 ■ SHARING VARIABLES BETWEEN PROCESSES 429

Table 10-8. shmop Functions

Name Description

shmop_open() Opens or creates a memory block for sharing

shmop_close() Closes a shared memory block

shmop_delete() Deletes a shared memory block

shmop_read() Reads data from a shared memory block

shmop_write() Writes data to a shared memory block

shmop_size() Gets the size of a shared memory block

You must create a shared memory block before you can use it. You can use the shmop_open()

function to do this; this function takes four arguments. The first is a unique ID (an integer) used

to identify the memory block. The second parameter is a flag that specifies how the block is

accessed (a = read-only, c = create or read/write, w = write and read, and n = create new or fail).

The third argument specifies the access to the memory block and should be passed as an octal

such as file system rights (for example, 0644). The fourth and last argument sets the size of the

block. The third and fourth arguments should be set to 0 if you are opening an existing block.

■Note The size of a shared memory block is fixed on creation and cannot be changed.

The following example shows how to create and write to a memory block. The block is

deleted and closed at the end of the script, so in order to demonstrate how it works, the script

will wait 60 seconds before it terminates. This should be enough time to run the next example

and see the shared memory in action.

The Code

<?php

// Example 10-9-1.php

if (!extension_loaded("shmop")) {

dl("php_shmop.dll");

}

$shm_id = shmop_open(0x123, 'c', 0644, 250);

shmop_write($shm_id, "Data in shared memory", 0);

$value = shmop_read($shm_id, 8, 6);

echo "$value";

shmop_delete($shm_id);

shmop_close($shm_id);

sleep(60);

?>

10-9 ■ SHARING VARIABLES BETWEEN PROCESSES430

If the memory block should be used by another process, it should not be deleted, and

another process could access the data, like this:

<?php

// Example 10-9-2.php

if (!extension_loaded("shmop")) {

dl("php_shmop.dll");

}

$shm_id = shmop_open(0x123, 'a', 0, 0);

if ($shm_id) {

$value = shmop_read($shm_id, 0, 100);

echo "$value";

shmop_close($shm_id);

}

?>

How It Works

Sharing memory between two scripts requires that both scripts run at the same time. The first

script defines a shared memory block with a string and reads six bytes from the block. The sec-

ond script connects to the same block through the same handle (0✕123). The entire string is

read and sent to the client.

10-10. Debugging

Printing and storing information during development and testing will help eliminate errors

caused by variables having other values than expected or by using the wrong variable names.

PHP implements several functions that make debugging a lot easier (see Table 10-9).

Table 10-9. Functions Used for Debugging

Name Description

echo() Prints a simple variable or value

print() Prints a simple variable or value

printf() Prints a formatted string

var_dump() Prints the type and content of a variable

print_r() Recursively prints the content of an array or object

debug_backtrace() Returns an array with the call stack and other values

The functions echo(), print(), and printf() generate normal output, so using these to

produce debug output might be a bit confusing, but this is the way to generate any output.

Having a function called debug_print() will make it easy to use debugging information

and to turn it on and off when needed. This function could be defined in an include file along

with a constant DEBUG set to true or false.

10-10 ■ DEBUGGING 431

The Code

<?php

// Example debug.inc

define('DEBUG', true); // set to false for disabling

function debug_print($var) {

if (DEBUG) {

switch (strtolower(substr(php_sapi_name(), 0, 3))) {

case 'cli' :

var_dump($var);

break;

default :

print("<pre>");

var_dump($var);

print("</pre>");

break;

}

}

}

?>

How It Works

When the DEBUG constant is set to true, the function will generate output; when it is set to

false, the function will be silent. This is an easy way to turn debug information on and off.

The debug_print() function calls the php_sapi_name() function to determine how the PHP

script is executed. Depending on the process type, it will generate different output.

Defining the debug_print() function in the file debug.inc makes it possible to reuse the

same function in many scripts with a simple include statement and one or more calls to

the function.

The Code

<?php

// Example 10-10-1.php

include 'debug.inc';

$a = array('orange', 'apple');

debug_print($a);

?>

How It Works

The include file with the debug information is included in the top of the script and used to

print the content of an array.

10-10 ■ DEBUGGING432

array(2) {

[0]=>

string(6) "orange"

[1]=>

string(5) "apple"

}

PHP implements a few so-called magic constants. These are not really constants, because

they change value depending on where they are used (see Table 10-10).

Table 10-10. Magic Constants

Name Description

__FILE__ Name of current file

__LINE__ Current line number

__FUNCTION__ Name of current function

__CLASS__ Name of current class

__METHOD__ Name of current method

You can modify the debug_print() function from the previous example to use __FILE__

and __LINE__ to print where the debug information originated.

The Code

<?php

// Example debug1.inc

define('DEBUG', true); // set to false for disabling

function debug_print($var, $file = __FILE__, $line = __LINE__) {

if (DEBUG) {

$where = "File = $file ($line)";

switch (strtolower(substr(php_sapi_name(), 0, 3))) {

case 'cli' :

echo "$where\n";

var_dump($var);

break;

default :

echo "$where
";

print("<pre>");

var_dump($var);

print("</pre>");

break;

}

}

}

10-10 ■ DEBUGGING 433

?>

<?php

// Example 10-10-2.php

include 'debug1.inc';

$a = array('orange', 'apple');

debug_print($a, __FILE__, __LINE__);

?>

How It Works

In this example, you add two parameters to the debug_print() function. As shown in the fol-

lowing output, the debug_print() function can produce two forms of output. The first call to

the function uses the default values for $file and $line. This causes the system to insert the

name of the include file and the line where the function is defined. In the second call, you use

__FILE__ and __LINE_ as parameters to the function call, and these will be replaced with the

filename and line number where the function was called.

File = /Samples/debug1.inc (5)

array(2) {

[0]=>

string(6) "orange"

[1]=>

string(5) "apple"

}

File = /Samples/10-10-2.php (7)

array(2) {

[0]=>

string(6) "orange"

[1]=>

string(5) "apple"

}

Note how the two magic constants are used as default values for $file and $line in the

definition of the function. If one or both of these two arguments are omitted from the call,

they will be replaced by values that indicate the include file and the line where the function

is defined.

10-10 ■ DEBUGGING434

Summary
This chapter demonstrated the strengths of PHP when it comes to variables and data types.

The loosely typed behavior of PHP makes it easy to work with, and there is little reason to

spend time on memory cleanups, as the engine handles these when the scripts terminate.

We discussed how variables are handled from creation, and we discussed how to manipu-

late data, how to test for values and types, and how to use the more advanced features of

variable variables and functions.

We also showed examples of using the serialize() and unserialize() functions to for-

mat data so the data can be shared between calls or stored in a database. Finally, we showed

some examples of how data can be shared between processes that run simultaneously.

Looking Ahead
The next chapter will discuss how functions are created and used in PHP.

10-10 ■ DEBUGGING 435

Using Functions

Redundant code is rarely a good thing. Rewriting code over and over again is not time

efficient and looks rather shoddy from a layout point of view. Like any good programming

language, PHP alleviates the problem of redundant code in a number of ways; the most com-

monly used and simple-to-implement way is by using functions.

A function is basically a block of code that performs a given action from the script

that has access to it, via includes, code insertions, or other methods. Rather than repeatedly

rewrite the same block of code to, say, check if the current user is logged into your site, you

can put the code into what is essentially a code wrapper and then call it at your convenience

with a simple function call.

To be truly versatile, functions can receive values passed into them, perform some sort

of functionality, and then return a value (or set of values using an array or object). Taking an

entire block of code that was redundantly placed all over your scripts and replacing it with a

one-line function call does wonders for the cleanliness of your code and is the first step to

becoming an efficient programmer.

11-1. Accessing Function Parameters

The first thing any good programmer should realize about a function is that in order to do

something meaningful with an exterior set of data, you must pass the function the values that

are to be worked with. Parameters in PHP 5 are passed when the function itself is called and

then worked on within the block of code. Because of PHP’s ease of use with data types, passing

a value to a function as a parameter is quite simple. The following example passes a username

and password to the function to confirm that a valid match exists.

The Code

<?php

//sample11_1.php

//A function to validate a username and password.

function validatelogin ($username, $password){

//Typically the username and password would be validated against information

//in the database. For the sake of simplicity in this example, the username

//and password are hard-coded into variables.

$actualuser = "myusername";

437

C H A P T E R 1 1

■ ■ ■

$actualpass = "mypassword";

//Now, you do a quick comparison to see if the user ➥

has entered the correct login.

if (strcmp ($username, $actualuser) == 0 &&➥

strcmp ($password, $actualpass) == 0){

return true;

} else {

return false;

}

}

//You then call the function and pass in the values you want checked.

if (validatelogin ("myusername","mypassword")){

echo "You are logged in correctly";

} else {

echo "You have an incorrect username and/or password";

}

?>

You are logged in correctly

How It Works

This is a basic example of how easy it is to pass to, and then access, a set of parameters. In this

case, the function receives two values from the function (denoting a username and password)

and then checks to see that they match with the existing username and password (preferably

in a database). If you receive a valid match, then the function returns a true boolean type; if

not, then the function returns a false boolean type. Note how much easier it is to call the

function validatelogin() rather than type out that entire block of code. Not only is it much

cleaner and more efficient, but it also alleviates the problem of redundancy when you

undoubtedly call the function again.

As for accessing the actual values within the script, you simply access them according to

whatever you named them in the function’s argument list. In this case, you named them

$username and $password, allowing you to reference them using their variable names within

the function.

11-2. Setting Default Values for Function Parameters

When you are passing arguments to a function, you may want the parameters to default to a

certain value. Doing so within a PHP function is simple. In most programming languages, any

values you are concerned might not be passed to the function properly (or at all) can be

defaulted to a certain value. You might prefer to default the parameters being passed to a

function for two reasons. First, you do not have to worry so much about exception handling

and can rest assured that any argument that does get passed in properly will override the

default. Second, when using functions that generally receive the same values but sometimes

11-1 ■ ACCESSING FUNCTION PARAMETERS438

require different values to be passed in, having the defaults in place prevents you from con-

stantly having to pass in the same set of values. The following example returns the sum of

three values.

The Code

<?php

//sample11_2.php

//A function to return the sum of three values.

function addvalues ($value1 = 0, $value2 = 0, $value3 = 0){

//Now the function takes the three values and adds them.

$total = $value1 + $value2 + $value3;

return $total;

}

//Now, if you forget a value or two, it will still work.

echo addvalues (1) . "
"; //Echoes a 1.

//If you pass all the arguments, you will still get a valid result.

echo addvalues (1,2,3); //Echoes a 6.

?>

1

6

How It Works

Now, if you had not defaulted the values in the argument list to zeros, the function call you

just made would have returned a warning telling you that you were missing arguments to your

function call. Rather than face the possibility of an incorrectly called function, you can cover

all your bases by defaulting the values to zeros. Therefore, if someone were to call the function

(as you did in the previous example) with an incorrect number of arguments, the function

would still perform its given action using the default values assigned to its arguments.

11-3. Passing Values by Reference

The default when passing a parameter to a function in PHP 5 is to pass the argument by value.

In other words, when the function receives the value, it will then work on it as if that variable

was an entirely separate entity to the one that was passed to it originally. If you pass by refer-

ence, however, the variable that was passed in will be manipulated within the function as if

the value were still within the script it was passed in from. Think of passing arguments by

value as creating a temporary copy to work with; alternatively, passing by reference uses, and

can make changes to, the original copy. The following example allows you to concatenate text

to an existing block of text.

11-3 ■ PASSING VALUES BY REFERENCE 439

The Code

<?php

//sample11_3.php

//A function to concatenate text.

function attachtext (&$newtext = ""){

//Now the function attaches the received text.

$newtext = $newtext . " World!";

}

//Here is the current block of text.

$mystring = "Hello";

//Then you call the function to attach new text.

attachtext ($mystring);

//And when you echo the variable now...

echo $mystring; //Outputs Hello World!

?>

Hello World!

How It Works

As you can see, the major difference in the argument list is that you place an ampersand (&)

character in front of the passed-in variable. This tells PHP to treat the variable as a referenced

object. This means any change to the passed-in value will affect the original passed-in variable.

Therefore, when you output $mystring after the function call has been made, the new value

has been concatenated onto the old value. Had you passed in the argument by value, the script

would have merely output “Hello” because it would have treated the value as a copy of the orig-

inal, not as an alias to the original.

11-4. Creating Functions That Take a Variable Number

of Arguments

Sometimes you will need to create a function that could receive a multitude of values but the

number of values to be received will not be set in stone. Take, for instance, a function that will

add any number of values passed to it provided that they are integer values. In this case, you

want the function to be versatile enough to add any number of values that are passed to it—

kind of like a math crunching machine.

11-4 ■ CREATING FUNCTIONS THAT TAKE A VARIABLE NUMBER OF ARGUMENTS440

The Code

<?php

//sample11_4.php

//A function to add up any number of values.

function addanything (){

//Default the return value.

$total = 0;

//Get the full list of arguments passed in.

$args = func_get_args ();

//Loop through the arguments.

for ($i = 0; $i < count ($args); $i++){

//Make sure the value is an integer.

if (is_int ($args[$i])){

//And add to it if necessary.

$total += $args[$i];

}

}

//Then return the total.

return $total;

}

//Now, you can pass the function any numbers.

echo addanything (1,5,7,8,11) . "
"; //Outputs 32.

echo addanything (1,1) . "
"; //Outputs 2.

//It will ignore noninteger values.

echo addanything (1,1,"Hello World"); //Still outputs 2.

?>

32

2

2

How It Works

The benefactor in this case happens to be the lovely func_get_args() function, which grabs

an array of all the passed-in values. The great thing about this is that you can then cycle, or

loop through, the list of arguments and do what you want with them. This sort of functionality

serves you well in this case, because you loop through, adding to the total as you go. For the

sake of validation, the script adds only integer values in order to keep a valid result in mind.

The end result is a highly flexible function that will take care of all your integer adding needs.

The prototype for func_get_args() and the prototype for func_get_arg(), which will grab an

argument at a certain reference, are as follows:

array func_get_args (void)

mixed func_get_arg (int arg_num)

11-4 ■ CREATING FUNCTIONS THAT TAKE A VARIABLE NUMBER OF ARGUMENTS 441

11-5. Returning More Than One Value

Naturally, it is handy to have a single value returned from a function, and it is even more help-

ful in some instances to have a function return multiple values. Since the return statement is

really set up to return only a single value, you can get a little tricky and pass an array of items

for use.

If you want to get even more involved, you can return entire objects from a function,

thus allowing you to pass back whatever values were associated with the object. Through

some careful manipulation, you can use functions to return whatever it is you need returned

from them.

The following example is a function that allows you to return an array of values, thus

getting around the problem of being able to return only a single value.

The Code

<?php

//sample11_5.php

//Function that will take in a set of values, calculate them,➥

then return the values.

function addandsubtract ($firstvalue, $secondvalue){

//The first thing we need to do is add the values.

$firstreturnvalue = ($firstvalue + $secondvalue);

$secondreturnvalue = ($firstvalue - $secondvalue);

//Now, you declare an array.

$myarray = array ();

//Then put the two return values into the first two indexes of the array.

$myarray[0] = $firstreturnvalue;

$myarray[1] = $secondreturnvalue;

//Then you can return the entire array.

return $myarray;

}

//Now, when you call the function, it will return the two values in array format.

$myarray = array ();

$myarray = addandsubtract (10, 3);

echo $myarray[0] . "
"; //Will echo 13.

echo $myarray[1]; //Will echo 7.

?>

13

7

11-5 ■ RETURNING MORE THAN ONE VALUE442

How It Works

As you can see, the method for returning an array from a function is rather simple. All that is

required is to have an array declared (and probably filled with a value or two) and then return

it to the function call using the return method. Then, when you receive the value from the

function, you can assign the result of the function to an array and use it as you would any

other array.

11-6. Returning Values by Reference

Sometimes passing back an argument by value may not be all that efficient. Fortunately, PHP 5

allows returning values by reference, but you should keep in mind a few new syntaxes both

when declaring the function and when calling the function.

Returning values by reference can be rather obscure, but when used properly, this technique

can be quite handy in specific circumstances. The following example allows you to search through

an array of objects and then return the exact object for which you are looking.

The Code

<?php

//sample11_6.php

//Create a class that stores values.

class myclass {

//A defining value.

private $thevalue;

//A word to prove you have found the right object.

private $theword;

public function __construct (){

$num_args = func_num_args();

if($num_args > 0){

$args = func_get_args();

$this->theword = $args[0];

}

}

public function setvalue ($newvalue){

$this->thevalue = $newvalue;

}

public function getvalue () {

return $this->thevalue;

}

public function getword () {

return $this->theword;

11-6 ■ RETURNING VALUES BY REFERENCE 443

}

}

//Now, create four different instances of this class.

$myclass1 = new myclass ("Abra");

$myclass1->setvalue (1);

$myclass2 = new myclass ("Kadabra");

$myclass2->setvalue (2);

$myclass3 = new myclass ("Hocus");

$myclass3->setvalue (3);

$myclass4 = new myclass ("Pocus");

$myclass4->setvalue (4);

//Create a global array of

$classarr = array ($myclass1,$myclass2,$myclass3,$myclass4);

//Now, you can create a function that searches for a correct instance of a class.

function &findclass ($whichclass,$classarr){

for ($i = 0; $i < count ($classarr); $i++){

if ($classarr[$i]->getvalue() == $whichclass){

return $classarr[$i];

}

}

}

//Search for the id number 3, and return the word if it is found.

$myobject = new myclass ("");

$myobject =& findclass (3,$classarr);

echo $myobject->getword();

?>

Hocus

How It Works

In this example, you create four objects of a certain class and fill them with four sets of values.

Next, you create an array of the objects and a function that will sift through the array until it

finds the object in question. If the object is found, the function can return the actual object

through the magic of returning values by reference.

11-6 ■ RETURNING VALUES BY REFERENCE444

Although this may seem like overkill with four objects, consider if you had a hundred—or

a thousand. The ability to sift through a mountain of objects and return the exact one you are

looking for is incredibly valuable and can give you instant use of the object in question.

11-7. Returning Failure

A simplistic yet rather important aspect of functions is returning a failure value should some-

thing go wrong with the function. Functions can make wonderful systems for performing

validation on different parts of your code, and they can be used as true/false values by simply

returning a boolean result on success or failure. This sort of functionality can clean up your

code and, with the right naming conventions, create code that is much easier to read. The fol-

lowing example returns a true or false value based on whether the e-mail value passed to it is

a valid format.

The Code

<?php

//sample11_7.php

//A function to return a true/false value based on e-mail format.

function validemail ($email = ""){

return preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])➥

+(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$email);

}

$anemail = "lee@babinplanet.ca";

//Use the function to confirm a valid e-mail.

if (validemail ($anemail)){

echo $anemail . " is in valid e-mail format.
";

} else {

echo $anemail . " is not valid.
";

}

//And of course, an invalid e-mail.

$bademail = "abademail";

if (validemail ($bademail)){

echo $bademail . " is in valid e-mail format.
";

} else {

echo $bademail . " is not valid.
";

}

?>

lee@babinplanet.ca is in valid e-mail format.

abademail is not valid.

11-7 ■ RETURNING FAILURE 445

How It Works

As you can see, the code to check the validity of an e-mail string’s format is quite clear and

easy to read. The function returns a true value if the format is valid and a false value if the

format is incorrect. By using this in the code, you can easily see what the script is attempting

to accomplish, so now you have a handy function to validate against user-submitted e-mail

addresses that can be called at any time.

11-8. Calling Variable Functions

The concept of calling variable functions is an interesting one. Basically, by adding parenthe-

ses to the end of a variable you can force PHP to attempt to call a function of whatever name

the value of the variable equates to. This can make for some nice conditional handling, as you

can essentially determine which function is to be called on the fly by using a specific variable.

Say, for instance, that you have three functions: one function adds two values, one subtracts

two values, and the last multiplies two values. Based on what the user enters into a form, the

script determines which function to use and then assigns a value to the variable that will be

used to call the function.

The Code

<?php

//sample11_8.php

//A function to add two values.

function addvalues ($firstvalue = 0, $secondvalue = 0){

return $firstvalue + $secondvalue;

}

//A function to subtract two values.

function subtractvalues ($firstvalue = 0, $secondvalue = 0){

return $firstvalue - $secondvalue;

}

//A function to multiply two values.

function multiplyvalues ($firstvalue = 0, $secondvalue = 0){

return $firstvalue * $secondvalue;

}

//And let's assume these are the values you want to work with.

$firstvalue = 10;

$secondvalue = 3;

//Let's say this value represents a user-submitted value.

$whattodo = "addvalues";

//You can then call the function as a variable.

echo $whattodo($firstvalue, $secondvalue) . "
";

11-8 ■ CALLING VARIABLE FUNCTIONS446

//Let's say this value represents a user-submitted value.

$whattodo = "subtractvalues";

//You can then call the function as a variable.

echo $whattodo($firstvalue, $secondvalue) . "
";

//Let's say this value represents a user-submitted value.

$whattodo = "multiplyvalues";

//You can then call the function as a variable.

echo $whattodo($firstvalue, $secondvalue) . "
";

?>

13

7

30

How It Works

The key aspect to note about this code is where you actually perform the function call. Does

it look a little strange to you? Thanks to the power of variable function calls, you can assign a

value dynamically to a variable and then have the script look for a function that is named the

same as the variable’s value. Naturally, if PHP cannot find a function by that name, you will get

the regular errors you would get for attempting to call a function that does not exist. The pow-

erful aspect of this code is that you can use conditional statements to determine which

function gets called.

11-9. Accessing a Global Variable from Within a Function

While generally considered a quick-fix approach and not really a valid way to code because

of programmers preferring more rigidly structured code (globals can easily get lost/changed),

sometimes having global variables around is useful. Quite possibly the most useful aspect to

global variables is using them within functions without having to pass them in as arguments.

Because the variables are global, any script within the scope of the variable (basically, any

script that has access to the originally declared global variable) will be able to use it without

having to pass it around.

The current standard in PHP 5 is to use superglobals to access the global variables, and

the following script shows you how to do it properly. PHP has the predefined superglobal vari-

able $GLOBALS that can be used to create, access, and maintain global variables. The following

function uses a global value that is set to tell you what the current username and password for

the site are.

11-9 ■ ACCESSING A GLOBAL VARIABLE FROM WITHIN A FUNCTION 447

The Code

<?php

//sample11_9.php

$GLOBALS['user'] = "myusername";

$GLOBALS['pass'] = "mypassword";

//A function to check the validity of a login.

function validatelogin ($username, $password){

//Now, you do a quick comparison to see if the user➥

has entered the correct login.

if (strcmp ($username, $GLOBALS['user']) == 0 &&➥

strcmp ($password, $GLOBALS['pass']) == 0){

return true;

} else {

return false;

}

}

//You then call the function and pass in the values you want checked.

if (validatelogin ("myusername","mypassword")){

echo "You are logged in correctly";

} else {

echo "You have an incorrect username and/or password";

}

?>

You are logged in correctly

How It Works

You will notice that this example looks like recipe 11-1. You will, however, notice one key dif-

ference. Rather than assigning the current correct username and password values within the

function, you can set the values anywhere within the scope of the script using the superglobal

$GLOBALS. This means that rather than having to search the database within the function for

the current proper login, you can search it within a hidden include file and then reference the

values. It looks a little cleaner and helps hide what is potentially hazardous information from

the wrong viewer.

11-9 ■ ACCESSING A GLOBAL VARIABLE FROM WITHIN A FUNCTION448

11-10. Creating Dynamic Functions

One of the advantages of using PHP functions is that you can create conditional occurrences

that allow you to write functions only if strictly necessary. By placing function declarations

within conditional statements, you can force PHP to create a function only if a condition has

been met. By using this sort of functionality, you can actually create functions dynamically by

allowing functions to be born based on a certain condition.

Let’s say you want to take in a value from the user, and based on that value you create a

function that performs a certain task. For instance, based on what the user enters, you need

a function either to add two values, to subtract two values, or to multiply two values. Rather

than clutter your code with functions you may not use, you can create the valid function on

the fly and call it by just one name.

The following example is useful in a site where a user can log in and log out based upon

their current status.

The Code

<?php

//sample11_10.php

if ($_GET['go'] == "yes"){

//Now, if you are logged in, you want the function to log you out.

if ($_GET['loggedin'] == "true"){

//Create a logout function.

function dosomething (){

$_GET['loggedin'] = false;

echo "You have been successfully logged out.
";

}

}

//Now, if you were not logged in, you want to be able to log in.

if ($_GET['loggedin'] == "false"){

//Create a login function.

function dosomething (){

$_GET['loggedin'] = true;

echo "You have been successfully logged in.
";

}

}

dosomething();

}

11-10 ■ CREATING DYNAMIC FUNCTIONS 449

if ($_GET['loggedin']){

?>➥

click here to log out<?php

} elseif (!$_GET['loggedin']){

?>➥

click here to log in<?php

}

?>

If you click to log in, you should get this message and hence be logged in:

You have been successfully logged in.

click here to log out

If, however, you click to log out, you should get the following result:

You have been successfully logged out.

click here to log in

How It Works

This particular instance is based on a login principle. If a person is logged in, you want the

function to allow them to log out. If, however, the person is logged out, you want to provide

them with a means to log in. Through the power of dynamic function creation, you can make

the same function call but actually have it perform two (or more) different actions.

Summary
As you can see, PHP 5 not only supports a myriad of ways to clean up and modularize your

code, but it also allows you to manipulate your functions in a wide variety of ways. By using

functions to ensure that you are never using redundant code in your applications, you cut

back on the time you will spend coding and make your code more applicable both for others

to use and for you to clean up should the need arise.

PHP 5 supports passing and receiving values by reference as well as by value, and you

should always use the defaults if you think the validity of the code calling the function could

ever come into question. The ideal way to do things is to evaluate the task at hand and then

select the most efficient method for the job. Passing and returning by reference can be an ideal

solution for keeping integrity within a variable or group of variables, and passing and return-

ing by value is ideal for working with a given data set.

PHP also supports many ways to base your code upon dynamic dealings. By using

dynamic functions or variable function calls, you can reduce the processing and preloading

time of your script by deciding on the fly what calls are necessary and which function declara-

tions are important. This allows for a wide range of ingenuity and good, clean coding.

11-10 ■ CREATING DYNAMIC FUNCTIONS450

All in all, you can make a powerful set of PHP code that much more efficient by proper,

smart function use, and the amount of time it will save you in the end is well worth the initial

investment.

Looking Ahead
In the next chapter, we will introduce a topic that is quite far from basic, web basics. We will

cover a wide variety of important web aspects to show you how to turn a bland, static website

into a dynamic, living, breathing entity. No good web application is complete without the

upcoming knowledge contained within Chapter 12.

11-10 ■ CREATING DYNAMIC FUNCTIONS 451

Understanding Web Basics

In the world of online applications, a wide variety of functionality needs to be on hand for the

programmer. Thankfully, PHP 5 has done its best to ensure that anything that makes a system

work is readily available to a crafty programmer. Algorithms that track a unique individual on

a website or functions that work with headers and querystrings are common pieces of func-

tionality that make up the backbone of most well-written online software applications.

This chapter shows how to set up and maintain a wide variety of functionality that will

come in handy with your everyday applications. Considered kind of a “bells and whistles”

chapter, this chapter covers some of the functionality that will no doubt serve you well in

applications to come. Sit back, relax, and enjoy the ride through some of PHP 5’s fun and

rewarding functionality.

Using Cookies
Before the advent of sessions, there were cookies. Cookies are files that get written to a tempo-

rary file on a user’s computer by a web application. Cookies store information that can be read

by the online application, thus authenticating a user as unique. By allowing a web application

to identify whether a user is unique, the application can then perform login scripts and other

functionality.

The problem with cookies is that because they are stored on a user’s computer, they have

developed a bad rap as being highly insecure. And because of possible insecurities with cook-

ies, users have begun to turn them off in their browser security settings; in fact, users often do

not accept cookies.

Cookies themselves are not bad or insecure if used correctly by a developer. However,

since users have the ability to turn them off (and since the actual cookie must be stored on

the user’s computer), most good developers have migrated their code to sessions (which are

explained in the “Using Sessions” section). For now, though, cookies are certainly functional

enough to get the job done, so the following recipes show how they work.

453

C H A P T E R 1 2

■ ■ ■

12-1. Setting Cookies

To be able to use cookies and store values in them, you must first set a cookie on a user’s

computer. You can use plenty of parameters to take full advantage of a cookie, including the

expiration time, path of use, name, value, and so on. By using the different parameters, you

can customize the way the cookie works for you. The way to set a cookie is by using the func-

tion setcookie(), which has the following prototype:

bool setcookie (string name [, string value [, int expire➥

[, string path [, string domain [, bool secure]]]]])

Table 12-1 lists the parameters available to you when creating a cookie using setcookie().

Table 12-1. PHP 5 setcookie() Parameters

Parameter Description

name The name to set the cookie variable to and hence the name to access it with

value The value of the current cookie

expire When a cookie will expire (in the form of a Unix timestamp)

path The directory where the cookie will be available for use

domain The domain at which the cookie will be available

secure Whether a cookie can be read on a non-SSL enable script

The Code

<?php

//sample12_1.php

//Let's say that the correct login is based on these global user and pass values.

//In the real world, this would be taken from the database most likely.

$GLOBALS['username'] = "test";

$GLOBALS['password'] = "test";

//Here is an example to set a cookie based on a correct login.

function validatelogin ($username, $password){

//Check for a valid match.

if (strcmp ($username, $GLOBALS['username']) == 0➥

&& strcmp ($password, $GLOBALS['password']) == 0){

//If you have a valid match, then you set the cookies.

//This will set two cookies, one named cookie_user set to $cookieuser,

//and another set to cookie_pass, which contains the value of $password.

//When storing passwords, it is a good idea to use something like md5() to

//encrypt the stored cookie.

setcookie ("cookie_user", $username, time()+60*60*24*30);

setcookie ("cookie_pass", md5 ($password), time()+60*60*24*30);

return true;

} else {

12-1 ■ SETTING COOKIES454

return false;

}

}

//You call the validatelogin() script.

if (validatelogin ("test","test")){

echo "Successfully logged in.";

} else {

echo "Sorry, invalid login.";

}

?>

How It Works

As you can see from this example, login validation is a common use for cookies. In this exam-

ple, you compare a username and password that you have passed into the function and then

set cookies based on a proper login. In a real-world scenario, the username and password

would have likely come from a login form, and the comparable variables would likely have

been stored in a database, but the functionality is largely the same.

Of note as well is the actual structure of the cookies themselves. These particular cookies

are set to be usable anywhere, with no changes depending on SSL or otherwise. You set two

of them, one named cookie_user and one named cookie_pass. It is important to keep these

names in mind, as this is how you will reference the cookies. You will also note that this script

uses the md5() function to encrypt the cookies. Because cookies are stored on a user’s machine,

it is important to use some manner of encryption to keep others from going to the cookie file

and determining a login. The prototype for md5() is as follows:

string md5 (string str [, bool raw_output])

12-2. Reading Cookies

Naturally, there would be little use for cookies if you could not read from them, hence allowing

you to use them in your applications. Cookies can indeed be read—and quite easily. By using

the $_COOKIE superglobal, you can have full access to your cookie for reading and writing to it

from your script. The following script allows you to determine if you are properly logged in

using a function that returns a true value upon proper validation of login.

The Code

<?php

//sample12_2.php

//Let's say the correct login is based on these global user and pass values.

//In the real world, this would be taken from the database most likely.

$GLOBALS['username'] = "test";

$GLOBALS['password'] = "test";

12-2 ■ READING COOKIES 455

//Let's assume you already have a valid set of cookies in place.

setcookie ("cookie_user", "test", time()+60*60*24*30);

setcookie ("cookie_pass", md5 ("test"), time()+60*60*24*30);

//Here is an example to set a cookie based on a correct login.

function validatelogin (){

//Check for a valid match.

if (strcmp ($_COOKIE['cookie_user'], $GLOBALS['username']) == 0➥

&& strcmp ($_COOKIE['cookie_pass'], md5 ($GLOBALS['password'])) == 0){

return true;

} else {

return false;

}

}

//You call the validatelogin() script.

if (validatelogin ()){

echo "Successfully logged in.";

} else {

echo "Sorry, invalid login.";

}

?>

How It Works

As you can see, using a set of cookies is rather simple; you can simply access them via the

$_COOKIE superglobal. In this case, you compare the (currently) global username and pass-

word against the cookies that have been set. If a match is acquired, the unique user is logged

in, and the script will remember him until the cookie is expired or until the user physically

removes the cookies from their collection. Note also the ease of use with encrypted cookies.

If you know how and if a cookie has been encrypted, it is a simple matter of comparing the

cookie against an md5()-enabled variable.

12-3. Deleting Cookies

Removing cookies is also a simple task. You should note that cookies will disappear by them-

selves if you have set them up to do so. Cookies that have not been assigned a time to die will

simply be removed when the browser window closes. Sometimes, however, a user will want to

be able to clear the cookies on a site. Such functionality typically goes by the name of “logout”

and is a staple of a well-programmed user interface. The following code allows a user to log out.

12-3 ■ DELETING COOKIES456

The Code

<?php

//sample12_3.php

//Let's assume you already have a valid set of cookies in place.

setcookie ("cookie_user", "test", time()+60*60*24*30);

setcookie ("cookie_pass", md5 ("test"), time()+60*60*24*30);

//Here is a function that will kill the cookies and hence "log out."

function logout (){

//To remove a cookie, you simply set the value of the cookie to blank.

setcookie ("cookie_user", "", time()+60*60*24*30);

setcookie ("cookie_pass", "", time()+60*60*24*30);

}

//You call the logout script.

logout();

//You can no longer access the cookies.

echo $_COOKIE['cookie_user'] . "
";

echo "You have successfully logged out.";

?>

How It Works

As you can see, removing cookies is as easy as setting them and leaving the value blank.

It is important to remember that when removing the cookies, the parameters passed to the

setcookie() function must be identical to the parameters that were passed to it initially. If

the parameter list varies from the original, PHP will assume you are trying to remove a differ-

ent cookie, and the removal will not take place. Once a cookie has been removed, your scripts

will no longer have access to it, and the physical cookie itself will have been deleted from your

collection.

12-4. Writing and Using a Cookie Class

Cookies should be as easy to use as sessions are. To cut down on some of the more underused

functionality that cookies are capable of and make them nice and easy to manage, you can use

the following class, which can manage a cookie with the greatest of ease by making instances

of a cookieclass.

12-4 ■ WRITING AND USING A COOKIE CLASS 457

The Code

<?php

//sample12_4.php

//A class to manage a very simple cookie set.

class cookieclass {

private $cookiename;

private $cookievalue;

private $cookieexpiry;

//A function to construct the class.

public function __construct (){

$num_args = func_num_args();

if($num_args > 0){

$args = func_get_args();

$this->cookiename = $args[0];

$this->cookievalue = $args[1];

$this->cookieexpiry = $args[2];

$this->cookieset();

}

}

//The function to actually set a cookie.

public function cookieset (){

try {

if ($this->cookiename != "" && $this->cookievalue != "" ➥

&& $this->cookieexpiry != ""){

setcookie ($this->cookiename,➥

$this->cookievalue, time() + $this->cookieexpiry);

} else {

throw new exception ("Sorry, you must assign a ➥

name and expiry date for the cookie.");

}

} catch (exception $e){

echo $e->getmessage();

}

}

//A function to change the value of the cookie.

public function change ($newvalue){

$_COOKIE[$this->cookiename] = $newvalue;

}

12-4 ■ WRITING AND USING A COOKIE CLASS458

//A function to retrieve the current value of the cookie.

public function getvalue (){

return $_COOKIE[$this->cookiename];

}

//A function to remove the cookie.

public function remove (){

$this->change ("");

}

}

//Create a cookie.

$mycookie = new cookieclass ("cookieid","1","60");

echo $mycookie->getvalue() . "
"; //Echoes 1.

$mycookie->change ("Hello World!");

echo $mycookie->getvalue() . "
"; //Echoes Hello World!

//Now, you kill off the cookie.

$mycookie->remove();

echo $mycookie->getvalue(); //Outputs nothing as the cookie is dead.

?>

How It Works

As you can see, this class makes it easy to create, maintain, and output a cookie. Having

the functionality available to you from an easy-to-manage object can be an organizational

benefit. Consider that you could keep an array of cookie objects and manage them as such.

Of course, you could also build this class to include path and domain settings, but for the

scope of this project, it works rather well.

Using HTTP Headers
HTTP headers are slightly finicky but rather powerful sets of functionality. The most important

aspect to remember about headers is that they can be called only before any output has been

written to the web page. If you attempt to call a header after output has been sent to the page,

you will generate an error; hence, your script will fail on you.

That being said, the functionality of headers is rather powerful. You can use them to

control everything, including setting the current page location, finding out what file format

is being displayed, and managing all aspects of the browser cache. In the following examples,

you will learn how to use the header() function in a variety of ways. The header() function’s

prototype is as follows:

void header (string string [, bool replace [, int http_response_code]])

12-4 ■ WRITING AND USING A COOKIE CLASS 459

12-5. Redirecting to a Different Location

One of the more common uses for HTTP headers is redirecting a script. By using headers

inside processing scripts, you can force the browser to return to any page you want. We prefer

to use headers to control exception handling within process scripts. The following script

makes sure that all input coming from a form is not blank.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.5</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<form action="sample12_5.php" method="post">

Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

</body>

</html>

The form in the previous block of code will then call the processing statement as follows:

<?php

//sample12_5.php

//You will assume that this scripts main focus is to validate➥

against a blank entry.

if (trim ($_POST['yourname']) == ""){

header ("Location: sample12_5.html");

exit;

}

//If you have a value, then it would do something with said value➥

. Like, say, output it.

echo $_POST['yourname'];

?>

How It Works

The header() function is rather nice in that it will redirect you automatically to the appropri-

ate file (providing it exists) without a single hiccup in the processing. You will simply find

yourself at the appropriate page. You can even use the header() function with the Location

parameter to send you to a page not currently on the server on which the script is located.

As such, this functionality can be rather effective even as a simple page redirection script.

12-5 ■ REDIRECTING TO A DIFFERENT LOCATION460

12-6. Sending Content Types Other Than HTML

Naturally, sometimes you will want to use the header() function to output a type of file format

that may not be an actual web page. Thankfully, the header function is more than versatile

enough to take care of this issue. To make the most out of this function, you can effectively

output other file types by simply declaring the content type you want to output.

This functionality can be handy in circumstances where you want to deploy a document

to a user or perhaps even output a dynamic image. You can use the following script to output a

JPG image to the user.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.6</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

</div>

</body>

</html>

<?php

//sample12_6.php

//The location of the image.

$path = "images/winter.jpg";

try {

if (is_file ($path)){

if ($file = fopen($path, 'rb')) {

while(!feof($file) and (connection_status()==0)) {

$f .= fread($file, 1024*8);

}

fclose($file);

}

//Use the header function to output an image of .jpg.

header ("Content-type: image/jpeg");

print $f;

} else {

throw new exception ("Sorry, file path is not valid.");

}

} catch (exception $e){

//Create a dynamic error message.

$animage = imagecreate (500, 500);

12-6 ■ SENDING CONTENT TYPES OTHER THAN HTML 461

$red = imagecolorallocate ($animage, 255, 0, 0);

$white = imagecolorallocate ($animage, 255, 255, 255);

imagefilledrectangle ($animage, 0, 0, 500, 500, $white);

imagestring ($animage, 4, ((500 - (strlen($e->getmessage())➥

* imagefontwidth(4))) / 2), 5, $e->getmessage(), $red);

imagejpeg ($animage);

header ("Content-type: image/jpeg");

imagedestroy ($animage);

}

?>

How It Works

Although the error handling for this particular function may be a tad beyond the scope of this

particular chapter, those who have studied Chapter 8 should have no trouble with it. Excep-

tion handling aside, what you are doing here is basically reading a file as a binary object. Then,

by utilizing the header() function, you can output it as a JPG by merely printing it. You can use

this same sort of procedure to read pretty much any file as a binary object and then output it

in much the same way, provided you use the proper content type (more widely known as a

MIME type). Table 12-2 lists a few of the popular MIME types you may be interested in using

as output.

Table 12-2. Common File Format Content Types

Content Type Application

application/pdf Adobe Portable Document Format (PDF) types

application/msword Microsoft Word documents

application/excel Microsoft Excel documents

image/gif GIF images

image/png PNG images

application/octet-stream Zip files

text/plain Plain text (text files)

12-7. Forcing File “Save As” Downloads

Because web browsers can output many different file types directly onto the screen, the default

when you use headers to output a wide variety of file types is to make them automatically appear

on the screen. What if you would rather have the file appear as a download, though? You can use

the header() function to force a Save As dialog box to appear for the user to accept a download.

The following example uses largely the same code as the previous example but instead forces the

user to download the file.

12-7 ■ FORCING FILE “SAVE AS” DOWNLOADS462

The Code

<?php

//sample12_7.php

//The location of the image.

$path = "images/winter.jpg";

try {

if (is_file ($path)){

if ($file = fopen($path, 'rb')) {

while(!feof($file) and (connection_status()==0)) {

$f .= fread($file, 1024*8);

}

fclose($file);

}

//Use the header function to output an image of .jpg.

$outputname = "myimage";

header ("Content-type: image/jpeg");

//This will force a download.

header("Content-disposition: attachment; filename=".$outputname.".jpg");

print $f;

} else {

throw new exception ("Sorry, file path is not valid.");

}

} catch (exception $e){

echo $e->getmessage();

}

?>

How It Works

The key point in this code is showing content-disposition in the header. By making

content-disposition an attachment value, the browser will force a download rather than

display the file inline. By using this, you can force the download to appear with any particular

filename you prefer and also with pretty much any file extension. By using content-type, you

force the browser to output a file of the requested type.

