

HTML	Tutor
	

Simple	HTML	Editor
	

HTML	means	Hypertext	Markup	Language.	Its	basically	just	a	text	file	with	codes	that	tell
the	browser	how	to	display	the	information.	For	example,	you	can	let	the	browser	know
that	a	certain	string	of	text	should	be	displayed	as	a	header	with	bold	font,	or	that	the	text
should	be	centered	on	the	page.	To	let	the	browser	know	the	text	file	contains	HTML,	we
use	the	file	extension	.html	rather	than	.doc	or	.txt	or	.rtf.

	

Since	a	HTML	document	is	nothing	but	a	text	file,	you	can	use	any	text	editor	to	make
one.	You	can	use	Microsoft	Word,	Pages,	or	your	built	in	text	editors	provided	by	the
operating	system.	However	if	you	are	a	Mac	user	I’m	going	to	recommend	a	special
HTML	editor	which	is	free	called	Kompozer.	The	nice	thing	about	Kompozer	is	that	it
allows	you	to	preview	your	file	in	real	time	inside	the	application	without	having	to	save
your	html	file	and	loading	it	in	a	browser.	Although	in	this	book	we	will	be	focusing	on
teaching	HTML	and	CSS,	Kompozer	allows	WYSWYG	editing	of	web	pages.	You	can
download	it	free	here:

	

http://www.kompozer.net/

	

A	website	is	made	up	of	multiple	HTML	pages.	So	each	HTML	file	is	a	single	web	page.
When	you	type	in	a	websites	home	address,	such	as	http://cnn.com	or	http://nytimes.com,
what	happens	is	the	browser	opens	a	special	file	named	index.html.	In	a	nutshell	this	is	an
html	file	no	different	than	any	other,	but	it	has	the	name	index	that	tells	the	broswer	to
load	this	file	when	someone	visits	the	website.	On	your	server	you	will	place	the
index.html	file	in	the	home	directory.	There	are	some	exceptions	to	this	but	for	now	that	is
how	you	can	view	the	home	page	of	a	website.

	

The	other	web	pages	on	the	site	will	have	different	names	pageone.html,	pagetwo.html
etc.	These	other	pages	can	be	in	the	home	directory	or	you	can	make	a	folder	on	your
server	and	place	the	pages	in	there.	So	for	example,	suppose	you	have	a	website
http://acmeincorporated.com.	In	the	public_html	folder	on	the	server,	you	would	place	the
home	page	here.	This	would	be	the	file	index.html.	You	could	place	an	about.html	page	in
this	folder	as	well.	Then	it	would	be	referenced	in	the	browser	as:

	

http://acmeincorporated.com/about.html

	

Alternatively,	you	could	create	a	folder	in	your	home	directory	and	place	the	about.html
file	in	there.	Lets	say	that	we	called	that	folder	info.	In	that	case,	the	web	address	would
be:

	

http://acmeincorporated.com/info/about.html

	

Like	a	word	processing	document,	an	HTML	file	can	include	different	fonts,	colors,
images,	and	links	to	other	html	pages.	An	HTML	page	can	also	have	a	style	format	which
is	done	using	CSS.	We	will	see	how	to	enter	the	appropriate	codes	to	do	these	tasks	in
future	chapters.

	

	

Your	First	Webpage
	

Now	that	we	have	an	idea	of	what	a	web	page	and	HTML	file	is	and	how	to	create	one,
let’s	get	our	feet	wet	and	start	creating	simple	web	pages.	The	first	thing	you	need	to	know
is	how	to	give	instructions	to	the	browser.	This	is	done	by	using	tags.	The	format	used	to
enter	a	tag	is	to	enclose	it	in	<>.	You	will	need	an	opening	tag	and	a	closing	tag.	Inside	the
<>	characters,	you	give	the	browser	and	instruction.	So	for	illustration,	to	tell	the	browser
that	a	block	of	text	is	tag_one,	the	opening	tag	would	be:

	

<tag_one>

	

A	closing	tag	is	indicated	with	a	forward	slash	/.	So	to	tell	the	browser	that	we	are	finished
with	tag_one,	we	would	write:

	

</tag_one>

	

Now	let’s	get	into	the	structure	of	an	actual	HTML	document	and	real	tags	that	are	used.
The	first	line	in	your	file	is	this	one:

	

<!DOCTYPE	html>
	

As	the	name	implies,	this	is	called	the	Document	Type	Declaration.	It	lets	the	browser
know	what	type	of	HTML	you	are	using.	As	written	above,	this	tells	the	browser	we	are
using	the	most	recent	version	of	HTML	which	is	HTML	5.

	

Now	we	need	to	tell	the	browser	where	our	HTML	actually	is.	That	might	seem	strange
since	we	just	let	it	know	that	the	document	was	an	HTML5	document.	However	you	have
to	specify	what	every	block	of	text	is.	To	tell	the	browser	that	the	following	text	is	html,
we	use	the	html	tag	as

	

.	We	also	need	the	closing	tag,	so	our	file	should	look	like	this:

	

<!DOCTYPE	html>

<html>

	

</html>
	

Hence	anything	that	falls	between	<html>	and	</html>	is	interpreted	by	the	browser	as
being	html.	Unfortunately	we	aren’t	done.	We	need	a	second	tag	called	the	body	tag	that
indicates	where	the	content	of	the	web	page	is	placed.	So	we	update	our	file	as	follows:

	

<!DOCTYPE	html>

<html>

<body>

	

</body>

</html>
	

Now	we	can	put	the	actual	content	of	our	web	page	in	between

and.	To	put	text,	you	simply	type	it	as	if	you	were	using	a	web	processor.	Following	the
usual	practice	in	teaching	computer	topics,	we’ll	add	“Hello	World”	to	our	web	page.

