Arithmetic, Logical and Matrix operations in R

In this lecture

- Arithmetic
- Logical
- Matrix operations

Arithmetic operations in R

Arithmetic operations in R

Symbols	Operation
$=,<-$	Assignment
+	Addition
-	Subtraction
$*$	Multiplication
$/$	Division
$\wedge, * *$	Exponent
$\% \%$	Remainder
$\% / \%$	Integer division

* In R only < - 'is valid for assignment operation where as in R Studio both $=$ and $<-'$ will work

Hierarchy of operations

$$
A=7-2 \times \frac{27}{3^{2}}+4
$$

Order of Precedence	Operation
Bracket	()
Exponent	$\wedge, * *$
Division	$/$
Multiplication	$*$
Addition and	,+-
subtraction	

Logical operations in R

Logical operations in R

Symbols	Operation	Examples
<	Less than	[1] FALSE [1] TRUE ${ }_{\text {[1] }}^{2>=3} \mathrm{FALSE}$ [1] ${ }^{2<-3}$ TRUE [1] FALSE ${ }^{[1]}{ }^{12}$ FALSE [1] ${ }^{2!-3}$ TRUE - 1
<	Less than equal to	
>	Greater than	
>=	Greater than equal to	
=	Exactly equal to	
!	Not equal to	
!	Not	
I	Or	
\&	And	
isTRUE	Test if variable is TRUE	

Matrix operations in R

Matrices

A matrix is a rectangular arrangement of numbers in rows and columns

Rows run horizontally and columns run vertically

$$
\left(\begin{array}{lll}
1 & 5 & 3 \\
4 & 9 & 2 \\
5 & 6 & 7
\end{array}\right) \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 4 & 5
\end{array}\right]
$$

Creating matrices

Follow these steps to create a matrix

1. Open a curve bracket,

$$
\text { A = matrix (})
$$

2. Enter the sequence of elements,

$$
A=\operatorname{matrix}(c(1,2,3,4,5,6,7,8,9))
$$

3. Specify the parameters nrow, ncol, byrow

$$
A=\operatorname{matrix}(c(1,2,3,4,5,6,7,8,9), \text { nrow }=3,
$$

ncol=3, byrow=TRUE

```
Console ~/ }~\mathrm{ This parameter decides
\begin{tabular}{lll}
\(>\) A \(=\) matrix \((c(1,2,3,4,5,6,7,8,9)\), & how values in the vector \\
+ & nrow \(=3\), \\
+ & ncol \(=3\),
\end{tabular}, \begin{tabular}{ll} 
would be assigned i.e. "by
\end{tabular}
```


Creating special matrices

Different ways of creating matrices:
a. Matrix where all rows and columns are filled by a single constant ' k '.
$>$ For k=3, with 'm' rows \& 'n' columns

Command :matrix(3,m,n)
b. Diagonal matrix:
$>$ Values in diagonal, similar to 'matrix()'.
$>$ Mention ' k ' as constant/array in first parameter.
$>$ Command: $\operatorname{diag}(k, m, n)$
c. Identity matrix:
$>$ Use 'diag(0' command with $\mathrm{k}=1$

di	(1, 3	3)
[,1]	[,2]	$[, 3]$
[1,]	10	0
[2,]	01	0
[3,]	00	1

Exercise: Creating matrices

Create the following matrices in R

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & 5 \\
-2 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 10 \\
3 & -1 \\
7 & 5
\end{array}\right]} \\
& \text { and } \\
& {\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 1 & 2 \\
-1 & -2 & -3 \\
5 & 4 & 3
\end{array}\right]}
\end{aligned}
$$

Matrix metrics

\# create a matrix A
$A=$ matrix $(c(1,2,3,4,5,6,7,8,9)$, nrow $=3$, ncol=3, byrow=TRUE)

Finding the size of the matrix, A:
$\operatorname{dim}(A)$ will return the size of the matrix nrow(A) will return the number of rows $n \operatorname{col}(A)$ will return the number of columns
prod(dim(A)) or length(A) will return the number of elements

Console ~/ A

$>\operatorname{dim}(A)$
[1] 33
$>1 \mathrm{Ir}^{2} \mathrm{OW}(\mathrm{A})$
[1] 3
$>$ ncol (A)
[1] 3
$>$ length (A)
[1] 9
$>$ |

Accessing, editing, deleting in elements in matrices

They follow the same convention as dataframes such as

- Array/value before "," for accessing rows
- Array/value before "," for accessing columns
- use of '-' for removing rows/columns
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 9 & 1\end{array}\right]_{3 \times 3}$

```
A=matrix(c(1, 2, 3,4,5,6,8,9,1)
A,matr(a,byrow = T)
> colnames(A) <- c("a","b","c")
> rownames(A) <- c("d","e","f")
> A
a b c
d 1 2 3
e 4 5 6
f 8 9 1
> A[,1:2]
a b
d 1 }
e 4 5
f 8 9
> A[,c("a","c")]
    a c
d 1 }
e 4 6
f 8 1
A[c("d","f"),]
    a b c
d 1 2 3
f 8 9 1
> |
```


Accessing an entry of a matrix

Second row, third column
$>\mathrm{A}[2,3]$
[1] 6
$>$

The part before the comma should be the row number
The part after the comma should be the column number