Using Sessions
Because cookies are getting less and less trusted, a means had to be created to allow user

authentication without having to store physical files on a remote computer. As a solution,

sessions came onto the scene. Considered the best solution for user authentication that allows

for script control, sessions store their files on the actual server.

12-7 ■ FORCING FILE “SAVE AS” DOWNLOADS 463

12-8. Implementing Sessions

Sessions are handled much like cookies but with a major difference. While cookies are pretty

much declared as global members of the site, a session state must be enabled to use them

effectively. While in the session state, sessions can be accessed just like cookies, in a global

sense, and can be manipulated, added to, or removed with relative ease.

Setting sessions requires less overhead than creating cookies. Instead of having to com-

pletely define how and where a cookie will be in use, with sessions you control most of that

through the PHP configuration file.

You use sessions in PHP 5 using the $_SESSION superglobal. You can assign and access a

session using the superglobal, provided the script that is doing the work is within the session

state. The following example creates a session state, sets a session, and then outputs the ses-

sion value.

The Code

<?php

//sample12_8.php

//First, create a session states.

session_start();

$GLOBALS['user'] = "test";

$GLOBALS['pass'] = "test";

//Now, here is a function that will log you in.

function login ($username, $password){

if (strcmp ($username, $GLOBALS['user']) == 0 ➥

&& strcmp ($password, $GLOBALS['pass']) == 0){

$_SESSION['user'] = $username;

$_SESSION['pass'] = md5 ($password);

return true;

} else {

return false;

}

}

//Function to logout.

function logout (){

unset ($_SESSION['user']);

unset ($_SESSION['pass']);

session_destroy();

}

//Now, you can login.

12-8 ■ IMPLEMENTING SESSIONS464

if (login("test","test")){

//And output our sessions with the greatest of ease.

echo "Successfully logged in with user: " . $_SESSION['user']➥

. " and pass: " . $_SESSION['pass'];

} else {

echo "Could not login.";

}

//Now, you logout.

logout();

//And hence cannot use our sessions anymore.

if (isset ($_SESSION['user'])){

echo $_SESSION['user']; //Outputs nothing.

}

?>

How It Works

The code works quite simply. You create a session state using the session_start() function and

then use and access these session values using the $_SESSION superglobal. Using the superglobal,

you can then add to, remove, or modify the session values. You can use the sessions anywhere

the session state is enabled, which means the session_start() function needs to be called at the

beginning of every page where you want session access. When you have finished with the ses-

sions, you can simply use the unset() function on the session values and finish off the session

state using the session_destroy() function. The prototypes for these session-related functions

are as follows:

bool session_start (void)

bool session_destroy (void)

12-9. Storing Simple Data Types in Sessions

Up until PHP 5, short of using a bit of serialization (which is somewhat inconvenient at best),

sessions have really been useful only for passing simple data types around. Sessions handle simple

data types, and they handle them well. Like any PHP variable, however, the data type of a current

session is based upon what was last assigned to it and can be changed quite easily. The following

example passes three values by session: an integer, a string, and a floating-point value.

The Code

<?php

//sample12_9.php

//First, create a session states.

session_start();

12-9 ■ STORING SIMPLE DATA TYPES IN SESSIONS 465

(int) $_SESSION['integer_value'] = "115";

(string) $_SESSION['string_value'] = "Hello World";

(float) $_SESSION['float_value'] = "1.07";

//This function exists for the sole purpose of showing how sessions can be called

//from anywhere within the scope of the session state.

function outputsessions (){

echo $_SESSION['integer_value'] . "
"; //Outputs 115.

echo $_SESSION['string_value'] . "
"; //Outputs Hello World.

echo $_SESSION['float_value'] . "
"; //Outputs 1.07.

}

//Then you can call the function from here:

outputsessions();

?>

How It Works

As you can see, sessions that have been set can be called and accessed from anywhere within

the scope of the session state. In this case, you have an integer, a string, and a float value

(which have been typecast) that can be accessed from anywhere. The script was called

without passing in any values, yet it can access and output the session values.

12-10. Storing Complex Data Types in Sessions

One of the major improvements to PHP 5 is the ability to store complex data types within a

session. In the past, code that tracked information such as shopping carts had to be stored

within temporary database tables and such, which was incredibly clunky and not space effi-

cient. Fortunately, PHP now allows you to store objects within sessions. Using this technique,

you can easily store large quantities of data within a single object (such as a shopping cart

object), use the functionality within the session for these purposes, and then pass the data

along to other pages. The following example shows how to pass an object and then access

the object from a session.

The Code

<?php

//sample12_10.php

//First, create a session states.

session_start();

//A class that does not do too much.

class myclass {

protected $myvalue;

public function setmyvalue ($newvalue){

12-10 ■ STORING COMPLEX DATA TYPES IN SESSIONS466

$this->myvalue = $newvalue;

}

public function getmyvalue (){

return $this->myvalue;

}

}

$_SESSION['myclass_value'] = new myclass ();

//This function exists for the sole purpose of showing how sessions can be called

//from anywhere within the scope of the session state.

function outputsessions (){

$_SESSION['myclass_value']->setmyvalue ("Hello World");

echo $_SESSION['myclass_value']->getmyvalue ();

}

//Then you can call the function from here:

outputsessions();

?>

How It Works

As you can see, the ability to use and set an object through a session variable is now just as

simple as doing so with regular data types. This ability will prove to be quite effective in future

applications, as web developers can now use the system memory to perform certain functional-

ity rather than wasting space within a database or text/Extensible Markup Language (XML) file.

12-11. Detecting Browsers

To determine the browser version of the user who is currently viewing your site in PHP, several

algorithms are at your disposal. The most useful and easiest to implement is the $_SERVER

superglobal. By grabbing the contents of $_SERVER['HTTP_USER_AGENT'], you can retrieve a

fairly conclusive string offering of the system that is currently accessing your website. Once

you have the string in hand, it is a simple matter of using regular expressions to break down

the different parts of the string into something usable.

The other way to detect a browser in PHP is through the get_browser() function. Sadly,

using this method is not nearly as reliable and involves quite a bit more server configuration.

For starters, you are going to need a browscap.ini file. Now, the problem with this file is that it

needs to be constantly up-to-date. You can find browscap.ini files for download on the Inter-

net, but finding a recent one that will work properly with your current version of PHP and

whatever server you are running can be tricky.

Once you have located a browscap.ini file that works with your current setup, it is a sim-

ple matter of changing this line inside your php.ini file:

;browscap =

to this:

browscap = my/path/to/browscap.ini

12-11 ■ DETECTING BROWSERS 467

From there you merely call the get_browser() function, and it will return an associative

array filled with all the pertinent details. Since using the get_browser() function can be tricky

to set up and the installation is rather platform dependent, the following example uses

$_SERVER, which should work on just about any PHP 5 platform.

The Code

<?php

//sample12_11.php

//A class to determine a browser and platform type.

class browser {

//Our private variables.

private $browseragent;

private $browserversion;

private $browserplatform;

//A function to set the browser agent.

private function setagent($newagent) {

$this->browseragent = $newagent;

}

//A function to set the browser version.

private function setversion($newversion) {

$this->browserversion = $newversion;

}

//A function to set the browser platform.

private function setplatform($newplatform) {

$this->browserplatform = $newplatform;

}

//A function to determine what browser and version you are using.

private function determinebrowser () {

if (ereg('MSIE ([0-9].[0-9]{1,2})',$_SERVER['HTTP_USER_AGENT'],$version)) {

$this->setversion($version[1]);

$this->setagent("IE");

} else if (ereg('Opera ([0-9].[0-9]{1,2})',➥

$_SERVER['HTTP_USER_AGENT'],$version)) {

$this->setversion($version[1]);

$this->setagent("OPERA");

} else if (ereg('Mozilla/([0-9].[0-9]{1,2})',➥

$_SERVER['HTTP_USER_AGENT'],$version)) {

$this->setversion($version[1]);

$this->setagent("MOZILLA");

} else {

$this->setversion("0");

$this->setagent("OTHER");

}

}

12-11 ■ DETECTING BROWSERS468

//A function to determine the platform you are on.

private function determineplatform () {

if (strstr ($_SERVER['HTTP_USER_AGENT'],"Win")) {

$this->setplatform("Win");

} else if (strstr ($_SERVER['HTTP_USER_AGENT'],"Mac")) {

$this->setplatform("Mac");

} else if (strstr ($_SERVER['HTTP_USER_AGENT'],"Linux")) {

$this->setplatform("Linux");

} else if (strstr ($_SERVER['HTTP_USER_AGENT'],"Unix")) {

$this->setplatform("Unix");

} else {

$this->setplatform("Other");

}

}

//A function to return the current browser.

public function getbrowser (){

$this->determinebrowser ();

return $this->browseragent . " " . $this->browserversion;

}

//A function to return the current platform.

public function getplatform (){

$this->determineplatform ();

return $this->browserplatform;

}

}

//Now, you simply create a new instance of the browser class.

$mybrowser = new browser ();

//And then you can determine out current browser and platform status.

echo "Browser: " . $mybrowser->getbrowser() . "
";

echo "Platform: " . $mybrowser->getplatform() . "
";

//The bare bones output looks as such:

echo $_SERVER['HTTP_USER_AGENT'];

?>

How It Works

As you can see, by creating a class, you can easily parse the $_SERVER superglobal for the nec-

essary information. The raw output from $_SERVER['HTTP_USER_AGENT'] on our current system

returns this result, which is not so great looking:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.7)➥

Gecko/20050414 Firefox/1.0.3

By using the class set up previously, you can quickly and easily determine the platform

and browser in use. It would be quite simple as well to throw in a function or two to return

boolean types depending on whether you want to test for a certain browser or platform. Keep

in mind that this script is set up to handle only a few of the popular browsers—you could eas-

ily expand it to encompass a few more. All in all, by using regular expressions, this is not too

difficult of a script.

12-11 ■ DETECTING BROWSERS 469

Using Querystrings
You will frequently want to pass values to a page through a means other than a form. You can

pass values through the address bar of your browser in PHP by using querystrings. Basically, by

using special characters and values in the address bar of your browser, you can pass values

into a script and then have the script pass more values.

This provides a convenient method to pass values from page to page and also provides a

valuable method for reusing the same page to perform multiple forms of functionality. Sadly,

although passing values this way is convenient, it is also insecure. Users can insert whatever

they would like into the address bar of their browser and hence force your script to do unpre-

dicted things if you do not take the time to validate against such an occurrence.

Querystrings are often the target of SQL injection attacks whereby a value passed through a

querystring to your script creates a dynamic SQL statement. Utilizing the right code injection,

hackers can potentially cause a lot of damage to the integrity of your site using querystrings.

It is with this in mind that the following examples use optimal security.

12-12. Using Querystrings

Using querystrings has always been a relatively easy task, but let’s look at it from a PHP 5 point

of view. The current way to handle querystrings is to use the $_GET superglobal (are you start-

ing to see where PHP is going yet?). By using the $_GET superglobal to handle your querystring,

you can at least determine where the value is coming from and deal with it accordingly.

Passing querystrings is usually handled with the HREF attribute of an <A> tag. The first

value of a querystring must always be denoted by the question mark (?), followed by the name

of the variable and then the value of the character. Any following variables must be denoted by

the ampersand (&) character, then the variable name, and lastly the value.

Keep in mind that using current Extensible HTML (XHTML) standards, you should use

& to substitute for & when you encode the link. Also note that blank spaces do not carry

over well using querystrings; therefore, it is a good idea to use the urlencode() function to pre-

pare a string value for passing along to a querystring and the urldecode() function to extract

it. The prototypes for these functions are as follows:

string urlencode (string str)

string urldecode (string str)

The following example shows the HTML necessary to pass several values to the current

page.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.12</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

<a href="sample12_12.html?firstvalue=1&secondvalue=2➥

12-12 ■ USING QUERYSTRINGS470

&thirdvalue=3">Click Me!

</div>

</body>

</html>

How It Works

With this simple example, you can see how to pass values to the current page. Notice the

address bar of your browser when you click the link. The following examples show ways to

deal with the information that will be passed and read.

12-13. Passing Numeric Values in a Querystring

Passing numeric values in the address bar as a querystring can be one of the handiest ways to

use them but also one of the most vulnerable to attack. Website attacks quite frequently occur

when you pass an integer value (quite often indicative of the ID value in a database for a par-

ticular record), which then shows you a record in the database. This is a prime target for SQL

injection attacks and should definitely be dealt with using the proper validation.

The following example shows you how to pass an integer value, read it in by the page,

perform a specified action with it, and keep it in the form of an integer the entire time for

validation purposes.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.13</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

<p>Click a link to change the text color of the verbiage below:</p>

Green

Red

Blue

Reset

<?php

//The first thing you must do is read in the value.

//Note the use of the intval() function.

//By forcing an integer value, you kill off SQL injection problems.

if (isset ($_GET['color'])){

$color = intval ($_GET['color']);

} else {

$color = "";

}

//Now, you can perform an action based on the result.

12-13 ■ PASSING NUMERIC VALUES IN A QUERYSTRING 471

if ($color == 1){

$fontcolor = "00FF00";

} elseif ($color == 2){

$fontcolor = "FF0000";

} elseif ($color == 3){

$fontcolor = "0000FF";

} else {

$fontcolor = "000000";

}

?><p style="color: #<?php echo $fontcolor; ?>; font-weight: bold;">➥

Hello World!</p><?php

?>

</div>

</body>

</html>

How It Works

Passing integer values is really rather simple. As you can see in the previous example, you code

the proper value into each link that you deem necessary for the functionality. Based on the

value received, the verbiage changes color. You will note, for validation purposes, that not only

do you ensure an integer value (using the intval() function), but you also provide a default in

all cases to ensure that if you do not get a desired value, the system still dies gracefully.

12-14. Passing String Values in a Querystring

Passing string values in a querystring is slightly more complicated than passing integer values.

Because you know pretty well what format an integer will be in when you receive it, it makes

matters slightly easier than receiving a string value that could potentially take on a variety of

forms. You must be careful when sending as well as when receiving to prevent against SQL

injection attacks and other such nonsense that could potentially break your script. You can

use the following example to maintain a system whereby you create a design shell and then

pass in the content for the site dynamically through querystring page locations.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.14</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div align="center">

<p>Click a link to move to a new page:</p>

Content 1

Content 2

Content 3

12-14 ■ PASSING STRING VALUES IN A QUERYSTRING472

<?php

//The first thing you do is decode, remove slashes, ➥

and trim the incoming value.

$page = trim (urldecode (stripslashes ($_GET['page'])));

//First, you see if there is a page.

if (isset ($page) && $page != ""){

//Now, you determine if this is a valid page.

if (is_file ($page)){

require_once ($page);

} else {

echo "<p>Sorry, the page you have requested does not exist.</p>";

}

}

?>

</div>

</body>

</html>

How It Works

This page works by requiring a filename that is dynamically passed in by the querystring. The

first operation you perform is ensuring that the values being received are properly formatted

types. Next, you confirm that the page that is to be loaded is indeed a relative file. If the file to

be loaded is valid, then you include the file in the page. This sort of functionality can be power-

ful because it takes away the problem of copying and pasting design code across pages. Using

this method you can create a design “wrapper” and simply insert content pages dynamically.

12-15. Passing Complex Values in a Querystring

Passing complex values in a querystring takes a little more effort than passing regular data-

typed values. To pass a value such as an array or an object, you must first serialize the value

into a format that can be passed easily and effectively. PHP contains two handy functions that

must be utilized in order for such functionality to become feasible. The serialize() function

will transform a variable into a format that is capable of being passed in a querystring, and the

unserialize() function is required to retrieve the value and turn it back into a usable variable.

The prototypes for the functions are as follows:

string serialize (mixed value)

mixed unserialize (string str)

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.15</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<?php

12-15 ■ PASSING COMPLEX VALUES IN A QUERYSTRING 473

class someclass {
protected $someval;

public function setsomeval ($newval){
$this->someval = $newval;

}

public function getsomeval (){
return $this->someval;

}
}

$myclass = new someclass ();
$myclass->setsomeval ("Hello World!");

$myarray = array();
$myarray[0] = "Hello";
$myarray[1] = "World!";

$myarray = serialize ($myarray);
$myarray = urlencode ($myarray);

$myclass = serialize ($myclass);
$myclass = urlencode ($myclass);

?>
</head>
<body>
<div align="center">
<a href="sample12_15.html?passedarray=<?php echo $myarray; ?>➥

&passedclass=<?php echo $myclass; ?>">Output Current Value

<?php
if (isset ($_GET['passedclass']) && isset ($_GET['passedarray'])){

$newclass = new someclass;
$newclass = $_GET['passedclass'];
$newclass = stripslashes ($newclass);
$newclass = unserialize ($newclass);
echo "Object: " . $newclass->getsomeval() . "
";

$newarray = array ();
$newarray = $_GET['passedarray'];
$newarray = stripslashes ($newarray);
$newarray = unserialize ($newarray);
print_r ($newarray);

}
?>
</div>
</body>
</html>

12-15 ■ PASSING COMPLEX VALUES IN A QUERYSTRING474

How It Works

As you can see, to make this code work, the object variable and the array variable must both

be serialized into a format that can be passed from page to page and then unserialized when

received. If you were to try to pass the variables along without serializing them, they would

lose all stored information and could not be read properly when received. Serialization can be

helpful in circumstances such as this, but a better way to maneuver may be to create session

objects and pass them that way instead.

Authenticating Your Users
No matter what type of online application you are building, if you need to keep sections of it

private, you will at some point need to create a way of authenticating your users so that you

know you have a valid user accessing the site. You can handle authentication in a variety of

ways, but the two most common methods for securing a file or set of files is through HTTP-

based authentication and through cookie authentication. Neither is technically superior to

the other, and they both have their own uses. Both can be set up dynamically, and both will

stop users in their tracks should they not meet the authenticated demands.

12-16. Setting Up HTTP-Based Authentication

HTTP-based authentication can be a true challenge from a scripting point of view. The inter-

esting part about it is that most server interfaces (such as Cpanel or Ensim) can create HTTP-

based authentication on the fly. In this case, we have written a class to do this for you.

We are not the biggest fans of HTTP-based authentication because the login mechanism

is largely the same. You can set a few variables to customize it slightly, but in the end, it is the

same pop-up window asking for your username and password. That being said, this class lets

you handle the authentication on the fly.

For this code to work properly, you must first set up a file called .htaccess and ensure that

you set the proper path to it when calling the class. You must also have a proper password file

prepared (and once again specify the proper path to it). Keep in mind that the .htaccess file

must also be read and write enabled (a simple CHMOD of 777 can accomplish this).

The Code

<?php

//sample12_16.php

//Class to create and maintain http authorization.

class httpauth {

protected $filepath;

protected $passpath;

//A function to construct the class.

public function __construct (){

$num_args = func_num_args();

12-16 ■ SETTING UP HTTP-BASED AUTHENTICATION 475

if($num_args > 0){

$args = func_get_args();

$this->filepath = $args[0];

//Check the validity of the file path.

try {

if (is_file ($this->filepath)){

//Validate that the file is named .htaccess.

try {

$expfilename = explode ("/", $this->filepath);

if ($expfilename[count($expfilename) - 1] != ".htaccess"){

throw new exception ("Sorry, file must be named .htaccess.");

} else {

try {

//Make sure the file is writable.

if (!is_writable ($this->filepath)){

throw new exception ("File must be writable.");

}

} catch (exception $e){

echo $e->getmessage();

}

}

} catch (exception $e){

echo $e->getmessage();

}

} else {

throw new exception ("Sorry, file does not exist.");

}

} catch (exception $e){

echo $e->getmessage();

}

//Now, check the validity of the password file.

$this->passpath = $args[1];

try {

if (is_file ($this->passpath)){

//Make sure the file is writable.

try {

if (!is_writable ($this->passpath)){

throw new exception ("Password file must be writable.");

}

} catch (exception $e){

echo $e->getmessage();

}

} else {

throw new exception ("Sorry, password file does not exist.");

}

} catch (exception $e){

echo $e->getmessage();

12-16 ■ SETTING UP HTTP-BASED AUTHENTICATION476

}

}

}

//Function to add a user to the password file.

public function adduser ($user, $pass) {

//Make sure a given user does not already exist.

try {

if ($file = fopen ($this->passpath,"r")){

$proceed = true;

//Run through the file.

while ($input = fgets ($file, 200)){

$exp = explode (":", $input);

//If this user already exists, then you stop right here.

if ($user == $exp[0]){

$proceed = false;

}

}

fclose ($file);

} else {

throw new exception ("Sorry, could not open the➥

password file for reading.");

}

} catch (exception $e) {

echo $e->getmessage();

}

try {

//If you are good to go, then write to the file.

if ($proceed){

try {

//Open the password file for appending.

if ($file = fopen ($this->passpath,"a")){

//And then append a new username and password.

fputs($file,$user . ":" . crypt ($pass) . "\n");

fclose($file);

} else {

throw new exception ("Error opening the password file for appending");

}

} catch (exception $e) {

echo $e->getmessage();

}

} else {

throw new exception ("Sorry, this username already exists.");

}

} catch (exception $e){

echo $e->getmessage();

}

12-16 ■ SETTING UP HTTP-BASED AUTHENTICATION 477

}

//Function to add http authorization.

public function addauth ($areaname = "Protected Zone") {

//Now, protect the directory.

try {

if ($file = fopen ($this->filepath, "w+")){

fputs($file, "Order allow,deny\n");

fputs($file, "Allow from all\n");

fputs($file, "AuthType Basic\n");

fputs($file, "AuthUserFile " . $this->passpath . "\n\n");

fputs($file, "AuthName \"" . $areaname . "\"\n");

fputs($file, "require valid-user\n");

fclose($file);

} else {

throw new exception ("Sorry, could not open htaccess file for writing.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to remove a user from the password listing.

public function removeuser ($user) {

//Run through the current file and get all of the usernames and passwords.

$userarray = array ();

$passarray = array ();

$arrcounter = 0;

try {

if ($file = fopen ($this->passpath,"r")){

//Run through the file.

while ($input = fgets ($file, 200)){

$exp = explode (":", $input);

//If this user already exists, then you stop right here.

if ($user != $exp[0]){

//Then add to the list.

$userarray[$arrcounter] = $exp[0];

$passarray[$arrcounter] = $exp[1];

$arrcounter++;

}

}

fclose ($file);

} else {

throw new exception ("Sorry, could not open the➥

password file for reading.");

}

} catch (exception $e) {

echo $e->getmessage();

}

12-16 ■ SETTING UP HTTP-BASED AUTHENTICATION478

//Then go through the file again and write back all the logins in the array.

try {

if ($file = fopen ($this->passpath,"w")){

//Run through the file.

for ($i = 0; $i < count ($userarray); $i++){

if ($userarray[$i] != "" && $passarray[$i] != ""){

fputs ($file, $userarray[$i] . ":" . $passarray[$i] . "\n");

}

}

fclose ($file);

} else {

throw new exception ("Sorry, could not open the➥

password file for writing.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to change the password of a user.

public function changepass ($user,$newpass){

try {

if ($newpass == ""){

throw new exception ("Sorry, you must supply a new password");

} else {

$userarray = array ();

$passarray = array ();

$arrcounter = 0;

try {

if ($file = fopen ($this->passpath,"r")){

//Run through the file.

while ($input = fgets ($file, 200)){

$exp = explode (":", $input);

//If you don't have a match you to the array.

if ($user != $exp[0]){

//Then add to the list.

$userarray[$arrcounter] = $exp[0];

$passarray[$arrcounter] = $exp[1];

$arrcounter++;

} else {

//Else you change the pass.

$userarray[$arrcounter] = $exp[0];

$passarray[$arrcounter] = crypt ($newpass);

$arrcounter++;

}

}

fclose ($file);

} else {

12-16 ■ SETTING UP HTTP-BASED AUTHENTICATION 479

throw new exception ("Sorry, could not open the➥

password file for reading.");

}

} catch (exception $e) {

echo $e->getmessage();

}

//Then go through the file again and write back all the➥

logins in the array.

try {

if ($file = fopen ($this->passpath,"w")){

//Run through the file.

for ($i = 0; $i < count ($userarray); $i++){

if ($userarray[$i] != "" && $passarray[$i] != ""){

fputs ($file, $userarray[$i] . ":" . $passarray[$i] . "\n");

}

}

fclose ($file);

} else {

throw new exception ("Sorry, could not open the➥

password file for writing.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

} catch (exception $e){

echo $e->getmessage();

}

}

//Function to kill the authorization.

public function removeauth () {

unlink ($this->filepath);

}

}

//Set this path to your password file.

$passpath = "/home/ensbabin/public_html/php5recipes/chapter12/code/htpasswd";

//Set this path to the folder you want to protect.

$toprotect = "/home/ensbabin/public_html/php5recipes/➥

chapter12/code/foldertoprotect/.htaccess";

//Create a new instance of an httpauth.

$myhttp = new httpauth ($toprotect, $passpath);

//Add user.

$myhttp->adduser ("test","test");

//Protect a directory.

$myhttp->addauth ("My Protected Zone");

//Add another user.

12-16 ■ SETTING UP HTTP-BASED AUTHENTICATION480

$myhttp->adduser ("phpauth","sample");

//Change a user's password.

$myhttp->changepass ("phpauth","testing");

//Remove a user.

$myhttp->removeuser ("phpauth");

//Remove the protection entirely.

$myhttp->removeauth ();

?>

How It Works

Basically, to set up authentication, you must first set up a username and password that can

access the authentication. You can perform this action in this particular script by using the

adduser() method. Once you have set up a user, you can then set up authentication on a par-

ticular directory using the addauth() method. Any users you have added to the password file

can have access to the protected directory.

This class also comes with a few bells and whistles such as the ability to change the pass-

word for a user, remove a user entirely, or remove the authentication, but the functionality for

the methods speaks for itself.

At its core, creating and maintaining users and HTTP authorization is simply a matter of

maintaining a few text files—the .htpasswd and .htaccess files. Because these are basically

text-based, all the class needs to do is read and write to the files in question (hence the hefty

file-opening validation).

12-17. Setting Up Cookie Authentication

Managing user authentication through cookies or sessions is a little harder than using HTTP-

based authentication, but it can ultimately be more flexible and rewarding. Some of the nice

features of cookie-based authentication are being able to set your own error messages, being

able to control what happens upon login, and being allowed to make your login form blend

seamlessly into your application (rather than being forced to use the pop-up boxes of the

HTTP-based variety).

Two schools of thought exist on the whole cookie vs. sessions issue; the advantages of ses-

sions being kept on the server side and working on any platform outweigh the cookie method’s

advantage of being slightly more flexible. By using sessions you will know that your script should

work on pretty much any platform and will be a reliable, secure way of handling authentication.

You can use the following example as a login system.

The Code

<?php

session_start();

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 12.17</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

12-17 ■ SETTING UP COOKIE AUTHENTICATION 481

<?php

//Normally your username and pass would be stored in a database.

//For this example you will assume that you have already retrieved them.

$GLOBALS['user'] = "test";

$GLOBALS['pass'] = "test";

//Now, check if you have a valid submission.

if (isset ($_POST['user']) && isset ($_POST['pass'])){

//Then check to see if you have a match.

if (strcmp ($_POST['user'], $GLOBALS['user']) == 0➥

&& strcmp ($_POST['pass'], $GLOBALS['pass']) == 0){

//If you have a valid match, then set the sessions.

$_SESSION['user'] = $_POST['user'];

$_SESSION['pass'] = $_POST['pass'];

} else {

?><div align="center"><p style="color: #FF0000;">➥

Sorry, you have entered an incorrect login.</p></div><?php

}

}

//Check if you need to logout.

if ($_POST['logout'] == "yes"){

unset ($_SESSION['user']);

unset ($_SESSION['pass']);

session_destroy();

}

//You then use this function on every page to check for a valid login at all

times.

function checkcookies () {

if (strcmp ($_SESSION['user'], $GLOBALS['user']) == 0➥

&& strcmp ($_SESSION['pass'], $GLOBALS['pass']) == 0){

return true;

} else {

return false;

}

}

?>

</head>

<body>

<div align="center">

<?php

//Check if you have a valid login.

if (checkcookies()){

?>

12-17 ■ SETTING UP COOKIE AUTHENTICATION482

<p>Congratulations, you are logged in!</p>

<form action="sample12_17.html" method="post" style="margin: 0px;">

<input type="hidden" name="logout" value="yes" />

<input type="submit" value="Logout" />

</form>

<?php

//Or else present a login form.

} else {

?>

<form action="sample12_17.html" method="post" style="margin: 0px;">

<div style="width: 500px; margin-bottom: 10px;">

<div style="width: 35%; float: left; text-align: left;">

Username:

</div>

<div style="width: 64%; float: right; text-align: left;">

<input type="text" name="user" maxlength="25" />

</div>

<br style="clear: both;" />

</div>

<div style="width: 500px; margin-bottom: 10px;">

<div style="width: 35%; float: left; text-align: left;">

Password:

</div>

<div style="width: 64%; float: right; text-align: left;">

<input type="password" name="pass" maxlength="25" />

</div>

<br style="clear: both;" />

</div>

<div style="width: 500px; text-align: left;">➥

<input type="submit" value="Login" /></div>

</form>

<?php

}

?>

</div>

</body>

</html>

How It Works

Basically, you are running the entire login algorithm from this one script. If the script detects

that you have submitted a username and password, it will then check for a valid match and set

proper sessions upon the match. If the system detects that the sessions are already in place

and are proper (as handled by the checkcookies() function), it does not display the login form

and instead displays a means to log out. The logout algorithm is handled in mostly the same

way. If the script detects a logout field is in place, it then goes through the algorithm to kill off

the session variables.

12-17 ■ SETTING UP COOKIE AUTHENTICATION 483

Using Environment and Configuration Variables
PHP provides a means to use and verify the configuration settings and environment variables

relative to the server space the script is occupying. Having access to this feature set can come

in handy on many occasions. By having access to environment variables, you can customize

your scripts to work optimally on the platform that is available. By having access to the config-

uration variables of PHP, you can customize the PHP environment your script is working in for

special occurrences.

A common use of the environment variables in PHP is for dynamic imaging. While Win-

dows systems commonly store their fonts in one folder, Linux-based systems keep theirs in

another. By using PHP’s environment variables to determine the current operating system,

you can make your code slightly more portable.

Using configuration variables can also come in quite handy, particularly with file upload

scripts. The base PHP installation leaves only enough processing time to upload files that are

generally 2MB or smaller in size. By manipulating the PHP configuration files temporarily, you

can increase the limit enough to allow a script to process much larger files.

12-18. Reading Environment and Configuration Variables

PHP 5 makes reading environment and configuration variables easy. The $_ENV superglobal

is PHP’s method for reading a system’s environment variables and has an argument set that is

based upon the current environment that is available to it. Because of its relative flexibility,

there is no real set argument list, as it is generated based on the current server environment.

You can use the phpinfo() function to determine the current environment variables, and you

can retrieve them using the getenv() function, which needs to be supplied a valid environ-

ment variable name.

Reading configuration variables, on the other hand, takes place through two functions,

ini_get() and ini_get_all(). The function ini_get() will retrieve the value of a specified

configuration variable, and the function ini_get_all() will retrieve an array filled with the

entire selection of configuration variables that are available.

The following example shows how to retrieve both environment and configuration variables.

The Code

<?php

//sample12_18.php

//Here is an example of retrieving an environmental variable or two.

echo $_ENV['ProgramFiles'] . "
"; //Outputs C:\Program Files.

echo $_ENV['COMPUTERNAME'] . "
"; //Outputs BABINZ-CODEZ.

echo getenv("COMPUTERNAME") . "
"; //Also Outputs BABINZ-CODEZ.

//Now, let's look at reading configuration variables.

echo ini_get ("post_max_size") . "
"; //Outputs 8MB.

//And you can output the entire listing with this function.

print_r (ini_get_all());

?>

12-18 ■ READING ENVIRONMENT AND CONFIGURATION VARIABLES484

How It Works

As you can see, there is really no problem when reading environment and configuration

variables. You can get the job done in a bunch of ways, and predefined functions exist in all

aspects of PHP to take care of any issue you may encounter.

12-19. Setting Environment and Configuration Variables

Setting environment and configuration variables is just as easy as it is to get them. While

working with environment variables, you merely need to assign a new value to the $_ENV

superglobal to process a temporary change. The change will be in effect for the script’s dura-

tion. The same applies for configuration variables but with a different approach. To set a

configuration variable, you have to use the PHP function ini_set(), which will allow you to

set a configuration variable for the script’s duration. Once the script finishes executing, the

configuration variable will return to its original state. The prototype for ini_set() is as follows:

string ini_set (string varname, string newvalue)

The Code

<?php

//sample12_19.php

//Setting an environment variable in php is as easy as assigning it.

echo $_ENV['COMPUTERNAME'] . "
"; // Echoes BABINZ-CODEZ.

$_ENV['COMPUTERNAME'] = "Hello World!";

echo $_ENV['COMPUTERNAME'] . "
"; //Echoes the new COMPUTERNAME.

//Of course the change is relevant only for the current script.

//Setting a configuration variable is the same in that it is in effect only for

//the duration of the script.

echo ini_get ('post_max_size'); //Echoes 8MB.

//Then you set it to 200M for the duration of the script.

ini_set('post_max_size','200M');

//Any files that are to be uploaded in this script will be OK up to 200M.

?>

How It Works

As you can see, setting environment and configuration variables is a rather simple task. It can

be a handy task, and it can help you modify the current environment to work for you. Many

times in your coding career you will have to code around a certain server’s configuration. By

combining a means to analyze your environment and a means to subsequently work with it,

PHP ensures that your scripts will be able to operate to their fullest.

12-19 ■ SETTING ENVIRONMENT AND CONFIGURATION VARIABLES 485

Summary
You could say that the chapter title of “Understanding Web Basics” is somewhat misleading.

This chapter has operated more as a guide to some of the optional functionality offered by

PHP that can come in handy when building your web applications. We have not covered some

of the really basic stuff you perhaps expected; instead, we have gone further than that and

given you some solutions that you might have found challenging to work out by yourself.

Whether it is building a system for authenticating users or passing values from page to page,

PHP 5 has a solution for you. It is key to use the right technology for the job, however, so having

knowledge of a wide variety of methods can be the difference between a well-conceived web

application and a complete flop.

Keep these technologies in mind when building your applications; although they may not

come in handy for every task, they are there for your use should you need them.

Looking Ahead
In the next chapter, you will look into all aspects of the web form. Web forms are a way to

accommodate software creation on the Internet and can be an in-depth topic. You will learn

about security, validation, file types, and much more.

12-19 ■ SETTING ENVIRONMENT AND CONFIGURATION VARIABLES486

Creating and Using Forms

To create a fully functional web application, you need to be able to interact with your users.

The common way to receive information from web users is through a form. Forms have evolved

to be quite all-encompassing. Over time, savvy web developers have taken the elements available

to them through the form interface and figured out ways to accomplish pretty much any goal.

On the surface, web forms are merely Hypertext Markup Language (HTML) elements.

The way that the elements are processed, however, relies on the processing script that will

take care of the elements. PHP 5 is built so that it seamlessly integrates with form elements.

Over the past few versions of PHP, its methodology for dealing with form information has

gradually evolved and is now quite robust.

This chapter will discuss how best to use PHP 5’s form handling functionality with respect

to precision, ease of use, features, and security.

On the surface, you have several options when dealing with forms. More specifically, you

have control over what elements you want to provide to your user, how you handle the infor-

mation passed to you, and in what format you choose to receive the data. Obviously, when

dealing with information that is passed from a user, it is imperative that you spend some time

validating the data passed to your script.

Issues such as user error and malicious scripts affect dealing with forms, so it is important

you maintain the integrity of whatever device you are using to store information garnered from

users. Over time malicious individuals have come up with ways to extract information they

should not be privy to and with ways to potentially cripple your scripts. These individuals gen-

erally prey upon forms that have not been properly secured against intrusion, so it is important

to maintain a proper amount of validation. Recipes in this chapter that discuss validating form

input and globals vs. superglobals will give you a few good ideas of how to maintain the

integrity of your web forms.

Understanding Common Form Issues
When dealing with forms, the most important aspect to remember is that you are limited to

a certain variety of fields that can be applied to a form. The fields that have been created are

non-negotiable and work in only the way they were created to work. It is important, therefore,

to fully understand what is available and how best to use the form features to your advantage.

Table 13-1 lists the form elements that are available to you.

487

C H A P T E R 1 3

■ ■ ■

Table 13-1. HTML Form Elements

Element Description

TEXT INPUT A simple text box

PASSWORD INPUT A text box that hides the characters inputted

HIDDEN INPUT A field that does not show on the form but can contain data

SELECT A drop-down box with options

LIST A select box that can have multiple options selected

CHECKBOX A box that can be checked

RADIO A radio button that can act as a choice

TEXTAREA A larger box that can contain paragraph-style entries

FILE An element that allows you to browse your computer for a file

SUBMIT A button that will submit the form

RESET A button that will reset the form to its original state

13-1. GET vs. POST

When dealing with forms, you must specify the way that the information entered into the

form is transmitted to its destination (method=""). The two ways available to a web developer

are GET and POST. When sending data using the GET method, all fields are appended to the

Uniform Resource Locator (URL) of the browser and sent along with the address as data. With

the POST method, values are sent as standard input. Sending data using the GET method

means that fields are generally capped at 150 characters, which is certainly not the most effec-

tive means of passing information. It is also not a secure means of passing data, because many

people know how to send information to a script using an address bar.

Sending data using the POST method is quite a bit more secure (because the method can-

not be altered by appending information to the address bar) and can contain as much

information as you choose to send. Therefore, whenever possible, use the POST method for

sending information and then adjust your script to handle it.

PHP 5’s current methods for dealing with GET and POST variables are the $_GET and

$_POST superglobals, respectively. By using these two superglobals, you can designate exactly

where the information should be coming from and subsequently handle the data in the way

you want. The following example shows the difference between using the GET and POST

methods.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

13-1 ■ GET VS. POST488

<div style="width: 500px; text-align: left;">

<?php

//Handle incoming data.

//This will trigger if you submit using GET

if ($_GET['submitted'] == "yes"){

if (trim ($_GET['yourname']) != ""){

echo "Your Name (with GET): " . $_GET['yourname'];

} else {

echo "You must submit a value.";

}

?>
Try Again<?php

}

if ($_POST['submitted'] == "yes"){

if (trim ($_POST['yourname']) != ""){

echo "Your Name (with POST): " . $_POST['yourname'];

} else {

echo "You must submit a value.";

}

?>
Try Again<?php

}

?>

<?php

//Show the forms only if you don't already have a submittal.

if ($_GET['submitted'] != "yes" && $_POST['submitted'] != "yes"){

?>

<form action="sample13_1.php" method="get">

<p>GET Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit with GET" style="margin-top: 10px;" />

</form>

<form action="sample13_1.php" method="post">

<p>POST Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit with POST" style="margin-top: 10px;" />

</form>

<?php

}

?>

</div>

</body>

</html>

13-1 ■ GET VS. POST 489

How It Works

This block of code demonstrates the difference between the GET and POST methods using the

two different forms. You should remember a few things when using such code. Specifically, try

hitting the Refresh button after submitting data using the POST form. You will note that the

browser will ask you if you want to resubmit the data that was passed to it previously. If you

want to resend the data, you must select Yes to this option. On the other hand, when using the

GET method, you will not be presented with this issue. (The browser will automatically send

the data again.)

Other than a mild bit of validation, this script is pretty simple. It receives either a POST

method or a GET method submission of a text field and then displays it if it is not an empty

field. Note that because you are using the $_POST and $_GET superglobals, you can determine

from where the information is coming. Although each form has a field called submitted, the

script knows which value to display based upon the way the information was passed to it.

13-2. Superglobals vs. Globals

Before the advent of superglobals, data was passed along from script to script with loose secu-

rity. In the php.ini file, you can change a value called register_globals to either on or off.

If you leave it on, then whenever you pass a value using the GET or POST method, you can

access the variable simply by putting an ampersand (&) character in front of the name of the

element you are passing. The problem with this method is that malicious users can insert val-

ues into your code to bypass the form entirely.

Therefore, if you want your code to be as secure as possible (and who doesn’t?), you

should definitely code your applications with register_globals turned off and ensure that

you receive your values from where you expect them to come. Using superglobals allows you

to do this. The following example shows how you can submit values using globals or super-

globals. Note that for this example to work properly, you must temporarily switch your

register_globals value to on (don’t forget to turn it off afterward!).

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.2</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//Handle the incoming data.

//Here is how you could handle it with register_globals turned on.

if ($submitted == "yes"){

if (trim ($yourname) != ""){

echo "Your Name: $yourname.";

} else {

echo "You must submit a value.";

}

13-2 ■ SUPERGLOBALS VS. GLOBALS490

?>
Try Again
<?php
}
//Now, here is how it SHOULD be handled with register_globals turned off.
if ($_POST['submitted'] == "yes"){
if (trim ($_POST['yourname']) != ""){
echo "Your Name: " . $_POST['yourname'] . ".";

} else {
echo "You must submit a value.";

}
?>
Try Again
<?php

}
?>
<?php
//Show the forms only if you don't already have a submittal.
if ($_POST['submitted'] != "yes"){
?>
<form action="sample13_2.php" method="post">
<p>Example:</p>
<input type="hidden" name="submitted" value="yes" />
Your Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>
<?php

}
?>

</div>
</body>
</html>

How It Works

Note how the code that does not use the $_POST superglobal looks pretty much identical,

minus the $_POST preceding the field name. The interesting thing to note is that if you run this

code with register_globals turned on, both scripts will fire. If, however, you run this code

with register_globals turned off, only the second script will fire. Now, consider how easily

someone could inject some code into the first script and potentially change the received

value. Since the script would not recognize where the value is coming from, it could be easily

intercepted. Using the second script, the value passed has to be the one coming from the

$_POST superglobal. It should become common practice to code only with register_globals

turned off to create as secure an application as possible.

