E.M. GOPALAKRISHNA KONE YADAVA WOMEN'S COLLEGE

An Autonomous Institution – Affiliated to Madurai Kamaraj University Re-accredited (3rd Cycle) with Grade A⁺ & CGPA 3.51 by NAAC

LESSON PLAN 2022-2023

DEPARTMENT OF MATHEMATICS

(PG -Odd Semester)

Sub. Code : 22OPMA11

Title of the Paper: Abstract Algebra

Total Hours: 75

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher Signature
July	I	Group Theory: Another Counting Principle – Sylow's Theorems.	15	Chalk & Talk	5. selui
August	п	Continuation of Group Theory and Ring Theory: Direct Products – Finite Abelian Groups - Polynomial Rings	15	Chalk & Talk	s.selui
Sep	ш	Continuation of Ring Theory and Fields: Polynomials over the Rational Fields - Extension Fields – Roots of Polynomials.	15	Chalk & Talk	s.sehni
Oct	IV	Continuation of Fields : More About Roots -The Elements of Galois Theory	15	Chalk & Talk	s.selmi
Nov	v	Continuation of Fields and Selected Topics Solvability by Radicals – Galois Groups over the Rationales -Finite Fields	15	Chalk & Talk	S. selvi

Signature of the HOD

Malattea Signature of the Principal

-Signature of the Principal - PRINCIPAL I/C -E.M.G. YADAVA WOMEN'S COLLECE MADURAI-625 014

11

-1

Sub. Code : 22OPMA12

Title of the Paper: Real Analysis

Total Hours : 75

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher Signature
July	I	The derivative of a real function: Mean Value Theorem - The continuity of derivatives – L' Hospital's Rule - Taylor's Theorem- Differentiation of vector –valued functions.	15	Chalk & Talk	f.Thill
August	п	The Riemann-Stieltjes integral: Definition and Existence of the Integral - Properties of the Integral. Integration and differentiation	15	Chalk & Talk	T.Th.
Sep	ш	Integration of vector- valued functions - Rectifiable curve	15	Chalk & Talk	TITLY
Oct	IV	Uniform convergence and Continuity: Uniform convergence and Integration- Uniform convergence and differentiation – Equicontinuous Families of functions- The Stone- Weierstrass Theorem	15	Chalk & Talk	T.T.Y
Nov	v	Power Series: The Exponential and Logarithmic Functions – The Trigonometric Functions- The Algebraic Completeness of the complex Field-Fourier series- The Gamma functions	15	Chalk & Talk	J.Th.M

P. L.f.

Signature of the HOD

alialtia Signature of the Principal PRINCIPAL I/C E.M.G. YADAVA WOMEN'S COLLEGE - MADURAI-625 014

Warmann.

Recet

Sub. Code : 22OPMA13

Title of the Paper: Differential Equations

Total Hours: 90

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher Signature
July	I	Linear Equations with Variable Coefficients: Introduction - Initial value problems for the homogeneous equation - Solutions of the homogeneous equation - The Wronskian and Linear independence - Reduction of the order of a homogeneous equation-The Non- homogeneous equation- Homogeneous equation- Homogeneous equation with analytic coefficients - The Legendre Equation.	18	Chalk & Talk	R. Runthy
August	П	Linear Equations with Regular Singular Points: Introduction - The Euler equation - Second order equations with regular singular points - An example – Second order Equations with regular singular points - the general case - The Bessel equation- The Bessel equation(continued)	18	Chalk & Talk	R. Revulh
Sep	ш	Existence and Uniqueness of Solutions to First Order Equations: Introduction – Equations with variables separated - Exact equations - The method of successive approximations – The Lipschitz condition – Convergence of the successive approximations – Non-local existence of solutions – Equations with complex – valued functions.	18	Chalk & Talk	R. Revalh

Oct	IV	Partial Differential Equations of the First Order : Partial Differential Equations - Origins of First -order Partial Differential Equations - Cauchy's Problem for First- order Equations - Linear Equations of the First Order - Integral Surfaces Passing through a Given Curve - Surfaces Orthogonal to Given System of Surfaces.	18	Chalk & Talk	R. Revathing.
Nov	v	Partial Differential Equations of The First Order : Nonlinear Partial Differential Equations of the First Order -Cauchy's Method of Characteristics - Compatible Systems of First order Equations - Charpit's Method - Special Types of First order Equations-Solutions Satisfying Given Conditions- Jacobi's Method- Applications of First- order Equations.	18	Chalk & Talk	R. Revalty

p.l.g.