Accessing a column

- Specify the column index
- Leave the rows index unspecified
- This means accessing all row elements of the given column index

Accessing a row

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \\
& >\mathrm{A}[2,] \\
& \text { Leaving the column index empty } \\
& \text { means choose all the columns }
\end{aligned}
$$

How do you access the last row?
A[nrow(A),]

Accessing everything but one column

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

- Access the column that has to be avoided and then put
a '-' sign in front of it
- For example: A[,-2]
- This will fetch all the columns except the 2nd column

$$
\begin{array}{cr}
>A[,-2] \\
& {[, 1]}
\end{array}\left[\begin{array}{c}
\\
{[1,2]} \\
{[2,]}
\end{array} \quad 1 \quad 3 \quad 3\right.
$$

Accessing everything but one row

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

- Access the row that has to be avoided and then put a '-' sign in front of it
- For example: A[-2,]
- This will fetch all the row except the 2 nd row

Exercise: Accessing elements of a matrix

Do the following in R

Assign the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 7 & 3 \\
4 & 4 & 6 \\
4 & 7 & 12
\end{array}\right]
$$

- Change the element 12 to 13
- Access the second row and the third column
- List all the elements in the second column and third row

Colon operator

Colon operator can be used to create a row matrix

$>$	$1: 10$									
	$[1]$	1	2	3	4	5	6	7	8	9

Colon operator: sub matrices selection

The colon notation can also be used to pick sub-matrices

The sub-matrix occupies the first three rows and the first two columns

Accessing submatrices: Example 2

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right]
$$

$$
\begin{aligned}
& >\mathrm{A}[\mathrm{c}(1,3), 1: 2] \\
& \begin{array}{l}
\text { > } \mathrm{A}[\mathrm{c}(1,3), \mathrm{c}(1,2)] \\
{\left[\begin{array}{lll}
& 1] & {[, 2]} \\
{[1,]} & 1 & 2 \\
{[2,]} & 7 & 8
\end{array}\right.}
\end{array} \\
& \text { [,1] [,2] } \\
& \begin{array}{lrr}
{[1,]} & 1 & 2 \\
{[2,]} & 7 & 8
\end{array} \\
& \text { [2,] } \\
& 8 \\
& >
\end{aligned}
$$

Exercise:Accessing sub-matrices

$$
A=\left[\begin{array}{ccc}
\left.\begin{array}{|ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], ~ \\
\hline
\end{array}\right]
$$

How do you access this sub-matrix $\left[\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}\right]$

Matrix concatenation

- Matrix concatenation refers to merging of a row or column to a matrix
- Concatenation of a row to a matrix is done using rbind()
- Concatenation of a column to a matrix is done using cbind()
- Consistency of the dimensions between the matrix and the vector should be checked before concatenation

Matrix concatenation - rbind()

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad B=\left[\begin{array}{lll}
10 & 11 & 12
\end{array}\right]
$$

Use rbind() to append B row vector to the rows of A

$$
C=\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

Matrix concatenation - cbind()

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

$B=\left[\begin{array}{l}10 \\ 11 \\ 12\end{array}\right]$

Use cbind() to append B column vector to the columns of A

$$
C=\left[\begin{array}{ll}
A & B
\end{array}\right]
$$

Dimension inconsistency -cbind()

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad B=\left[\begin{array}{lll}
10 & 11 & 12
\end{array}\right]
$$

Can these two matrices be merged to give

$$
C=\left[\begin{array}{ll}
A & B
\end{array}\right]
$$

```
D = cbind(A,B)
Error in cbind(A, B) : number of rows of matrices must match (see arg 2)
```


Fixing the dimension inconsistency

$$
C=\left[\begin{array}{ll}
A & B]
\end{array}\right.
$$

Deleting a column

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

- Access the column that has to be deleted and then put
a '-' sign in front of it
- For example: A=A[,-2]
- This will fetch all the columns
except the 2 nd column

$$
\begin{array}{|rrr}
\hline>A[,-2] \\
& {[, 1]} & {[, 2]} \\
{[1,]} & 1 & 3 \\
{[2,]} & 4 & 6 \\
{[3,]} & 7 & 9
\end{array}
$$

Deleting a row

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

- Access the row that has to be deleted and then put a
'-' sign in front of it
- For example: A=A[-2,]
- This will fetch all the rows except the 2 nd row

Matrix algebra

- Addition/subtraction
- Multiplication
- Matrix Operations in R
- Matrix Division

Matrix addition/subtraction \& multiplication

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
8 & 9 & 1
\end{array}\right]_{3 \times 3} \\
& B=\left[\begin{array}{lll}
3 & 1 & 3 \\
4 & 2 & 1 \\
5 & 1 & 2
\end{array}\right]_{3 \times 3}
\end{aligned}
$$

Element-wise multiplication is

 based on multiplication between corresponding elements of two matrices.
Matrix division

! WARNING:

The following operation is not inverse of a matrix but element wise division between matrices A \& B.

$$
A=\left[\begin{array}{cc}
4 & 9 \\
16 & 25
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 3 \\
4 & 5
\end{array}\right]
$$

Console \sim / ω

$$
A / B=\frac{a_{i j}}{b_{i j}}
$$