13-3.Validating Form Input

In this day and age of constant attacks on websites, one of the biggest issues is attacking forms

directly. To ensure a suitable submission of form data, validation is key. You have many ways to

validate a form and many form elements to consider. Generally, you need to determine what

qualities you want a piece of data to adhere to and then ensure that the submitted data comes

in the correct form. If the data comes in a format that is not to your liking, you must be ready

to take care of this. The following example shows a few examples of form validation using PHP.

13-3 ■ VALIDATING FORM INPUT 491

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.3</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//Function to determine a valid e-mail address.

function validemail($email){

return preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])➥

+(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$email);

}

//Handle the incoming data.

if ($_POST['submitted'] == "yes"){

//Let's declare a submission value that tells you if you are fine.

$goodtogo = true;

//Validate the name.

try {

if (trim ($_POST['yourname']) == ""){

$goodtogo = false;

throw new exception ("Sorry, you must enter your name.
");

}

} catch (exception $e) {

echo $e->getmessage();

}

//Validate the select box.

try {

if ($_POST['myselection'] == "nogo"){

$goodtogo = false;

throw new exception ("Please make a selection.
");

}

} catch (exception $e) {

echo $e->getmessage();

}

//And lastly, validate for a proper e-mail addy.

try {

if (!validemail (trim ($_POST['youremail']))){

$goodtogo = false;

throw new exception ("Please enter a valid email address.
");

}

} catch (exception $e) {

echo $e->getmessage();

}

//Now, if there were no errors, you can output the results.

13-3 ■ VALIDATING FORM INPUT492

if ($goodtogo){

echo "Your Name: " . $_POST['yourname'] . "
";

echo "Your Selection: " . $_POST['myselection'] . "
";

echo "Your Email Address: " . $_POST['youremail'] . "
";

}

?>
Try Again
<?php

}

?>

<?php

//Show the forms only if you don't already have a submittal.

if ($_POST['submitted'] != "yes"){

?>

<form action="sample13_3.php" method="post">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname"➥

maxlength="150" />

Selection:

<select name="myselection">

<option value="nogo">make a selection...</option>

<option value="1">Choice 1</option>

<option value="2">Choice 2</option>

<option value="3">Choice 3</option>

</select>

Your Email: <input type="text" name="youremail" maxlength="150" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

<?php

}

?>

</div>

</body>

</html>

How It Works

Since, for this example, you have chosen three types of fields, it is important to take care of

them in individual ways. For this example, you want to receive a name value that will not be

blank, a selected value that must not be the default, and an e-mail address that must be in the

proper format. To make sure you do not have a blank field, you can validate the name value by

ensuring that it does not equal a blank string. In the case of the selection, if the user has not

chosen a different value than the default, the value will be a nogo, against which you can then

validate. For the last value, the e-mail address, you use a regular expression to ensure that the

e-mail address is properly formatted. By using this type of validation, you ensure that all the

submitted values are in the format you need. (See Nathan A. Good’s Chapter 9 for more about

regular expressions.)

13-3 ■ VALIDATING FORM INPUT 493

13-4. Working with Multipage Forms

Sometimes you will need to collect values from more than one page. Most developers do this

for the sake of clarity. By providing forms on more than one page, you can separate blocks of

information and thus create an ergonomic experience for the user. The problem, therefore, is

how to get values from each page onto the next page and finally to the processing script. Being

the great developer that you are, you can solve this problem and use the hidden input form

type. When each page loads, you merely load the values from the previous pages into hidden

form elements and submit them.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.4 Page 1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<form action="sample13_4_page2.php" method="post">

<p>Page 1 Data Collection:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

</div>

</body>

</html>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.4 Page 2</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<form action="sample13_4_page3.php" method="post">

<p>Page 2 Data Collection:</p>

Selection:

<select name="yourselection">

<option value="nogo">make a selection...</option>

<option value="1">Choice 1</option>

<option value="2">Choice 2</option>

<option value="3">Choice 3</option>

</select>

<input type="hidden" name="yourname" ➥

13-4 ■ WORKING WITH MULTIPAGE FORMS494

value="<?php echo $_POST['yourname']; ?>" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

</div>

</body>

</html>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.4 Page 3</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<form action="sample13_4_page4.php" method="post">

<p>Page 3 Data Collection:</p>

Your Email: <input type="text" name="youremail" maxlength="150" />

<input type="hidden" name="yourname"➥

value="<?php echo $_POST['yourname']; ?>" />

<input type="hidden" name="yourselection"➥

value="<?php echo _POST['yourselection']; ?>" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

</div>

</body>

</html>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.4 Page 4</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//Display the results.

echo "Your Name: " . $_POST['yourname'] . "
";

echo "Your Selection: " . $_POST['yourselection'] . "
";

echo "Your Email: " . $_POST['youremail'] . "
";

?>

Try Again

</div>

</body>

</html>

13-4 ■ WORKING WITH MULTIPAGE FORMS 495

How It Works

As you can see, by passing the values in the hidden form fields, you can continue to collect

information. In a real-world example, you most certainly want to perform validation to make

sure you have all the information you need at every point in the script. For this particular

example, for the sake of brevity, no validation is used, but you should definitely consider

including some of the lessons you learned in recipe 13-3. In any case, if you follow the flow of

the script, you will see that on each subsequent page the values from the previous pages are

included and hence displayed once the final display page is reached.

13-5. Redisplaying Forms with Preserved Information

and Error Messages

When receiving information submitted from a user, the information may not be submitted in

the format you need. To ensure that users do not get frustrated, it is important to inform them

of what they did wrong and clearly tell them how to fix the problem. It is also bad practice to

force users to completely rewrite all the proper information they may have already submitted

on the form. If users are forced to do redundant work, they may become irritated and poten-

tially disregard your service altogether. Therefore, to keep users happy, it is important to

validate properly and clearly while keeping matters as simple for them as possible.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.5</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<style>

.error {

font-weight: bold;

color: #FF0000;

}

</style>

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//Function to determine a valid e-mail address.

function validemail($email){

return preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])➥

+(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$email);

}

//Default to showing the form.

$goodtogo = false;

//Handle the incoming data.

if ($_POST['submitted'] == "yes"){

13-5 ■ REDISPLAYING FORMS WITH PRESERVED INFORMATION AND ERROR MESSAGES496

//Let's declare a submission value that tells you if you are fine.

$goodtogo = true;

//Validate the name.

try {

if (trim ($_POST['yourname']) == ""){

$goodtogo = false;

throw new exception ("Sorry, you must enter your name.
");

}

} catch (exception $e) {

?><?php echo $e->getmessage(); ?><?php

}

//Validate the select box.

try {

if ($_POST['myselection'] == "nogo"){

$goodtogo = false;

throw new exception ("Please make a selection.
");

}

} catch (exception $e) {

?><?php echo $e->getmessage(); ?><?php

}

//And lastly, validate for a proper e-mail addy.

try {

if (!validemail (trim ($_POST['youremail']))){

$goodtogo = false;

throw new exception ("Please enter a valid e-mail address.
");

}

} catch (exception $e) {

?><?php echo $e->getmessage(); ?><?php

}

//Now, if there were no errors, you can output the results.

if ($goodtogo){

echo "Your Name: " . $_POST['yourname'] . "
";

echo "Your Selection: " . $_POST['myselection'] . "
";

echo "Your E-mail Address: " . $_POST['youremail'] . "
";

?>
Try Again
<?php

}

}

//Show the forms only if you do not have all the valid information.

if (!$goodtogo){

?>

<form action="sample13_5.php" method="post">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150"➥

value="<?php echo $_POST['yourname']; ?>" />

13-5 ■ REDISPLAYING FORMS WITH PRESERVED INFORMATION AND ERROR MESSAGES 497

Selection:

<select name="myselection">

<option value="nogo">make a selection...</option>

<option value="1"<?php if ($_POST['myselection'] == 1){?>➥

selected="selected"<?php } ?>>Choice 1</option>

<option value="2"<?php if ($_POST['myselection'] == 2){?>➥

selected="selected"<?php } ?>>Choice 2</option>

<option value="3"<?php if ($_POST['myselection'] == 3){?>➥

selected="selected"<?php } ?>>Choice 3</option>

</select>

Your Email: <input type="text" name="youremail" maxlength="150"➥

value="<?php echo $_POST['youremail']; ?>" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

<?php

}

?>

</div>

</body>

</html>

Figure 13-1 shows the potential output if you input a valid name field but leave the selec-

tion and e-mail address empty.

Figure 13-1. Telling users to properly enter information

How It Works

In this example, you have seen how you may want to handle your validation. Keep in mind

that your objective is to ensure that users know what they did wrong and keep their properly

submitted information for ease of use. To ensure that the user of this form sees the error mes-

sages, the Cascading Style Sheet (CSS) class called error will be used every time an error

message is displayed. The error message will display in bold and red, thus directing the users

to realize what they did wrong.

By providing the value fields, and in the case of the select box a selected argument if you

have valid data, the form fields will retain any current, proper information. If there is no cur-

rent, proper data to use, nothing will display. This form has now become decidedly easy to

use, is quite secure, and ensures a happy, well-directed user.

13-5 ■ REDISPLAYING FORMS WITH PRESERVED INFORMATION AND ERROR MESSAGES498

Preventing Multiple Submissions of a Form
One possible occurrence that happens often is that users become impatient when waiting for

your script to do what it is doing, and hence they click the submit button on a form repeatedly.

This can wreak havoc on your script because, while the user may not see anything happening,

your script is probably going ahead with whatever it has been programmed to do.

Of particular danger are credit card number submittals. If a user continually hits the sub-

mit button on a credit card submittal form, their card may be charged multiple times if the

developer has not taken the time to validate against such an eventuality.

13-6. Preventing Multiple Submissions on the Server Side

You can deal with multiple submittal validation in essentially two ways. The first occurs on the

server. Server side refers to a script located on the server that is receiving the data; client side is

more browser related (and explained in the next example). Because the server has no actual

access to the browser, validating multiple submissions can be a bit trickier. While you can

accomplish this goal in a number of ways from a server-side perspective, we prefer to use a

session-based method. Basically, once the submit button has been clicked, the server logs the

request from the individual user. If the user attempts to resubmit a request, the script notes a

request is already in motion from this user and denies the subsequent request. Once the script

has finished processing, the session is unset, and you have no more worries.

For the following example, you will need a test.txt text file that you can create and place

relative to the script. (Or you can ensure that you have write privileges on the working direc-

tory, and the script will attempt to create it for you.) Keep in mind that the file must have the

proper privileges set for writing (CHMOD to 777 to keep things simple).

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.6</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<form action="sample13_6_process.php" method="post">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150” />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

</div>

</body>

</html>

<?php

//Start the session state.

session_start ();

13-6 ■ PREVENTING MULTIPLE SUBMISSIONS ON THE SERVER SIDE 499

//Set a session started value for this user.

if (!isset ($_SESSION['processing'])){

$_SESSION['processing'] = false;

}

//Now you ensure you haven't already started processing the request.

if ($_SESSION['processing'] == false){

//Now, you let the script know that you are processing.

$_SESSION['processing'] = true;

//Create a loop that shows the effect of some heavy processing.

for ($i = 0; $i < 2000000; $i++){

//Thinking...

}

//Every time you do this, write to a text file so you can test that

//the script isn't getting hit with multiple submissions.

if ($file = fopen ("test.txt","w+")){

fwrite ($file, "Processing");

} else {

echo "Error opening file.";

}

//Then you start doing the calculations.

echo $_POST['yourname'];

//Then, once you have finished calculating, you can kill the session.

unset ($_SESSION['processing']);

}

?>

How It Works

Now, enter your name and continue to jam on the submit button. Rather than allow the script

to continually run time and time again, the script verifies your existence via a session and deter-

mines if it is already processing your server call. If the script sees you are already processing,

then it will not allow you to try again no matter how many times you click the same button.

Once the script has finished performing its action, it merely unsets the session variable, and you

could theoretically start again. By checking the session, the script ensures that it is the same user

attempting to access the script and can therefore block multiple attempts from the same user.

13-7. Preventing Multiple Submissions on the Client Side

Handling multiple submittals from a client-side perspective is actually much simpler than

doing it on the server side. With well-placed JavaScript, you can ensure that the browser will

not let the submittal go through more than once. The problem with this method, of course,

is that JavaScript is not always foolproof because of the user’s ability to turn it off. That being

said, however, most users will have JavaScript enabled, so this script will likely work for

13-7 ■ PREVENTING MULTIPLE SUBMISSIONS ON THE CLIENT SIDE500

90 percent of web users. The following example uses JavaScript to cut off multiple submittals

from a client-side (browser) level.

Don’t forget to ensure that you have a valid test.txt file (CHMOD to 777), as specified in the

previous recipe.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.7</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<script language="javascript" type="text/javascript">

<!--

function checkandsubmit() {

//Disable the submit button.

document.test.submitbut.disabled = true;

//Then submit the form.

document.test.submit();

}

//-->

</script>

</head>

<body>

<div style="width: 500px; text-align: left;">

<form action="sample13_6_process.php" method="post" name="test"➥

onsubmit="return checkandsubmit ()">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit" style="margin-top: 10px;"➥

id="submitbut" name"submitbut" />

</form>

</div>

</body>

</html>

<?php

//Create a loop that shows the effect of some heavy processing.

for ($i = 0; $i < 2000000; $i++){

//Thinking...

}

//Every time you do this, let's write to a text file so you can test that

//out script isn't getting hit with multiple submissions.

if ($file = fopen ("test.txt","w+")){

fwrite ($file, "Processing");

} else {

13-7 ■ PREVENTING MULTIPLE SUBMISSIONS ON THE CLIENT SIDE 501

echo "Error opening file.";

}

//Then you start doing the calculations.

echo $_POST['yourname'];

?>

How It Works

We realize that this particular piece of functionality is based on JavaScript and this is a book

about PHP, but PHP is a server-side language. Therefore, to do a little client-side validation,

you must use a language that can interact with the browser, such as JavaScript. In any case,

the way this script works is by actually disabling the submit button once the form has been

submitted. The button is clicked, which forces the browser to redirect first to the JavaScript

function checkandsubmit(), which immediately disables the submit button and then submits

the form for you. At this point, it does not matter how long the script takes to finish executing;

the submit button is disabled and hence cannot be clicked again until the page is revisited.

13-8. Performing File Uploads

Handling file uploads in PHP is not exactly difficult from a syntax point of view, but it is

important (extremely important in fact) to ensure that the file being uploaded is within the

upload constraints you lay out for it. In other words, an individual user could easily upload a

virus or some other form of malicious software if you are not careful about allowing them to

upload only what you want from them. A similar consideration is file size. You could easily

find your server under some heavy loads if you are not careful about what size of files are

being uploaded. The following example allows you to upload an image (of the file type JPG

only) that is smaller than 500KB in size.

Keep in mind that in order for this script to work, you must have a directory created (rela-

tive to the script) that is called uploads and is writable (again, using a CHMOD of 777 is the

simplest way of accomplishing this).

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.8</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//If you have received a submission.

if ($_POST['submitted'] == "yes"){

$goodtogo = true;

//Check for a blank submission.

13-8 ■ PERFORMING FILE UPLOADS502

try {

if ($_FILES['image']['size'] == 0){

$goodtogo = false;

throw new exception ("Sorry, you must upload an image.");

}

} catch (exception $e) {

echo $e->getmessage();

}

//Check for the file size.

try {

if ($_FILES['image']['size'] > 500000){

$goodtogo = false;

//Echo an error message.

throw new exception ("Sorry, the file is too big at approx: "➥

. intval ($_FILES['image']['size'] / 1000) . "KB");

}

} catch (exception $e) {

echo $e->getmessage();

}

//Ensure that you have a valid mime type.

$allowedmimes = array ("image/jpeg","image/pjpeg");

try {

if (!in_array ($_FILES['image']['type'],$allowedmimes)){

$goodtogo = false;

throw new exception ("Sorry, the file must be of type .jpg.➥

Yours is: " . $_FILES['image']['type'] . "");

}

} catch (exception $e) {

echo $e->getmessage ();

}

//If you have a valid submission, move it, then show it.

if ($goodtogo){

try {

if (!move_uploaded_file ($_FILES['image']['tmp_name'],"uploads/".➥

$_FILES['image']['name'].".jpg")){

$goodtogo = false;

throw new exception ("There was an error moving the file.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

if ($goodtogo){

//Display the new image.

?><img src="uploads/<?php echo $_FILES['image']['name'] . ".jpg"; ?>"➥

alt="" title="" /><?php

}

13-8 ■ PERFORMING FILE UPLOADS 503

?>
Try Again<?php

}

//Only show the form if there is no submission.

if ($_POST['submitted'] != "yes"){

?>

<form action="sample13_8.php" method="post" enctype="multipart/form-data">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Image Upload (.jpg only, 500KB Max):
➥

<input type="file" name="image" />

<input type="submit" value="Submit" style="margin-top: 10px />

</form>

<?php

}

?>

</div>

</body>

</html>

A sample execution of this script could lead to a certain someone appearing on your

monitor (see Figure 13-2).

Figure 13-2. Beware of Darth Vader.

How It Works

The first aspect of this script you need to know about is that PHP 5 handles file uploads

through the superglobal $_FILES. By accessing certain elements of this superglobal, you can

find out certain information about the file upload. Table 13-2 lists data you can retrieve from

the $_FILES superglobal. The next important aspect to uploading files takes place in the form

element itself. If you plan to pass along a file, you must include the code enctype="multipart/

form-data", or else the script will appear to function successfully without ever actually passing

along a file.

13-8 ■ PERFORMING FILE UPLOADS504

Table 13-2. $_FILES Arguments

Argument Description

name The original filename that was uploaded

type The MIME type of the uploaded file

size The size of the uploaded file (in bytes)

tmp_name The temporary name of the file that has been uploaded

error The error code that may be generated by the file upload

From this point on, the rest is merely a matter of validation. By comparing the file type

against an array of allowed MIME types, you can completely shut out malicious file uploads

(because the MIME type will return the absolute type of the file). Size validation is handled in

bytes, so if you plan on limiting it according to megabytes or kilobytes, you must do a few

calculations (such as bytes multiplied by 1,000 in this case to return a kilobyte result).

As for moving the actual file and saving it, you can use two methods for performing

this action. The two functions in PHP that will allow you to save a file are the copy() and

move_uploaded_file() functions. We prefer to use the move_uploaded_file() function, as it

will work even when PHP’s safe mode is enabled. If PHP has its safe mode enabled, the copy()

function will fail. They both work largely the same, so there is no real downside to using the

move_uploaded_file() function over the copy() function.

13-9. Handling Special Characters

An added security feature, particularly when dealing with database submittal, is validating

against special characters being inserted into your script. Be it a database insertion script, a

contact form, or even a mailer system, you always want to ensure that no malicious users are

attempting to sabotage your script with bad (or special) characters. PHP allots a number of

functions to use in this regard. In the following example, you will look at the functions trim(),

htmlspecialchars(), strip_tags(), and addslashes(). Their prototypes are as follows:

string trim (string str [, string charlist])

string htmlspecialchars (string string [, int quote_style [, string charset]])

string strip_tags (string str [, string allowable_tags])

string addslashes (string str)

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.9</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//If you have received a submission.

13-9 ■ HANDLING SPECIAL CHARACTERS 505

if ($_POST['submitted'] == "yes"){

$yourname = $_POST['yourname'];

//You can trim off blank spaces with trim.

$yourname = trim ($yourname);

//You can cut off code insertion with strip_tags.

$yourname = strip_tags ($yourname);

//You can turn any special characters into safe➥

representations with htmlspecialchars.

$yourname = htmlspecialchars ($yourname);

//And you can prepare data for db insertion with addslashes.

$yourname = addslashes ($yourname);

//And echo the result.

echo $yourname . "
";

?>Try Again<?php

}

//Show the form only if there is no submission.

if ($_POST['submitted'] != "yes"){

?>

<form action="sample13_9.php" method="post">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Name: <input type="text" name="yourname" maxlength="150" />

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

<?php

}

?>

</div>

</body>

</html>

How It Works

The four functions you have put into play perform different actions on a submitted variable.

The trim() function removes any blank space found at the beginning or end of the submitted

string. The htmlspecialchars() function turns attempted HTML into its special character

equivalent. For instance, if you enter an ampersand (&) symbol, the system will change that

symbol into a harmless &. The strip_tags() function completely removes any characters

it sees as being a tag. You can delimit to the function which tags you want stripped as well. The

last function, addslashes(), places a slash in front of any characters that could be harmful to

the database such as apostrophes. The end result is a string that is quite squeaky clean, and

you can feel safe performing functionality on it.

13-10. Creating Form Elements with Multiple Options

From time to time, it will occur to you as a developer that you may need to retrieve several val-

ues from the same select box. Luckily, HTML and PHP 5 have made an allowance for such a

13-10 ■ CREATING FORM ELEMENTS WITH MULTIPLE OPTIONS506

feature. Commonly referred to as a list box, the functionality involved allows you to select a

multitude of items (by holding down the Control key) and then submit them as one. The fol-

lowing example allows you to select a number of items and then display only the selected

items in the script.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.10</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//If you have received a submission.

if ($_POST['submitted'] == "yes"){

//Check if any have been selected.

if (count ($_POST['fruit']) != 0){

echo "Your Selections:
";

} else {

echo "You have not made any selections.

";

}

//You can actually treat the submittal as an array.

for ($i = 0; $i < count ($_POST['fruit']); $i++){

echo $_POST['fruit'][$i] . "
";

}

?>Try Again<?php

}

//Show the form only if there is no submission.

if ($_POST['submitted'] != "yes"){

?>

<form action="sample13_10.php" method="post">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Your Choice (s):

<select name="fruit[]" multiple="multiple" style="width: 400px;➥

height: 100px;">

<option value="Bananas">Bananas</option>

<option value="Apples">Apples</option>

<option value="Oranges">Oranges</option>

<option value="Pears">Pears</option>

<option value="Grapes">Grapes</option>

<option value="Kiwi">Kiwi</option>

</select>

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

13-10 ■ CREATING FORM ELEMENTS WITH MULTIPLE OPTIONS 507

<?php

}

?>

</div>

</body>

</html>

How It Works

You should note a few key features when examining this code. In the form element itself, you

will witness a few new attributes to the select tag. You can designate the element as a list box

by adding the attribute multiple="multiple", and you designate the field as something that

can be read as an array by adding the [] to the end of the element name. Once PHP gets a hold

of the posted value, it treats the value as an array. By walking through the array one element at

a time using a for loop, you can output the selections by merely outputting the value of the

array. If a particular option was not selected, it simply will not show up in the array.

13-11. Creating Form Elements Based on the Current Time

and/or Date

Occasionally, it makes sense to create a form-based element that will react according to the

current date and/or time on the server. Doing so speeds up form entry for the user and can

make things slightly more ergonomic. To create this sort of functionality, you merely embed

some PHP into the HTML to create a dynamic element set. Those of you who have studied

Jon Stephens’s Chapter 5 will find this section of code to be no trouble at all. The following

example allows you to select a value with the form elements being preset to the current

date and time.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Sample 13.11</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<div style="width: 500px; text-align: left;">

<?php

//If you have received a submission.

if ($_POST['submitted'] == "yes"){

echo $_POST['month'] . "/" . $_POST['day'] . "/" . $_POST['year']➥

. " - " . $_POST['hour'] . ":" . $_POST['minute']➥

. ":" . $_POST['second'];

?>
Try Again<?php

}

//Only show the form if there is no submission.

if ($_POST['submitted'] != "yes"){

13-11 ■ CREATING FORM ELEMENTS BASED ON THE CURRENT T IME AND/OR DATE508

?>

<form action="sample13_11.php" method="post">

<p>Example:</p>

<input type="hidden" name="submitted" value="yes" />

Select a Date and Time:

<select name="month">

<?php

for ($i = 1; $i <= 12; $i++){

?><option value="<?php echo $i; ?>"<?php if ($i == date ("n")){?>➥

selected="selected"<?php } ?>><?php echo $i; ?></option><?php

}

?>

</select> /

<select name="day">

<?php

for ($i = 1; $i <= 31; $i++){

?><option value="<?php echo $i; ?>"<?php if ($i == date ("j")){?>➥

selected="selected"<?php } ?>><?php echo $i; ?></option><?php

}

?>

</select> /

<select name="year">

<?php

for ($i = 1950; $i <= date ("Y"); $i++){

?><option value="<?php echo $i; ?>"<?php if ($i == date ("Y")){?>➥

selected="selected"<?php } ?>><?php echo $i; ?></option><?php

}

?>

</select> -

<select name="hour">

<?php

for ($i = 1; $i <= 24; $i++){

?><option value="<?php echo $i; ?>"<?php if ($i == date ("G")){?>➥

selected="selected"<?php } ?>><?php echo $i; ?></option><?php

}

?>

</select> :

<select name="minute">

<?php

for ($i = 1; $i <= 60; $i++){

//Deal with leading zeros.

if ($i < 10){

$comparem = "0" . $i;

} else {

$comparem = $i;

}

?><option value="<?php echo $i; ?>"➥

13-11 ■ CREATING FORM ELEMENTS BASED ON THE CURRENT T IME AND/OR DATE 509

<?php if ($comparem == date ("i")){?> selected="selected"<?php } ?>>➥

<?php echo $i; ?></option><?php

}

?>

</select> :

<select name="second">

<?php

for ($i = 1; $i <= 60; $i++){

//Deal with leading zeros.

if ($i < 10){

$compares = "0" . $i;

} else {

$compares = $i;

}

?><option value="<?php echo $i; ?>"➥

<?php if ($compares == date ("s")){?> selected="selected"<?php } ?>>➥

<?php echo $i; ?></option><?php

}

?>

</select>

<input type="submit" value="Submit" style="margin-top: 10px;" />

</form>

<?php

}

?>

</div>

</body>

</html>

How It Works

The way this script works is by providing the selected="selected" value in the case where the

current date element equals its counterpart in the select box. By being marked as selected when

the proper element approaches, the form provides the ability to select the current date and time

with the greatest of ease. Of course, should users want to select a different date and/or time, that

is entirely up to them. This is merely meant to act as a time-saver to improve the ergonomics of

the web application.

Summary
Like it or not, dealing with forms will become a common occurrence with pretty much any

script you happen to be building. The opportunity to collect information from a user is limited

almost entirely to form collection and is the standard for such functionality.

With this in mind, it is important to create forms based on a number of elements. While

any developer can create a form to collect information, the way to single yourself out as a

competent developer is to consider factors such as security, ergonomics, validation, and ease

of use.

13-11 ■ CREATING FORM ELEMENTS BASED ON THE CURRENT T IME AND/OR DATE510

A form should collect the information required and do it in such a way that the user feels

as though the form flows quite easily and effectively. You should perform error handling at all

times, and errors should die gracefully with helpful error messages and an intuitive return to

the form with the information that was originally submitted.

Choosing the correct form element for the job is a task you should not take lightly, and

each form should be designed from the ground up with ease of use in mind. Ask yourself the

question, what would be the most effective? Also, what would be the easiest means of collect-

ing a certain amount of information?

With a properly thought-out plan of attack, you can create forms that will do more than

just serve their purpose; they will function almost as a wizard does, with the user constantly

able to understand what is happening and not being allowed to perform any functionality

they should not have access to do.

Looking Ahead
In the next chapter, Frank M. Kromann will guide you through the fairly modern concepts

of markup and Extensible Markup Language (XML). The industry is leaning more and more

toward XML as a portable and extremely valuable form of both data collection and data port-

ing, and Chapter 14 will showcase some of PHP 5’s robust handling of XML.

13-11 ■ CREATING FORM ELEMENTS BASED ON THE CURRENT T IME AND/OR DATE 511

Working with Markup

PHP was originally designed as a way to use a special Hypertext Markup Language (HTML)

tag to access custom-made business logic written in C. This system has since evolved to a full

programming language that allows an HTML developer to add and parse code or a program-

mer to create advanced scripts that generate HTML documents, images, or other forms of

documents. The processing of the special PHP tag takes place on the server side, before the

final document is transferred to the browser or client. This is why the language used to be

called PHP Hypertext Preprocessor.

When you request that a web server serve a document, the document is usually read from

a disk or other storage device and transferred directly to the client. You can instruct the web

server to preprocess the document before sending it to the client. This is how PHP documents

or scripts are handled. It is not the document but the output from the preprocessor that is

sent to the client when a browser requests a PHP script. The script can define the document

type—or, as it is called in the web world, the content type—before any content is sent to the

client. This makes it possible for a PHP script to return a simple text file, an HTML document,

or even binary images files generated on the fly.

14-1. Understanding Markup Concepts

You can pass any text document to the PHP engine for parsing, and the engine will scan the

document and divide it into sections. The content that falls between the special PHP tags

<?php and ?> will be treated as script code and executed by the engine. Everything else will be

transferred directly to the client without any parsing or changes. A PHP document can be one

big script starting and ending with the PHP tags, or it can be an HTML document with one or

more embedded PHP tags. In fact, it could be any document type with embedded PHP tags,

but the engine sets the document type to text/html by default in the Hypertext Transfer Proto-

col (HTTP) header. You can change this by using the default_mimetype parameter in php.ini

or by setting a new content type with the header() function before sending any other output.

The following code shows how to use PHP to generate a standard text file where part of the file

is untouched by the engine and other parts of the document are parsed by the engine.

513

C H A P T E R 1 4

■ ■ ■

The Code

<?php

// Example 14-1-1.php

header("Content-Type: text/plain");

?>

Hello and welcome to the random number generator!

Your random number is: <?php echo mt_rand(0,100); ?>

This is all for today

How It Works

When the document (in this case 14-1-1.php) is requested from a browser, the web server will

pass it through PHP. The engine will see two PHP tags. The first one contains a comment and a

call to the header function. This sets a new content type for the output. The second PHP tag

contains script code to generate a random number from 0 to 100 and to print that value as

part of the document. All the text outside the two tags will be returned to the browser without

any changes. The result looks like this:

Hello and welcome to the random number generator!

Your random number is: 67

This is all for today

Plain text is just one of many content types that can tell the client how to handle the con-

tent. The client is most often a web browser that was designed to read and render HTML

content, so the default setting of text/html is a good choice. But web servers are used more

and more to serve other types of content as well. A good example of this is news feeds in the

form of an RDF Site Summary/Rich Site Summary (RSS) file or an Extensible Markup Lan-

guage (XML) file. An RSS file is an XML file with a specific set of tags. This RSS file can be a

static file stored on a hard drive, or it can be a PHP document where the content is generated

from database lookups when the document is requested. Some browsers support the render-

ing of RSS files, but dedicated feed readers are also available; you can configure these readers

to scan a list of RSS feeds from different servers and display a headline and short abstract for

each news article. The PHP website provides a number of RSS feeds; one of them is

http://www.php.net/news.rss. In recipe 14-7, you will take a closer look at RSS feeds and see

how they work.

14-2. Manually Generating Markup

You can manually generate output from PHP with print or echo statements in the code. PHP

also provides several functions that offer helpful output for more complex data types, but echo

or print are the most common output functions when it comes to manually generating con-

tent. You can generate almost any content type, but this opens the possibility for generating

14-1 ■ UNDERSTANDING MARKUP CONCEPTS514

documents with errors. A missing closing tag will cause an error in an XML document but

might not do that in HTML.

The next example shows how a result set from a database query can generate a simple

XML document. The example uses a FrontBase database, but you can easily change this to

Microsoft SQL Server, MySQL, or any other PHP-supported database.

The Code

<?php

// Example 14-1-2.php

header("Content-Type: text/xml");

echo "<?xml version=\"1.0\" encoding=\"iso-8859-1\" ?>\n";

echo "<inventory>\n";

$con = fbsql_connect("localhost", "user", "password");

if ($con) {

fbsql_select_db("database", $con);

$rs = fbsql_query("select * from products;", $con);

if ($rs) {

while($row = fbsql_fetch_assoc($rs)) {

echo "<product id=\"$row[id]\">\n" .

"<name>$row[name]</name>\n" .

"</product>\n";

}

fbsql_free_result($rs);

}

fbsql_close($con);

}

echo "</inventory>";

?>

How It Works

This script starts by setting the content type to text/xml, and then it outputs the XML defini-

tion tag, where the XML version and encoding is specified. Then it prints the first half of the

outermost tag of the XML document. The other half, or the closing tag, is printed as the last

statement of the script. The code included in the inventory tags is where the work takes place.

A connection is created to the database, and a query that selects all columns and all rows from

the product table is executed. For each of the returned rows, it prints a product tag that has

one attribute and includes one child element with the product name.

Note how attributes are enclosed in double quotes. Unlike HTML or JavaScript docu-

ments that allow a mix of single and double quotes, XML documents are stricter and require

double quotes. XML is in fact bound by much stricter rules in many areas than you may be

used to when working with HTML documents. Depending on the browser, it is possible to for-

get a </tr> tag before the next <tr> tag without any visible effect on the result. The browser’s

rendering function will render the document anyway. With XML, it is required that tags come

in pairs, so <inventory> must have a corresponding </inventory> tag for the document to be

14-2 ■ MANUALLY GENERATING MARKUP 515

valid. The only exception to this is for a tag that is empty and does not contain any children.

You can write such a tag as <tag id="test" />. The slash before the end of the tag indicates

that this is a stand-alone tag. You can get the same effect by using <tag id="test"></tag>, but

obviously the first version is shorter.

When it comes to special characters such as & and national characters such as æøå, you

might usually use these directly in an HTML document, but that will not work in XML documents.

You must represent these special characters with HTML entities (&, æ, ø, and

å). As you will see in the next recipe, certain sophisticated tools will handle this for you when

generating XML documents.

14-3. Using DOM to Generate Markup

Manually generating markup will in most cases require that the document be generated from

the top down. And it is up to the developer to make sure all tags are complete with matching

opening and closing tags. You can optimize this with the help of a few PHP functions or

classes, but PHP comes with a set of built-in objects and functions. The Document Object

Model (DOM) provides a treelike structure that makes it easy to create and handle markup.

PHP has two implementations of DOM: DOM and DOMXML.

The DOMXML extension was moved to the PHP Extension and Application Repository

(PECL) repository and will no longer be bundled with PHP as of PHP 5.0.0.

The DOM extension is bundled and enabled by default (no need for recompilations to use

it) on both Unix and Windows platforms from PHP 5.0.0. It is a replacement for the DOMXML

extension from PHP 4, and it follows the DOM Level 2 standard.

You can handle DOM documents by creating an instance of the DomDocument() class. This

class provides methods to create and add elements to the object tree. The DomDocument() con-

structor takes two parameters; the first is a string indicating the DOM version to be used, and

the second is an optional encoding parameter. These values create the content of the <?xml ?>

tag located as the first tag in an XML document.

The DOM extension makes it possible to create both HTML and XML documents from

the same object tree by calling saveHTML() or saveXML() on the DomDocument()object. The next

example shows how to create a simple HTML document with the DOM extension.

The Code

<?php

// Example 14-3-1.php

$root = new DomDocument('1.0', 'iso-8859-1');

$html = $root->createElement("html");

$body = $root->createElement("body");

$table = $root->createElement("table");

$row = $root->createElement("tr");

$cell = $root->createElement("td", "value1");

$row->appendChild($cell);

$cell = $root->createElement("td", "value2");

$row->appendChild($cell);

14-3 ■ USING DOM TO GENERATE MARKUP516

$table->appendChild($row);

$body->appendChild($table);

$html->appendChild($body);

$root->appendChild($html);

echo $root->saveHTML();

?>

How It Works

The first step is to create an instance of DomDocument(). This then creates instances of the

DomElement() class for each tag you want in the file.

This example uses two methods to create and add elements to the object tree. The

createElement() method can be called with one or two string parameters. The first parameter

specifies the node or element name, and the second parameter specifies an optional value. If

a value is passed, it will be added between the opening and closing tags for that element. In

the previous example, you created the html, body, table, and tr elements without any values.

These elements will only contain other elements. The two td elements were created with a

value, and the value will end up as the data in the table cells in the resulting HTML document.

The other method, appendChild(), places the elements in the object tree, and as shown in the

example, you can use this method both on the root element and on any of the child elements in

the tree.

The output from this code will be sent to the client in the form of a valid HTML document.

The default content type for output generated with PHP is text/html, so you do not have to send

an explicit header.

<html><body><table><tr>

<td>value1</td>

<td>value2</td>

</tr></table></body></html>

The object tree is maintained in memory, so it is possible to add elements to a node even

after it has been added to the tree. So, if you want to add another row to the table in the previ-

ous example, you can do so at any time before the output is generated, as shown next.

The Code

<?php

// Example 14-3-2.php

$root = new DomDocument('1.0', 'iso-8859-1');

$html = $root->createElement("html");

$body = $root->createElement("body");

$table = $root->createElement("table");

$row = $root->createElement("tr");

14-3 ■ USING DOM TO GENERATE MARKUP 517

$cell = $root->createElement("td", "value1");

$row->appendChild($cell);

$cell = $root->createElement("td", "value2");

$row->appendChild($cell);

$table->appendChild($row);

$body->appendChild($table);

$html->appendChild($body);

$root->appendChild($html);

$row = $root->createElement("tr");

$cell = $root->createElement("td", "value3");

$row->appendChild($cell);

$cell = $root->createElement("td", "value4");

$row->appendChild($cell);

$table->appendChild($row);

echo $root->saveHTML();

?>

How It Works

This is basically the same code as used in the previous example, but it shows how you can add

elements to other elements deep in the tree, even after these have been added to the tree. This

will generate the following output:

<html><body><table>

<tr>

<td>value1</td>

<td>value2</td>

</tr>

<tr>

<td>value3</td>

<td>value4</td>

</tr>

</table></body></html>

When an element has been created with or without the optional value, it is possible

to add text or character data to the element. You can do this with createTextNode() or

createCDATASection(). Both methods are available on the DomDocument() object, and they

both return an object that must be appended to the object tree with the appendChild()

method. The next example shows how you can use the createTextNode() method to add

multiple text strings to a body element in an HTML document.

14-3 ■ USING DOM TO GENERATE MARKUP518

The Code

<?php

// Example 14-3-3.php

$root = new DomDocument('1.0', 'iso-8859-1');

$html = $root->createElement("html");

$body = $root->createElement("body");

$txt = $root->createTextNode(

utf8_encode("This is a text with Danish characters æøå\n")

);

$body->appendChild($txt);

$txt = $root->createTextNode(

utf8_encode("& we could continue to add text to this document")

);

$body->appendChild($txt);

$html->appendChild($body);

$root->appendChild($html);

echo $root->saveHTML();

?>

How It Works

This example will create a document with two elements (html and body). Inside the inner body

tag, you will add two text nodes. Using the utf8_encode() function will ensure that all special

characters are converted correctly.

<html><body>This is a text with Danish characters æøå

& we could continue to add text to this document</body></html>

Using CDATA sections, or character data sections, is important when handling XML docu-

ments. The CDATA sections allow the document to contain sections with special characters and

linefeeds. You can use the CDATA sections to include JavaScript code in an XML document, as

shown in the next example.

The Code

<?php

// Example 14-3-4.php

$root = new DomDocument('1.0', 'iso-8859-1');

$html = $root->createElement("html");

$body = $root->createElement("body");

$script = $root->createElement("script");

14-3 ■ USING DOM TO GENERATE MARKUP 519

$txt = $root->createCDATASection(

"function SubmitForm() {

if (document.myform.name.value == '') {

alert('Name cannot be empty');

document.myform.name.focus();

}

}"

);

$script->appendChild($txt);

$body->appendChild($script);

$html->appendChild($body);

$root->appendChild($html);

header("Content-Type: text/xml");

echo $root->saveXML();

?>

How It Works

You can use the createCDATASection() method like the other create methods to create the

node that is later appended to the object tree with the appendChild() method. This example

also uses the header() function to overwrite the default content type, and it uses the saveXML()

method to create an XML document.

<?xml version="1.0" encoding="iso-8859-1"?>

<html><body><script><![CDATA[function SubmitForm() {

if (document.myform.name.value == '') {

alert('Name cannot be empty');

document.myform.name.focus();

}

}]]></script></body></html>

14-4. Creating and Setting Attributes

So far you have seen documents where all the elements are as simple as a tag name. In many

cases, documents require that the elements or tags have attributes that specify additional infor-

mation for each tag. An example is the table element in the HTML documents you have created.

The table element can include attributes such as width, height, and border as well as several

others. The createElement() method does not provide a way to add these attributes or attribute

values, but the DomDocument() object has a method that handles this. The createAttribute()

method creates the attribute by giving it a name. Each attribute can then be appended to the

element with the appendChild() method. When attributes are appended to the element, they

do not have a value assigned to them. The values are assigned with the setAttribute() method.

This method must be applied to the element where the attribute is defined, and it takes two string

parameters. The first parameter is the name of the attribute, and the second parameter is the

14-4 ■ CREATING AND SETTING ATTRIBUTES520

value. If the attribute name does not exist on the element where setAttribute is called, the

attribute will be created.

■Note The parameter name is case-sensitive, so defining an attribute with the name width and assigning

a value to Width will lead to the element having two attributes.