Signature of the HOD

alatta Signature of the Principal

PRINCIPAL EMLG. YADAVA WOMEN'S COLLEGE MADURAI-625 014

Sub. Code : 22OPMA14 Title of the Paper: Differential Geometry Total Hours : 90

1	Fotal Ho	ours : 90		Teaching	
Month	Unit	Description Of The Syllabus	Hours Allocated	Mode & Methods	Course Teacher
July	I	The theory of space curves – Arc length – Tangent normal and binormal – curvature and torsion of a given as intersection of two surfaces – Contact between curves and surfaces – Fundamental theorem for space curve	18	Chalk & Talk	Othany
August	п	The metric local intrinsic properties of a surface – Curves on a surce – Surface of revolution Helicoides – Metric Direct coefficients – Families curves – Isometric curves – Intrinsic properties	18	Chalk & Talk	C. Kung .
Sep	ш	Canonical Equations – Normal properties – Existense theorem – Geodes parallels – Geodemic curvature – Gauss Bennet theorem – Gaussian Curvature – Surface of Constant curvature	18	Chalk & Talk	Q. Hunf.
Oct	IV	The Second fundamental form – Principal Curvature – Lines of Curvature	18	Chalk & Talk	Q. Kenj
Nov	v	Developables – Developables curve – Associated with curves on surface – Minimal surface – Ruled surface	18	Chalk & Talk	O. Hand

p.L P

Signature of the HOD

Sub. Code : 22OPMADSE1A

Title of the Paper: Number Theory & Cryptography Total Hours : 90

Tot	tal Hou	rs : 90		Teaching	
Month	Unit	Description Of The Syllabus	Hours Allocated	Mode & Methods	Course Teacher
July	I	Introduction – Divisibility – The Mobius function $\mu(n)$ – The Euler totient function $\Phi(n)$ – A relation connecting Φ and	18	Chalk & Talk	R. Nhe
August	I	Introduction – The big oh notation. Asymptotic equality of functions – Euler's summation formula – Some elementary asymptotic formulas – The average order of d(n) - The average order of the divisor functions σ_a (n) - The average order of $\Phi(n)$ - An application to the distribution of lattice points visible from the origin – The average order of $\mu(n)$ and of $\dot{U}(n)$ - The partial sums of a Dirichlet product - Applications to $\mu(n)$ and L(n) - Another identity for the partial sums of a Dirichlet product.	18	Chalk & Talk	R. M
Sep	ш	Introduction – Chebyshev's functions (x) and (x) - Definition and basic properties of congruence - Residue classes and complete residue systems – Linear congruence – Reduced residue systems and Euler Fermat theorem –	18	Chalk & Talk	R.nh

		Polynomial congruence modulo p .Lagrange's theorem – Applications of Lagrange's theorem – Simultaneous linear Congruence . The Chinese Remainder theorem – Applications of the Chinese Remainder theorem – Polynomial congruence with prime power moduli - The Principle of cross classification – A decomposition property of reduced residue systems			p.M.
Oct	IV	Quadratic residues – Legendre's symbol and its properties – Evaluation of (- 1/p) and (2/p) –Gauss' lemma- The quadratic reciprocity law-Applications of the reciprocity law- The Jacobi symbol - Applications of Diophantine equations- Gauss sums and the Quadratic reciprocity law.	18	Chalk & Talk	R. Hu
Nov	v	Discrete logarithm – Principles of public key – Cryptosystem – RSA algorithm – Elliptic curve cryptography.	18	Chalk & Talk	R. Man

pirf.