You can now extend the HTML example from earlier (example 14-3-1.php) to include the

creation of attributes on the table element.

The Code

<?php

// Example 14-4-1.php

$root = new DomDocument('1.0', 'iso-8859-1');

$html = $root->createElement("html");

$body = $root->createElement("body");

$table = $root->createElement("table");

$w = $root->createAttribute("width");

$table->appendChild($w);

$h = $root->createAttribute("height");

$table->appendChild($h);

$b = $root->createAttribute("border");

$table->appendChild($b);

$table->setAttribute("width", "100%");

$table->setAttribute("height", "50%");

$table->setAttribute("border", "1");

$row = $root->createElement("tr");

$cell = $root->createElement("td", "value1");

$row->appendChild($cell);

$cell = $root->createElement("td", "value2");

$row->appendChild($cell);

$table->appendChild($row);

$body->appendChild($table);

$html->appendChild($body);

$root->appendChild($html);

echo $root->saveHTML();

?>

14-4 ■ CREATING AND SETTING ATTRIBUTES 521

How It Works

In this example, you create and append the tree attributes to the table element and assign

them some values. The output will then look like this:

<html><body><table width="100%" height="50%" border="1"><tr>

<td>value1</td>

<td>value2</td>

</tr></table></body></html>

Because attributes are automatically created, you can reduce this example a bit without

impacting the result. The next example shows how to remove the creation and appending of

attributes and simply assign the needed attributes to the elements where you need them.

The Code

<?php

// Example 14-4-2.php

$root = new DomDocument('1.0', 'iso-8859-1');

$html = $root->createElement("html");

$body = $root->createElement("body");

$table = $root->createElement("table");

$table->setAttribute("width", "100%");

$table->setAttribute("height", "50%");

$table->setAttribute("border", "1");

$row = $root->createElement("tr");

$cell = $root->createElement("td", "value1");

$row->appendChild($cell);

$cell = $root->createElement("td", "value2");

$row->appendChild($cell);

$table->appendChild($row);

$body->appendChild($table);

$html->appendChild($body);

$root->appendChild($html);

echo $root->saveHTML();

?>

The DomElement object also includes methods to check for the existence of an attribute,

remove an attribute, and get the value of an attribute. The methods are called hasAttribute(),

removeAttribute(), and getAttribute(). These functions all take the attribute name as the

only parameter.

14-4 ■ CREATING AND SETTING ATTRIBUTES522

14-5. Parsing XML

So far we have been discussing generating HTML and XML documents, but you can also use the

DOM extension to load and parse both HTML and XML documents. Unlike XML documents,

HTML documents do not have to be well formatted (browsers can render HTML documents

with missing end tags), so it is likely to see errors or warnings when these documents are loaded.

The DomDocument() class includes methods to parse string values as HTML or XML and methods

to load the content directly from a file or as a stream. The next example does not make much

sense, but it demonstrates how to read the HTML content directly from a Uniform Resource

Locator (URL). The resulting HTML document is then echoed directly to the client. The

loadHTMLFile() method is called statically, and this will create the DomDocument() object auto-

matically. You can also create the DomDocument() object first and then have the loadHTMLFile()

applied to it, with the same result.

The Code

<?php

// Example 14-5-1.php

$doc = DOMDocument::loadHTMLFile("http://php.net");

echo $doc->saveHTML();

?>

How It Works

This example will load the content of the default HTML document from http://php.net into

a DomDocument() object, and it will create the object tree for all elements and child elements

for the entire document. The entire document is the echoed back to the browser without any

changes. The result from this script is too long to show here, but it might include lines like these:

Warning: DOMDocument::loadHTMLFile(): htmlParseEntityRef: no name in

http://php.net, line: 119 in Samples/14.10.php on line 2

This indicates that the content includes & or other undefined entities. To be well format-

ted, & should be replaced with &.

Parsing documents with the DOM extension is more useful if the document is an XML

document; as an example, you can use http://slashdot.org/slashdot.xml. This is a docu-

ment that provides a list of the current stories on Slashdot. The file is structured with a root

element called backslash and a number of story elements, each containing title, url, time,

author, and other elements. The basic structure of this file is as follows with a single story

entry. The complete file contains multiple story sections.

<?xml version="1.0"?><backslash

xmlns:backslash="http://slashdot.org/backslash.dtd">

<story>

<title>Dell Axim X50 Running Linux</title>

<url>http://slashdot.org/article.pl?sid=05/06/15/022211</url>

<time>2005-06-15 04:10:00</time>

14-5 ■ PARSING XML 523

<author>timothy</author>

<department>tempty-tempty</department>

<topic>100</topic>

<comments>0</comments>

<section>hardware</section>



</story>

…

</backslash>

The following code shows a simple script that loads the content of this file into a DOM

object tree.

The Code

<?php

// Example 14-5-2.php

$slashdot = DOMDocument::load("http://slashdot.org/slashdot.xml");

■Caution Many sites that provide XML feeds require that you fetch an updated version only at certain

intervals. Please respect this, and store a local copy of the file on your own system until it is time to request

a new file from the server. For Slashdot, the minimum time between requests is 30 minutes. If the previous

code is excecuted too often, it will return errors, as the document read from the server will no longer be a

valid XML document.

The next example handles the local caching of the document and uses that as long as the

local version is valid.

The Code

<?php

// Example 14-5-3.php

$local_file = "slashdot.xml";

$ttl = 30 * 60; // Cache in 30 min.

if (file_exists($local_file) && filemtime($local_file) > time() - $ttl) {

echo "Loading from cache\n";

$slashdot = DOMDocument::load($local_file);

}

else {

echo "Loading from server\n";

$slashdot = DOMDocument::load("http://slashdot.org/slashdot.xml");

$fp = fopen($local_file, "wt");

if ($fp) {

fwrite($fp, $slashdot->saveXML());

fclose($fp);

14-5 ■ PARSING XML524

}

}

?>

How It Works

First you define variables for the local document name and the time to live in the cache. Then

you check whether the local document exists and whether it is valid. If that is the case, you

load the document from the local file. If the document is invalid, you load a new copy from

the original website and store that copy on the disk.

Loading from server

Any other execution of the code will produce output like this:

Loading from cache

When the document is loaded into the object tree, you can get the different elements by

using either getElementsByTagName() or getElementsById(). The first function looks for all the

elements in the document where the tag name is equal to the parameter. The second function

uses the special attribute called id to build a list of elements.

So, if you want to use this document to create a new HTML document that contains a list

of all the titles with links to the full stories, you could get the individual stories by starting from

the top. You can extract all the story elements with a single call to the getElementsByTagName()

method. This will return a list of nodes that can be examined one at the time in a foreach()

loop, as shown next.

The Code

<?php

// Example 14-5-4.php

$slashdot = DOMDocument::load("http://slashdot.org/slashdot.xml");

$stories = $slashdot->getElementsByTagName("story");

foreach($stories as $story) {

$titles = $story->getElementsByTagName("title");

foreach($titles as $title) {

echo $title->nodeValue . " - ";

}

$urls = $story->getElementsByTagName("url");

foreach($urls as $url) {

echo $url->nodeValue . "\n";

}

}

?>

14-5 ■ PARSING XML 525

How It Works

This example uses the special property on the DomElement object, called nodeValue, to extract

the actual value for the title and url elements. The getElementsByTagName() method exists on

the DomDocument() object as well as the DomElement object. This allows you to scan for the title

and URL for a selected element only.

The output from this example will look like this:

FDA OKs Brain Pacemaker for Depression –

http://slashdot.org/article.pl?sid=05/07/21/1657242

Do Not Call List Under Attack - http://slashdot.org/article.pl?sid=05/07/21/1439206

Firefox 1.1 Scrapped - http://slashdot.org/article.pl?sid=05/07/21/142215

World of Warcraft For The Win - http://slashdot.org/article.pl?sid=05/07/21/1341215

Space Shuttle Discovery to Launch July 26 –

http://slashdot.org/article.pl?sid=05/07/21/1220218

Microsoft Continues Anti-OSS Strategy –

http://slashdot.org/article.pl?sid=05/07/21/1218247

Security Hackers Interviewed - http://slashdot.org/article.pl?sid=05/07/21/1215217

Pay-Per-Click Speculation Market Soaring –

http://slashdot.org/article.pl?sid=05/07/21/124230

Websurfing Damaging U.S. Productivity? –

http://slashdot.org/article.pl?sid=05/07/21/0132206

VoIP Providers Worry as FCC Clams Up –

http://slashdot.org/article.pl?sid=05/07/21/0135213

PHP 5.0 includes a new extension for parsing XML documents called SimpleXML. The

SimpleXML extension makes the parsing of files such as slashdot.xml much easier. You can

handle the previous example with the following small piece of code.

The Code

<?php

// Example 14-5-5.php

$stories = simpleXML_load_file("http://slashdot.org/slashdot.xml");

foreach($stories as $story) {

echo $story->title . " - ";

echo $story->url . "\n";

}

?>

How It Works

This code produces the same output as the previous example. The content is loaded directly

from the URL, but the resulting SimpleXML object is a list of all the story elements. The

backslash element is ignored, because XML files can contain exactly one root-level element.

You do not need to call functions or methods to get values or attributes on a SimpleXML object.

14-5 ■ PARSING XML526

These are made available directly on the object structure (such as PHP objects), as shown in

the next two examples where the attributes are extracted from the same XML file using first the

DOM method and then the SimpleXML method. In the first example, you create a file that con-

tains the XML content; in this case, use a short list of books. Each book has an ID defined as an

attribute on the book element and a title defined as a child element to the book element.

<?xml version="1.0" ?>

<!-- example books.xml -->

<books>

<book book_id="1">

<title>PHP 5 Recipes</title>

</book>

<book book_id="2">

<title>PHP Pocket Reference</title>

</book>

</books>

■Note You can use comment elements in XML documents in the same way you use them in HTML.

In the next example, you create the script that uses the DOM extension to create a list of

title and book_id attributes.

The Code

<?php

// Example 14-5-6.php

$doc = DOMDocument::load("books.xml");

$books = $doc->getElementsByTagName("book");

foreach($books as $book) {

$titles = $book->getElementsByTagName("title");

foreach($titles as $title) {

echo $title->nodeValue . " - ";

}

$id = $book->getAttribute("book_id");

echo "book_id = $id\n";

}

?>

Now create the same example with the SimpleXML extension.

The Code

<?php

// Example 14-5-7.php

$books = simpleXML_load_file("books.xml");

14-5 ■ PARSING XML 527

foreach($books as $book) {

echo $book->title . " - ";

echo "book_id = $book[book_id]\n";

}

?>

How It Works

Both examples use the same XML file to create a DOM object tree or a Simple XML tree, and

both examples create the same output with the title and book_id attributes for each book:

PHP 5 Recipes - book_id = 1

PHP Pocket Reference - book_id = 2

This example uses a small and simple XML file. If the file were more complex, the advan-

tages of using SimpleXML to parse the content would be obvious. The SimpleXML extension

does not include any features to manipulate the XML document in memory, but both exten-

sions have functions that allow for the exchange of documents between the two standards. It’s

possible to use the DOM extension to build a document with values from a database or other

source and then convert it to SimpleXML before the document is passed to another process

for further processing. The advantage of the DOM extension is the ability to add, remove, and

change elements and attributes in the object tree.

14-6. Transforming XML with XSL

Transforming XML documents to other XML documents or even to HTML documents is an

important part of handling XML documents. Before PHP 5.0, you could do this with the XSLT

extension. (XSLT stands for XSL Transformations, and XSL stands for Extensible Stylesheet

Language.) The XSLT extension was built as a processor-independent application program-

ming interface (API) with support for the Sabletron library. Since PHP 5.0, a new extension

called XSL is available for transformations, and the XSLT extension has been moved to the

PECL repository. The XSL extension builds on libxslt and is available on both Unix and Win-

dows platforms. Unlike the DOM and SimpleXML, this extension is not enabled/loaded by

default; you must load it from php.ini or with the dl() function. You can also compile it as a

static module with no need for loading. You do this by including the –with-xsl option when

running the configure script on a Unix platform.

If you return to the Slashdot example, where an XML file is loaded into a

DomDocument() object, you can use the same file to see how XSL can transform this document

to an HTML document that can be included on other web pages. Working with XSL is in many

ways similar to how DOM works, though the methods and functions are different. The follow-

ing document shows how to create an instance of xsltProcessor(), import a stylesheet, and

transform the slashdot.xml document.

14-6 ■ TRANSFORMING XML WITH XSL528

The Code

<?php

// Example 14-6-1.php

if (!extension_loaded("xsl")) {

dl("php_xsl.dll");

}

$xslt = new xsltProcessor;

$xslt->importStyleSheet(DomDocument::load('slashdot.xsl'));

$slashdot = new DomDocument("1.0", "iso-8889-1");

$slashdot->preserveWhiteSpace = false;

$local_file = "slashdot.xml";

$ttl = 30 * 60; // Cache in 30 min.

if (file_exists($local_file) && filemtime($local_file) > time() - $ttl) {

$slashdot->load($local_file);

}

else {

$slashdot->load('http://slashdot.org/slashdot.xml');

$fp = fopen($local_file, "wt");

if ($fp) {

fwrite($fp, $slashdot->saveXML());

fclose($fp);

}

}

echo $xslt->transformToXML($slashdot);

?>

■Note The code assumes the XSL extension is compiled in on Unix Unix platforms and available as a DLL

on Windows platforms.

How It Works

The biggest differences are that you need to load the XSL extension and that you are working

with two documents. The slashdot.xml file is loaded from the local cache or from the remote

server (so it will always be up-to-date without violating the rules of usage for the service), and

the stylesheet is loaded from the local hard drive. You could use the static method to load the

XML file as well, but in this case you want to get rid of whitespace in the XML file, so create a

DomDocument() object manually and set the property preserverWhiteSPace to false before you

load the document.

14-6 ■ TRANSFORMING XML WITH XSL 529

The stylesheet, called slashdot.xsl, is itself an XML file that includes definitions for how

different elements in the slashdot.xml file should be converted.

The Stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Example slashdot.xsl -->

<xsl:param name="site" select="'slashdot.org'"/>

<xsl:output method="html" encoding="iso-8859-1" indent="no"/>

<xsl:template match="/">

<html><body><center>

<h1>Welcome to latest extract from <xsl:value-of select="$site"/></h1>

<table border="1" width="75%">

<xsl:apply-templates/>

</table>

</center></body></html> </xsl:template>

<xsl:template match="story">

<tr>

<td>

<a>

<xsl:attribute name="href">

<xsl:value-of select="url"/>

</xsl:attribute>

<xsl:value-of select="title"/>

</td>

<td><xsl:value-of select="author"/></td>

</tr>

</xsl:template>

</xsl:stylesheet>

■Note The root element is named / in the first template. This could also be named backslash in this

case, as that is the name of the root element.

The template file has two templates. The first one is for the backslash element (the root

element in the XML file), and the second template is for the story element. It does not matter

which order the two templates are defined in the XSL file. The <xsl:apply-templates/>

element used in the first template defines where the second template is inserted.

Figure 14-1 shows the output from converting slashdot.xml to an HTML document.

14-6 ■ TRANSFORMING XML WITH XSL530

Figure 14-1. Browser output from converting slashdot.xml to an HTML document

14-7. Using RSS Feeds

RSS is an XML standard for syndicating web content. It was originally developed by Netscape

but is widely used by many websites. An RSS feed has two parts. The first part is the XML doc-

ument that contains one Resource Description Framework (RDF) <rdf:RDF> element and a list

of the elements for the actual content. The second part is one or more files described in the

rdf tag. These files contain additional descriptive information about the feed’s structure.

An easy way to work with RSS feeds is to use the PEAR::XML_RSS class. You can use this class

to read the RSS file from the remote server and parse the file so the contents will be stored in a

number of PHP arrays. The RSS file has a number of sections that will be converted into a PHP

array with the PEAR class (see Table 14-1).

Table 14-1. RSS Sections

Name Description

Channel Information about the channel, the publisher, and so on

Items A short list of items with a direct link to the full story

Item A detailed description of each item, often with a short abstract of the story

Images A list of images provided by the file (can be empty)

TextInputs A list of text input fields provided by the file (can be empty)

14-7 ■ USING RSS FEEDS 531

The next example shows how to read the news feed from the PHP website with the

XML_RSS class. You must have PEAR and the classes PEAR::XML and PEAR::XML_RSS installed to

run this example.

The Code

<?php

// Example 14-7-1.php

require "XML/RSS.php";

$rss = new XML_RSS("http://php.net/news.rss");

$rss->parse();

foreach($rss->getItems() as $item) {

print_r($item);

}

?>

How It Works

The XML_RSS class is a subclass of the XML class, so this example requires both PEAR::XML and

PEAR::XML_RSS to be installed on the system. First the XML_RSS class is included, and then you

create an rss object as a new instance of the CML_RSS class. The parameter to the constructor is

the URL to the file. This could also be a file on the local hard drive. You must parse the file

before you can get any information from it. At the end of this example, you print the content

of each item included in the file, and the output will look like this (only the first element is

shown here):

Array

(

[title] => PHP 5.1 Beta 2 Available

[link] => http://www.php.net/downloads.php#v5.1

[description] => PHP 5.1 Beta 2 is now available! A lot of work has been put

into this upcoming release and we believe it is ready for public testing. Some of

the key improvements of PHP 5.1 include: PDO (PHP Data Objects) - A new

native database abstraction layer providing performance, ease-of-use, and

flexibility. Significantly improved language performance mainly due to the new

Zend Engine II execution architecture. The PCRE extension has been updated

to PCRE 5.0. Many more improvements including lots of new functionality & many

bug fixes, especially in regard to SOAP, streams, and SPL. See the bundled NEWS

file for a more complete list of changes. Everyone is encouraged to start playing

with this beta, although it is not yet recommended for mission-critical production

use.

[dc:date] => 2005-06-23

)

14-7 ■ USING RSS FEEDS532

RSS feeds are available from a broad range of servers and organizations, and you can use

the simple script in the previous example to create a script that will replicate the content of

multiple RSS feeds into a local database. Many of these feeds require local caching to avoid

overloading the service; as shown in the next example, you can do this with a simple database

structure. We have used a FrontBase database, but you can easily convert the code and SQL

statements into other databases supported by PHP. The example is split into three files. The

first file (rss_db.inc) is where the database class is defined. This class connects to the data-

base server and retrieves or updates entries. The two other files fetch the content of the feeds

and present a list of data in a browser.

Before you view the code, you need to create a database structure:

--

-- Example rss.sql

-- Database structure needed for local caching

--

create table tRSSFeed (

Xid int default unique,

Title varchar(500) ,

Link varchar(200) ,

Url varchar(200) not null,

Frequency int not null,

LastUpdate int ,

Description varchar(32768),

primary key (xid)

);

create table tRSSItem (

Xid int default unique,

RSSXid int not null,

Title varchar(500) ,

Link varchar(200) ,

ItemDate int ,

Description varchar(32768) ,

primary key (xid)

);

insert into tRSSfeed (Url, Frequency)

values ('http://php.net/news.rss', 7200);

insert into tRSSfeed (Url, Frequency)

values ('http://slashdot.org/slashdot.rss', 3600);

This example uses two tables. The first table describes the feeds, and the second table

contains all the items from each feed. To initiate the system, you insert two feeds with the

URL to the RSS file and a frequency (in seconds) between each update. The update script will

look at the data in the first table and retrieve the file for each feed. The script will update the

channel information and add new items for each feed.

14-7 ■ USING RSS FEEDS 533

The Code

<?php
// Example 14-6-2.php
require "XML/RSS.php";
require "./rss_db.inc";

$RSS = new RSSdb('localhost', 'rss', 'secret', 'rssdb');
$feeds = $RSS->GetFeeds();
foreach($feeds as $feed) {
$rss_feed = new XML_RSS($feed['url']);
$rss_feed->parse();
$channel = $rss_feed->getchannelInfo();
$RSS->UpdateChannel(
$feed['xid'],
$channel['title'],
$channel['link'],
$channel['description']

);
foreach($rss_feed->getItems() as $item) {
$RSS->AddItem(
$feed['xid'],
$item['title'],
$item['link'],
$item['description'],
$item['dc:date']

);
}

}
?>

How It Works

The script includes the XML_RSS class from PEAR and a special RSS database class, described in

the next example. The script has two loops. The outer loop traverses through all the feeds

defined in the tRSSFeed table, and the inner loop traverses the data returned by the RSS feed

and inserts new items. This script should be executed through the cron daemon or through

Windows-scheduled tasks that are executed as often as updates are needed.

Table 14-2 lists the methods of the RSSdb() class.

Table 14-2. RSSdb Methods

Name Description

__construct() Class constructor that will create a connection to the database.

__dtor() Class destructor. It will disconnect from the database.

GetFeeds() Returns a list of feeds from the database.

UpdateChannel() Writes the latest channel information to the database.

AddItem() Checks for the existence of an item and inserts it if it does not exist.

GetItems() Returns a list of items for a given feed.

14-7 ■ USING RSS FEEDS534

The Code

<?php
// Example rss_db.inc
if (!extension_loaded("fbsql")) {
dl("php_fbsql.dll");

}

class RSSdb {
private $con;
function __construct($host, $user, $passwd, $database) {
$this->con = fbsql_connect($host, $user, $passwd);
if ($this->con) {
fbsql_select_db($database, $this->con);

}
}

function __dtor() {
if ($this->$con) {
fbsql_close($this->com);

}
}

function GetFeeds($for_update = true) {
$res = array();
$ts = time();
$SQL = "select xid, url, link, title, description from tRSSFeed";
if ($for_update) {
$SQL .= " where LastUpdate is null or LastUpdate + Frequency < $ts";

}
$rs = fbsql_query("$SQL order by title;", $this->con);
if ($rs) {
while ($row = fbsql_fetch_assoc($rs)) {
if (is_array($row)) {
$row = array_change_key_case($row, CASE_LOWER);

}
$res[] = $row;

}
fbsql_free_result($rs);

}
return $res;

}

function UpdateChannel($xid, $title, $link, $description) {
$title = str_replace("'", "''", $title);
$description = str_replace("'", "''", $description);
$ts = time();
fbsql_query("update tRSSFeed " .
"set LastUpdate=$ts, title='$title', " .
“link='$link', description='$description' " .
"where xid=$xid;", $this->con);

}

14-7 ■ USING RSS FEEDS 535

function AddItem($rssxid, $title, $link, $description, $date) {
$title = str_replace("'", "''", $title);
$description = str_replace("'", "''", $description);
$arrDate = split("[T:+-]", $date);
while(sizeof($arrDate) < 6) $arrDate[] = 0;
$ts = gmmktime((int)$arrDate[3], (int)$arrDate[4], (int)$arrDate[5],
(int)$arrDate[1],(int)$arrDate[2], (int)$arrDate[0]);

$rs = fbsql_query("select xid from tRSSItem " .
"where ItemDate=$ts and title='$title' and rssxid=$rssxid;", $this->con);

if ($rs) {
$row = fbsql_fetch_assoc($rs);
fbsql_free_result($rs);

}
if (empty($row)) {
fbsql_query(
"insert into tRSSItem (RSSXid, title, link, description, itemdate) ".
"values ($rssxid, '$title', '$link', '$description', $ts);", $this->con

);
}

}

function GetItems($rssxid, $count = 10) {
$res = array();
$rs = fbsql_query("select top $count xid, url, link, " .
" title, description, itemdate from tRSSItem " .
"where rssxid = $rssxid order by itemdate desc;", $this->con);

if ($rs) {
while ($row = fbsql_fetch_assoc($rs)) {
if (is_array($row)) {
$row = array_change_key_case($row, CASE_LOWER);

}
$res[] = $row;

}
fbsql_free_result($rs);

}
return $res;

}
}
?>

How It Works

This code does not produce any output. It is a class definition used by the next example. The

method GetFeeds() takes an optional argument. When this argument is true, the method will

return the feeds that need to be updated. When it is false, it will return all feeds in the database.

This makes it possible to use the same method for the automated update and the presentation

script. The UpdateChannel() and AddItem() methods take a number of parameters used to update

the database. Both functions replace a single quote with double quotes in the character columns;

this is the way FrontBase escapes a quote inside a string.

14-7 ■ USING RSS FEEDS536

The data value included in each item under the dc:date tag can include both date and

time or just a date. The AddItem() method uses the string value to create an integer value

(Unix timestamp) for the ItemDate column in the database.

It is now time to see the script that presents the data in the browser. This script will have

two modes. The first mode will list the available feeds, and the second mode will show the lat-

est news from a selected feed.

The Code

<?php

// Example 14-7-3.php

require "./rss_db.inc";

if (empty($Mode)) $Mode = "List";

$RSS = new RSSdb('localhost', 'rss', 'secret', 'rssdb');

echo "<html><body><table border=1 width=75% cellspacing=0 cellpadding=0>";

switch (strtoupper($Mode)) {

case "LIST" :

$feeds = $RSS->GetFeeds(false);

foreach($feeds as $feed) {

echo <<<FEED

<tr>

<td>$feed[title]<td>

<td>$feed[description]<td>

<td>$feed[link]<td>

</tr>

FEED;

}

break;

case "FEED" :

$items = $RSS->GetItems($FeedId);

foreach($items as $item) {

echo <<<ITEM

<tr>

<td>$item[title]

$item[description]<td>

</tr>

ITEM;

}

break;

}

echo "</table></body></html>";

?>

14-7 ■ USING RSS FEEDS 537

How It Works

You use the RSSdb class, defined in rss_db.inc, to create a list of the available feeds. Figure 14-2

shows the output.

Figure 14-2. List of available RSS feeds

The title of each feed is a link to the ten most current items for that feed, as shown in

Figure 14-3.

Figure 14-3. List of items from the news feed at php.net

14-7 ■ USING RSS FEEDS538

14-8. Using WDDX

Web Distributed Data Exchange (WDDX) is another way to use XML documents to exchange

data between applications and platforms. WDDX enables the exchange of complex data

between web programming languages. This makes it possible to integrate systems written in

different languages or to reuse systems written in other languages. WDDX is based on XML 1.0

and can be used with HTTP, FTP, SMTP, and POP. The communication protocol is used only to

transport the XML documents from one system to another, so you can also use any other pro-

tocol that can do this.

The WDDX extension is built into Windows platforms, and you can enable it on Unix plat-

forms with the –enable-wddx configure option. The extension does not require any external

libraries. The examples in this section will work only if the WDDX extension is enabled. The

WDDX extension implements six functions that enable the developer to create or parse WDDX

documents (see Table 14-3).

Table 14-3. WDDX Functions in PHP

Name Description

wddx_add_vars() Adds variables to a WDDX packet with the specified ID

wddx_deserialize() Deserializes a WDDX packet

wddx_packet_end() Ends a WDDX packet with the specified ID

wddx_packet_start() Starts a new WDDX packet with structure inside it

wddx_serialize_value() Serializes a single value into a WDDX packet

wddx_serialize_vars() Serializes variables into a WDDX packet

WDDX works as a packet format, and each document contains one packet. One packet

can be a single variable or any number of simple or complex variables.

The next example shows how to create a simple WDDX document with a single variable.

The Code

<?php

// Example 14-8-1.php

$var = "Creating a WDDX document with a single value.";

echo wddx_serialize_value(utf8_encode($var), "PHP Packet");

?>

How It Works

A string variable is declared and used as input to the wddx_serialize_value() function that

creates the document. You use the utf8_encode() function to make sure any non-ASCII char-

acters are handled correctly. The output from this script will look like this:

<wddxPacket version='1.0'><header><comment>PHP Packet</comment></header><data>

<string>Creating a WDDX document with a single value.</string></data></wddxPacket>

14-8 ■ USING WDDX 539

The next example shows how to use the previous example, with HTTP, to transfer data

from one server to another.

The Code

<?php

// Example 14-8-2.php

$fp = fopen("http://localhost/14-7-1.php", "rt");

if ($fp) {

$wddx = "";

while(!feof($fp)) {

$wddx .= fread($fp, 4096);

}

fclose($fp);

echo utf8_decode(wddx_deserialize($wddx));

}

?>

How It Works

First you use the fopen() and fread() functions to read the content of the file from the web

server, and then you deserialize it to its original value. You use the utf8_decode() function to

convert any non-ASCII characters to the correct values.

You can use the same technology to transfer more complex structures between

servers/applications. The next two examples show how two arrays can be wrapped into a

WDDX packet and unwrapped into the original values.

The Code

<?php

// Example 14-8-3.php

$months = array(

"January", "February", "Marts",

"April", "May", "June",

"July", "August", "September",

"October", "November", "December"

);

$sales = array(

10, 12, 15, 19, 30, 45,

12, 50, 20, 34, 55, 70

);

$pid = wddx_packet_start("Sales 2005");

wddx_add_vars($pid, "months");

wddx_add_vars($pid, "sales");

echo wddx_packet_end($pid);

?>

14-8 ■ USING WDDX540

How It Works

In this case, you embed more than one variable into a single WDDX packet. You do this by cre-

ating a packet handle called $pid with the wddx_packet_start() function. You use the packet

handle each time you want to add a new variable to the packet. When you are done adding

packets, you create the output with the wddx_packet_end() function.

The content of the WDDX packet can then be read from another machine with the code

shown in the next example.

The Code

<?php

// Example 14-9-7.php

$fp = fopen("http://localhost/14-8-7.php", "rt");

if ($fp) {

$wddx = "";

while(!feof($fp)) {

$wddx .= fread($fp, 4096);

}

fclose($fp);

$wddx = wddx_deserialize($wddx);

for ($m = 0; $m < 12; $m++) {

printf("The sale in %s was %d\n", $wddx['months'][$m], $wddx['sales'][$m]);

}

}

?>

How It Works

You are reading the content of the WDDX packet from the web server and deserializing the

content into the $wddx variable. This variable will be an array with all the variables as associa-

tive elements. The script will produce the following output:

The sale in January was 10

The sale in February was 12

The sale in Marts was 15

The sale in April was 19

The sale in May was 30

The sale in June was 45

The sale in July was 12

The sale in August was 50

The sale in September was 20

The sale in October was 34

The sale in November was 55

The sale in December was 70

14-8 ■ USING WDDX 541

14-9. Using SOAP

So far you have seen techniques to exchange data, where the format is simple and known to

both the server and the client before the code is written and executed. It is possible to use the

Simple Object Access Protocol (SOAP) to create more loosely coupled clients and servers. A

SOAP message is an XML-formatted document that is usually transferred over HTTP. SOAP

messages use the Web Services Description Language (WDSL) to describe locations, formats,

operations, parameters, and data types for the SOAP message. This makes it possible for a

SOAP client to consume a SOAP message from any web service and interpret the content

correctly. The basic nature of SOAP messages is designed around a request message and a

response message. The client creates a request in the form of an XML document and sends it

to the server. The server then executes the request, creates a response document, and returns

that to the client.

Since PHP 5.0, it is possible to enable the SOAP extension and use it to communicate with

web services or even create new web services written directly in PHP. On a Unix system, you

enable the SOAP extension by using the configure option –enable-soap, and on Windows

systems you enable it in php.ini with the following line:

extension=php_soap.dll

You can also enable it from the script with the dl() command, if the script is executed

under a nonthreaded SAPI (the type of interface between the web server and PHP). The exam-

ples in this section will work only if the SOAP extension is enabled.

Many websites (including eBay, Amazon, and PayPal) provide a SOAP API that allows

other websites to reuse content and other features from their sites. Most of these services

require some form of agreement and authentication to use the APIs. That is also the case for

the examples shown in this section; we will use Google’s search and spelling APIs to demon-

strate how easy it is to write SOAP clients with the new SOAP extension in PHP.

The Google SOAP API is still under development, but developers can request an account

and a key to use the API; each account is allowed 1,000 requests per day. When you request a

developer account, you can download a package that includes samples on how to use the API

(it does not include any PHP samples, though) and a .wsdl file that you can use to create the

SOAP client. For many SOAP servers, the .wsdl file will be available online, and it can be refer-

enced directly through HTTP.

The SoapClient() class in PHP uses the content of a .wsdl file to create the client, but you

can also create the client without this file—the process is just much more complicated. The

next example shows how to use one of the features included in Google’s SOAP API to perform

a site-specific search.

The Code

<?php

// Example 14-9-1.php

if (!extension_loaded("soap")) {

dl("php_soap.dll");

}

14-9 ■ USING SOAP542

$client = new

SoapClient(

"/php/src/googleapi/GoogleSearch.wsdl"

);

$options = array(

"key" => "00000000000000000000000000000000", // Replace with your own key

"q" => "soap site:php.net",

"start" => 0,

"maxResults" => 5,

"filter" => false,

"restrict" => "",

"safeSearch" => false,

"lr" => "",

"ie" => "",

"oe" => ""

);

$search = $client->__soapCall("doGoogleSearch", $options);

foreach($search->resultElements as $result) {

echo $result->summary . "\n";

echo $result->snippet . "\n";

echo $result->URL . "\n";

}

?>

How It Works

First you make sure the SOAP extension is loaded, and then you create an instance of the

SoapClient() class using the GoogleSearch.wsdl file. Next, create an array with the specific

search options. Specify the options in the .wsdl file as follows:

<message name="doGoogleSearch">

<part name="key" type="xsd:string"/>

<part name="q" type="xsd:string"/>

<part name="start" type="xsd:int"/>

<part name="maxResults" type="xsd:int"/>

<part name="filter" type="xsd:boolean"/>

<part name="restrict" type="xsd:string"/>

<part name="safeSearch" type="xsd:boolean"/>

<part name="lr" type="xsd:string"/>

<part name="ie" type="xsd:string"/>

<part name="oe" type="xsd:string"/>

</message>

14-9 ■ USING SOAP 543

The SoapClient() class has a method called __soapCall() that you can use to create and

send the request to the server. The result from the call is an object that includes the response

document. The __soapCall() method takes two parameters, where the first is the name of the

function to call and the second is an array with the arguments to that function. The search

performed by this script is included in the q option and contains the string soap site:php.net.

This will restrict the search on the keyword soap to one website. The output from this script

will look like this:

SOAP Client/Server for PHP, PHP License. ?? Current Release. 0.9.1 (beta)

was
 released on 2005-05-31 ... Implementation of SOAP protocol

and services ...

http://pear.php.net/package/SOAP

The SOAP extension can be used to write SOAP Servers and Clients.

... Sets the
 directory name where the SOAP extension will put

cache files. ...

http://www.php.net/soap

This is a soap integration for PHP (pear package).

This is a soap integration for PHP (pear package).

http://pear.php.net/package-info.php?pacid=87

SOAP Client/Server for PHP, PHP License. ?? Current Release. 0.9.1 (beta)

was
 released on 2005-05-31 ... Implementation of SOAP protocol

and services ...

http://pear.php.net/SOAP

PHP SOAP list for the SOAP developers, no, n/a, yes http, n/a.

Non-English
 language mailing lists, Moderated, Archive, Newsgroup, Normal,

Digest ...

http://www.php.net/mailing-lists.php

You can also use the Google SOAP API to perform spell checking. This request is even sim-

pler, as it takes only the developer key and a string as options; it returns a string with the

suggested spelling for the string.

The Code

<?php

// Example 14-9-2.php

if (!extension_loaded("soap")) {

dl("php_soap.dll");

}

$client = new

SoapClient(

"/php/src/googleapi/GoogleSearch.wsdl"

);

14-9 ■ USING SOAP544

$options = array(

"key" => "00000000000000000000000000000000", // Replace with your own key

"phrase" => "This bok is about PHP 5 features"

);

$search = $client->__soapCall("doSpellingSuggestion", $options);

echo "The correct spelling is: \"$spellcheck\"\n";

?>

How It Works

This script uses the same structure as the previous example but with a much shorter options

list:

<message name="doSpellingSuggestion">

<part name="key" type="xsd:string"/>

<part name="phrase" type="xsd:string"/>

</message>

The output, with book spelled correct, will look like this:

The correct spelling is: "This book is about PHP 5 features"

When the SoapClient() is created, it will actually create methods for all the functions or

operations defined in the .wsdl file. So, instead of calling the __soapCall() method, you can

call the doSpellingSuggestion() method directly, as shown in the next example:

<?php

// Example 14-9-3.php

if (!extension_loaded("soap")) {

dl("php_soap.dll");

}

$client = new

SoapClient(

"/php/src/googleapi/GoogleSearch.wsdl"

);

$key = "00000000000000000000000000000000"; // Replace with your own key

$phrase = "This bok is about PHP 5 features";

$spellcheck = $client->doSpellingSuggestion($key, $phrase);

echo "The correct spelling is: \"$spellcheck\"\n";

?>

This gives shorter and slightly more readable code.

The SOAP extension in PHP also makes it easy to create your own SOAP services on your

web server. The first step to do this is to create a .wsdl document. This is an XML document

that describes data types, request and response documents, and other parameters for the

14-9 ■ USING SOAP 545

service. Once the document is created, you can use it for both the server and the clients who

want to consume the service. A simple .wsdl document that defines one method looks like this:

<?xml version="1.0"?>

<!-- Example books.wsdl -->

<definitions name="MyBookSearch"

targetNamespace="urn:MyBookSearch"

xmlns:typens="urn:MyBookSearch"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:MyBookSearch">

<xsd:complexType name="MyBookSearchResponse">

<xsd:all>

<xsd:element name="bookTitle" type="xsd:string"/>

<xsd:element name="bookYear" type="xsd:int"/>

<xsd:element name="bookAuthor" type="xsd:string"/>

</xsd:all>

</xsd:complexType>

</xsd:schema>

</types>

<message name="doMyBookSearch">

<part name="bookTitle" type="xsd:string"/>

</message>

<message name="doMyBookSearchResponse">

<part name="return" type="typens:MyBookSearchResponse"/>

</message>

<portType name="MyBookSearchPort">

<operation name="doMyBookSearch">

<input message="typens:doMyBookSearch"/>

<output message="typens:doMyBookSearchResponse"/>

</operation>

</portType>

<binding name="MyBookSearchBinding" type="typens:MyBookSearchPort">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

14-9 ■ USING SOAP546

<operation name="doMyBookSearch">

<soap:operation soapAction="urn:MyBookSearchAction"/>

<input>

<soap:body use="encoded"

namespace="urn:MyBookSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="urn:MyBookSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="MyBookSearchService">

<port name="MyBookSearchPort" binding="typens:MyBookSearchBinding">

<soap:address location="http://localhost/php5/14-8-4.php"/>

</port>

</service>

</definitions>

This document defines a complete data type used by the response document to return

more than one value; it defines the request and response messages, and it defines the opera-

tion implemented by the service. You can use this document to implement a simple web

service with PHP, as shown in the next example.

The Code

<?php

// Example 14-9-4.php

if (!extension_loaded("soap")) {

dl("php_soap.dll");

}

ini_set("soap.wsdl_cache_enabled", "0");

$server = new SoapServer("books.wsdl");

function doMyBookSearch($bookTitle) {

return array(

"bookTitle" => "MyBook",

"bookYear" => 2005,

"bookAuthor" => "sdfkhsdkfjsdk"

);

}

$server->AddFunction("doMyBookSearch");

$server->handle();

?>

14-9 ■ USING SOAP 547

How It Works

After making sure the extension is loaded, you use the ini_set() function to disable the

caching of the .wsdl documents. These files are usually cached for 24 hours (also a setting in

php.ini), so without this change to the cache, it would not be possible to make changes to the

definitions. The server is then created from the SoapServer() class, and you assume that the

.wsdl file is located in the same directory as the service. The function that you want executed

each time the client requests a book is defined and added to the server. In this case, the func-

tions do not use the input value; however, it is passed to the function, and you could use it in a

database query to find the book for which you are looking.

You can now create a client for this web service.

The Code

<?php

// Example 14-9-5.php

if (!extension_loaded("soap")) {

dl("php_soap.dll");

}

ini_set("soap.wsdl_cache_enabled", "0");

$client = new SoapClient("http://localhost/php5/books.wsdl");

$search = $client->doMyBookSearch("Test");

var_dump($search);

?>

How It Works

You reuse the same .wsdl file from the server, but this time it is loaded via an HTTP request.

When the client is created, you call the doMyBookSearch() method to request a book, and you

dump the value of the search result.

object(stdClass)#2 (3) {

["bookTitle"]=>

string(6) "MyBook"

["bookYear"]=>

int(2005)

["bookAuthor"]=>

string(13) "sdfkhsdkfjsdk"

}

14-9 ■ USING SOAP548

Summary
In this chapter you looked at ways to generate or use documents with a high level of structure.

You saw how markup can generate HTML and XML documents and how the DOM extension

can make creating XML documents much easier. We also touched on the new SimpleXML

extension that can read and parse XML documents from the local hard drive or a remote

server.

In addition, you tackled more advanced services and how to use XML with them. You

looked at a common format for site syndication, RSS. This format is widely used to create

news feeds, and we showed how you can build a simple web-based reader. After RSS you

learned about WDDX and how you can use it to exchange complex data between servers or

applications. Finally, you learned about SOAP and its ability to provide both data and a data

definition, allowing the client to consume web services without prior knowledge about the

service.

Looking Ahead
The next chapter covers how to use PHP scripts to access data in a MySQL database.

14-9 ■ USING SOAP 549

Using MySQL Databases
in PHP 5

An important aspect of web development is being able to collect, store, and retrieve many

different forms of data. In the past, different methods have been created to handle such fea-

tures. Flat files, which are essentially text-based informational files, were the standard for

many years.

After many problems with portability, speed, and functionality, flat files were generally

phased out in favor of true database applications. Many database solutions are available on

the Internet, including Microsoft Access, SQL Server, Oracle, and a few others.

Out of the pack of available options, however, one piece of database software has proven

repeatedly to be a robust, affordable solution. MySQL is the database of choice in the open-

source community because of its powerful infrastructure, fast querying, large data storage

capabilities, and robust features.

Basic Database Concepts
This chapter presents a few examples of powerful PHP and MySQL-based technology. You will

learn how to connect to a database, store information in a database, and retrieve information

from a database; you will also learn how to put that information to good use. PHP 5 has the

ability to connect to MySQL using some advanced options that have been released with the

latest build of MySQL. Dubbed the mysqli extension, you will learn how to make your query-

ing faster and more efficient. In a world where collecting information is critical, MySQL and

PHP 5 make a strong couple.

15-1. Connecting to a MySQL Database

To do any work with a MySQL database, you must first open a link to the database and

connect to it. Performing such functionality in PHP is quick and efficient. You can use the

function mysql_connect() to connect to a database and then close the link when you are

finished with it. The mysql_connect() function requires some proper login information to

be passed to it in order for it to work properly, and it is important that you take the time

to validate an improper login. The prototype for mysql_connect() is as follows.

resource mysql_connect ([string server [, string username [, string password➥

[, bool new_link [, int client_flags]]]]])
551

C H A P T E R 1 5

■ ■ ■

The Code

<?php

//sample15_1.php

//Attempt to open a connection to MySQL.

try {

//You must provide the host.

$mysqlhost = "localhost";

//The username.

$mysqluser = "apress";

//And the password.

$mysqlpass = "testing";

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($mysqlhost,$mysqluser,$mysqlpass)){

//Now, you have an open connection with $db as its handler.

echo "Successfully connected to the database.";

//When you finish, you have to close the connection.

mysql_close ($db);

} else {

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

?>

If you have a successful connection, you should get a proper result, as shown here:

Successfully connected to the database.

How It Works

Basically, you invoke the mysql_connect() method and pass it the connection information.

This gives you access to any databases that are assigned to the apress user. If you were to sup-

ply an invalid login set, you would generate an error, and the exception handling would allow

the application to die gracefully. Note also that as the good programmer that you are, you

must take care of your memory usage and clean up at the end by closing the connection to

the database. The mysql_close() function takes care of this handily and can receive the

resource handler that was assigned with the mysql_connect() function as an argument

to close. The prototype for mysql_close() is as follows:

bool mysql_close ([resource link_identifier])

15-1 ■ CONNECTING TO A MYSQL DATABASE552

15-2. Querying the Database

Naturally, once you have a connection to the database, you will query the database. Queries

come in many shapes and forms and can have a wide variety of arguments to pass to them.

MySQL makes sufficient use of Structured Query Language (SQL) and can perform functional-

ity based upon SQL that is passed to it.

SQL allows you to perform common functionality such as insert, which allows you to

enter data into a row; alter, which allows you to change the format of a table; select, which

allows you to return a row set from a table in the database; and delete, which allows you

to remove a row in the database. Naturally, you can perform many different queries, but the

purpose of this chapter is not to give you a wide understanding of relational databases or

the structure of SQL statements but to provide you with real-world examples to get your

code working well in the MySQL environment.

Therefore, to perform a query in PHP, you can use the function mysql_query(). It allows

you to perform a myriad of SQL functions and is quite simple to use. The prototype for

mysql_query() is as follows:

resource mysql_query (string query [, resource link_identifier])

For this example, and the majority of examples in this chapter, assume you have a data-

base set up called cds that contains a table called cd with the following structure:

cdid INT AUTO_INCREMENT PRIMARY KEY

title TINYTEXT

artist TINYTEXT

You will uniquely identify each record using the cdid field, name it with the title field,

and provide the artist for the CD in the artist field. This table has three records, as follows:

1 Chuck Sum 41

2 Meteora Linkin Park

3 Mezmerize System of a Down

The Code

<?php

//sample15_2.php

//A function to open a connection to MySQL.

function opendatabase ($host,$user,$pass) {

//Attempt to open a connection to MySQL.

try {

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($host,$user,$pass)){

//Return the identifier.

return $db;

} else {

15-2 ■ QUERYING THE DATABASE 553

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

//A function to close the connection to MySQL.

function closedatabase ($db){

//When you finish up, you have to close the connection.

mysql_close ($db);

}

//First, open a connection to the database.

$db = opendatabase ("localhost","apress","testing");

//The next thing you must do is select a database.

try {

if (!mysql_select_db ("cds",$db)){

throw new exception ("Sorry, database could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

//Create a query that will, in this case, insert a new row.

$myquery = "INSERT INTO cd (cdid,title,artist) VALUES➥

('0','Greyest of Blue Skies','Finger Eleven')";

//Then process the query.

try {

if (mysql_query ($myquery, $db)){

echo "We were successful.";

} else {

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage();

}

//Then close the database.

closedatabase ($db);

?>

We were successful.

15-2 ■ QUERYING THE DATABASE554

How It Works

As you can see, you have put the opening and closing of a valid connection into two different

functions. You should note the opening of the connection to MySQL. Without that link, you

cannot proceed any further. Now, to perform a query on a database table, you must first spec-

ify which database (that is assigned to the current user) you want to perform an action on. In

this case, the function mysql_select_db() takes care of business for you.

Once you have a selected database, it is simply a matter of creating a query and executing

it using the mysql_query() function. If the query succeeds, you will receive a successful mes-

sage. It is important, however, to consider that the query could potentially fail (because of a

syntax error or some other problem), and you take care of that in the code. The prototype for

mysql_select_db() is as follows:

bool mysql_select_db (string database_name [, resource link_identifier])

15-3. Retrieving and Displaying Results

Naturally, alongside the ability to store information in a database, you will quite often want to

be able to display information you have retrieved from the database. With the power of MySQL

and PHP working together, this form of functionality is no problem. In PHP, the most common

method to retrieve a row in the database is with the mysql_fetch_array() function, which puts

the results garnered from a row set into an array for ease of use. Its prototype is as follows:

array mysql_fetch_array (resource result [, int result_type])

The following example outputs the results of the current database table.

The Code

<?php

//sample15_3.php

//A function to open a connection to MySQL.

function opendatabase ($host,$user,$pass) {

//Attempt to open a connection to MySQL.

try {

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($host,$user,$pass)){

//Return the identifier.

return $db;

} else {

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

function selectdb ($whichdb, $db){

15-3 ■ RETRIEVING AND DISPLAYING RESULTS 555

//The next thing you must do is select a database.

try {

if (!mysql_select_db ($whichdb,$db)){

throw new exception ("Sorry, database could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//A function to close the connection to MySQL.

function closedatabase ($db){

//When you finish up, you have to close the connection.

mysql_close ($db);

}

//First, open a connection to the database.

$db = opendatabase ("localhost","apress","testing");

//Then select a database.

selectdb ("cds",$db);

//Now, let's create a script to output the information found within the table.

if ($aquery = mysql_query ("SELECT * FROM cd ORDER BY cdid ASC")){

//You can loop through the rows in the table, outputting as you go.

while ($adata = mysql_fetch_array ($aquery)){

echo "ID: " . $adata['cdid'] . "
";

echo "Title: " . stripslashes ($adata['title']) . "
";

echo "Artist: " . stripslashes ($adata['artist']) . "
";

echo "-------------------------------
";

}

} else {

echo mysql_error();

}

//Then close the database.

closedatabase ($db);

?>

ID: 1

Title: Chuck

Artist: Sum 41

ID: 2

Title: Meteora

Artist: Linkin Park

15-3 ■ RETRIEVING AND DISPLAYING RESULTS556

ID: 3

Title: Mezmerize

Artist: System of a Down

ID: 4

Title: Greyest of Blue Skies

Artist: Finger Eleven

How It Works

The major difference between this code sample and the previous one is that you have placed

the selection of a database into a function for portability. Past that, you simply check if the

query is valid (and if not, echo the error) and then loop through all the resulting rows that are

returned from the mysql_fetch_array() function. As you loop through the different rows, you

can output the value of the row in the array by referencing the name of the field in the data-

base. By doing this, as you can see from the results, you can succeed in outputting the entire

contents of the cd table.

15-4. Modifying Data

Obviously, database functionality would be pretty useless if the data stored in the database

itself could only remain static. Luckily, MySQL provides you with a means to modify certain

data. The general method for modifying a set of data is to reference a unique record ID num-

ber and then change the row if it matches the ID argument. Let’s say, for instance, you want to

change the information contained within the record for the Linkin Park album currently in the

database. By looking at the previous results, the Linkin Park dataset looks as follows:

ID: 2

Title: Meteora

Artist: Linkin Park

Since you know that the ID number for that particular row is 2, you can easily modify the

record based on that argument, as shown in the following example.

The Code

<?php

//sample15_4.php

//A function to open a connection to MySQL.

function opendatabase ($host,$user,$pass) {

//Attempt to open a connection to MySQL.

try {

15-4 ■ MODIFYING DATA 557

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($host,$user,$pass)){

//Return the identifier.

return $db;

} else {

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

function selectdb ($whichdb, $db){

//The next thing you must do is select a database.

try {

if (!mysql_select_db ($whichdb,$db)){

throw new exception ("Sorry, database could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//A function to close the connection to MySQL.

function closedatabase ($db){

//When you finish up, you have to close the connection.

mysql_close ($db);

}

//First, open a connection to the database.

$db = opendatabase ("localhost","apress","testing");

//Then select a database.

selectdb ("cds",$db);

//Create a query to modify the Linkin Park record.

$updatequery = "UPDATE cd SET title='Hybrid Theory' WHERE cdid='2'";

//Then attempt to perform the query.

try {

if (mysql_query ($updatequery, $db)){

echo "Your record has been updated.";

//Now, let's output the record to see the changes.

if ($aquery = mysql_query ("SELECT * FROM cd WHERE cdid='2'")){

$adata = mysql_fetch_array ($aquery);

echo "
Title: " . stripslashes ($adata['title']);

} else {

15-4 ■ MODIFYING DATA558

echo mysql_error();

}

} else {

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage();

}

//Then close the database.

closedatabase ($db);

?>

Naturally, you can test to ensure the change is valid. The results of a successful transac-

tion are as follows:

Your record has been updated.

Title: Hybrid Theory

How It Works

As you can see, by performing a query that will update the record (with the ID as the defining

attribute of the row), you can quickly and efficiently change a record at your whim. In this

case, you merely changed the title of the album to another album and then outputted the

change. Note that when you displayed the changed result, you specified which row you

wanted to see, again via the ID number.

15-5. Deleting Data

Removing data is largely the same as updating data. You will definitely want to specify which

record you are attempting to remove, as you can quite easily lose an entire table if you are not

careful. The following example enables you to remove a record from your table. Should you

want to remove an entire table’s contents, simply leave out the where clause in the SQL code.

The Code

<?php

//sample15_5.php

//A function to open a connection to MySQL.

function opendatabase ($host,$user,$pass) {

//Attempt to open a connection to MySQL.

try {

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($host,$user,$pass)){

15-5 ■ DELETING DATA 559

//Return the identifier.

return $db;

} else {

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

function selectdb ($whichdb, $db){

//The next thing you must do is select a database.

try {

if (!mysql_select_db ($whichdb,$db)){

throw new exception ("Sorry, database could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//A function to close the connection to MySQL.

function closedatabase ($db){

//When you finish up, you have to close the connection.

mysql_close ($db);

}

//First, open a connection to the database.

$db = opendatabase ("localhost","apress","testing");

//Then select a database.

selectdb ("cds",$db);

//Create a query to remove the recently modified Linkin Park record.

$updatequery = "DELETE FROM cd WHERE cdid='2'";

//Then attempt to perform the query.

try {

if (mysql_query ($updatequery, $db)){

echo "Your record has been removed.";

//Now, let's output the record to see the changes.

if ($aquery = mysql_query ("SELECT * FROM cd WHERE cdid='2'")){

//You will notice that the record has been removed.

echo "
" . mysql_num_rows ($aquery); //Should output a 0.

} else {

echo mysql_error();

}

15-5 ■ DELETING DATA560

} else {

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage();

}

//Then close the database.

closedatabase ($db);

?>

If everything goes well, you should receive a response to the screen that looks something

like this:

Your record has been removed.

0

How It Works

As you can see, the vast majority of the work that went into modifying this piece of code from

the previous example was in the SQL statement. Rather than using the update statement, you

use the delete statement and specify the record you want to remove. To prove that the record

is indeed gone, you can use the mysql_num_rows() function, which specifies the number of

rows that has been returned from a select statement. Be careful when using the delete state-

ment, as data removed in this way cannot be returned. The prototype for mysql_num_rows() is

as follows:

int mysql_num_rows (resource result)

15-6. Building Queries on the Fly

You will have plenty of opportunities to build a query on the fly. A fairly common example is

receiving data from a form that will allow you to log into your account. While the functionality

behind this is useful and rather powerful, it is also the preferred method for crackers to gain

entry into your system. By using a technique known as SQL injection, malicious users can

insert potentially dangerous code into your dynamic queries that could, in turn, allow them

to damage your data, pull all the information from your database, or destroy the database in

its entirety. Therefore, it is important that, when building dynamic queries, you take the nec-

essary efforts to ensure all received data is stripped of potentially hazardous characters. The

following example will receive posted values (from a form) and log them in accordingly if they

have the right username and password.

15-6 ■ BUILDING QUERIES ON THE FLY 561

For this particular recipe, set up a new table in the cds database called userlogin. The

userlogin table structure is as follows:

userloginid INT AUTO_INCREMENT PRIMARY KEY

username TINYTEXT

password TINYTEXT

This table has one row with the following information:

1 apress testing

The Code

<?php

//sample15_6.php

//A function to open a connection to MySQL.

function opendatabase ($host,$user,$pass) {

//Attempt to open a connection to MySQL.

try {

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($host,$user,$pass)){

//Return the identifier.

return $db;

} else {

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

function selectdb ($whichdb, $db){

//The next thing you must do is select a database.

try {

if (!mysql_select_db ($whichdb,$db)){

throw new exception ("Sorry, database could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//A function to close the connection to MySQL.

function closedatabase ($db){

//When you finish up, you have to close the connection.

mysql_close ($db);

}

15-6 ■ BUILDING QUERIES ON THE FLY562

//First, open a connection to the database.

$db = opendatabase ("localhost","apress","testing");

//Then select a database.

selectdb ("cds",$db);

//Now, assume you received these values from a posted form.

$_POST['user'] = "apress";

$_POST['pass'] = "testing";

function validatelogin ($user,$pass){

//First, remove any potentially dangerous characters.

mysql_real_escape_string ($user);

mysql_real_escape_string ($pass);

//Next, check the user and pass against the database.

$thequery = "SELECT * FROM userlogin WHERE➥

username='$user' AND password='$pass'";

//Now, run the query.

if ($aquery = mysql_query ($thequery)){

//Now, you can check for a valid match using the➥

mysql_num_rows() function.

if (mysql_num_rows ($aquery) > 0){

return true;

} else {

return false;

}

} else {

echo mysql_error();

}

}

//Now, let's attempt to validate the login.

if (validatelogin ($_POST['user'],$_POST['pass'])){

echo "You have successfully logged in.";

} else {

echo "Sorry, you have an incorrect username and/or password.";

}

//Then close the database.

closedatabase ($db);

?>

15-6 ■ BUILDING QUERIES ON THE FLY 563

How It Works

As you can see, building a dynamic query is not all that difficult. The most important aspect

when building the query is to remember to validate the data submitted in the query. The func-

tion mysql_real_escape_string() is necessary when dealing with string type values (as in this

case), and the function intval() can help you when dealing with numerical values by ensur-

ing a valid numerical response. Apart from that, you can treat a dynamic query just as you

would treat a string. By using string functionality, you can dynamically build the query of

your choice.

The mysqli Extension vs. the PHP 4 MySQL

Extension
Over time, the mysql extension contained with PHP has performed, generally, quite well. How-

ever, certain features began to get implemented into newer versions of MySQL that began to

showcase a few flaws with the mysql extension. Now, with the advent of PHP 5, a few problems

have occurred (mostly with default and automatic connections). To combat these issues and

bring the mysql library into the PHP 5 way of thinking (which is object-oriented), a new exten-

sion has been established, the mysqli extension.

The mysqli extension (developed by Georg Richter), which is an object-oriented version

of the mysql extension, can use the new MySQL 4.1+ functionality to improve the speed, diver-

sity, and functionality of PHP’s connection with MySQL. To make the mysqli extension work in

PHP, you must add the following line to the extensions area of the php.ini file:

extension=php_mysqli.dll

Now, you have to make sure you are using MySQL 4.1 or higher to implement the new

extension. From there it is simply a matter of getting familiar with some new syntaxes and

concepts, which will be explained as you go through this chapter.

15-7. Using the mysqli Object-Oriented API

Using the new object-oriented application programming interface (API) in the mysqli exten-

sion is really no big deal for those familiar with using objects. Basically, you create an instance

of a mysqli object and use its methods rather than simply using the mysql extension’s func-

tions. The syntax is naturally a little different, but the concept behind it is easy to understand.

The following example guides you through several new syntaxes and a couple of the new algo-

rithms you can perform with the mysqli extension.

The Code

<?php

//sample15_7.php

//The first thing you need to do, like any other time is➥

connect to the mysql server.

//You can do so by creating a new mysqli instance.

15-7 ■ USING THE MYSQLI OBJECT-ORIENTED API564

$mysqli = new mysqli ("localhost","apress","testing","cds");

try {

if (mysqli_connect_errno()){

throw new exception ("Error: " . mysqli_connect_errno() . " - "➥

. mysqli_connect_error());

} else {

//Now, you can perform a myriad of functions.

//For instance, let's output the contents of the cd table.

if ($cdquery = $mysqli->query ("SELECT * FROM cd ORDER BY cdid ASC")){

while ($cddata = $cdquery->fetch_array ()){

echo "ID: " . $cddata['cdid'] . "
";

echo "Title: " . stripslashes ($cddata['title']) . "
";

echo "Artist: " . stripslashes ($cddata['artist']) . "
";

echo "------------------------------
";

}

//Clean up.

$cdquery->close();

} else {

echo $mysqli->errno . " - " . $mysqli->error;

}

//A new feature: using prepared statements.

//First you prepare a statement using ? where➥

you want to use literal data.

$prep = $mysqli->prepare ("INSERT INTO cd (cdid,title,artist)➥

VALUES ('0',?,?)");

//Now, you can bind some parameters.

$prep->bind_param ('ss',$title,$artist);

//The new album to be inserted.

$title = "Californication";

$artist = "Red Hot Chili Peppers";

//Then you can execute the query:

$prep->execute();

//And see how you did:

echo $prep->affected_rows . " row(s) affected.";

//Clean up.

$prep->close();

//Now, you can also bind results:

if ($result = $mysqli->prepare ("SELECT title, artist FROM➥

cd WHERE cdid > '2'")){

$result->execute ();

15-7 ■ USING THE MYSQLI OBJECT-ORIENTED API 565

//Bind the results.

$result->bind_result ($title,$artist);

//Then go through and echo the bound results.

while ($result->fetch ()){

echo "Title: " . stripslashes ($title) . "
";

echo "Artist: " . stripslashes ($artist) . "
";

echo "------------------------------
";

}

//Clean up.

$result->close ();

} else {

echo $mysqli->errno . " - " . $mysqli->error;

}

//Closing the connection is simple.

$mysqli->close();

}

} catch (exception $e) {

echo $e->getmessage();

}

?>

The code execution will look something like this:

ID: 1

Title: Chuck

Artist: Sum 41

ID: 2

Title: Meteora

Artist: Linkin Park

ID: 3

Title: Mezmerize

Artist: System of a Down

ID: 4

Title: Greyest of Blue Skies

Artist: Finger Eleven

1 row(s) affected.

Title: Mezmerize

Artist: System of a Down

15-7 ■ USING THE MYSQLI OBJECT-ORIENTED API566

Title: Greyest of Blue Skies

Artist: Finger Eleven

Title: Californication

Artist: Red Hot Chili Peppers

How It Works

As you can see, the API is object-oriented. The first matter of business is instantiating a mysqli

instance. From there you can perform the different methods available to the object such as

running queries and closing the connection. The list of methods available to the object is long;

feel free to peruse the PHP manual for more information (although this example does introduce

the basics). You can find the relevant PHP manual section at http://www.php.net/manual/en/

ref.mysqli.php

Also included in this example is something new to the mysqli extension—the concept of

prepared statements. Basically, you can set up a statement that you will use repeatedly with the

prepare method on the mysqli object and then bind either parameters or results to it. In this

recipe, you can see how to bind parameters to an insert statement. Every time you want to run

that statement, you can simply bind new parameters to it and use the execute() method. The

syntax for the characters you want to be able to bind is the ampersand (&) symbol for the bind-

able arguments, and you can specify the data type of the argument to be bound by referring to

Table 15-1.

Table 15-1. Bind Types

Bind Type Column Type

i Integer types

d Double or floating-point types

b BLOB (Binary Large OBject) types

s Any other data type

The syntax for binding results is a little different. For binding results, you first run the

query you want to execute in the prepare statement, execute it, and then bind the result to a

set of variables. (Be careful, though, because you must match the amount of variables to the

number of returned values.) Once the setup is complete, you can simply run the fetch()

method to quickly and efficiently recover the bound values.

15-8. Using Exceptions to Handle Database Errors

One of the aspects that separate the great coders from the rookies is not just making usable or

working code but taking care of unforeseen eventualities. When working with more than one

process (PHP and MySQL), sometimes unforeseen incompatibilities or server hiccups can

cause an unwanted problem. To ensure the integrity of your web applications, it is important

that, if such a problem occurs, the web application dies gracefully and provides a means for

the developer to track the error.

15-8 ■ USING EXCEPTIONS TO HANDLE DATABASE ERRORS 567

Luckily, with the inclusion of exception handling in PHP 5, you can now create custom

web applications that take care of their own errors. The following class uses exception han-

dling to perform its error handling.

The Code

<?php

//sample15_8.php

class mydb {

private $user;

private $pass;

private $host;

private $db;

//Constructor function.

public function __construct (){

$num_args = func_num_args();

if($num_args > 0){

$args = func_get_args();

$this->host = $args[0];

$this->user = $args[1];

$this->pass = $args[2];

$this->connect();

}

}

//Function to connect to the database.

private function connect (){

try {

if (!$this->db = mysql_connect ($this->host,$this->user,$this->pass)){

$exceptionstring = "Error connection to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to select a database.

public function selectdb ($thedb){

try {

if (!mysql_select_db ($thedb, $this->db)){

15-8 ■ USING EXCEPTIONS TO HANDLE DATABASE ERRORS568

$exceptionstring = "Error opening database: $thedb:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to perform a query.

public function execute ($thequery){

try {

if (!mysql_query ($thequery, $this->db)){

$exceptionstring = "Error performing query: $thequery:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

echo "Query performed correctly: " . mysql_affected_rows ()➥

. " rows affected.
";

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to return a row set.

public function getrows ($thequery){

try {

if (!$aquery = mysql_query ($thequery)){

$exceptionstring = "Error performing query: $thequery:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

$returnarr = array ();

while ($adata = mysql_fetch_array ($aquery)){

$returnarr = array_merge ($returnarr,$adata);

}

return $returnarr;

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to close the database link.

public function __destruct() {

try {

15-8 ■ USING EXCEPTIONS TO HANDLE DATABASE ERRORS 569

if (!mysql_close ($this->db)){

$exceptionstring = "Error closing connection:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

}

//Now, let's create an instance of mydb.

$mydb = new mydb ("localhost","apress","testing");

//Now, you specify a database to use.

$mydb->selectdb ("cds");

//Now, let's perform an action.

$adata = $mydb->execute ("UPDATE cd SET title='Hybrid Theory' WHERE cdid='2'");

//Then, let's try to return a row set.

$adata = $mydb->getrows ("SELECT * FROM cd ORDER BY cdid ASC");

for ($i = 0; $i < count ($adata); $i++){

echo $adata[$i] . "
";

}

?>

Query performed correctly: 1 row(s) affected.

1

Chuck

Sum 41

2

Hybrid Theory

Linkin Park

3

Mezmerize

System of a Down

4

Greyest of Blue Skies

Finger Eleven

15-8 ■ USING EXCEPTIONS TO HANDLE DATABASE ERRORS570

How It Works

As you can see, this database class (mydb) is completely validated by exception handling.

Should anything go wrong when working with the database, the system will immediately run

its exception handling capabilities and output a detailed error to help debug the situation. In

the real world, you may want to consider showing users a polite message that says the website

is down for maintenance (or something of the like) to alleviate any fears they may have. In a

debug environment, however, this sort of code works rather well.

Note the mysql_error() function and the mysql_errno() function in this class; they will

return the most recently generated error and error number (respectively) from the MySQL

server. Using this sort of error handling can make debugging an application much more

convenient.

15-9. Project: Displaying Linked Search Results

Linking tables makes databases powerful. By linking similar information between tables, you

create a much more organized set of data and keep certain pieces of information properly

separated from others. Let’s build on the concept of the cds database. Say, perhaps, that your

web application allows members of your site to log in (via the userlogin table) and then post

reviews of their favorite albums (via a new table you are about to design, the review table). To

keep an eye on who is posting a review, as well as which album a particular review is associ-

ated with, you must link the tables.

Linking tables generally takes place through foreign keys. A particular table can contain

a linked ID to another table and contain the respective table’s unique (primary) ID. The field

name should be the same (for semantics), and the link itself can be performed in the query.

For this example to work, you must first create the review table as follows:

reviewid INT AUTO_INCREMENT PRIMARY KEY

userloginid INT

cdid INT

rtitle TINYTEXT

review TEXT

You will also add two fields to the current userlogin table so that you can output who

wrote the review and their e-mail address. The two fields look like this:

name TINYTEXT

email TINYTEXT

The following example first puts a review into the system, outputs all reviews for each

album, and then displays who wrote them.

The Code

<?php

//sample15_9.php

//A function to open a connection to MySQL.

function opendatabase ($host,$user,$pass) {

15-9 ■ PROJECT: DISPLAYING L INKED SEARCH RESULTS 571

//Attempt to open a connection to MySQL.

try {

//And then supply them to the mysql_connect() function.

if ($db = mysql_connect ($host,$user,$pass)){

//Return the identifier.

return $db;

} else {

throw new exception ("Sorry, could not connect to mysql.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

function selectdb ($whichdb, $db){

//The next thing you must do is select a database.

try {

if (!mysql_select_db ($whichdb,$db)){

throw new exception ("Sorry, database could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//A function to close the connection to MySQL.

function closedatabase ($db){

//When you finish up, you have to close the connection.

mysql_close ($db);

}

//First, open a connection to the database.

$db = opendatabase ("localhost","apress","testing");

//Then select a database.

selectdb ("cds",$db);

//First, add the review table.

$addquery = "CREATE TABLE IF NOT EXISTS review (";

$addquery .= "reviewid INT NOT NULL AUTO_INCREMENT, PRIMARY KEY (reviewid), ";

$addquery .= "userloginid INT, cdid INT, rtitle TINYTEXT, review TEXT)➥

TYPE=MyISAM";

try {

if (!mysql_query ($addquery, $db)){

throw new exception (mysql_error());

}

} catch (exception $e) {

15-9 ■ PROJECT: DISPLAYING L INKED SEARCH RESULTS572

echo $e->getmessage ();

}

//Check the fields in the table.

$curfields = mysql_list_fields("cds", "userlogin");

//Run through the current fields and see if you already➥

have the name and email field.

$columns = mysql_num_fields($curfields);

$nameexists = false;

$emailexists = false;

for ($i = 0; $i < $columns; $i++){

if (mysql_field_name ($curfields, $i) == "name"){

$nameexists = true;

}

if (mysql_field_name ($curfields, $i) == "email"){

$emailexists = true;

}

}

//If the name field does not exist, create it.

if (!$nameexists){

$twonewquery = "ALTER TABLE userlogin ADD (name TINYTEXT)";

try {

if (!mysql_query ($twonewquery, $db)){

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

//If the e-mail field does not exist, create it.

if (!$emailexists){

$twonewquery = "ALTER TABLE userlogin ADD (email TINYTEXT)";

try {

if (!mysql_query ($twonewquery, $db)){

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

//Then, you insert a name and e-mail into the existing userlogin account, apress.

$upquery = "UPDATE userlogin SET name='Lee Babin',➥

email='lee@babinplanet.ca' WHERE userloginid='1'";

try {

if (!mysql_query ($upquery, $db)){

throw new exception (mysql_error());

}

} catch (exception $e) {

15-9 ■ PROJECT: DISPLAYING L INKED SEARCH RESULTS 573

echo $e->getmessage ();

}

//Now, you can insert a review for, let's say, Linkin Park.

$title = "My Review";

$body = "Wow, what a great album!";

$insquery = "INSERT INTO review (reviewid,userloginid,cdid,rtitle,review)➥

VALUES ('0','1','2','$title','$body')";

try {

if (!mysql_query ($insquery, $db)){

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage ();

}

//Go through all albums first.

if ($alquery = mysql_query ("SELECT * FROM cd ORDER BY cdid ASC")){

while ($aldata = mysql_fetch_array ($alquery)){

echo stripslashes ($aldata['title']) . " by: " . ➥

stripslashes ($aldata['artist']) . "
";

//Now, search for a review for this title.

$jquery = "SELECT DISTINCT a.rtitle,a.review,b.name,b.email FROM ";

$jquery .= "review a, userlogin b WHERE➥

a.userloginid=b.userloginid AND a.cdid='" . $aldata['cdid'] . "' ";

$jquery .= "ORDER BY a.reviewid ASC";

if ($revquery = mysql_query ($jquery)){

//Check if there are any reviews.

if (mysql_num_rows ($revquery) > 0){

//Then output all reviews.

?><p>Reviews</p><?php

//Count the review number.

$revcounter = 0;

while ($revdata = mysql_fetch_array ($revquery)){

//Increment the counter.

$revcounter++;

?><p style="font-weight: bold;">➥

<?php echo stripslashes ($revdata['rtitle']); ?></p><?php

?><p><?php echo stripslashes (nl2br ($revdata['review'])); ?></p><?php

?><p>By: <a href="mailto:<?php echo stripslashes ➥

($revdata['email']); ?>"><?php echo stripslashes (➥

$revdata['name']); ?></p><?php

//Now, show the break only if you have more reviews.

if (mysql_num_rows ($revquery) != $revcounter){

echo "------------------------------------
";

}

}

} else {

?><p>No reviews for this album.</p><?php

15-9 ■ PROJECT: DISPLAYING L INKED SEARCH RESULTS574

}

} else {

echo mysql_error();

}

echo "------------------------------------
";

}

} else {

echo mysql_error();

}

?>

A proper execution of this script should look something like this:

Chuck by: Sum 41

No reviews for this album.

Meteora by: Linkin Park

Reviews

My Review

Wow, what a great album!

By: Lee Babin

Mezmerize by: System of a Down

No reviews for this album.

Greyest of Blue Skies by: Finger Eleven

No reviews for this album.

How It Works

This block of code has several mechanisms, which are in place to demonstrate a few key concepts

of maintaining a database through PHP. First, you will probably notice that you insert a new table

through the actual PHP code. Doing so is merely a matter of creating the SQL necessary (in this

case with the create command) and then executing the query. The same can be said for modify-

ing the structure of an existing table through the alter command. Both commands are processed

via the SQL code and can be processed in PHP just as you would any other query. (Therefore, you

still need validation in case of a SQL failure.)

Second, displaying linked results works largely the same as displaying nonlinked results;

you merely have to take a little more caution when building the SQL query. You can link a

table in SQL in more than one way, but we prefer the alias method. Basically, when you input

the tables within the from element of the SQL query, you designate an alias to reference the

table. Therefore, the SQL looks a little bit cleaner, as you can link the required columns via

the alias (as in a.userloginid=b.userloginid) rather than through the full table names

(review.userloginid=userlogin.userloginid). It is also important that you designate the

distinct argument in the SQL, because failure to do so can result in duplicate rows being

returned.

Finally, you must specify which data you want returned from the query rather than using

the all-inclusive *. The reason for this is that there will be values returned that have the same

15-9 ■ PROJECT: DISPLAYING L INKED SEARCH RESULTS 575

name, so if you reference the array via the name of the column, the array will not know which

value you are really looking for. (For example, it would not know which userloginid to return

since there will be two of them returned.) It is better in this respect to specify the actual fields

you want to return from the query via their table’s alias (for example, a.review).

15-10. Displaying Results in a Form

Many great PHP-based database maintenance software packages are on the market (phpMyAdmin

is our personal favorite), so you have to wonder—how do they do it? Well, maintaining a database

through a form is not really that big of an issue. Huge software applications such as phpMyAdmin

may have more functionality than you can shake a stick at, but they all began with the basics.

A common piece of functionality you will be required to make into legitimate web code is

the ability to edit the contents of a row in the database. Doing so is not a particularly grueling

endeavor, but it is an important matter and should be done right. In that regard, those inter-

ested in developing for the future will surely want to start porting their applications over to

the mysqli extension. The following example allows you to modify the information contained

within the userlogin table of the cds database through mysqli and a web form.

The Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 15.10</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>

<?php

//Get the current info.

$mysqli = new mysqli ("localhost","apress","testing","cds");

//Attempt to connect.

try {

if (mysqli_connect_errno()){

throw new exception ("Error: " . mysqli_connect_errno() . " - "➥

. mysqli_connect_error());

}

} catch (exception $e){

echo $e->getmessage();

}

//Let's prepare the edit statement.

$prep = $mysqli->prepare ("UPDATE userlogin SET name=?, email=?,➥

username=?, password=?");

$prep->bind_param ('ssss',$_POST['name'],$_POST['email'],$_POST['user'],➥

$_POST['pass']);

15-10 ■ DISPLAYING RESULTS IN A FORM576

//Then bind the result statement.

if ($result = $mysqli->prepare ("SELECT name,email,username,password➥

FROM userlogin")){

} else {

echo $mysqli->errno . " - " . $mysqli->error;

}

if ($_POST['submitted'] == "yes"){

//You simply execute the prep statement.

$prep->execute();

//And output the result.

echo "Update successfully completed: " . $prep->affected_rows . "➥

row(s) affected.";

?><p>Update again?</p><?php

} else {

//Execute the result.

$result->execute ();

//Bind the results.

$result->bind_result ($name,$email,$username,$password);

//Then fetch the row.

result->fetch();

?>

<form action="sample15_10.php" method="post">

<p>Please fill out the form to change your login information.</p>

<div style="width: 250px;">

<div style="width: 30%; float: left;">

Name:

</div>

<div style="width: 59%; float: right;">

<input type="text" name="name"➥

value="<?php echo stripslashes ($name); ?>" />

</div>

<br style="clear: both;" />

</div>

<div style="width: 250px; margin-top: 10px;">

<div style="width: 30%; float: left;">

Email:

</div>

<div style="width: 59%; float: right;">

<input type="text" name="email"➥

value="<?php echo stripslashes ($email); ?>" />

</div>

<br style="clear: both;" />

</div>

<div style="width: 250px; margin-top: 10px;">

<div style="width: 30%; float: left;">

15-10 ■ DISPLAYING RESULTS IN A FORM 577

Username:

</div>

<div style="width: 59%; float: right;">

<input type="text" name="user"➥

value="<?php echo stripslashes ($username); ?>" />

</div>

<br style="clear: both;" />

</div>

<div style="width: 250px; margin-top: 10px;">

<div style="width: 30%; float: left;">

Password:

</div>

<div style="width: 59%; float: right;">

<input type="text" name="pass"➥

value="<?php echo stripslashes ($password); ?>" />

</div>

<br style="clear: both;" />

</div>

<input type="hidden" name="submitted" value="yes" />

<input type="submit" value="Edit" />

</form>

<?php

}

//Close the connection.

$mysqli->close();

?>

</body>

</html>

How It Works

The majority of this code is simply laying out the form in the manner you prefer. We recom-

mend that if you actually implement this code in a web application, make sure to do your

validation; for the scope of this example, though, this will work fine.

This example prepares both an update statement and the results for the form. You will

note that both statements are prepared and then executed at the appropriate time. Beyond

that, simply note the new mysqli usage; it works nicely in cases such as this, as you can moni-

tor your query in one spot and execute it wherever you want. In cases where you have multiple

userlogin rows in the database, it is simple to modify this code to allow the update statement

to contain a dynamic where clause.

15-10 ■ DISPLAYING RESULTS IN A FORM578

Project: Bridging the Gap Between mysql and mysqli
Like it or not, millions of solid PHP applications are running on the Internet that still use the

mysql extension. Also, more web servers are still running PHP 4 than have been upgraded to

PHP 5. (And, of course, the same can be said for older versions of MySQL.) It is therefore

imperative to be able to realize exactly what type of database engine a particular script can

use. To better accommodate a variety of scenarios, the next two examples will guide you

through creating a database class that will be usable on any MySQL-enabled PHP installation

(the code is written for PHP 4 and up, however).

15-11. Discovering Which Extension Is Being Used

The methodology for figuring out which extension is currently in use for MySQL is rather sim-

ple. The following code gives you a concise understanding of what extensions are available for

your use.

The Code

<?php

//sample15_11.php

//Function to determine which extensions are installed.

//First, the basic mysql extension.

function mysqlinstalled (){

//You can do a quick check to see if mysql is installed➥

by determining if a mysql

//function exists.

if (function_exists ("mysql_connect")){

return true;

} else {

return false;

}

}

//And the mysqli extension next.

function mysqliinstalled (){

//You do this entirely the same way you did the previous function.

if (function_exists ("mysqli_connect")){

return true;

} else {

return false;

}

}

//Now, you check if the mysql functionality is available.

if (mysqlinstalled()){

echo "<p>The mysql extension is installed.</p>";

} else {

15-11 ■ DISCOVERING WHICH EXTENSION IS BEING USED 579

echo "<p>The mysql extension is not installed.</p>";

}

//And ditto for the mysqli extension.

if (mysqliinstalled()){

echo "<p>The mysqli extension is installed.</p>";

} else {

echo "<p>The mysqli extension is not installed.</p>";

}

?>

In this case, the results are as follows:

The mysql extension is installed.

The mysqli extension is installed.

How It Works

The way this little sample works is quite easy. PHP checks, using the function_exists()

method, whether a particular mysql or mysqli function (which is part of the extension) exists.

If the function actually exists, then the related extension must be installed. This may seem like

a rather mundane task to accomplish, but you will use these functions in the next example.

Specifically, you will write a custom database class (based largely on the class you built in

recipe 15-8) that handles mysqli if it is available and mysql if not.

15-12. Writing a Wrapper Class to Bridge the Gap

Building code that will work on almost any platform can be difficult. You can, however, make

it slightly easier by building code that will work for you depending on differing circumstances.

In a world where you are never sure what server your code will need to be ported to, it is

important to keep all eventualities in mind. The different MySQL extensions are the same.

Keeping the goal of portability in mind, consider the following wrapper class; it allows you to

run with the cleaner, more efficient mysqli code if the extension is in place and will default to

the mysql extension should the need arise.

The Code

<?php

//sample15_12.php

class mydb {

private $user;

private $pass;

private $host;

private $db;

15-12 ■ WRITING A WRAPPER CLASS TO BRIDGE THE GAP580

//Constructor function.

public function __construct (){

$num_args = func_num_args();

if($num_args > 0){

$args = func_get_args();

$this->host = $args[0];

$this->user = $args[1];

$this->pass = $args[2];

$this->connect();

}

}

//Function to tell us if mysqli is installed.

private function mysqliinstalled (){

if (function_exists ("mysqli_connect")){

return true;

} else {

return false;

}

}

//Function to connect to the database.

private function connect (){

try {

//Mysqli functionality.

if ($this->mysqliinstalled()){

if (!$this->db = new mysqli ($this->host,$this->user,$this->pass)){

$exceptionstring = "Error connection to database:
";

$exceptionstring .= mysqli_connect_errno() . ": "➥

. mysqli_connect_error();

throw new exception ($exceptionstring);

}

//Mysql functionality.

} else {

if (!$this->db = mysql_connect ($this->host,$this->user,$this->pass)){

$exceptionstring = "Error connection to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

}

} catch (exception $e) {

echo $e->getmessage();

}

}

15-12 ■ WRITING A WRAPPER CLASS TO BRIDGE THE GAP 581

//Function to select a database.

public function selectdb ($thedb){

try {

//Mysqli functionality.

if ($this->mysqliinstalled()){

if (!$this->db->select_db ($thedb)){

$exceptionstring = "Error opening database: $thedb:
";

$exceptionstring .= $this->db->errno . ": " . $this->db->error;

throw new exception ($exceptionstring);

}

//Mysql functionality.

} else {

if (!mysql_select_db ($thedb, $this->db)){

$exceptionstring = "Error opening database: $thedb:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to perform a query.

public function execute ($thequery){

try {

//Mysqli functionality.

if ($this->mysqliinstalled()){

if (!$this->db->query ($thequery)){

$exceptionstring = "Error performing query: $thequery:
";

$exceptionstring .= $this->db->errno . ": " . $this->db->error;

throw new exception ($exceptionstring);

} else {

echo "Query performed correctly: " . $this->db->affected_rows . "➥

row(s) affected.
";

}

//Mysql functionality.

} else {

if (!mysql_query ($thequery, $this->db)){

$exceptionstring = "Error performing query: $thequery:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

echo "Query performed correctly: " . mysql_affected_rows () . "➥

row(s) affected.
";

}

}

15-12 ■ WRITING A WRAPPER CLASS TO BRIDGE THE GAP582

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to return a row set.

public function getrows ($thequery){

try {

//Mysqli functionality.

if ($this->mysqliinstalled()){

if ($result = $this->db->query ($thequery)){

$returnarr = array ();

while ($adata = $result->fetch_array ()){

$returnarr = array_merge ($returnarr,$adata);

}

return $returnarr;

} else {

$exceptionstring = "Error performing query: $thequery:
";

$exceptionstring .= $this->db->errno . ": " . $this->db->error;

throw new exception ($exceptionstring);

}

//Mysql functionality.