Signature of the HOD

allo 10 PRINCIPAL I/C PRINCIPAL I/C EM.G. YADAVA WOMEN'S COLLEGE MADURAI-625 014 hamman

Sub. Code : 22OPMAID1

Title of the Paper: Teaching and Research Aptitude Paper - I

Total Hours : 30

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher
July	I	Alphabet test, Classification Test- Analogy Test	6	Chalk & Talk	P.Thy)
August	п	Coding and Decoding Test number and Alphabetical series test ,Number related, test blood relations test	6	Chalk & Talk	TIL
Sep	ш	Assertions and presumption ,statement and conclusion	6	Chalk & Talk	PITEZ
Oct	IV	Series completion test, Venn diagram, diagram type test different position of dice	6	Chalk & Talk	S-selij
Nov	v	Missing number-figure analogy test figure classification test classification of figures into groups.	6	Chalk & Talk	5.selvi

p.r.p.

Signature of the HOD

MOO Signature of the Principal . PRINCIPAL I/C EM.G. YADAVA WOMEN'S COLLEGE MADURAI-625 014 k. .

Sub. Code : 22OPMA31

Title of the Paper: Advanced Statistics - II

Total Hours: 90

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher
July	I	IntroductionToStatisticalInference-PointEstimation-ConfidenceIntervalformean-ConfidenceintervalsfordifferencemeanIntervalfordifference	18	Chalk & Talk	Mann
August	П	Introduction To Statistical Inference (cont): Test of Statistical Hypothesis –Additional comments about statistical test-Chi-Square Test	18	Chalk & Talk	dham
Sep	ш	Sufficient Statistics: Measures of quality estimation – A sufficient statistic for a parameter-Properties of a sufficient statistic –Completeness and uniqueness-The exponential class of probability density function –Functions of a parameter	18	Chalk & Talk	Naw
Oct	IV	More About Estimation :Bayesian Estimation-Fisher Information and the Rao-Cramer Inequality –Limiting Distributions of Maximum likelihood Estimations	18	Chalk & Talk	thour
Nov	v	Theory of Statistical Tests: Certain Best Tests- Uniformly Most powerful Test- Likelihood Ratio Test-The sequential probability Ratio Test	18	Chalk & Talk	مسماح

P.l.P.

Signature of the HOD

Watris ...

Sub. Code : 22OPMA32 Title of the Paper: Complex Analysis Total Hours : 90

Month	Unit	Hours : 90 Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher
July	I	Complex Integration-Fundamental Theorems: Line Integrals – Rectifiable Arcs – Line Integrals as Functions of Arcs – Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk – Cauchy Integral formula: The Index of a point with respect to a Closed Curve – The Integral Formula – Higher Derivatives	18	Chalk & Talk	DOBry
August	п	Local Properties of Analytical Functions – Removable Singularities – Taylor's Theorem – Zeros and Poles – The Local Mapping – The Maximum Principle – The General form of Cauchy's Theorem – Chains and Cycles – Simple Connectivity – Homology – The General Statement of Cauchy's Theorem – Proof of Cauchy's Theorem – Locally Exact Differentials	18	Chalk & Talk	DBry
Sep	ш	The Calculus of Residues – The Residue Theorem – The Argument Principle – Evaluation of Definite Integrals – Harmonic Functions – Definition and Basic properties – The Mean Value Property – Poisson's Formula – Schwarz's Theorem – The Reflection Principle – Series and product developments – Power Series Expansions- Weierstrass's Theorem – The Taylor Series – The Laurent Series	18	Chalk & Talk	D.B~4
Oct	IV	Complex Integration-Fundamental Theorems: Line Integrals – Rectifiable Arcs – Line Integrals as Functions of Arcs – Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk – Cauchy Integral formula: The Index of a point with respect to a Closed Curve – The Integral Formula – Higher Derivatives	18	Chalk & Talk	D.8_5