} else {

if (!$aquery = mysql_query ($thequery)){

$exceptionstring = "Error performing query: $thequery:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

$returnarr = array ();

while ($adata = mysql_fetch_array ($aquery)){

$returnarr = array_merge ($returnarr,$adata);

}

return $returnarr;

}

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to close the database link.

public function __destruct() {

try {

//Mysqli functionality.

if ($this->mysqliinstalled()){

if (!$this->db->close()){

$exceptionstring = "Error closing connection:
";

15-12 ■ WRITING A WRAPPER CLASS TO BRIDGE THE GAP 583

$exceptionstring .= $this->db->errno . ": " . $this->db->error;

throw new exception ($exceptionstring);

}

//Mysql functionality.

} else {

if (!mysql_close ($this->db)){

$exceptionstring = "Error closing connection:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

}

} catch (exception $e) {

echo $e->getmessage();

}

}

}

//Now, let's create an instance of mydb.

$mydb = new mydb ("localhost","apress","testing");

//Select a database to use.

$mydb->selectdb ("cds");

//Now, let's perform an action.

$adata = $mydb->execute ("UPDATE cd SET title='Hybrid Theory' WHERE cdid='2'");

//Then, let's try to return a row set.

$adata = $mydb->getrows ("SELECT * FROM cd ORDER BY cdid ASC");

for ($i = 0; $i < count ($adata); $i++){

echo $adata[$i] . "
";

}

?>

A run-through of this code with no errors will display the following result, whether the

mysqli extension is installed or not:

Query performed correctly: 1 row(s) affected.

1

Chuck

Sum 41

2

Hybrid Theory

Linkin Park

3

Mezmerize

System of a Down

15-12 ■ WRITING A WRAPPER CLASS TO BRIDGE THE GAP584

4

Greyest of Blue Skies

Finger Eleven

How It Works

As you can see, the code for this class is similar to the class you wrote in recipe 15-8 with one

major difference. Every time the code goes to execute a method, it first checks to see if the

mysqli extension is installed. If it is indeed installed, it goes about its business. If the mysqli

extension is not installed, no problems are had; the code will execute the same but with all

the mysql extension’s functions. Through the use of a wrapper class here, you made this code

portable.

15-13. Project: Going from MySQL to XML and

from XML to MySQL

The current standard for portable data is Extensible Markup Language (XML). XML is com-

pletely portable and can be read by almost every major software release available. In the past,

different data storage systems have handled information in a myriad of ways, often leading to

hard-to-export and hard-to-import data. With the advent of XML, however, information has

become quite a bit easier to share.

PHP 5 is no exception. One of the more valuable uses of PHP 5 is the ability to scan through

a MySQL database and output XML (or the ability to take in an XML file and convert it into a for-

mat that can be read by MySQL). In the next example, we will show how to create a simple class

whose purpose will be either to read and convert XML or to perform the opposite.

Keep in mind that in order for this script to work properly, the file you are writing the XML

to must be writable. The script will attempt to create the file, but only if the folder has the

proper permissions. For ease of use, ensure that you create the file first and CHMOD it to 777.

It is also extremely important to note that this example will create an XML backup and

then drop the database that was specified. Please ensure that you either create a new database

to play around with or run this example only on a database you do not mind losing (although

the script will re-create the database for you). The dropdb() method is in charge of actually

dropping the database, so you could simply comment out the call to that method if you are

concerned.

The Code

<?php

//sample15_13.php

//Class to convert MySQL into XML and back.

class xmlconverter {

private $user;

private $pass;

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL 585

private $host;

private $db;

//Constructor function.

public function __construct (){

$num_args = func_num_args();

if($num_args > 0){

$args = func_get_args();

$this->host = $args[0];

$this->user = $args[1];

$this->pass = $args[2];

$this->connect();

}

}

//Function to connect to the database.

private function connect (){

try {

if (!$this->db = mysql_connect ($this->host,$this->user,$this->pass)){

$exceptionstring = "Error connection to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to select a database.

public function selectdb ($thedb){

try {

if (!mysql_select_db ($thedb, $this->db)){

$exceptionstring = "Error opening database: $thedb:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to convert XML to MySQL.

public function xmltomysql ($outputfile) {

//First, attempt to open the database.

$db = $this->connect ();

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL586

//Now, attempt to open the xml for reading.

try {

if ($file = fopen ($outputfile,"r")){

$xml = simplexml_load_file ($outputfile);

//First, create the db.

try {

if (mysql_query ("CREATE DATABASE IF NOT EXISTS " . $xml->dbname . "")){

//Now, select the database you want to export.

$this->selectdb ($xml->dbname,$db);

//Then, start going through the tables and creating them.

foreach ($xml->table as $table){

//Attempt to create the table.

$ctable = "CREATE TABLE IF NOT EXISTS " . $table->tname . " (";

$colcount = 0;

$totcolcount = 0;

//Now, you need to know how many columns are in this table.

foreach ($table->tstructure->tcolumn as $totcol){

$totcolcount++;

}

foreach ($table->tstructure->tcolumn as $col){

$colcount++;

$ctable .= $col->Field." ";

//Deal with Nulls.

$ctable .= $col->Type." ";

if ($col->Null == "YES"){

$ctable .= "NULL ";

} else {

$ctable .= "NOT NULL ";

}

//Deal with the default value.

if ($col->Default != ""){

$ctable .= "DEFAULT ".$col->Default." ";

}

//Deal with Auto_Increment

if ($col->Extra != ""){

$ctable .= "AUTO_INCREMENT ";

}

//And lastly deal with primary keys.

if ($colcount != $totcolcount){

if ($col->Key == "PRI"){

$ctable .= ",PRIMARY KEY(".$col->Field."), ";

} else {

$ctable .= ", ";

}

} else {

if ($col->Key == "PRI"){

$ctable .= ",PRIMARY KEY(".$col->Field.") ";

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL 587

}

}

}

$ctable .= ")";

//Attempt to create the table.

try {

if (mysql_query ($ctable)){

//Now you need to insert the data.

foreach ($table->tdata->trow as $row){

$insquery = "INSERT INTO ".$table->tname." (";

//Find the number of rows.

$totrow = 0;

foreach ($row->children() as $totchild){

$totrow++;

}

//First, set up the names of the values.

$currow = 0;

foreach ($row->children() as $name=>$node){

$currow++;

if ($currow != $totrow){

$insquery .= $name.", ";

} else {

$insquery .= $name;

}

}

$insquery .= ") VALUES (";

//And then the data for insertion.

$currow = 0;

foreach ($row->children() as $childrendata){

$currow++;

if ($currow != $totrow){

$insquery .= "'".$childrendata."', ";

} else {

$insquery .= "'".$childrendata."'";

}

}

$insquery .= ")";

//Now, attempt to do the insertion.

try {

if (!mysql_query ($insquery)){

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

} else {

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL588

throw new exception (mysql_error()."
");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

} else {

throw new exception (mysql_error());

}

} catch (exception $e) {

echo $e->getmessage ();

}

} else {

throw new exception ("Sorry, xml file could not be opened.");

}

} catch (exception $e) {

echo $e->getmessage ();

}

}

//Function to convert mysql to xml.

public function mysqltoxml ($database,$inputfile) {

//First, attempt to connect to the database.

$db = $this->connect ();

//Now, select the database you want to export.

$this->selectdb ($database,$db);

//Now, attempt to open the xml file for writing.

try {

if ($file = fopen ($inputfile,"w")){

//Output the version number.

fwrite ($file, "<?xml version=\"1.0\"?>\n");

//Now, first output the database as the main xml tab.

fwrite ($file,"<db>\n");

//Output the name of the database.

fwrite ($file,"\t<dbname>".$database."</dbname>\n");

//Now, go through the database and grab all table names.

if ($tquery = mysql_query ("SHOW TABLES FROM $database")){

if (mysql_num_rows ($tquery) > 0){

while ($tdata = mysql_fetch_array ($tquery)){

fwrite ($file,"\t<table>\n");

fwrite ($file,"\t\t<tname>".$tdata[0]."</tname>\n");

//Then, grab all fields in this table.

if ($fquery = mysql_query ("SHOW COLUMNS FROM ".$tdata[0]."")){

if (mysql_num_rows ($fquery) > 0){

//First show the structure.

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL 589

fwrite ($file,"\t\t<tstructure>\n");

//Start an array of names.

$narr = array ();

while ($fdata = mysql_fetch_assoc ($fquery)){

$narr[] = $fdata['Field'];

fwrite ($file,"\t\t\t<tcolumn>\n");

fwrite ($file,"\t\t\t\t<Field>".$fdata['Field']."</Field>\n");

fwrite ($file,"\t\t\t\t<Type>".$fdata['Type']."</Type>\n");

fwrite ($file,"\t\t\t\t<Null>".$fdata['Null']."</Null>\n");

fwrite ($file,"\t\t\t\t<Key>".$fdata['Key']."</Key>\n");

fwrite ($file,"\t\t\t\t<Default>".$fdata['Default'].➥

"</Default>\n");

fwrite ($file,"\t\t\t\t<Extra>".$fdata['Extra']."</Extra>\n");

fwrite ($file,"\t\t\t</tcolumn>\n");

}

fwrite ($file,"\t\t</tstructure>\n");

//Now, show the data.

if ($dquery = mysql_query ("SELECT * FROM ".$tdata[0]."")){

if (mysql_num_rows ($dquery) > 0){

fwrite ($file,"\t\t<tdata>\n");

//Start a counter.

while ($ddata = mysql_fetch_assoc ($dquery)){

fwrite ($file,"\t\t\t<trow>\n");

$fcounter = 0;

while ($ele = each ($ddata)){

fwrite ($file,"\t\t\t\t\t<".$narr[$fcounter]➥

. ">".$ele['value']."</".$narr[$fcounter].">\n");

$fcounter++;

}

fwrite ($file,"\t\t\t</trow>\n");

}

fwrite ($file,"\t\t</tdata>\n");

}

} else {

echo mysql_error();

}

}

} else {

echo mysql_error();

}

fwrite ($file,"\t</table>\n");

}

}

} else {

echo mysql_error();

}

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL590

fwrite ($file,"</db>");

} else {

throw new exception ("Sorry, could not open the file for writing.");

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to drop a database, be careful with this one ;).

public function dropdb ($thedb){

try {

if (!mysql_query ("DROP DATABASE $thedb", $this->db)){

$exceptionstring = "Error dropping database: $thedb:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

//Function to close the database link.

public function __destruct() {

try {

if (!mysql_close ($this->db)){

$exceptionstring = "Error closing connection:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

}

} catch (exception $e) {

echo $e->getmessage();

}

}

}

//Create a new instance of the class.

$myconverter = new xmlconverter ("localhost","apress","testing");

//Then convert the database into XML.

$myconverter->mysqltoxml ("cds","test.xml");

//Then drop the database to prove it works.

$myconverter->dropdb ("cds");

//Now completely recreate the db.

$myconverter->xmltomysql ("test.xml");

?>

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL 591

Here is what the final XML file for the cds database looks like:

<?xml version="1.0"?>

<db>

<dbname>cds</dbname>

<table>

<tname>cd</tname>

<tstructure>

<tcolumn>

<Field>cdid</Field>

<Type>int(11)</Type>

<Null></Null>

<Key>PRI</Key>

<Default></Default>

<Extra>auto_increment</Extra>

</tcolumn>

<tcolumn>

<Field>title</Field>

<Type>tinytext</Type>

<Null></Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>artist</Field>

<Type>tinytext</Type>

<Null></Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

</tstructure>

<tdata>

<trow>

<cdid>1</cdid>

<title>Chuck</title>

<artist>Sum 41</artist>

</trow>

<trow>

<cdid>2</cdid>

<title>Meteora</title>

<artist>Linkin Park</artist>

</trow>

<trow>

<cdid>3</cdid>

<title>Mezmerize</title>

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL592

<artist>System of a Down</artist>

</trow>

<trow>

<cdid>4</cdid>

<title>Greyest of Blue Skies</title>

<artist>Finger Eleven</artist>

</trow>

</tdata>

</table>

<table>

<tname>review</tname>

<tstructure>

<tcolumn>

<Field>reviewid</Field>

<Type>int(11)</Type>

<Null></Null>

<Key>PRI</Key>

<Default></Default>

<Extra>auto_increment</Extra>

</tcolumn>

<tcolumn>

<Field>userloginid</Field>

<Type>int(11)</Type>

<Null>YES</Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>cdid</Field>

<Type>int(11)</Type>

<Null>YES</Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>rtitle</Field>

<Type>tinytext</Type>

<Null>YES</Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>review</Field>

<Type>text</Type>

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL 593

<Null>YES</Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

</tstructure>

<tdata>

<trow>

<reviewid>1</reviewid>

<userloginid>1</userloginid>

<cdid>2</cdid>

<rtitle>My Review</rtitle>

<review>Wow, what a great album!</review>

</trow>

</tdata>

</table>

<table>

<tname>userlogin</tname>

<tstructure>

<tcolumn>

<Field>userloginid</Field>

<Type>int(11)</Type>

<Null></Null>

<Key>PRI</Key>

<Default></Default>

<Extra>auto_increment</Extra>

</tcolumn>

<tcolumn>

<Field>username</Field>

<Type>tinytext</Type>

<Null></Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>password</Field>

<Type>tinytext</Type>

<Null></Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>name</Field>

<Type>tinytext</Type>

<Null>YES</Null>

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL594

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

<tcolumn>

<Field>email</Field>

<Type>tinytext</Type>

<Null>YES</Null>

<Key></Key>

<Default></Default>

<Extra></Extra>

</tcolumn>

</tstructure>

<tdata>

<trow>

<userloginid>1</userloginid>

<username>apress</username>

<password>testing</password>

<name>Lee Babin</name>

<email>lee@babinplanet.ca</email>

</trow>

</tdata>

</table>

</db>

How It Works

This is a rather complicated class. Understanding this class requires a couple of core compe-

tencies. First, you should have a basic understanding of what XML is and how to use it. We

recommend the highly competent tutorial available at W3Schools:

http://www.w3schools.com/xml/default.asp

Second, you are using a new set of functions available by default in the current PHP 5

compilation, Simple XML. We recommend visiting the PHP manual at http://www.php.net/

simplexml for gaining extended knowledge on Simple XML (but, as its name implies, it is actu-

ally rather simple to figure out!).

Now that you have the core prerequisites out of the way, let’s delve into this class here. You

will note that most of the MySQL connecting and disconnecting functionality has been ported

over from recipe 15-8, so if you have a good understanding of that, you should not have too

much trouble with this.

The first new method, the mysqltoxml() method, takes in, as an argument, the file loca-

tion you want to write the XML to. Should the file not exist or not have the proper permissions

to write to, the method will return an error. If, however, the file is ready to go, the script will

scan through every table in the specified database and write the equivalent XML to the speci-

fied XML file. Now, the structure for the XML is entirely up to you. In fact, it may have been

more prudent to go with attributes for certain tags rather than new tags, but we were looking

for ease of reading in this case.

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL 595

For this XML schema, we chose the db tag as the all-inclusive dataset and structured

inward from there. In this schema, you will see every table in the database (the table tag),

then each column for each table structure (every tcolumn for each tstructure), and then a

dynamically created dataset (within dynamically created tags in the trow element).

The mysql_fetch_assoc() function works largely like the mysql_fetch_array() function,

but it uses an associative array to store the information garnered from a row. From there it

is merely a matter of structuring your database queries properly (selecting from tables and

showing queries) to obtain a working XML record of the entire database.

The next method, xmltomysql(), is slightly more complicated, but if you understand the

core structure of the XML, you will see that it is merely a matter of reversing what you have

just done with the mysqltoxml() method. Basically, the script reads the entire XML file using

the simplexml_load_file() method, which creates a SIMPLEXMLElement object (an object that

contains XML-related methods). From there, you can perform a rather large amount of func-

tionality.

Using Simple XML to parse through first the database and then the tables in the database,

you gradually create the database and move onto each table. Since the XML that gets created

for the individual row setup does not port straight across into a valid query, a little bit of

finessing was required to get the table creation queries just right. The same could be said for

the data insertion, but less manipulation is required.

All in all, with the power of Simple XML and MySQL, moving between the two can be

rather painless and incredibly powerful.

Summary
As the Web and the applications that are built for it progress, data and information storage is

becoming more important. While many different methods exist for storing information, the

MySQL solution is tried, tested, and extremely functional. As MySQL continues to evolve, so

too does the PHP required to handle it. The new mysqli extension proves that MySQL and PHP

listen to their users, continue to make improvements, and implement solutions to issues that

developers may have.

Through carefully created and properly designed data storage, a database can be a devel-

oper’s best friend. With the new, heavily object-oriented PHP 5 model, it has become easier to

write code that can be used in a variety of situations and can take care of a wealth of the work

for you.

To conclude, MySQL continues to be the developer’s choice for a fully functional, robust,

and affordable database solution. As the code written into PHP 5 continues to evolve, so too

will the wondrous applications in which you can put it to use.

Looking Ahead
In the next, and final, chapter, Frank M. Kromann will provide an in-depth look at some of the

services PHP 5 can provide. Expect to see a ton of strong, effective code to help you with your

mail, Domain Name System (DNS), and File Transfer Protocol (FTP) issues and algorithms. All

this and more are to be had in Chapter 16.

15-13 ■ PROJECT: GOING FROM MYSQL TO XML AND FROM XML TO MYSQL596

Communicating with
Internet Services

When you use PHP to build dynamic web applications, you need to communicate with

other Internet services. This can be as simple as sending an e-mail with the content of a user-

submitted form or as advanced as a full-featured mail client that allows the user to send and

receive e-mails. PHP has several ways of communicating with Internet services. The most

basic form is socket communication, where all the protocol features must be implemented in

the PHP script. More advanced features for reading remote files are implemented as wrapper

functions for the normal file handling functions, and some services are implemented with a

function set that makes it easy to write complex applications without having to know all the

details of socket-level communication.

16-1. Sending Internet Mail

You can send mail from a PHP script in at least two ways. The first way is to use one of the

built-in mail functions: mail() or imap_mail(). These two functions build on the same internal

mail routine, but they have a different set of arguments, and the imap_mail() function is avail-

able only when the Internet Message Access Protocol (IMAP) extension is loaded. The PHP

Extension and Application Repository (PEAR) also provides a mail class. This is basically an

object-oriented wrapper for the built-in mail() function.

The second way requires using the socket extension to create a direct connection to a

Simple Mail Transfer Protocol (SMTP) mail server. This method requires knowledge of how

SMTP mail servers work.

■Note Access to SMTP servers is normally restricted to specific Internet Protocol (IP) addresses or

requires some form of authentication. This blocks someone from hijacking the SMTP server to send spam

and viruses.

597

C H A P T E R 1 6

■ ■ ■

The prototypes for the two built-in mail functions are as follows. Note that the first four

parameters are the same.

bool mail (string to, string subject, string message➥

[, string additional_headers [, string additional_parameters]])

bool imap_mail (string to, string subject, string message➥

[, string additional_headers [, string cc [, string bcc [, string rpath]]]])

To use the built-in mail functions, you must configure a few settings in php.ini. On a Unix

system, you must specify the sendmail_path setting to point to where sendmail is located and

add parameters. The default value is "sendmail -t -i". On a Windows system, there are three

values: SMTP, smtp_port, and sendmail_from. SMTP is the hostname or IP address of the SMTP

server. This can be localhost if you have an SMTP server running on the same server. For most

SMTP servers, smtp_port should be 25, but in some cases you might want to change that. The

sendmail_from value specifies the From: header, unless it is included in the additional headers

string on all outgoing mails.

The following example shows how to send an e-mail from a PHP script.

The Code

<?php

// Example 16-1-1.php

$to = "sam@somedomain.com";

$from = "joe@anotherdomain.com";

$cc = $from;

$subject = "Sending e-mails from PHP";

$body = <<< BODY

Hi Sam,

This e-mail is generated from a PHP script.

- Joe

BODY;

mail($to, $subject, $body, "From: $from\r\nCc: $cc");

?>

How It Works

This example defines a number of variables used as parameters to the mail() function. The

$body variable is created with the HEREDOC notation, and the value is defined as everything

between <<< BODY and BODY;. This notation makes it easy to include linefeeds in a variable.

The additional headers form the last parameter to the mail() function. These are formed as

variables embedded in a string.

16-1 ■ SENDING INTERNET MAIL598

16-2. Project: Sending an E-mail with a Mail Class

Using a mail class such as PEAR::Mail has a few advantages over using the plain mail() func-

tion. One of the advantages is the built-in check for valid mail addresses before sending a

mail. To get the PEAR::Mail class on your system, you must run the command pear install

mail. This requires that PEAR is already installed on your system.

The Code

<?php

// Example 16-2-1.php

require "Mail.php";

$to = array("sam@somedomain.com");

$headers = array(

'From' => "joe@anotherdomain.com",

'Cc' => "joe@anotherdomain.com",

'Subject' => "Sending e-mails from PEAR::Mail"

);

$body = <<< BODY

Hi Sam,

This e-mail is generated from a PHP script with the PEAR::Mail class.

- Joe

BODY;

$mail = Mail::factory('mail');

$mail->send($to, $headers, $body);

?>

How It Works

This uses the built-in mail() function to send the e-mail as plain text. The PEAR::Mail class has

multiple factories to choose from (mail, sendmail, and smtp). Object-oriented programming

uses factories to load/implement different technologies with the same application program-

ming interfaces (APIs). So, in the case of the Mail() class, you can load the class elements

needed to communicate with the mail server when the Mail object is created. The mail factory

uses the built-in mail() function, sendmail communicates directly with the sendmail program,

and the smtp factory uses sockets to connect directly to the server. The smtp factory supports

authentication, allowing you to use a more secure SMTP server.

In addition to the basic Mail() class, PEAR also provides a Multipurpose Internet Mail

Extensions (MIME) class that allows you to build more complex e-mails with Hypertext Markup

Language (HTML), embedded images, and attachments. This class is called PEAR::Mail_mime, and

the following example shows how to use this class with the Mail() class to send a message that

contains plain text and an HTML body. You can install the Mail_mime class with the command

pear install Mail_mime.

16-2 ■ PROJECT: SENDING AN E-MAIL WITH A MAIL CLASS 599

The Code

<?php

// Example 16-2-2.php

require "Mail.php";

require "Mail/mime.php";

$to = array("sam@somedomain.com");

$headers = array(

'From' => "joe@anotherdomain.com",

'Cc' => "joe@anotherdomain.com",

'Subject' => "Sending e-mails from PEAR::Mail"

);

$mime = new Mail_mime();

$txtBody = <<< BODY

Hi Sam,

This e-mail is generated from a PHP script with the PEAR::Mail class.

- Joe

BODY;

$mime->setTXTBody($txtBody);

$htmlBody = <<< BODY

<html><body>

<h1>Hi Sam,</h1>

This e-mail is generated from a PHP script with the PEAR::Mail class.

- Joe

</body></html>

BODY;

$mime->setHTMLBody($htmlBody);

$body = $mime->get();

$headers = $mime->headers($headers);

$mail = Mail::factory('mail');

$mail->send($to, $headers, $body);

?>

16-2 ■ PROJECT: SENDING AN E-MAIL WITH A MAIL CLASS600

How It Works

This example uses the same basic structure as the previous example, but it also uses a class to

handle the different elements of a MIME message. A MIME message has several parts, and in

this case you define a plain-text version and an HTML version of the body and then add these

to the MIME message. When all parts have been added to the MIME object, you extract the

body and headers, and these are used to send the message.

The calls to $mime->get() and $mime->headers() must be executed in this order, because

the get() method generates the necessary headers. Getting the body value first will work.

$body = $mime->get();

$mail->send($to, $mime->headers($headers), $body);

Writing everything in a single line will not work, because PHP will execute the call to

$mime->headers() first, and the header defining the mail as a multipart message will not be

included in the mail. The result will be one plain-text message.

$mail->send($to, $mime->headers($headers), $body = $mime->get());

■Note Not all mail clients can render HTML bodies. Make sure you always send a plain-text body when

you send an HTML body. This makes it possible for non-HTML mail clients to display the message.

You can also use PEAR::Mail_mime to embed images into an HTML body or attach files to

the message. You can choose to embed images or reference images that are available online.

An embedded image will increase the size of the mail, but a reference to an online image

requires the client to be online when the mail is viewed.

The following example shows how to use the PEAR::Mail and PEAR::Mail_mime classes to

create and send an e-mail with an HTML body that has an embedded image.

The Code

<?php

// Example 16-2-3.php

require "Mail.php";

require "Mail/mime.php";

$to = array("sam@somedomain.com");

$headers = array(

'From' => "joe@anotherdomain.com",

'Cc' => "joe@anotherdomain.com",

'Subject' => "Sending e-mails from PEAR::Mail"

);

16-2 ■ PROJECT: SENDING AN E-MAIL WITH A MAIL CLASS 601

$mime = new Mail_mime();

$txtBody = "Please read the HTML part of this message"

$mime->setTXTBody($txtBody);

$htmlBody = <<< BODY

<html><body>

<h1>Hi Sam,</h1>

This e-mail is generated from a PHP script with the PEAR::Mail class.

- Joe

</body></html>

BODY;

$mime->setHTMLBody($htmlBody);

$mime->addHTMLImage('image.jpg', 'image/jpeg', 'image.jpg', true);

$body = $mime->get();

$headers = $mime->headers($headers);

$mail = Mail::factory('mail');

$mail->send($to, $headers, $body);

?>

How It Works

In this example you use the method addHTMLImage() to include a JPG image in the MIME

structure. The name of the image is also used as the src property of the image tag in the HTML

part of the message. When the body is generated, the image tag will be modified to reference

the embedded image.

If the image is available online, you should replace the image source with the full Uniform

Resource Locator (URL) to the image, and you should not include the image in the mail with

the addHTMLImage() method.

16-3. Reading Mail with IMAP or POP3

You can read e-mails from a mail account with the IMAP extension. This extension supports

IMAP, Post Office Protocol 3 (POP3), and Network News Transport Protocol (NNTP) services,

and you can use it to read and parse messages from these systems. As mentioned in the previ-

ous section, the extension also has a function for sending mail messages, but this is not the

primary purpose of the extension. The IMAP extension implements a large number of func-

tions to maintain mailboxes, to convert data between different encodings, and so on. This

section describes how to use functions that check and retrieve mail from a mailbox using

IMAP and POP3.

The imap_open() function creates a connection to a mailbox, and on success it will return

a handle to the mailbox that can be used when calling other imap_* functions to access addi-

tional information.

16-3 ■ READING MAIL WITH IMAP OR POP3602

The next example shows a small class that can access IMAP, POP3, and NNTP servers to

list the contents of a specific mailbox on the server. This first version of the class does not con-

tain functions to retrieve the body of the messages, but you will add this to the class later in

this section. Table 16-1 lists the methods of this class.

Table 16-1. GetMail Methods

Name Description

__construct() Class constructor. This will create the connection to the mailbox.

__destruct() Cleans up when the object is destroyed.

num_msg() Gets the number of messages in the mailbox.

num_recent() Gets the number of recent messages in the mailbox.

headers() Returns headers for all (or selected) messages in the mailbox.

format_address() Returns an RFC-822–formatted address from an address object.

format_address_list() Returns RFC-822–formatted addresses for an array of objects.

The Code

<?php

// Example getmail.incif

(!extension_loaded("imap")) {

dl("php_imap.dll");

}

class GetMail {

private $host;

private $user;

private $pass;

private $type;

private $mbox;

private $port;

private $mh = null;

function __construct($host, $user, $pass,

$type = 'imap', $mbox = 'INBOX', $port = null) {

$this->host = $host;

$this->user = $user;

$this->pass = $pass;

$this->type = strtolower($type);

if (is_null($port)) {

switch($this->type) {

case 'imap' :

$this->port = 143;

break;

case 'pop3' :

$this->port = 110;

break;

16-3 ■ READING MAIL WITH IMAP OR POP3 603

case 'nntp' :

$this->port = 119;

break;

}

}

else {

$this->port = $port;

}

$this->mbox = $mbox;

$mailbox = "$this->host:$this->port/$this->type";

$this->mh = imap_open("{" . $mailbox . "}$this->mbox",

$this->user, $this->pass, 16);

}

function __destruct() {

if ($this->mh) {

imap_close($this->mh);

}

}

function num_msg() {

return imap_num_msg($this->mh);

}

function num_recent() {

return imap_num_recent($this->mh);

}

function headers($offset = 1, $max = 0) {

$msg_from = $offset;

if ($max > 0) {

$msg_to = min($max + $offset, $this->num_msg());

}

else {

$msg_to = $this->num_msg();

}

$headers = array();

for ($i = $msg_from; $i <= $msg_to; $i++) {

$headers[] = imap_headerinfo($this->mh, $i);

}

return $headers;

}

function format_address($obj) {

if (isset($obj->personal)) {

return imap_rfc822_write_address($obj->mailbox, $obj->host, $obj->personal);

}

16-3 ■ READING MAIL WITH IMAP OR POP3604

else {

return imap_rfc822_write_address($obj->mailbox, $obj->host, '');

}

}

function format_address_list($array, $sep = ", ") {

$list = array();

foreach($array as $obj) {

$list[] = $this->format_address($obj);

}

return implode($sep, $list);

}

}

?>

The GetMail class is stored in a file called getmail.inc, and you can use it to fetch the

message headers in an IMAP or POP3 mail account:

<?php

// Example 16-3-1.php

require "getmail.inc";

$mail = new GetMail("mail.somedomain.com", "user", "password", "pop3");

$msg = $mail->num_msg();

echo "Messages = $msg\n";

if ($msg > 0) {

$headers = $mail->headers();

foreach ($headers as $header) {

echo "Subject: " . $header->subject . "\n";

echo "\tFrom: " . $mail->format_address($header->from[0]) . "\n";

echo "\tto: " . $mail->format_address($header->to[0]) . "\n";

}

}

?>

How it Works

The getmain.inc file is included as the first file. This file will perform a check for the IMAP

extension and load it if it’s not already loaded. The GetMail() class is also defined in this file.

For each message returned, the script will print a line with the subject, the From: address, and

the To: address.

Make sure you set the correct domain, user ID, and password before you use this example.

You can use the same class to get the headers from messages stored in a news server

(NNTP). The server/mailbox used in the next example holds more than 1,200 messages, so

to speed things up and reduce the size of the output, the headers() function is called with two

optional arguments, called $offset and $max. The first argument tells the function where to

start, and the second argument tells the function how many headers to return.

16-3 ■ READING MAIL WITH IMAP OR POP3 605

The Code

<?php

// Example 16-3-2.php

require "getmail.inc";

$mail = new GetMail("news.php.net", "", "", "nntp", "php.gtk.dev");

$msg = $mail->num_msg();

echo <<< HTML

<html><body><table width=100% border=1>

<tr>

<td>UID</td>

<td>Date</td>

<td>Subject</td>

</tr>

HTML;

if ($msg > 0) {

$headers = $mail->headers($msg - 5, 5);

foreach ($headers as $uid=>$header) {

echo "<tr><td>$uid</td>" .

"<td>" . $header->date . "</td>" .

"<td>" . $header->subject . "</td>" .

"</tr>";

}

}

echo <<< HTML

</table></body></html>

HTML;

?>

How It Works

The basic elements in this example are the same as the previous example. You use NNTP to

connect to the new server, and you use an additional parameter to specify the newsgroup you

want to list. When the headers() method is called, you specify the offset and the count to limit

the number of messages returned. Figure 16-1 shows the output from the code, listing the five

latest entries to the newsgroup.

The next step is to add functions to retrieve the content of the message body. This can either

be plain text or a combination of plain text, HTML, embedded files, and attachments. This imple-

mentation will deal with only plain text, HTML, and images. The IMAP extension provides three

functions to retrieve the message body. The imap_body() function will return the full body string

and leave it to the client to parse the content. The imap_fetchstructure() function analyzes the

structure, and imap_fetchbody() fetches the content of a single part.

You can fetch the body of a message formatted as plain text by calling imap_body(). The

returned result might need some decoding of quoted printable strings before it can be used.

16-3 ■ READING MAIL WITH IMAP OR POP3606

Figure 16-1. HTML listing of a newsgroup created with imap functions

More advanced message structures require a recursive function to loop through the mes-

sage structure and extract each body part. The modifications to the GetMail class will allow the

return of the body section as an array, as shown in the next sample.

The Code

<?php
// Example getmail1.inc
if (!extension_loaded("imap")) {
dl("php_imap.dll");

}

class GetMail {
private $host;
private $user;
private $pass;
private $type;
private $mbox;
private $port;
private $mh = null;

function __construct($host, $user, $pass, $type = 'imap',
$mbox = 'INBOX', $port = null) {
$this->host = $host;
$this->user = $user;
$this->pass = $pass;
$this->type = strtolower($type);

16-3 ■ READING MAIL WITH IMAP OR POP3 607

if (is_null($port)) {
switch($this->type) {
case 'imap' :
$this->port = 143;
break;

case 'pop3' :
$this->port = 110;
break;

case 'nntp' :
$this->port = 119;
break;

}
}
else {
$this->port = $port;

}
$this->mbox = $mbox;
$mailbox = "$this->host:$this->port/$this->type";
$this->mh = imap_open("{" . $mailbox . "}$this->mbox",
$this->user, $this->pass, 16);

}

function __destruct() {
if ($this->mh) {
imap_close($this->mh);

}
}

function num_msg() {
return imap_num_msg($this->mh);

}

function num_recent() {
return imap_num_recent($this->mh);

}

function headers($offset = 1, $max = 0) {
$msg_from = $offset;
if ($max > 0) {
$msg_to = min($max + $offset, $this->num_msg());

}
else {
$msg_to = $this->num_msg();

}
$headers = array();
for ($i = $msg_from; $i <= $msg_to; $i++) {
$headers[imap_uid($this->mh, $i)] = imap_headerinfo($this->mh, $i);

}
return $headers;

}

16-3 ■ READING MAIL WITH IMAP OR POP3608

function format_address($obj) {
if (isset($obj->personal)) {
return imap_rfc822_write_address($obj->mailbox, $obj->host, $obj->personal);

}
else {
return imap_rfc822_write_address($obj->mailbox, $obj->host, '');

}
}

function format_address_list($array, $sep = ", ") {
$list = array();
foreach($array as $obj) {
$list[] = $this->format_address($obj);

}
return implode($sep, $list);

}

private function _decode_body($encoding, $part) {
switch($encoding) {
case 3: // Base64
$strPart = imap_base64($part);
break;

case 4: // Quoted printable
$strPart = imap_qprint($part);
break;

case 0: // 7bit
case 1: // 8bit
case 2: // Binary
case 5: // Other
default:
break;

}
return $part;

}

private function _mimetype($structure) {
$mime_type = array("TEXT", "MULTIPART", "MESSAGE",

"APPLICATION", "AUDIO", "IMAGE", "VIDEO", "OTHER");
if($structure->subtype) {
return $mime_type[(int) $structure->type] . '/' . $structure->subtype;

}
return "TEXT/PLAIN";

}

private function _get_mime_parts($struct, $msg, &$parts,
$options=0, $part_number=false) {
switch ($struct->type) {
case 0 : // TEXT
case 2 : // MESSAGE
case 3 : // APPLICATION
case 4 : // AUDIO

16-3 ■ READING MAIL WITH IMAP OR POP3 609

case 5 : // IMAGE
case 6 : // VIDEO
case 7 : // OTHER
if(!$part_number) {
$part_number = "1";

}
$data = imap_fetchbody($this->mh, $msg, $options, $part_number);
$parts[] = array(
"DATA" => $this->_decode_body($struct->encoding, $data),
"MIMETYPE" => $this->_mimetype($struct)

);
break;

case 1 : // MULTIPART
$prefix = "";
while(list($index, $sub_struct) = each($struct->parts)) {
if($part_number) {
$prefix = $part_number . '.';

}
$this->_get_mime_parts($sub_struct, $msg, $parts,
$options, $prefix . ($index + 1));

}
break;

}
}

function body($msg, $options = 0) {
$parts = array();
$struct = imap_fetchstructure($this->mh, $msg, $options);
$this->_get_mime_parts($struct, $msg, $parts, $options);
return $parts;

}
}
?>

The code needed to use this class and present the result is as follows:

<?php
// Example 16-3-3.php
require "getmail1.inc";

$mail = new GetMail("news.php.net", "", "", "nntp", "php.gtk.dev");
$msg = $mail->num_msg();

echo <<< HTML
<html><body><table width=100% border=1>
HTML;
if ($msg > 0) {
$headers = $mail->headers($msg);
foreach ($headers as $uid=>$header) {
echo "<tr><td>UID</td><td>$uid</td></tr>" .

"<tr><td>Date</td><td>" . $header->date . "</td></td>" .
"<tr><td>Subject</td><td>" . $header->subject . "</td></td>" .
"<tr><td>Body</td><td>";

16-3 ■ READING MAIL WITH IMAP OR POP3610

foreach ($mail->body($uid, FT_UID) as $i=>$part) {
if ($part['MIMETYPE'] == "TEXT/PLAIN") {
echo "<pre>" . $part['DATA'] . "</pre>";

}
}
echo "</td></td></tr>";

}
}
echo <<< HTML
</table></body></html>
HTML;
?>

How It Works

You use the same news server as in the previous example, but now you retrieve the headers

only for the last message in the newsgroup. The message ID for this message then calls the

body() method to get all the parts, and for all the parts where the MIME type is text/plain,

you print the actual data, as shown in Figure 16-2.

Figure 16-2. The complete message retrieved from a newsgroup

16-3 ■ READING MAIL WITH IMAP OR POP3 611

The modified GetMail class has four new methods, as listed in Table 16-2. Three of these

are defined as private, so they can be called only from within the object.

Table 16-2. New GetMail Methods

Name Description

_decode_body() Converts encoded elements to readable text

_mimetype() Finds the MIME type for a part

_get_mime_parts() Extracts all parts of the body

body() The public function that returns the parts

You can delete the messages in a mailbox after they are fetched or stored on the server for

additional use. Deleting messages requires a call to imap_delete() for each message and one

call to imap_expunge() before the session is closed. This will delete all messages marked for

deletion.

If the server is an IMAP server, it’s also possible to store a read/unread flag. This will allow

multiple mail clients access to the same mailbox to keep track of new messages.

Table 16-3 lists the functions implemented in the IMAP extension.

Table 16-3. Functions in the IMAP Extension

Name Description

imap_8bit() Converts an 8-bit string to a quoted-printable string.

imap_alerts() Returns all IMAP alert messages (if any) that have occurred
during this page request or since the alert stack was reset.

imap_append() Appends a string message to a specified mailbox.

imap_base64() Decodes base 64–encoded text.

imap_binary() Converts an 8-bit string to a base 64 string.

imap_body() Reads the message body.

imap_bodystruct() Reads the structure of a specified body section of a specific
message.

imap_check() Checks the current mailbox.

imap_clearflag_full() Clears flags on messages.

imap_close() Closes an IMAP stream.

imap_createmailbox() Creates a new mailbox.

imap_delete() Marks a message for deletion from the current mailbox.

imap_deletemailbox() Deletes a mailbox.

imap_errors() Returns all the IMAP errors (if any) that have occurred during this
page request or since the error stack was reset.

imap_expunge() Deletes all messages marked for deletion.

imap_fetch_overview() Reads an overview of the information in the headers of the given
message.

imap_fetchbody() Fetches a particular section of the body of the message.

imap_fetchheader() Returns the header for a message.

16-3 ■ READING MAIL WITH IMAP OR POP3612

Name Description

imap_fetchstructure() Reads the structure of a particular message.

imap_get_quota() Retrieves the quota-level settings and usage statistics per mailbox.

imap_get_quotaroot() Retrieves the quota settings per user.

imap_getacl() Gets the access control list (ACL) for a given mailbox.

imap_getmailboxes() Reads the list of mailboxes, returning detailed information on
each one.

imap_getsubscribed() Lists all the subscribed mailboxes.

imap_header() Alias of imap_headerinfo().

imap_headerinfo() Reads the header of the message.

imap_headers() Returns headers for all messages in a mailbox.

imap_last_error() Returns the last IMAP error (if any) that occurred during this
page request.

imap_list() Reads the list of mailboxes.

imap_listmailbox() Alias of imap_list().

imap_listscan() Reads the list of mailboxes and takes a string to search for in the
text of the mailbox.

imap_listsubscribed() Alias of imap_lsub().

imap_lsub() Lists all the subscribed mailboxes.

imap_mail_compose() Creates a MIME message based on given envelope and body
sections.

imap_mail_copy() Copies specified messages to a mailbox.

imap_mail_move() Moves specified messages to a mailbox.

imap_mail() Sends an e-mail message.

imap_mailboxmsginfo() Gets information about the current mailbox.

imap_mime_header_decode() Decodes MIME header elements.

imap_msgno() Returns the message sequence number for the given unique
identifier (UID).

imap_num_msg() Gives the number of messages in the current mailbox.

imap_num_recent() Gives the number of recent messages in the current mailbox.

imap_open() Opens an IMAP stream to a mailbox.

imap_ping() Checks if the IMAP stream is still active.

imap_qprint() Converts a quoted-printable string to an 8-bit string.

imap_renamemailbox() Renames an old mailbox to a new mailbox.

imap_reopen() Reopens IMAP stream to new mailbox.

imap_rfc822_parse_adrlist() Parses an address string.

imap_rfc822_parse_headers() Parses mail headers from a string.

imap_rfc822_write_address() Returns a properly formatted e-mail address given the mailbox,
host, and personal information.

imap_scanmailbox() Alias of imap_listscan().