Nov	v	Local Properties of Analytical Functions – Removable Singularities – Taylor's Theorem – Zeros and Poles – The Local Mapping – The Maximum Principle – The General form of Cauchy's Theorem – Chains and Cycles – Simple Connectivity – Homology – The General	18	Chalk & Talk	Derg
		Statement of Cauchy's Theorem – Proof of Cauchy's Theorem – Locally Exact Differentials			4

P. if.

Signature of the HOD

la latto ... Signature of the Princi

PRINCIPAL I/C E.M.G. YADAVA WOMEN'S COLLECE MADURAI-625 014

Sub. Code : 22OPMA33 Title of the Paper: Mechanics Total Hours : 90

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher
July	I * *	Survey of the elementary principles: Mechanics of a particle-Mechanics of a system of particles- Constraints-D'Alembert's principle and Lagrange's equations	18	Chalk & Talk	R. Mur
August	П	Survey of the elementary principles (Continuation) Velocity dependent potential and the dissipation function- Simple application of the Lagrangian formulation Variation principles and Lagrange's equations: Hamilton's principle – Some techniques of the calculus of variations.	18	Chalk & Talk	R. Mu
Sep	ш	Variation principles and Lagrange's equations(cont): Derivation of Lagrange's equations from Hamilton's principle- Extension of Hamilton's principle to nonholonomic system- Advantages of a variational principle formulation- Conservation theorems and symmetry properties.	18	Chalk & Talk	R. Mu
Dct	IV	The two-body central force problem: Reduction to the equivalent one-body problem- The equation of motion and first integrals- The equivalent one- dimensional problem and classification of orbits-The virial theorem-The differential equation for the orbit, and integrable power-	18	Chalk & Talk	k.nh

		law potential-Conditions for closed orbits (Bertrand's theorem)		R.	R.M.
Nov	v	The two-body central force problem(cont): The Kepler Problem : Inverse square law of force- The motion in time in the Kepler problem- The Laplace - Runge-Lenz vector.	18	Chalk & Talk	R.M.

P. r.

Signature of the HOD

alter 0 Signature of the Principal PRINCIPAL I/C E.M.G. YADAVA WOMEN'S COLLEGE MADURAI-625 014

.

11.

.wie

Sub. Code : 22OPMADSE3A Title of the Paper: Numerical Analysis Total Hours : 90

Month	Unit	Description Of The Syllabus	Hours Allocated	Teaching Mode & Methods	Course Teacher
July	1,	TranscendentalandPolynomialEquations:Introduction- Bisection Method- IterationMethodsBased onFirst degreeEquation - IterationMethodsBased - onSecondDegreeEquation-RateofConvergence(Secant method, Regular falsemethod,NewtonRopsonmethod only)SystemofNonlinearEquations – MethodsforComplexRoots.	18	Chalk & Talk	Shy
August	п	System of Linear Algebraic Equations and Eigen value Problems: Introduction - Direct Methods – Error Analysis for Direct Methods – Iteration Methods – Eigen values and Eigen vectors – Power Method.	18	Chalk & Talk	Elly.
Sep	ш	Interpolation and Approximation: Introduction - Lagrange and Newton Interpolations - Finite Difference Operators – Interpolating Polynomials Using Finite Differences – Hermite Interpolation – Piecewise and Spline Interpolation.	18	Chalk & Talk	ahji
Oct	IV	Differentiation and Integration: Introduction-Numerical Differentiation – Optimum Choice of Step Length – Extrapolation Methods – Numerical Integration–Methods based on Interpolation – Composite Integration Methods – Romberg Integration –Double Integration.	18	Chalk & Talk	ahj.
Nov	v	Ordinary Differential Equations: Initial Value Problems Introduction – Difference Equations – Numerical Methods –Single step method- Runge - Kutta method-Higher order methods only	18	Chalk & Talk	chy :

PIL Signature of the HOD

Signature of the Principal PRINCIPAL I/C ' E.M.G. YADAVA WOMEN'S COLLEGE MADURAI-625 014