Continued

16-3 ■ READING MAIL WITH IMAP OR POP3 613

Table 16-3. Continued

Name Description

imap_search() Returns an array of messages matching the given search criteria.

imap_set_quota() Sets a quota for a given mailbox.

imap_setacl() Sets the ACL for a given mailbox.

imap_setflag_full() Sets flags on messages.

imap_sort() Sorts an array of message headers.

imap_status() Returns status information on a mailbox other than the current one.

imap_subscribe() Subscribes to a mailbox.

imap_thread() Returns a tree of threaded message.

imap_timeout() Sets or fetches IMAP timeout.

imap_uid() Returns the UID for the given message sequence number.

imap_undelete() Unmarks the message that is marked to be deleted.

imap_unsubscribe() Unsubscribes from a mailbox.

imap_utf7_decode() Decodes a modified UTF-7 encoded string.

imap_utf7_encode() Converts an ISO-8859-1 string to modified UTF-7 text.

imap_utf8() Converts MIME-encoded text to UTF-8 text.

16-4. Getting and Putting Files with FTP

Getting a file from a File Transfer Protocol (FTP) server can be as simple as getting a file from

the local hard drive. You can use the same functions for file access to read files from File Trans-

fer Protocol (FTP) sites and web servers. The following example shows how to get a file from a

local hard drive.

The Code

<?php

// Example 16-4-1.php

$file_name = 'somefile.ext';

$fp = fopen($file_name, 'rb');

if ($fp) {

$data = fread($fp, filesize($file_name));

fclose($fp);

}

?>

16-4 ■ GETTING AND PUTTING F ILES WITH FTP614

How It Works

This script uses the fopen(), fread(), and fclose() functions to open a file on a local hard

drive and read its content into a variable. The filesize() function gets the size of the file so

you can read the entire file in one chunk.

PHP allows the filename to be written as a URL, so you can use the same code to fetch a

file from a web or an FTP server just by changing the filename to a full URL.

The Code

<?php

// Example 16-4-2.php

$file_name = 'http://php.net/index.php';

$fp = fopen($file_name, 'r');

if ($fp) {

$data = '';

while (!feof($fp)) {

$data .= fread($fp, 4096);

}

fclose($fp);

}

echo $data;

?>

How It Works

In the first example, the function filesize() gets the length of the file. This is not possible

with remote URLs, as the server does not always include the content length in the headers,

especially if the content is generated dynamically. So, in this case, you read the file in small

chunks of 4,096 bytes and keep reading until the stream reports the end of the file. The eof()

function checks the stream for each block you read.

If the file on the remote server is protected from anonymous access, it’s possible to

include a username and password in the URL like this:

$file_name = 'ftp://user:pass@somedomain.com/subdir/file.txt';

■Note The username and password will be transferred to the server as plain text.

You can use this method to write files to an FTP server with the right permissions. Some

web (HTTP) servers allow writing to the server, but the fopen_wrapper for HTTP in PHP does

not implement this. The next example shows how you can read a file from the local hard drive

and write it to an FTP server using the fopen_wrapper for FTP.

16-4 ■ GETTING AND PUTTING F ILES WITH FTP 615

The Code

<?php

// Example 16-4-3.php

$file_name = "16.3.2.php";

$fp = fopen($file_name, 'r');

if ($fp) {

$data = fread($fp, filesize($file_name));

fclose($fp);

$file_name = "ftp://user:pass@ftp.somedomain.com/home/user/$file_name";

$fp = fopen($file_name, 'wt');

if ($fp) {

echo 'writing data';

fwrite($fp, $data);

fclose($fp);

}

}

?>

How It Works

First you read a file from the local hard drive. The file is then written to a location that is speci-

fied by the full URL, with the protocol, the username, the password, and the full path to where

the file is going to be stored. This will require that the FTP server is configured to allow the

user to write to this location.

Using the fopen functions to access remote data makes it easy to integrate simple tasks,

and it’s a good method for reading remote content in text or Extensible Markup Language

(XML) format, but it does not give full access to the files on the remote system. This is where

the built-in FTP functions come in handy. The FTP functions let you do most of the stuff you

can do from a normal FTP client program. Table 16-4 lists all the implemented FTP functions.

Table 16-4. FTP Functions

Name Description

ftp_alloc() Allocates space for a file to be uploaded

ftp_cdup() Changes to the parent directory

ftp_chdir() Changes the current directory on an FTP server

ftp_chmod() Sets permissions on a file via FTP

ftp_close() Closes an FTP connection

ftp_connect() Opens an FTP connection

ftp_delete() Deletes a file on the FTP server

ftp_exec() Requests execution of a program on the FTP server

ftp_fget() Downloads a file from the FTP server and saves to an open file

ftp_fput() Uploads from an open file to the FTP server

ftp_get_option() Retrieves various runtime behaviors of the current FTP stream

16-4 ■ GETTING AND PUTTING F ILES WITH FTP616

Name Description

ftp_get() Downloads a file from the FTP server

ftp_login() Logs into an FTP connection

ftp_mdtm() Returns the last modified time of the given file

ftp_mkdir() Creates a directory

ftp_nb_continue() Continues retrieving/sending a file (nonblocking)

ftp_nb_fget() Retrieves a file from the FTP server and writes it to an open file (nonblocking)

ftp_nb_fput() Stores a file from an open file to the FTP server (nonblocking)

ftp_nb_get() Retrieves a file from the FTP server and writes it to a local file (nonblocking)

ftp_nb_put() Stores a file on the FTP server (nonblocking)

ftp_nlist() Returns a list of files in the given directory

ftp_pasv() Turns passive mode on or off

ftp_put() Uploads a file to the FTP server

ftp_pwd() Returns the current directory name

ftp_quit() Alias of ftp_close()

ftp_raw() Sends an arbitrary command to an FTP server

ftp_rawlist() Returns a detailed list of files in the given directory

ftp_rename() Renames a file or a directory on the FTP server

ftp_rmdir() Removes a directory

ftp_set_option() Sets miscellaneous runtime FTP options

ftp_site() Sends a SITE command to the server

ftp_size() Returns the size of the given file

ftp_ssl_connect() Opens a secure SSL-FTP connection

ftp_systype() Returns the system type identifier of the remote FTP server

The FTP functions make it possible to make secure (SSL) or nonsecure connections to a

remote FTP server. Creating a secure connection requires that the remote server supports that

form of connection. The only difference between a secure and a nonsecure connection is the

function used to create the connection. Switching between the two is a matter of choosing the

right connect function. Both ftp_connect() and ftp_ssl_connect() will return a connection

handle that will be passed to the other functions, so it will be transparent to use an SSL

connection.

The next example shows how you can use the ftp_* functions to upload a single file to an

FTP server.

The Code

<?php

// Example 16-4-4.php

$conn = ftp_connect("ftp.somedomain.com");

if ($conn) {

$session = ftp_login($conn, "user", "pass");

16-4 ■ GETTING AND PUTTING F ILES WITH FTP 617

if ($session) {

if (ftp_chdir($conn, "somedir")) {

ftp_put($conn, "remote.txt", "local.txt", FTP_ASCII);

}

}

ftp_close($conn);

}

?>

How It Works

The first step when using the FTP functions is to establish a connection to the server. You can

then use the handle returned from ftp_connect() to create a session, change to a directory,

and upload the file.

The next example shows how you can use these FTP functions to create an application

that will connect to an FTP server, get all files with their file sizes from a folder, and use that

data to create a list. Each filename will be presented as a link, allowing the user to download

the files directly from the FTP server.

The Code

<?php

// Example 16-4-5.php

function GetContent($host, $user, $pass, $folder) {

$content = array();

$conn = ftp_connect($host);

if ($conn) {

$session = ftp_login($conn, $user, $pass);

if ($session) {

if (empty($folder) || ftp_chdir($conn, $folder)) {

$files = ftp_nlist($conn, ".");

if (is_array($files)) {

foreach($files as $file) {

$size = ftp_size($conn, $file);

if ($size > 0) {

$content[] = array(

"name" => $file,

"url" => "ftp://$user:$pass@$host/$folder/$file",

"size" => $size

);

}

}

}

}

}

ftp_close($conn);

}

return $content;

}

16-4 ■ GETTING AND PUTTING F ILES WITH FTP618

$files = GetContent("ftp.somedomain.com", "user", "pass", "/somedir");

echo "<html><body><table width=100% border=0>" .

"<tr><td>Name</td><td align=right>Size</td></tr>";

foreach ($files as $file) {

echo "<tr><td>$file[name]</td>

<td align=right>$file[size]</td></tr>";

}

echo "</table></body></html>";

?>

How It Works

The function GetContent() takes four parameters that specify the hostname, user ID, pass-

word, and folder. This function will create an FTP connection, use the user ID and password to

log onto the server, and change the current directory to the specified folder. A list of files for

the directory is created with the ftp_nlist() function. For each file in the list, you check the

size and create an entry in the array. If the file size is 0, you assume that it’s a folder and do not

add it to the array. When the list of files is complete, it is returned and used to generate an

HTML table.

Note that the username and password for the FTP server will be exposed in the link, creat-

ing a potential security problem. To avoid this problem, you can modify the script to have two

modes. The first mode gets a list of files on the FTP server, and the second mode downloads a

specific file. This way the username and password will be hidden from the user. The downside

of this method is the added network traffic, as the file is now transferred from the FTP server

to the web server before it’s transferred to the user.

The Code

<?php

// Example 16-4-6.php

function GetContent($host, $user, $pass, $folder) {

$content = array();

$conn = ftp_connect($host);

if ($conn) {

$session = ftp_login($conn, $user, $pass);

if ($session) {

if (empty($folder) || ftp_chdir($conn, $folder)) {

$files = ftp_nlist($conn, ".");

if (is_array($files)) {

foreach($files as $file) {

$size = ftp_size($conn, $file);

if ($size > 0) {

$content[] = array(

"name" => $file,

"url" => $GLOBALS['PHP_SELF'] . "?mode=get&file=" .

urlencode($file),

"size" => $size

);

16-4 ■ GETTING AND PUTTING F ILES WITH FTP 619

}

}

}

}

}

ftp_close($conn);

}

return $content;

}

function GetFile($host, $user, $pass, $folder, $file) {

$ret = false;

$conn = ftp_connect($host);

if ($conn) {

$session = ftp_login($conn, $user, $pass);

if ($session) {

if (empty($folder) || ftp_chdir($conn, $folder)) {

$local_file = tempnam(".", "ftp");

if (ftp_get($conn, $local_file, $file, FTP_BINARY)) {

$ret = $local_file;

}

}

ftp_close($conn);

}

return $ret;

}

if (empty($mode)) $mode = "list";

$host = "ftp.somedomain.com";

$user = "user";

$pass = "pass";

$folder = "/somedir";

switch($mode) {

case "list" :

$files = GetContent($host, $user, $pass, $folder);

echo "<html><body><table width=100% border=0>" .

"<tr><td>Name</td><td align=right>Size</td></tr>";

foreach ($files as $file) {

echo "<tr><td>$file[name]</td>

<td align=right>$file[size]</td></tr>";

}

echo "</table></body></html>";

break;

16-4 ■ GETTING AND PUTTING F ILES WITH FTP620

case "get" :

$local_file = GetFile($host, $user, $pass, $folder, $file);

if ($local_file) {

header("Content-Type: application/octetstream");

header("Content-Disposition: attachment; filename=\"$file\"");

readfile($local_file);

unlink($local_file);

}

else {

echo "<html><body><h1>Error:

</h1>Could not download $folder/$file from $host</body></html>";

}

}

?>

How It Works

In the “get” section of this script, the file is downloaded from the FTP server and stored in the cur-

rent working directory with a unique temporary name. When the file is downloaded to the client,

the name is changed with the header("Content-Disposition: attachment; filename=\"$file\"");

command. When the file is downloaded, it is removed from the web server. In this example, the

temporary file is created in the same directory as the script, but it is better programming practice

to create this file in the system’s temp folder.

16-5. Performing DNS Lookups

Converting hostnames to IP addresses can be useful in applications that perform many con-

nections to the same host. By using the IP address, the system will not have to perform the

Domain Name System (DNS) lookup on each request. PHP has three functions that can do

DNS lookups, as shown in Table 16-5.

Table 16-5. DNS Lookup Functions

Name Description

gethostbyname() Gets IP address corresponding to the hostname

gethostbynamel() Gets list of IP addresses corresponding to the hostname

gethostbyaddr() Gets hostname corresponding to an IP address

All these functions use the DNS servers defined on the system to resolve hostnames and

IP addresses. It is not possible to communicate with other DNS servers unless you use the

PEAR::DNS class. Unfortunately, this class does not work with PHP 5 at this time.

The first function, gethostbyname(), will return the IP address of the hostname (or the

hostname if it was impossible to resolve it to an IP address).

16-5 ■ PERFORMING DNS LOOKUPS 621

The following example shows how to use these three functions.

The Code

<?php

// Example 16-5-1.php

$ip = gethostbyname("www.example.com");

echo "IP = $ip\n";

$host = gethostbyaddr("192.0.34.166");

echo "Host = $host\n";

$ip = gethostbynamel("yahoo.com");

print_r($ip);

?>

This example produces the following output:

IP = 192.0.34.166

Host = www.example.com

Array

(

[0] => 216.109.112.135

[1] => 66.94.234.13

)

In addition to these simple lookup functions, it’s also possible to query for a more

detailed DNS record. These functions are available only on Unix systems and are listed in

Table 16-6.

Table 16-6. Additional DNS Functions

Name Description

getmxrr() Fetches the mail exchange (MX) record associated with a hostname

dns_get_mx() Alias for getmxrr()

checkdnsrr() Checks for the existence of DNS records for a hostname

dns_check_record() Alias for checkdnsrr()

dns_get_record() Fetches DNS records associated with a hostname

You can use these functions to check the existence of a specific record type or to fetch a

specific record from the DNS server associated with a hostname. You can check the existence

of a DNS entry for a hostname, validate the existence of a mail server for an e-mail address, or

read special text messages stored in DNS servers.

The next example shows how to use dns_get_record() to get the DNS information associ-

ated with the hostname www.php.net.

16-5 ■ PERFORMING DNS LOOKUPS622

The Code

<?php

// Example 16-5-2.php

$record = dns_get_record("www.php.net");

print_r($record);

?>

This example produces the following output:

Array

(

[0] => Array

(

[host] => www.php.net

[type] => CNAME

[target] => php.net

[class] => IN

[ttl] => 80876

)

)

This tells you that www.php.net is a canonical name for php.net.

16-6. Checking Whether a Host Is Alive

Troubleshooting communication with services on other hosts sometimes requires knowledge

about the status of a remote server. You can get this information with the ping program. The

ping program is a small network utility that sends a special Internet Control Message Protocol

(ICMP) package to the remote host. If the host is configured to respond to this package type, it

will send back a response. The response time will depend on the packet size as well as avail-

able bandwidth and other network factors.

When a server has disabled the response to ping packets, it is not possible to use this

method to verify that the server is alive. Servers might also be located inside a firewall/router

with network address translation (NAT). That makes it impossible to know the real IP address

of the server, and the ability to ping the public address simply means that the router is alive.

The PEAR repository provides a class called Net_Ping that is implemented as a wrapper

around the system’s ping function. You can use this class to check whether a host is alive, as

shown in the next example.

The Code

<?php

// Example 16-6-1.php

require_once 'Net/Ping.php' ;

$ping = new Net_Ping('C:\WINDOWS\system32\ping.exe', 'windows');

$ping->setArgs(

16-6 ■ CHECKING WHETHER A HOST IS ALIVE 623

array(

"count" => 5,

"size" => 32,

"ttl" => 128

)

);

var_dump($ping->ping("yahoo.com"));

?>

How It Works

This example requires that PEAR::Net_Ping is installed on the system and the user has access

to the ping command. This example is designed to run on a Windows system but can run on

Unix systems if you change the location of the ping command and the system parameter.

When the class is instantiated, you can define some additional parameters for the ping

command. In this case, you define count = 5 to indicate that you want five packages transmit-

ted. You set the packet size to 32 bytes and the maximum time to live to 128. The result is

returned as a string or a PEAR Error object.

The user account used by the web server to execute the PHP scripts might not have access

to this function, or it might not have any execute rights. It is still possible to create a ping func-

tion, but it requires using socket functions and requires low-level knowledge about the ICMP

packet structure. ICMP packets are used to send information about unreachable hosts, per-

form trace routes, and send ping requests.

An ICMP echo request packet must be at least 8 bytes long and have the following elements:

• Byte 0 = Packet type (0x08 = echo request)

• Byte 1 = Packet code (0x00 for the echo request)

• Byte 2–3 = Checksum

• Byte 4–5 = Packet ID

• Byte 6–7 = Packet sequence

• Byte 8–xx = Optional data

The data is returned in the echo package from the server and can check the quality of the

line. The code in the next example shows how to build a Ping() class that will allow the script

to test the connection to a host. The code is based on the code contributed to PHP’s online

documentation pages, but it has been modified to allow multiple requests and return addi-

tional information about the packets.

The Code

<?php

// Example 16-6-2.php

if (!extension_loaded("sockets")) {

dl("php_sockets.dll");

}

16-6 ■ CHECKING WHETHER A HOST IS ALIVE624

class Ping {

public $icmp_socket;

public $request;

public $request_len;

pubic $reply;

public $errstr;

public $timer_start_time;

function __construct() {

$this->icmp_socket = socket_create(AF_INET, SOCK_RAW, 1);

socket_set_block($this->icmp_socket);

}

function ip_checksum($data) {

$sum = 0;

for($i=0; $i<strlen($data); $i += 2) {

if ($data[$i+1])

$bits = unpack('n*',$data[$i].$data[$i+1]);

else

$bits = unpack('C*',$data[$i]);

$sum += $bits[1];

}

while ($sum>>16) $sum = ($sum & 0xffff) + ($sum >> 16);

$checksum = pack('n1',~$sum);

return $checksum;

}

function start_time() {

$this->timer_start_time = microtime();

}

function get_time($precission=2) {

// format start time

$start_time = explode(" ", $this->timer_start_time);

$start_time = $start_time[1] + $start_time[0];

// get and format end time

$end_time = explode (" ", microtime());

$end_time = $end_time[1] + $end_time[0];

return number_format($end_time - $start_time, $precission);

}

function Build_Packet($request, $size) {

$type = "\x08";

$code = "\x00";

$chksm = "\x00\x00";

$id = "\x00\x00";

16-6 ■ CHECKING WHETHER A HOST IS ALIVE 625

$sqn = pack("n", $request);

$data = "";

for ($i = 0; $i < $size; $i++) $data .= chr(mt_rand(0,255));

$data = "abcd";

// now we need to change the checksum to the real checksum

$chksm = $this->ip_checksum($type.$code.$chksm.$id.$sqn.$data);

// now lets build the actual icmp packet

$this->request = $type.$code.$chksm.$id.$sqn.$data;

$this->request_len = strlen($this->request);

}

function Ping($dst_addr, $requests=4, $size=32, $timeout=5, $percision=3) {

$result = array();

// set the timeout

socket_set_option($this->icmp_socket,

SOL_SOCKET, // socket level

SO_RCVTIMEO, // timeout option

array(

"sec"=>$timeout,

"usec"=>0

)

);

if ($dst_addr) {

for($r = 0; $r < $requests; $r++) {

$dst_ip = gethostbyname($dst_addr);

if (!socket_connect($this->icmp_socket, $dst_addr, NULL)) {

$this->errstr = "Unable to connect to $dst_addr";

return false;

}

$this->Build_Packet($r, $size);

$this->start_time();

socket_write($this->icmp_socket, $this->request, $this->request_len);

if (@socket_recv($this->icmp_socket, &$this->reply, 256, 0)) {

$bytes = strlen($this->reply);

$time = $this->get_time($percision);

$ttl = ord($this->reply{7})*256 + ord($this->reply{8});

$result[] = "Reply from $dst_ip: bytes=$bytes seq=$r time=$time ttl=$ttl";

}

else {

$result[] = "Request timed out";

}

}

}

16-6 ■ CHECKING WHETHER A HOST IS ALIVE626

else {

$this->errstr = "Destination address not specified";

return false;

}

return $result;

}

}

$ping = new Ping;

$response = $ping->ping("php.net");

if (is_array($response)) {

foreach($response as $res) {

echo "$res\n";

}

}

else {

echo $ping->errstr;

}

?>

How It Works

This example defines a Ping() class that uses the socket functions to communicate with the

remote host. The socket functions are not built into PHP by default, so you need to load the

extension or recompile PHP with the extension loaded. When the class is instantiated, you can

call the ping method with a hostname as the first parameter, and it will return an array with

the results of each request, like this:

Reply from 64.246.30.37: bytes=32 seq=0 time=0.056 ttl=50

Reply from 64.246.30.37: bytes=32 seq=1 time=0.049 ttl=50

Reply from 64.246.30.37: bytes=32 seq=2 time=0.050 ttl=50

Reply from 64.246.30.37: bytes=32 seq=3 time=0.050 ttl=50

16-7. Getting Information About a Domain Name

When you see a domain name as part of a URL or an e-mail address, you do not get much

information about the owner of the domain. Opening a browser and navigating to the site

might give you a clue, but it will not always tell you any details about who is behind the site or

domain. This information is available to some degree in Whois databases. These databases are

maintained by domain registrars and can give you information about the owners of a domain.

However, the data for a given domain might not be available if the owner has blocked it. In

addition, people can register domains under pseudonyms or with a contact person from the

registrar, so you should use the information with caution.

PEAR has a nice little class that makes it possible to query a Whois database to get a string

of information.

16-7 ■ GETTING INFORMATION ABOUT A DOMAIN NAME 627

The following example shows how you can use the Net_Whois class to query information

about a domain name.

The Code

<?php

// Example 16-7-1.php

require_once "Net/Whois.php";

$server = "whois.networksolutions.com";

$query = "networksolutions.com";

$whois = new Net_Whois;

$data = $whois->query($query, $server);

var_dump($data);

?>

The output from this code will include a disclaimer from Network Solutions and the fol-

lowing information:

NOTICE AND TERMS OF USE: You are not authorized to access or query our WHOIS

database through the use of high-volume, automated, electronic processes. The

Data in Network Solutions' WHOIS database is provided by Network Solutions for

information purposes only, and to assist persons in obtaining information about or

related to a domain name registration record. Network Solutions does not guarantee

its accuracy. By submitting a WHOIS query, you agree to abide by the following terms

of use: You agree that you may use this Data only for lawful purposes and that under

no circumstances will you use this Data to: (1) allow, enable, or otherwise support

the transmission of mass unsolicited, commercial advertising or solicitations

via e-mail, telephone, or facsimile; or (2) enable high volume, automated,

electronic processes that apply to Network Solutions (or its computer systems). The

compilation, repackaging, dissemination or other use of this Data is expressly

prohibited without the prior written consent of Network Solutions. You agree not to

use high-volume, automated, electronic processes to access or query the WHOIS

database. Network Solutions reserves the right to terminate your access to the WHOIS

database in its sole discretion, including without limitation, for excessive

querying of the WHOIS database or for failure to otherwise abide by this policy.

Network Solutions reserves the right to modify these terms at any time.

Registrant:

Network Solutions, LLC

Network Solutions LLC

13200 WOODLAND PARK DR

HERNDON, VA 20171

US

Domain Name: NETWORKSOLUTIONS.COM

16-7 ■ GETTING INFORMATION ABOUT A DOMAIN NAME628

Administrative Contact, Technical Contact:

Network Solutions, LLC nocsupervisor@networksolutions.com

Network Solutions LLC

13200 WOODLAND PARK DR

HERNDON, VA 20171

US

570-708-8788 fax: 703-668-5817

Record expires on 27-Apr-2015.

Record created on 27-Apr-1998.

Database last updated on 17-May-2005 01:20:59 EDT.

Domain servers in listed order:

NS1.NETSOL.COM 216.168.229.228

NS2.NETSOL.COM 216.168.229.229

NS3.NETSOL.COM 216.168.229.229

Summary
PHP was designed as a tool to embed business logic into HTML documents, but it has since

advanced to be a complex scripting language with many extensions that allow a script devel-

oper to integrate with external web services. In this chapter, we discussed how you can use

PHP to send mail and read messages from mail and news servers. You can create advanced,

web-based mail clients or news readers, and you can send automated messages from a server

when you need to do so.

Finally, we discussed low-level services that can get information about other servers and

domains.

16-7 ■ GETTING INFORMATION ABOUT A DOMAIN NAME 629

■Special Characters
$ sign, 422
$_COOKIE superglobal, 413, 455
$_ENV superglobal, 413
$_FILE superglobal, 413
$_FILES superglobal, 504–5
$_GET method, 334–36
$_GET superglobal, 413, 470, 488
$_POST superglobal, 413, 488
$_REQUEST superglobal, 413
$_SERVER superglobal, 413
$_SERVER variable, 17
$_SESSION array, 429
$_SESSION superglobal, 413, 464
$allowedtypes array, 312
$code method, 60
$countries array, 161, 164–65
$data array, 186
$days parameter, 262
$GLOBAL superglobal, 412
$GLOBALS variable, 412, 447–48
$glue argument, 126
$hostRegex function, 378
$hours variable, 228
$length element, 138, 152
$length parameter, 138
$matches array, 358
$max argument, 605
$message method, 60
$minutes argument, 244
$mode variable, 387
$name parameter, 47
$new element, 138
$newvar variable, 412
$num array, 193
$num object, 192
$num variable, 152
$num_args variable, 236
$offset argument, 151, 605
$offset element, 152
$offset variable, 234, 242, 381
$pattern variable, RegExp class, 387
$pid packet handle, 541
$pieces argument, 126
$position argument, 138
$separator parameter, getClockTime()

method, 254
$strict parameter, 164

$this keyword, 25
$time variable, 234, 240, 242
$total object, 192
$twelve parameter, getClockTime() method,

253
$units variable, 227
$uppercaseAMPM parameter,

getClockTime() method, 253
$words array, 179
%% character, strftime() function, 221
%A character, strftime() function, 220
%a character, strftime() function, 371
%B character, strftime() function, 221
%b or %h character, strftime() function, 221
%c character, strftime() function, 221
%d character, strftime() function, 220
%D character, strftime() function, 221
%d character, strftime() function, 371
%e character, strftime() function, 221
%g character, strftime() function, 221
%H character, strftime() function, 221
%I character, strftime() function, 221
%j character, strftime() function, 221
%m character, strftime() function, 221
%n character, strftime() function, 221
%p character, strftime() function, 221
%R character, strftime() function, 221, 371
%S character, strftime() function, 221
%t character, strftime() function, 221
%u character, strftime() function, 220
%U character, strftime() function, 221, 371
%V character, strftime() function, 221
%W character, strftime() function, 221
%x character, strftime() function, 221
%Y character, strftime() function, 221
%z or %Z character, strftime() function, 221
(&) symbol, 506
* qualifier, 352, 359
*? qualifier, 360
[[:alpha:]] expression, 354
[[:digi:]] expression, 354
[[:space:]] expression, 353–54
+? nongreedy qualifier, 376
+ qualifier, 352, 359
+* qualifier, 360
</ operator, 374
\< or \> expression, POSIX, 354
<p> tag, 374
<rdf:RDF> element, 531

Index

631

<xsl:apply-templates/> element, 530
== operator, 122, 135, 283
=== operator, 135
> character, 376
? qualifier, 352, 359

■A
a argument, 293
a character, date() function, 203, 356
a+ argument, 293
<a> tag, 379
<A> tag, 470
abstract classes, 50–52
abstract keyword, 50
abstract methods, 50–52
acos() function, 105
acosh() function, 105
addauth() method, 481
addHTMLImage() method, 602
AddItem() method, 534, 536–37
addslashes() function, 506
adduser() method, 481
alter function, 553
American Standard Code for Information

Interchange (ASCII) characters, 369
ampersand (?) symbol, 567
append() method, 309
appendChild() method, 517–18, 520
application/excel content type, 462
application/msword content type, 462
application/octet-stream content type, 462
application/pdf content type, 462
Apress website, 226
arguments, variable number of, 440–41
arithmetic operators, 92
array() function, 122
Array data types, 10–11, 394
array file function, 300
array_average() function, 168
array_combine() function, 159
array_count_values() function, 162
array_display() function, 159
array_filter() function, 170, 175–77
array_insert() function, 138, 151
array_key_exists() function, 164, 166
array_keys() function, 126–28, 159
array_map() function, 169, 173–74
array_merge() function, 132
array_multisort() function, 186, 188–89
array_pad() function, 141–42
array_permutations() function, 193
array_pop() function, 150
array_push() function, 132
array_rand() function, 183
array_remove() function, 150–51, 182
array_reverse() function, 182

array_shift() function, 150
array_slice() function, 152
array_splice() function, 137, 150
array_sum() function, 168
array_unique() function, 161, 193–94
array_unshift() function, 137
array_values() function, 126–28, 159, 161
array_walk() function, 169–72
ArrayIterator class, 70
arrays

adding new elements to
appending one array to another, 132–35
to beginning of arrays, 137
comparing arrays, 135–36
to end of arrays, 131–32
inserting new values at arbitrary point

in indexed array, 137–39
overview, 131

applying functions to
filtering arrays using array_filter(),

175–77
overview, 169–70
using array_map(), 173–74
using array_walk(), 170–72

array elements
accessing, 122
counting, 139–41

array keys, 124, 164–66
array values, finding and working with

determining whether element is in an
array, 164

finding greatest and least values, 166–68
finding sum and average of values,

168–69
obtaining array keys with given value,

165–66
overview, 162–63
testing for existence of key in array,

164–65
creating, 122–23
finding permutations and combinations,

190–94
initializing as range or sequence of values,

124–25
outputting

overview, 126
as a string, 126
as a tree, 128, 130–31
using array_values() and array_keys()

for backward compatibility, 126–28
overview, 5, 121–22
removing elements from

combining arrays, 158–59
extracting portion of an array, 152–54
extracting values using list(), 156–57
extracting values with extract(), 154–56

■INDEX632

first or last element, 148–50
getting and displaying counts of array

values, 161–62
obtaining array keys and values, 159–60
one or more arbitrary elements, 150–52
overview, 147–48
working with unique values, 160–61

setting size, 141–44
setting up, example code for, 5–6
sorting

by its keys, 180–81
by its values, 178–80
multidimensional arrays, 186–89
multiple arrays, 189–90
overview, 178
randomizing array using shuffle(),

kshuffle(), and array_rand(), 183
reversing array using array_reverse(),

182
reversing array using arsort(), 181
reversing array using krsort(), 182
using comparison functions, 184–85

traversing
looping through associative array using

foreach, 144–45
looping through compact indexed array

using for and count(), 145
looping through sparse array, 146–47
overview, 144

arsort() function, 181, 314
asin() function, 105
asinh() function, 105
asort() function, 179, 314
assignment operators, 396
associative arrays, 121–22, 131
atan() function, 105
atan2() function, 105
atanh() function, 105
atoms, 351
attributes, creating and setting, 520–22
authenticating users

cookie authentication, 481–83
HTTP-based authentication, 475–81

■B
\b expression, 355
backslash element, 523–26, 530
bar graph images, 328
bar graphs, 331
base_convert() function190, 109
bcadd() function, 113
bccomp() function, 113
bcdiv() function, 113
BCMath binary calculator, 113
BCMath functions, 113
bcmod() function, 113

bcmul() function, 113
bcpow() function, 113
bcpowmod() function, 113
bcscale() function, 113
bcsqrt() function, 113
bcsub() function, 113
binary data, reading and writing, 301–2
bind types, 567
birdCall() method, 77
bitwise operators, 192
blank canvas, creating, 327–29
body() method, GetMail class, 612
book_id attribute, 526, 528
bool fclose method, 296
boolean data type, 394
Boolean data types, 10–11
browscap.ini file, 467
browsers, detecting, 467–69

■C
c character, date() function, 203, 357
caching class, 428
calcGrossPay() method, 38, 42
callback function, 169
Canary class, 68
canvas

creating blank canvas, 327–29
writing on, 338–39

catch_duplicate_chars() function, 193
cfile class, 305–9
character classes, 353
character data (CDATA) sections, 519
characters, getting number of in files, 304–5
charlist argument, 279
Check() class method, caching class, 426
checkandsubmit() function, JavaScript, 502
CHECKBOX element, HTML form, 488
checkdate() function, 199
checkdnsrr() function, 622
chop() function, 266
class constructor, 24, 235
class keyword, 24
__CLASS__ magic constant constant, 433
class_exists() function, 62–65
class_implements() function, 62
class_interfaces() function, 68
class_parents() function, 62
class-embedded methods, 9
classes

abstract, 50–52
checking for existence of, 63–65
controlling access to class members,

30–33
currently loaded, listing, 69–71
determining whether object is instance of,

67–69

■INDEX 633

classes (continued)
discovering availability of, 12–14
extending, 43–49
getting information about, 61
obtaining variable names, 66
overview, 22
Reflection API

obtaining dump of, 73–75
overview, 71–73
performing dynamic class instantiation,

76–77
using to deconstruct Shape class, 77–82

using class constants, 37–39, 41–43
using class destructors, 55
using static members and self keyword,

33–34
client side, defined, 499
closedir() function, 309–10
closing files, 296–98
CML_RSS class, 532
code, redundant, 437
colors, creating and using for images, 329–31
comma-delimited files, 298
command-line interface (CLI) scripts, 396
comma-separated data, 298–300
comma-separated value (CSV) file, 382
communicating with Internet services.

See Internet services,
communicating with

complex data types
encapsulating, 425–28
storing in sessions, 466–67

complex values, passing in querystrings,
473–75

components element, 228
CompuServe, 323
configuration variables. See environment

and configuration variables
Const class, 414
const keyword, 37
constant() function, 408
constants

discovering availability of, 12–14
using, 408–10
using class constants, 37–43

__construct() class method, caching class,
426

__construct() method
GetMail class, 24, 603
RSSdb() class, 534

__construct constructor, 386
constructors

creating interfaces using, 24–25
default, 26–27

content management system (CMS), 269, 311
content types, 462

content-disposition, 463
content-type, 463
cookies

authentication using, 481–83
deleting, 456–57
overview, 453
reading, 455–56
setting, 454–55
writing and using a cookie class, 457–59

copy() function, 505
copy on write, 420
cos() function, 105
cosh() function, 105
count() function, 140, 145, 303
createCDATASection() method, 518, 520
createElement() method, 517
CreateTable() function, 401
createTextNode() method, 518
createthumb() function, 348
curse() method, 47–48

■D
d character, date() function, 202
\d expression, 355
data types

arrays, 5–6
complex, encapsulating, 425–28
discovering what variables, constants,

functions, classes, interfaces are
available, 12–13

finding data type of a value, 10–12
functions, 8–10
getting information about current script,

14–18
numbers, 4–5
regular expressions, 7–8
strings, 6–7
of a value, finding, 10–12
variables, 2–3

databases. See MySQL databases
date() function, 199–202, 204, 213, 354–55
Date class, 231, 250, 380

constructing and using, 231–50
extending, 250–63

date type, 273
date_diff() function, 226, 375
date_difference() function, 255
date_sunrise() function, 199
date_sunset() function, 199
DateExtended class, 251, 262
DateExtended constructor, 253
dates and times

arbitrary, 204
constructing and using a date class,

231–50

■INDEX634

converting human-readable dates into
Unix timestamps, 205–7

determining whether given year is leap
year, 213–14

extending Date class, 250–63
finding date for a weekday, 207–11
generating localized GMT/UTC time and

date strings, 224–25
getting day and week of year, 211–12
getting times and dates of files, 214–15
human-readable dates and times, 201–3
obtaining difference between two dates,

225–31
in other languages, 219–23
overview, 197–201
setting time zones and GMT/UTC, 216–19
sorting files by, 313–14

Date/Time library, functions, 199
datetime type, 273
db tag, 596
dc:date tag, 537
DEBUG constant, 432
debug_backtrace() function, 431
debug_print() function, 433
debugging

functions used for, 431
variables, 431–34

_decode_body() method, GetMail class, 612
default values, setting for function

parameters, 438–39
default_mimetype parameter, in php.ini, 513
define() function, 408
defined() function, 409
deg2rad() function, 105
delete function, 553
delete statement, 561
deleting

cookies, 456–57
data, in MySQL database, 559–61

delimiters, reading records with, 382–84
demote() method, 40
__destruct() method, 55, 603
destructors, class, 55
detecting browsers, 467–69
DFILE_OFFSET_BITS variable, 214, 366
directories

current directory, listing all, 310–11
overview, 309
recursive directory listing, generating,

314–16
DirectoryIterator object, 316–18
display() method, 31, 34, 40–41, 45, 48
displaying results, from MySQL database,

555–57
dl() function, 528, 542
DNS lookups, 621–23

dns_check_record() function, 622
dns_get_mx() function, 622
dns_get_record() function, 622
DocDocument() object, 518
Document Object Model (DOM)

extension, 61
using to generate markup, 516–20

DOCUMENT_ROOT argument, 18
dollar ($) sign, 393
Domain Name System (DNS), 621
domain names, getting information about,

627–29
DomDocument() class, 516, 520, 523, 528–29
DomElement() class, 517, 522, 526
DOMException class, 61
DOMXML extension, 516
doMyBookSearch() method, 548
doSpellingSuggestion() method, 545
Double data types, 10–11
dropdb() method, 585
__dtor() method, 534
dump_value() function, 401
dynamic class instantiation, 76–77
dynamic functions, creating, 449–50
dynamic imaging

creating images from existing images
applying modifications to existing

images, 338–40
loading existing images, 337–38
saving and outputting modified images,

340–41
creating images from scratch

colors, 329–31
creating blank canvas, 327–29
outputting an image, 334–36
shapes and patterns, 331–34

image libraries, 327
image types

GIFs, 323–25
JPGs, 321–23
PNGs, 325–27

overview, 321
using TrueType fonts

applying to images, 343–45
creating and using dynamic thumbnail

class, 345–49
loading fonts, 342–43

dynamic thumbnail class, 345–49
dynamic variables, 421–25

■E
echo statement, 514
ECMAScript Standard, third edition, 232
elapsed element, 228
else statements, reducing number of, 421
empty() function, 395

■INDEX 635

enable-shmop parameter, 429
enable-soap option, 542
encapsulating complex data types, 425–28
environment and configuration variables,

484–85
eof() function, 615
ereg() function, 7, 354, 361, 373
ereg_replace() function, 354
eregi() function, 354
error argument, $_FILES superglobal, 505
Error object, 624
error-handling, 56–59, 61
errors_to_exceptions function, 59
escape character, 353
escaping special characters, 375–77
evenfirst() function, 184
Exception object, 59
Exception subclass, 60
exceptions, 56–59, 61
execute() method, 567
exp() function, 100
explode() function, 265, 273, 275
export() function, 73
extending classes, 43–49
extends keyword, 46
EXTR_REFS option, 155
extract() function, 154–56
extract() option, 155

■F
F character, date() function, 202
false boolean type, 438
fclose() function, 295–96, 372
feof() function, 304
fgetc() function, 293–94, 567
fgets() function, 293–94, 372
file() function, 289, 300
File class, 215
file classes, creating and using, 305–9
FILE element, HTML form, 488
file transfer protocol (FTP), 614–21
__FILE__ magic constant constant, 433
file_exists() function, 292
file_put_contents() function, 295
filectime() function, 314
filemtime() function, 215, 314
files

closing, 296–98
creating and using a file class, 305–9
getting number of characters, words, or

paragraphs in, 304–5
getting number of lines in, 303
getting times and dates of, 214–15
listing all of certain type, 311–12
opening, 291–93
overview, 291

reading and writing binary data, 301–2
reading and writing comma-separated

data, 298–300
reading fixed-width delimited data,

300–301
reading from, 293–94
sorting by date, 313–14
writing to, 295–96

filesize() function, 615
firsteven() function, 185
fixed-width delimited data, 300–301
float data type, 394
fonts, loading, 342–43
fopen() function, 292–93, 295, 302, 372, 540,

616
fopen_wrapper, 615
format_address() method, 603
format_address_list() method, 603
formatting phone numbers, 365–66
forms

GET vs. POST, 488–90
multipage, 494–96
overview, 487
preventing multiple submissions of

on client side, 500–502
creating form elements based on

current time and/or date, 508–10
creating form elements with multiple

options, 506–8
handling special characters, 505–6
overview, 499
performing file uploads, 502–5
on server side, 499–500

redisplaying with preserved information
and error messages, 496–98

superglobals vs. globals, 490–91
validating form input, 491–93

fputs() function, 295
frand() function, 97
fread() function, 293–94, 540
FreeType library, 341
from element, 575
ftp_alloc() function, FTP, 616
ftp_cdup() function, 616
ftp_chdir() function, 616
ftp_chmod() function, 616
ftp_close() function, 616
ftp_connect() function, 616–17
ftp_delete() function, 616
ftp_exec() function, 616
ftp_fget() function, 616
ftp_fput() function, 616
ftp_get() function, 617
ftp_get_option() function, 616
ftp_login() function, 617
ftp_mdtm() function, 617

■INDEX636

ftp_mkdir() function, 617
ftp_nb_continue() function, 617
ftp_nb_fget() function, 617
ftp_nb_fput() function, 617
ftp_nb_get() function, 617
ftp_nb_put() function, 617
ftp_nlist() function, 617, 619
ftp_pasv() function, 617
ftp_put() function, 617
ftp_pwd() function, 617
ftp_quit() function, 617
ftp_raw() function, 617
ftp_rawlist() function, 617
ftp_rename() function, 617
ftp_rmdir() function, 617
ftp_set_option() function, 617
ftp_site() function, 617
ftp_size() function, 617
ftp_ssl_connect() function, 617
ftp_systype() function, 617
func_get_args() function, 253, 441
func_num_args() function, 235
funcname function, 171
function keyword, 50
function names, using to reduce number of

if, else, or switch statement, 421–25
__FUNCTION__ magic constant constant,

433
functions

accessing function parameters, 437–38
accessing global variable from within,

447–48
discovering availability of, 12–14
dynamic, creating, 449–50
function parameters, setting default

values for, 438–39
overview, 8–9, 437
passing values by reference, 439–40
returning failure, 445–46
returning more than one value, 442–43
returning values by reference, 443–45
that take variable number of arguments,

440–41
variable, calling, 446–47

fwrite() function, 295

■G
G character, date() function, 203
GD library, 327, 336
gd_info() function, 327
GD2 library, 327
GeneratePassword() function, 99
GET method and forms, vs. POST method,

488–90
get*() method, 238
get_browser() function, 467, 468

get_class() function, 62
get_class_methods() function, 62, 65
get_class_variables() function, 66
get_class_vars() function, 62
get_declared_classes() function, 62, 69
get_declared_interfaces() function, 62, 69
get_defined_vars() function, 155
_get_mime_parts() method, GetMail class,

612
get_object_variables() function, 66
get_object_vars() function, 28, 62
get_parent_class() function, 62, 68
getAttribute() method, 522
getCategoryInfo() method, 38, 40
getClockTime() method, 253
getConstants() method, 79
GetContent() function, 619
getdate() function, 199, 211, 228, 231
getDifference() method, 255
GetDistance() function, 107
getDocComment() method, 78
getElementsById() function, 525
getElementsByTagName() function, 525
getElementsByTagName() method, 525–26
getemails() method, 290
getenv() function, 484
GetFeeds() method, 534, 536
getfile() function, 289
gethostbyaddr() function, DNS lookup, 621
gethostbyname() function, DNS lookup, 621
getHours() method, 233
GetItems() method, 534
getlastmod() function, 17, 214
GetMail class, 603, 605, 607, 612
getmain.inc file, 605
getMatches function, 387
getMilliseconds() method, 238
getMonthFullName() method, 256
getMonthShortName() method, 256
getmxrr() function, DNS, 622
getName() method, 80
getOrdinalDate() method, 256
getParameters() method, 80
getPrice() method, 29
getTime() function, 238
gettimeofday() function, 199, 231, 237
getTimeZoneOffset() function, 238
gettype() function, 10–11, 403
getUTC*() method, 257
getUTCHours() method, 233
GetValue() class method, 426
getwords() method, 289
global keyword, 411
global variable, 447–48
globally unique identifiers (GUIDs), 362,

381–82

■INDEX 637

globals, 490–91
gmdate() function, 199, 218, 257, 369
gmmktime() function, 199, 217
GMP extension, 113
GMP functions, 114
gmp_abs function, 114
gmp_add function, 114
gmp_cmp function, 114
gmp_com function, 114
gmp_div function, 114
gmp_div_q function, 114
gmp_div_qr function, 114
gmp_div_r function, 114
gmp_divexact function, 114
gmp_fact function, 114
gmp_gcd function, 114
gmp_gcdext function, 114
gmp_hamdist function, 114
gmp_init() function, 114
gmp_init function, 114
gmp_intval function, 114
gmp_invert function, 114
gmp_jacobi function, 114
gmp_legendre function, 114
gmp_mod function, 114
gmp_mul function, 114
gmp_neg function, 114
gmp_or function, 114
gmp_perfect_square function, 114
gmp_popcount function, 114
gmp_pow function, 114
gmp_powm function, 114
gmp_prob_prime function, 114
gmp_random function, 114
gmp_scan0 function, 114
gmp_scan1 function, 114
gmp_setbit function, 114
gmp_sign function, 114
gmp_sqrt function, 114
gmp_sqrtrem function, 114
gmp_strval() function, 116
gmp_strval function, 115
gmp_sub function, 115
gmp_xor function, 115
gmstrftime() function, 119, 225, 353, 374
GMT/UTC, 216–19, 224–25
GoogleSearch.wsdl file, 543
graphs, 331
Great Circle Distance, 106
greedy expressions, 358–59
greedy qualifiers, 359
grep command, 354

■H
H character, date() function, 203, 356
hasAttribute() method, 522

header() function, 322, 324–26, 459, 513, 520
headers() function, 605
headers() method, 603, 606
HEREDOC notation, 598
HIDDEN INPUT element, HTML form, 488
history of PHP, 1
host, checking whether is alive, 623–27
HREF attribute, of <A> tag, 470
.htaccess file, 475
HTML tags, capturing text inside, 373–75
htmlspecialchars() function, 375, 506
HTTP headers

forcing file “Save As” downloads, 462–63
overview, 459
redirecting to different location, 460
sending content types other than HTML,

461–62
HTTP_REFERER argument, 18
HTTP_USER_AGENT argument, 18
HTTP-based authentication, 475–81
hyperbolic functions, 105
hyperlinks, replacing URLs with, 377–79
Hypertext Transfer Protocol (HTTP) header,

513

■I
i character, date() function, 203
idate() function, 199, 353
if clause, arrays used with, 403
if statements, reducing number of, 421
image libraries, 327
imagecolorallocate() function, 329–30
imagecolorallocated() function, 322
imagecreate() function, 322
imagecreatefrom… function, 337
imagecreatefromjpeg() function, 338
imagedestroy() function, 323
imagefilledrectangle() function, 329
imagefontwidth() function, 331, 343
imagegif() function, 324–25
image/gif content type, 462
imagejpeg() function, 322, 324, 341
imagepng() function, 325–26
image/png content type, 462
imagerectangle() function, 322
Images section, RSS file, 531
imagestring() function, 325
imagettfbbox() function, 343–44
imagettftext() function, 344
imaging, dynamic. See dynamic imaging
IMAP (Internet Message Access Protocol)

extension, 597
reading mail with, 602–12

imap_8bit() function, 612
imap_alerts() function, 612
imap_append() function, 612

■INDEX638

imap_base64() function, 612
imap_binary() function, 612
imap_body() function, 606, 612
imap_bodystruct() function, 612
imap_check() function, 612
imap_clearflag_full() function, 612
imap_close() function, 612
imap_createmailbox() function, 612
imap_delete() function, 612
imap_delete() method, 612
imap_deletemailbox() function, 612
imap_errors() function, 612
imap_expunge() function, 612
imap_expunge() method, 612
imap_fetch_overview() function, 612
imap_fetchbody() function, 606, 612
imap_fetchheader() function, 612
imap_fetchstructure() function, 606, 613
imap_get_quota() function, 613
imap_get_quotaroot() function, 613
imap_getacl() function, 613
imap_getmailboxes() function, 613
imap_getsubscribed() function, 613
imap_header() function, 613
imap_headerinfo() function, 613
imap_headers() function, 613
imap_last_error() function, 613
imap_list() function, 613
imap_listmailbox() function, 613
imap_listscan() function, 613
imap_listsubscribed() function, 613
imap_lsub() function, 613
imap_mail() function, 597, 613
imap_mail_compose() function, 613
imap_mail_copy() function, 613
imap_mail_move() function, 613
imap_mailboxmsginfo() function, 613
imap_mime_header_decode() function, 613
imap_msgno() function, 613
imap_num_msg() function, 613
imap_num_recent() function, 613
imap_open() function, 602, 613
imap_ping() function, 613
imap_qprint() function, 613
imap_renamemailbox() function, 613
imap_reopen() function, 613
imap_rfc822_parse_adrlist() function, 613
imap_rfc822_parse_headers() function, 613
imap_rfc822_write_address() function, 613
imap_scanmailbox() function, 613
imap_search() function, 614
imap_set_quota() function, 614
imap_setacl() function, 614
imap_setflag_full() function, 614
imap_sort() function, 614
imap_status() function, 614

imap_subscribe() function, 614
imap_thread() function, 614
imap_timeout() function, 614
imap_uid() function, 614
imap_undelete() function, 614
imap_unsubscribe() function, 614
imap_utf7_decode() function, 614
imap_utf7_encode() function, 614
imap_utf8() function, 614
implements keyword, 53
implode() function, 126, 273
implode() string function, 265
in_array() function, 164, 175
increment operator (++), 422
indexed arrays, 121
ini_get() function, 17, 484
ini_get_all() function, 17, 484
ini_set() function, 17, 485, 548
insert function, 553, SQL
instanceof() function, 395
int file_put_contents method, 295
int fwrite method, 295
Integer data types, 10–11, 394
interface keyword, 53
interface_exists() function, 62–65
interfaces

checking for existence of, 63–65
creating using constructors, 24–25
discovering availability of, 12–14
listing, 65, 69–71
overview, 53
using, 53, 55
using default constructors, 26–27

Internet services, communicating with
checking whether host is alive, 623–27
getting and putting files with FTP, 614–21
getting information about a domain

name, 627–29
overview, 597
performing DNS lookups, 621–23
reading mail with IMAP or POP3, 602–12
sending mail, 597–602

intval() function, 89
is_ functions, 11
is_*() functions, 395
is_a() function, 63, 67, 395
is_array() function, 236, 395
is_dir() function, 309–10
is_float() function, 88, 395
is_int() function, 88, 395
is_leap_year() function, 252
is_null() function, 395
is_numeric() function, 87
is_object() function, 395
is_readable() function, 312
is_rom() function, 176

■INDEX 639

is_string() function, 395
is_subclass_of() function, 63
is_writable() function, 295, 312, 319
isLeapYear() method, 252
isMatch function, 387
isset() function, 14, 395
Item section, RSS file, 531
Items section, RSS file, 531

■J
j character, date() function, 202–3
join() function, 266, 274
joining and disassembling strings, 273–76

■K
keys, 394
krsort() function, 182
kshuffle() function, 183
ksort() function, 180

■L
l character, date() function, 202
leap year, 213–14
len argument, 284
line anchors, 352
__LINE__ magic constant constant, 433
lines in files, getting number of, 303
links, replacing URLs with, 377–79
list() function, 156–57, 398
list box, 507
LIST element, HTML form, 488
ListData() function, 420
loadHTMLFile() method, 523
localtime() function, 199, 353
Location parameter, 460
log() function, 100
log10() function, 100
logarithms and exponents, 100–104
log(base) function, 100
look-ahead, 381
look-arounds, 355
loose comparison operators, 399
ltrim() function, 266, 279

■M
M character, date() function, 202
magic constants, 433
mail, sending, 597–602
mail() function, 597–99
mail factory, 599
Mail object, 599
Mail_mime class, 599
markup

creating and setting attributes, 520–22
manually generating, 514–16
overview, 513–14

parsing XML, 523–28
transforming XML with XSL, 528–31
using DOM to generate markup, 516–20
using RSS feeds, 531–38
using Simple Object Access Protocol

(SOAP), 542–48
using Web Distributed Data Exchange

(WDDX), 539–41
Math class, 116
math libraries, 113–16
math operations

formatting of numeric data, 108–12
formatting types, 110
logarithms and exponents, 100–104
math libraries, 113–16
numeric data types, 85–95
random numbers, 95–100
Static math class, 116–18
trigonometric functions, 105–8

max() function, 166
md5() function, 455
md5()-enabled variable, 456
member variable, 414
metacharacters, 351
__METHOD__ magic constant constant, 433
method_exists() function, 63
methods

abstract, 50–52
listing, 65
overview, 22–23

microtime() function, 199
MIME message, 601
MIME types, 462
_mimetype() method, GetMail class, 612
min() function, 166
mktime() function, 199–200, 205, 228, 240,

354
modify() function, 170
modifying data in MySQL database, 557–59
money_format() function, 112
move_uploaded_file() function, 505
mt_rand() function, 95, 100
mt_srand() function, 95
multidimensional arrays, 123
multipage forms, 494–96
Multipurpose Internet Mail Extensions

(MIME) class, 599
MYARRAY constant, 410
MySQL databases

basic database concepts
building queries on the fly, 561–64
connecting to MySQL database, 551–52
deleting data, 559–61
modifying data, 557–59
overview, 551
querying the database, 553–55

■INDEX640

retrieving and displaying results, 555–57
mysql and mysqli extensions

discovering which extension is being
used, 579–80

going from MySQL to XML and XML to
MySQL, 585–96

overview, 579
writing wrapper class to bridge gap

between, 580–85
overview, 551

mysql function, 580
mysql_close() function, 552
mysql_connect() function, 551
mysql_errno() function, 571
mysql_error() function, 571
mysql_fetch_array() function, 555, 557
mysql_fetch_assoc() function, 154, 596
mysql_num_rows() function, 561
mysql_query() function, 553, 555
mysql_real_escape_string() function, 564
mysql_select_db() function, 555
mysqli extension

displaying linked search results, 571–76
using exceptions to handle database

errors, 567–71
using mysqli Object-Oriented API,

564–67
and mysql extension

discovering which extension is being
used, 579–80

going from MySQL to XML and XML to
MySQL, 585–96

overview, 579
writing wrapper class to bridge gap

between, 580–85
vs. PHP 4 MySQL extension

displaying results in a form, 576–78
overview, 564

mysqli function, 580
mysqli_fetch_assoc() function, 154
mysqltoxml() method, 595–96

■N
n character, date() function, 202
name argument, $_FILES superglobal, 505
name property, 25
negative look-aheads, 355
negative look-behinds, 355
Net_Ping class, 623
Net_Whois class, 628
Network Address Translation (NAT), 623
Network News Transport Protocol (NNTP),

602
nl2br() function, 280
nogo value, 493
nongreedy expressions, 358–59

nongreedy qualifiers, 360
NULL data types, 10–11
NULL value, 394
num_msg() method, 603
num_recent() method, 603
number_format() function, 109
numbers, 4–5
numeric data types, 85–95
numeric values, passing in querystrings,

471–72

■O
O character, date() function, 203, 356
Object data type, 394
objects

determining whether is an instance of
particular class, 67–69

getting information about, 61
obtaining variable names, 66
overview, 22
setting object properties, 27–29

opendir() function, 309–10
opening files, 291–93
OR operator, 353, 384
ord() function, 179
order element, 228
ordered (indexed) arrays, 126

■P
pagereader class, 285–90
paragraphs, getting number of in files, 304–5
parent keyword, 46
parse() method, 234
parsing, 528

values to functions, 417–21
XML, 523–27

pascal case names, validating, 361–62
PASSWORD INPUT element, HTML form,

488
passwords, testing complexity of, 380–81
pathinfo() function, 312
patterns

creating and applying, 331–34
matching, vs. string matching, 356–58

PCRE (Perl-Compatible Regular
Expressions), 355–56

PCRE constant, 387
PEAR class, 531–32
pear install mail command, 599
pear install Mail_mime command, 599
PEAR::DNS class, 621
PEARI::Net_Ping, 624
PEAR::Mail class, 599
PEAR::Mail_mime class, 599
PEAR::XML class, 532
PEAR::XML_RSS class, 531–32

■INDEX 641

permutations() function, 192
phone numbers, formatting, 365–66
PHP Extension and Application Repository

(PEAR), 597
PHP tags, 513–14
PHP_SELF argument, 18
phpcredits() function, 14
PHP-GTK scripts, 396
phpinfo() function, 14, 484
php.ini file, 327
phpversion() function, 16
pi() function, 105
pie graphs, 331
ping command, 624
ping method, 627
ping program, 623
PNGs, 321, 325–28
positive look-aheads, 355
positive look-behinds, 355
POSIX (Portable Operating System

Implementation), 354
POST method and forms, vs. GET method,

488–90
Post Office Protocol 3 (POP3), reading mail

with, 602–12
pow() function, 101
preg_match() function, 7, 290, 356, 358, 373,

387
preg_match_all function, 384, 387
preg_replace method, 356, 387
prepare method, 567
prepare statement, 567
price property, 25
print statement, 514
print_r() function, 71, 130, 229, 405
printf() function, 4, 31, 108, 166
Private class, 414
private class member, 32
private property, 405
promote() method, 40–41
properties

overview, 22–23
setting, 27–29

property variable, 414
Protected class, 414
protected class member, 32
Public class, 414
public property, 32, 405
putenv() function, 217

■Q
qualifiers, 352
querying MySQL databases, 553–55, 561–64
querystrings

overview, 470
passing complex values in, 473–75

passing numeric values in, 471–72
passing string values in, 472–73
using, 470–71

quotes, smart and straight, 380

■R
r argument, 293
r character, date() function, 203
r+ argument, 293
rad2deg() function, 105
RADIO element, HTML form, 488
rand() function, 95
random numbers, 95–100
range() function, 124
ranges, 352
RDF Site Summary/Rich Site Summary (RSS)

file, 514
rdf tag, 531
readdir() function, 309–10
reading

binary data, 301–2
comma-separated data, 298, 300
cookies, 455–56
environment and configuration variables,

484–85
from files, 293–94
fixed-width delimited data, 300–301
mail with IMAP or POP3, 602–12
records with a delimiter, 382–84

recursive directory listing, 314–16
recursive function, 316
RecursiveDirectoryIterator object, 316–18
RecursiveIteratorIterator, 317
red attribute, imagecolorallocated()

function, 322
red-green-blue (RGB) spectrum, 322
redundant code, 437
Reflection API, 61

obtaining dump of, 73–75
overview, 71, 73
performing dynamic class instantiation,

76–77
using to deconstruct Shape class, 77–82

Reflection class, 71, 73
ReflectionClass class, 73, 76
ReflectionClass::getDocComment() method,

78
ReflectionClass::getProperties() method, 79
ReflectionException class, 73
Reflection::export() method, 74, 79
ReflectionExtension class, 73
ReflectionFunction class, 73
ReflectionMethod class, 73, 76
ReflectionMethod::getDocComment()

method, 78
ReflectionMethod::invoke() method, 77

■INDEX642

ReflectionParameter class, 73
ReflectionProperty class, 73
ReflectionProperty method, 79
Reflector interface, 71
Regex class, 385
RegExp class, 385–90
register_globals value, 3, 490
regular expressions

capturing text inside HTML or XML tags,
373–75

creating own RegExp class, 385–90
escaping special characters, 375–77
finding all matching lines in a file, 371–72
finding lines with odd numbers of quotes,

372–73
finding nth occurrence of a match, 358
finding repeated words, 367–68
finding words not followed by other

words, 368–69
formatting phone numbers, 365–66
matching a valid e-mail address, 369–71
matching GUIDs/UUIDs, 381–82
matching valid IP address, 360–61
matching with greedy vs. nongreedy

expressions, 358–59
overview, 7–8, 351, 356
PCRE (Perl-Compatible Regular

Expressions), 355–56
POSIX (Portable Operating System

Implementation), 354
reading records with a delimiter, 382–84
replacing smart quotes with straight

quotes, 380
replacing URLs with links, 377–79
syntax

character classes, 353
escape character, 353
line anchors, 352
OR operator, 353
overview, 351
qualifiers, 352
ranges, 352

testing complexity of passwords, 380–81
using string matching vs. pattern

matching, 356–58
validating pascal case names, 361–62
validating U.S. currency, 363–65

REMOTE_ADDR argument, 18
REMOTE_PORT argument, 18
removeAttribute(), DomElement object, 522
replace function, 387
REQUEST_METHOD argument, 18
REQUEST_TIME argument, 18
require_once() function, 48
RESET element, HTML form, 488
Resource data type, 10–11, 394

return method, 443
reversing strings, 277
round() function, 108
RSS feeds, 531–34, 536, 538
RSSdb() class, 534
RSSdb class, 538
rtrim() function, 266, 279

■S
S character, date() function, 202, 356
\s expression, 355
safe_mode_protected_env_vars

configuration variable, 217
safe_sqrt() function, 174
Save As dialog box, 462
saveHTML() function, 516
saveXML() function, 516, 520
saving modified images, 340–41
scandir() function, 309–11
SCRIPT_FILENAME argument, 18
SCRIPT_NAME argument, 18
SELECT element, HTML form, 488
select function, 553
select statement, 561
self keyword, 33–34
sending mail, 597–602
sendmail program, 599
"sendmail -t -i" default value, Unix system,

598
sendmail_from value, Windows system, 598
sendmail_path setting, Unix system, 598
serialize() function, 410, 425, 473
SERVER_PROTOCOL argument, 18
session_commit() function, 429
session_destroy() function, 465
session_start() function, 429, 465
session_write_close() function, 429
sessions

detecting browsers, 467–69
implementing, 464–65
overview, 463
storing complex data types in, 466–67
storing simple data types in, 465–66

set*() method, 238, 243
set_error_handler() function, 59
set_value() method, 414
SetAge() method, 405
setAttribute() method, 520–21
setCategory() method, 40
setcookie() function, 454, 457
setDate() method, 240, 387
setHours() method, 233
setlocale() function, 112, 220
setName() method, 44, 48
setPrice() method, 28, 44
setTime() method, 242

■INDEX 643

setTimeZoneOffset() method, 242
settype() function, 10–11
setUTCMinutes() function, 244
SetValue() class method, caching class, 426
setWidthHeight() function, 348
Shape class, 63, 73, 77–82
shapes, creating and applying, 331–34
shmop extension functions, 430
shmop_close() function, 430
shmop_delete() function, 430
shmop_open() function, 430
shmop_read() function, 430
shmop_size() function, 430
shmop_write() function, 430
ShowChart() function, 102
shuffle() function, 183
simple data types, storing in sessions, 465–66
Simple Mail Transfer Protocol (SMTP) mail

server, 597
Simple Object Access Protocol (SOAP),

542–48
simplexml_load_file() method, 596
SIMPLEXMLElement object, 596
sin() function, 105
sinh() function, 105
SiteUser class, 55
size argument, $_FILES superglobal, 505
slashdot.xml file, 529–31
smart quotes, replacing with straight quotes,

380
smtp factory, 599
SMTP value, Windows system, 598
smtp_port value, Windows system, 598
__soapCall() method, 544–45
SoapClient() class, 542–45
SoapServer() class, 548
socket communication, 597
sort() function, 178
soundex() function, 284
soundex key, 284
special characters, escaping, 375–77
spiders, 285
SPL DirectoryIterator object, 316–18
sprintf() function, 4, 108
SQL injection, 561
srand() function, 95
SRC attribute, IMG tag, 322, 334–36
SRC tag, 321
stat() function, 215
Static class, 414
static keyword, 33, 116
static math class, 116–18
static members, 33–34
story element, 523–24, 530
str_split() function, 266, 275

straight quotes, replacing smart quotes with,
380

strcasecmp() function, 284
strchr() string function, 265
strchr() substring function, 266
strcmp() function, 266, 278, 283, 389
strfmon() function, 112
strftime() function, 199, 220
strict comparison operators, 400
String data type, 394
string fgetc method, 293
string fgets method, 293
string fread method, 293
string matching, vs. pattern matching,

356–58
strings. See also substrings

checking length, 282
comparing, 283–85
controlling case, 277–79
creating and using string class, 285–90
joining and disassembling, 273–76
overview, 6, 265
reversing, 277
string values, passing in querystrings,

472–73
trimming blank spaces, 279–80
wrapping text, 280–82

strip_tags() function, 506
stristr() function, 265–66, 271
strlen() function, 265, 282, 394
strncasecmp() function, 284
strncmp() function, 283
strops() function, 266
strpos() function, 265, 268
strptime() function, 199
strrchr() function, 265–66, 271
strrev() function, 277
strstr() function, 265–66, 271
strtok() function, 265, 275
strtolower() function, 266, 277
strtotime() function, 199, 205–7
strtoupper() function, 266, 277
SUBMIT element, HTML form, 488
substr() function, 265–66, 269–70, 301, 319
substr_count() function, 265–68
substr_replace() function, 265–66, 271
substrings

accessing, 269–70
counting occurrences of, 269
functions, 266
replacing, 271–72
testing for, 267–69
using substring alternatives, 270–71

superglobals, 412–13, 447–48, 490–91
switch statements, reducing number of, 421

■INDEX644

■T
\t expression, 355
table element, 520–22
tan() function, 105
tanh() function, 105
testing complexity of passwords, 380–81
text, centering, 339
TEXT INPUT element, HTML form, 488
TEXTAREA element, HTML form, 488
text/plain content type, 462
this keyword, 34
throw keyword, 59
time() function, 199–201, 353–54
times. See dates and times
title attribute, 527–28
tmp_name argument, $_FILES superglobal,

505
toGMTString() method, 246
toLocaleString() method, 233, 246, 253
__toString() method, 60
toString() method, 238
__toString method, 387
transforming XML with XSL, 528–31
trigonometric functions, 105–8
trim() function, 266, 279–80, 506
tRSSFeed table, 534
true boolean type, 438
TrueType fonts

applying to images, 343–45
creating and using dynamic thumbnail

class, 345–49
loading fonts, 342–43

type argument, $_FILES superglobal, 505
typecasting, 89, 402–7
TZ value, 216

■U
U character, date() function, 203
uasort() function, 185
ucfirst() function, 266, 278
ucwords() function, 266, 278
Unix timestamps, 200, 205–7
unserialize() function, 425, 473
unset() function, 55, 147, 396, 398, 465
update statement, 578
UpdateChannel() method, 534, 536
upper camel case, 361
urldecode() function, 470
urlencode() function, 470
URLs, replacing with links, 377–79
U.S. currency, validating, 363–65
usort() function, 185
/usr/share/locale directory, 220
UTC() method, 234, 382
UTCString() method, 246
utf8_decode() function, 540

utf8_encode() function, 519, 539–40
UUIDs, 381–82

■V
validatelogin() function, 438
validating

form input, 491–93
pascal case names, 361–62
U.S. currency, 363–65

valueOf() method, 246
values

parsing to functions, 417–21
passing by reference, 439–40
returning by reference, 443–45

var_dump() function, 130
var_export() function, 130, 160, 188
variables

assigning and comparing, 396–401
debugging, 431–34
defining variable scope, 411–17
discovering availability of, 12–14
encapsulating complex data types, 425–28
environment and configuration variables,

484–85
obtaining variable names, 66
overview, 2, 393
parsing values to functions, 417–21
sharing between processes, 429–31
typecasting, 402–7
using constants, 408–10
using dynamic variable and function

names, 421–25
using variable types, 394–96

verdana.ttf file, 342–43
visibility, 32–33

■W
w argument, 293
w character, date() function, 202
\w expression, 355
w+ argument, 293
wddx_add_vars() function, 539
wddx_deserialize() function, 539
wddx_packet_end() function, 539, 541
wddx_packet_start() function, 539, 541
wddx_serialize_value() function, 539
wddx_serialize_vars() function, 539
Web basics

authenticating users
cookie authentication, 481–83
HTTP-based authentication, 475–81
overview, 475

cookies
deleting, 456–57
overview, 453

■INDEX 645

Web basics (continued)
reading, 455–56
setting, 454–55
writing and using a cookie class, 457–59

environment and configuration variables,
484–85

HTTP headers
forcing file “Save As” downloads, 462–63
overview, 459
redirecting to different location, 460
sending content types other than

HTML, 461–62
overview, 453
querystrings

overview, 470
passing complex values in, 473–75
passing numeric values in, 471–72
passing string values in, 472–73
using, 470–71

sessions
detecting browsers, 467–69
implementing, 464–65
overview, 463
storing complex data types in, 466–67
storing simple data types in, 465–66

Web Distributed Data Exchange (WDDX),
539–41

week of year, 211–12
weekday, finding date for, 207–11
words, getting number of in files, 304–5
wordwrap() function, 281
wrapping text, 280–82

writing
binary data, 301–2
comma-separated data, 298, 300
cookie class, 457–59
to files, 295–96

.wsdl document, 545–48

.wsdl file, 542–43

■X
X argument, 293
\x character class, 380
x+ argument, 293, 319
XML

outputting from MySQL or converting to
be read by MySQL, 585–96

parsing, 523–28
transforming with XSL, 528–31

XML tags
capturing text inside, 373–75
names of, 362

XML_RSS class, 532, 534
xmltomysql() method, 596
XSL, transforming XML with, 528–31
XSL Transformations (XSLT), 8, 528
xsltProcessor() function, 528

■Y
Y character, date() function, 203

■Z
Z character, date() function, 203

■INDEX646

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database

programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,

administration, wireless, wired, storage, backup, certifications,

trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:

J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make

suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as

PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software

methodology, best practices, and how programmers interact with

the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your

projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let

anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where

technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get

help on Microsoft technologies covered in Apress books, or

provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

	PHP 5 Recipes: A Problem-Solution Approach
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Customer Support

	Chapter 1 Overview of PHP Data Types and Concepts
	1-1.Variables
	1-2. Numbers
	1-3. Arrays
	1-4. Strings
	1-5. Regular Expressions
	1-6. Functions
	1-7. Project: Finding the Data Type of a Value
	1-8. Project: Discovering What Variables, Constants, Functions, Classes, and Interfaces Are Available
	1-9. Getting Information About the Current Script
	Summary
	Looking Ahead

	Chapter 2 Overview of Classes, Objects, and Interfaces
	Understanding Basic Concepts
	2-1. Creating Instances Using Constructors
	2-2. Using Default Constructors
	2-3. Setting Object Properties
	2-4. Controlling Access to Class Members
	2-5. Using Static Members and the self Keyword
	2-6. Using Class Constants
	2-7. Extending Classes
	2-8. Using Abstract Classes and Methods
	2-9. Using Interfaces
	2-10. Using Class Destructors
	2-11. Using Exceptions

	Getting Information About Classes and Objects
	Using Class and Object Functions
	2-12. Checking for the Existence of Classes and Interfaces Using class_exists() and interface_exists()
	2-13. Listing Methods and Interfaces Using get_class_methods()
	2-14. Obtaining Variable Names
	2-15. Determining Whether an Object Is an Instance of a Particular Class
	2-16. Listing Currently Loaded Interfaces and Classes

	Using the Class Reflection API
	2-17. Obtaining a Dump of the Reflection API
	2-18. Performing Dynamic Class Instantiation
	2-19. Using the Reflection API to Deconstruct the Shape Class

	Summary
	Looking Ahead

	Chapter 3 Performing Math Operations
	3-1. Numeric Data Types
	3-2. Random Numbers
	3-3. Logarithms and Exponents
	3-4. Trigonometric Functions
	3-5. Formatting of Numeric Data
	3-6. Math Libraries
	3-7. A Static Math Class
	Summary
	Looking Ahead

	Chapter 4 Working with Arrays
	4-1. Creating Arrays
	4-2. Accessing Array Elements
	4-3. Creating Multidimensional Arrays
	4-4. Using Array Keys
	4-5. Initializing an Array As a Range or Sequence of Values
	Outputting Arrays
	4-6. Outputting an Array As a String
	4-7. Outputting Using array_values() and array_keys() for Backward Compatibility
	4-8. Outputting an Array As a Tree

	Adding New Elements to Arrays
	4-9. Adding an Element to the End of an Array
	4-10. Appending One Array to Another
	4-11. Comparing Arrays
	4-12. Adding an Element to the Beginning of an Array
	4-13. Inserting New Values at an Arbitrary Point in an Indexed Array

	Getting and Setting the Size of an Array
	4-14. Counting Array Elements
	4-15. Setting an Array’s Size

	Traversing Arrays
	4-16. Looping Through an Associative Array Using foreach
	4-17. Looping Through a Compact Indexed Array Using for and count()
	4-18. Looping Through a Sparse Array

	Removing Elements from Arrays
	4-19. Removing the First or Last Element from an Array
	4-20. Removing One or More Arbitrary Array Elements
	4-21. Extracting a Portion of an Array
	4-22. Extracting Values from Arrays with extract()
	4-23. Extracting Values from an Array Using list()
	4-24. Combining Arrays
	4-25. Obtaining Array Keys and Values
	4-26. Working with Unique Values
	4-27. Getting and Displaying Counts of Array Values

	Finding and Working with Array Values
	4-28. Determining Whether an Element Is in an Array
	4-29. Testing for the Existence of a Key in an Array
	4-30. Obtaining Array Keys with a Given Value
	4-31. Finding the Greatest and Least Values in an Array
	4-32. Finding the Sum and Average of the Values in an Array

	Applying Functions to Arrays
	4-33. Applying Functions to Array Elements Using array_walk()
	4-34. Applying Functions to Array Elements Using array_map()
	4-35. Filtering Arrays Using array_filter()

	Sorting Arrays
	4-36. Sorting an Array by Its Values
	4-37. Sorting an Array by Its Keys
	4-38. Reversing an Array Using arsort()
	4-39. Reversing an Array Using krsort()
	4-40. Reversing an Array Using array_reverse()
	4-41. Randomizing an Array Using shuffle(), kshuffle(), and array_rand()
	4-42. Sorting an Array Using Comparison Functions
	4-43. Sorting Multidimensional Arrays
	4-44. Sorting Multiple Arrays

	Finding Permutations and Combinations
	4-45. Finding All Permutations of an Array’s Elements
	4-46. Finding All Combinations of an Array’s Elements

	Summary
	Looking Ahead

	Chapter 5 Working with Dates and Times
	Overview of PHP 5’s Date and Time Functions
	Displaying Dates and Times
	5-1. Displaying Human-Readable Dates and Times
	5-2. Displaying Arbitrary Dates and Times
	5-3. Converting Human-Readable Dates Into Unix Timestamps Using strtotime()
	5-4. Finding the Date for a Weekday
	5-5. Getting the Day and Week of the Year
	5-6. Determining Whether a Given Year Is a Leap Year
	5-7. Getting Times and Dates of Files
	5-8. Setting Time Zones and GMT/UTC
	5-9. Displaying Times and Dates in Other Languages
	5-10. Generating Localized GMT/UTC Time and Date Strings
	5-11. Obtaining the Difference Between Two Dates
	5-12. Project: Constructing and Using a Date Class
	5-13. Extending the Date Class

	Summary
	Looking Ahead

	Chapter 6 Working with Strings
	Manipulating Substrings
	6-1. Testing for Substrings
	6-2. Counting the Occurrences of a Substring
	6-3. Accessing Substrings
	6-4. Using Substring Alternatives
	6-5. Replacing Substrings

	Processing Strings
	6-6. Joining and Disassembling Strings
	6-7. Reversing Strings
	6-8. Controlling Case
	6-9. Trimming Blank Spaces
	6-10. Wrapping Text
	6-11. Checking String Length
	6-12. Comparing Strings
	6-13. Comparing Sound

	Project: Creating and Using a String Class
	6-14. Using a Page Reader Class

	Summary
	Looking Ahead

	Chapter 7 Working with Files and Directories
	Working with Files
	7-1. Opening Files
	7-2. Reading from Files
	7-3. Writing to Files
	7-4. Closing Files
	7-5. Reading and Writing Comma-Separated Data
	7-6. Reading Fixed-Width Delimited Data
	7-7. Reading and Writing Binary Data in a File
	7-8. Getting the Number of Lines in a File
	7-9. Getting the Number of Characters, Words, or Paragraphs in a File
	7-10. Project: Creating and Using a File Class

	Working with Directories
	7-11. Listing All Files in the Current Directory
	7-12. Listing All Files of a Certain Type
	7-13. Sorting Files by Date
	7-14. Generating a Recursive Directory Listing
	7-15. Using the SPL DirectoryIterator Object

	Summary
	Looking Ahead

	Chapter 8 Working with Dynamic Imaging
	Working with Image Types
	8-1. Working with JPGs
	8-2. Working with GIFs
	8-3. Working with PNGs

	Working with Image Libraries
	Creating an Image from Scratch
	8-4. Creating a Blank Canvas
	8-5. Creating and Using Colors
	8-6. Creating and Applying Different Shapes and Patterns
	8-7. Outputting an Image

	Creating an Image from an Existing Image
	8-8. Loading an Existing Image
	8-9. Applying Modifications to an Existing Image
	8-10. Saving and Outputting the Modified Image

	Using TrueType Fonts
	8-11. Loading Fonts
	8-12. Applying TrueType Fonts to an Image
	8-13. Project: Creating and Using a Dynamic Thumbnail Class
	Summary
	Looking Ahead

	Chapter 9 Using Regular Expressions
	Overview of Regular Expression Syntax
	Qualifiers
	Ranges
	Line Anchors
	An Escape
	Saying OR
	Character Classes

	POSIX vs. PCRE
	POSIX
	PCRE

	Putting Regular Expressions to Work
	9-1. Using String Matching vs. Pattern Matching
	9-2. Finding the nth Occurrence of a Match
	9-3. Matching with Greedy vs. Nongreedy Expressions
	9-4. Matching a Valid IP Address
	9-5.Validating Pascal Case Names
	9-6.Validating U.S. Currency
	9-7. Formatting a Phone Number
	9-8. Finding Repeated Words
	9-9. Finding Words Not Followed by Other Words
	9-10. Matching a Valid E-mail Address
	9-11. Finding All Matching Lines in a File
	9-12. Finding Lines with an Odd Number of Quotes
	9-13. Capturing Text Inside HTML or XML Tags
	9-14. Escaping Special Characters
	9-15. Replacing URLs with Links
	9-16. Replacing Smart Quotes with Straight Quotes
	9-17. Testing the Complexity of Passwords
	9-18. Matching GUIDs/UUIDs
	9-19. Reading Records with a Delimiter
	9-20. Creating Your Own RegExp Class

	Summary
	Looking Ahead

	Chapter 10 Working with Variables
	10-1. Using Variable Types
	10-2. Assigning and Comparing
	10-3. Typecasting
	10-4. Using Constants
	10-5. Defining Variable Scope
	10-6. Parsing Values to Functions
	10-7. Using Dynamic Variable and Function Names
	10-8. Encapsulating Complex Data Types
	10-9. Sharing Variables Between Processes
	10-10. Debugging
	Summary
	Looking Ahead

	Chapter 11 Using Functions
	11-1. Accessing Function Parameters
	11-2. Setting Default Values for Function Parameters
	11-3. Passing Values by Reference
	11-4. Creating Functions That Take a Variable Number of Arguments
	11-5. Returning More Than One Value
	11-6. Returning Values by Reference
	11-7. Returning Failure
	11-8. Calling Variable Functions
	11-9. Accessing a Global Variable from Within a Function
	11-10. Creating Dynamic Functions
	Summary
	Looking Ahead

	Chapter 12 Understanding Web Basics
	Using Cookies
	12-1. Setting Cookies
	12-2. Reading Cookies
	12-3. Deleting Cookies
	12-4. Writing and Using a Cookie Class

	Using HTTP Headers
	12-5. Redirecting to a Different Location
	12-6. Sending Content Types Other Than HTML
	12-7. Forcing File “Save As” Downloads

	Using Sessions
	12-8. Implementing Sessions
	12-9. Storing Simple Data Types in Sessions
	12-10. Storing Complex Data Types in Sessions
	12-11. Detecting Browsers

	Using Querystrings
	12-12. Using Querystrings
	12-13. Passing Numeric Values in a Querystring
	12-14. Passing String Values in a Querystring
	12-15. Passing Complex Values in a Querystring

	Authenticating Your Users
	12-16. Setting Up HTTP-Based Authentication
	12-17. Setting Up Cookie Authentication

	Using Environment and Configuration Variables
	12-18. Reading Environment and Configuration Variables
	12-19. Setting Environment and Configuration Variables

	Summary
	Looking Ahead

	Chapter 13 Creating and Using Forms
	Understanding Common Form Issues
	13-1. GET vs. POST
	13-2. Superglobals vs. Globals
	13-3.Validating Form Input
	13-4. Working with Multipage Forms
	13-5. Redisplaying Forms with Preserved Information and Error Messages

	Preventing Multiple Submissions of a Form
	13-6. Preventing Multiple Submissions on the Server Side
	13-7. Preventing Multiple Submissions on the Client Side
	13-8. Performing File Uploads
	13-9. Handling Special Characters
	13-10. Creating Form Elements with Multiple Options
	13-11. Creating Form Elements Based on the Current Time and/or Date

	Summary
	Looking Ahead

	Chapter 14 Working with Markup
	14-1. Understanding Markup Concepts
	14-2. Manually Generating Markup
	14-3. Using DOM to Generate Markup
	14-4. Creating and Setting Attributes
	14-5. Parsing XML
	14-6. Transforming XML with XSL
	14-7. Using RSS Feeds
	14-8. Using WDDX
	14-9. Using SOAP
	Summary
	Looking Ahead

	Chapter 15 Using MySQL Databases in PHP 5
	Basic Database Concepts
	15-1. Connecting to a MySQL Database
	15-2. Querying the Database
	15-3. Retrieving and Displaying Results
	15-4. Modifying Data
	15-5. Deleting Data
	15-6. Building Queries on the Fly

	The mysqli Extension vs. the PHP 4 MySQL Extension
	15-7. Using the mysqli Object-Oriented API
	15-8. Using Exceptions to Handle Database Errors
	15-9. Project: Displaying Linked Search Results
	15-10. Displaying Results in a Form

	Project: Bridging the Gap Between mysql and mysqli
	15-11. Discovering Which Extension Is Being Used
	15-12. Writing a Wrapper Class to Bridge the Gap
	15-13. Project: Going from MySQL to XML and from XML to MySQL

	Summary
	Looking Ahead

	Chapter 16 Communicating with Internet Services
	16-1. Sending Internet Mail
	16-2. Project: Sending an E-mail with a Mail Class
	16-3. Reading Mail with IMAP or POP3
	16-4. Getting and Putting Files with FTP
	16-5. Performing DNS Lookups
	16-6. Checking Whether a Host Is Alive
	16-7. Getting Information About a Domain Name
	Summary

	Index