	

<!DOCTYPE	html>

<html>

<body>

Hello	World!

</body>

</html>
	

	

Here	is	our	webpage	preview	in	Kompozer.	Not	very	impressive	but	its	a	start!

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Now	that	we’ve	learned	to	add	text	to	a	web	page,	lets	learn	how	to	use	HTML	to	add	line
breaks	and	center	text.

Linebreaks	and	Center	Tags
	

In	our	first	tutorial	we	created	a	Hello	World	web	page.	It	wasn’t	too	exciting	it	just
printed	our	Hello	World	message	to	the	screen:

	

Hello	World!

	

Now	let’s	move	forward	by	adding	some	text	formatting.	First	let’s	add	a	couple	more
lines	of	text.	Maybe	we	want	to	print	the	following:

	

	

Hello	World!

	

My	name	is	Joe.

	

My	friend	is	Sally.

	

Our	HTML	looks	like	this:

	

<!DOCTYPE	html>

<html>

<body>

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

When	you	do	this	and	save	your	html	file,	and	then	open	it	in	a	browser,	what	you	see	is
this:

	

Hello	World!	My	name	is	Joe.	My	friend	is	Sally.

	

So	even	though	we	put	line	breaks	and	some	spacing,	the	browser	ignores	it.	The	browser
sees	one	long	string	of	text	unless	you	add	tags	to	tell	it	how	to	display	that	text.

	

Centering	Text
	

To	center	text,	what	you	do	is	add	a	center	tag.	The	open	tag	to	use	is	<center>	and	the
closing	tag	is	</center>.	So	we	can	center	the	Hello	World!	string	in	the	following	way:

	

	

<!DOCTYPE	html>

<html>

<body>

<center>Hello	World!</center>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

This	produces	a	web	page	that	looks	like	this:

	

Hello	World!

My	name	is	Joe.	My	friend	is	Sally.

	

Notice	that	closing	the	center	tag	added	a	line	break.	To	center	all	the	text,	we	would
write:

	

<!DOCTYPE	html>

<html>

<body>

<center>

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

</center>

</body>

</html>
	

	

Now	we	obtain:

	

	

Hello	World!	My	name	is	Joe.	My	friend	is	Sally.

	

Line	Breaks
	

We	can	change	the	appearance	of	the	page	again	and	make	it	more	readable	by	adding
some	line	breaks.	This	is	done	with	the	tag	
.Unlike	other	tags,	a	closing	tag	isn’t
necessary.	You	just	add	one	for	each	line	break	you	want.	For	now	lets	remove	the	center
tag	and	just	add	line	breaks.	So	lets	add	a	line	break	after	the	Hello	World!	string:

	

	

<!DOCTYPE	html>

<html>

<body>

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

This	produces:

	

Hello	World!

My	name	is	Joe.	My	friend	is	Sally.

	

We	can	add	more	line	breaks	to	put	each	sentence	on	its	own	line:

	

	

<!DOCTYPE	html>

<html>

<body>

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

	

	

And	we	get	this:

	

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

	

To	make	it	double	spaced,	we	can	add	extra	

tags.

	

	

<!DOCTYPE	html>

<html>

<body>

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

	

	

And	now	we	see:

	

Hello	World!

	

My	name	is	Joe.

	

My	friend	is	Sally.

	

Remember	for	line	breaks	you	don’t	need	a	closing	tag.	To	add	more	line	breaks,	just	add
more

tags.	Suppose	we	want:

	

Hello	World!

	

	

	

	

My	name	is	Joe.

	

My	friend	is	Sally.

	

To	get	this	result	our	HTML	looks	like	this:

	

	

<!DOCTYPE	html>

<html>

<body>

Hello	World!

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

In	the	next	lesson,	we’ll	learn	how	to	add	a	headline	to	our	webpage.

Header	Tags
	

Header	tags	enable	us	to	easily	create	nice	bold	text	to	spruce	up	the	appearance	of	our
web	pages.	Header	tags	use	the	format	<hx>	where	x	is	an	integer	1,2,3,4….	The	smaller
the	number,	the	larger	the	header.	The	truth	is	you	already	know	about	this	since	you’ve
probably	used	different	levels	of	headers	in	your	word	processing	program.

	

Header	tags	have	an	opening	and	closing	tag.	The	general	syntax	is:

	

<hx>	Your	text	here	</hx>

	

Working	on	our	previous	example,	we	can	make	the	phrase	“Hello	World!”	a	header	by
using	the	<h1>	tag:

	

<h1>Hello	World!</h1>

	

If	our	entire	html	looks	like	this:

	

<!DOCTYPE	html>

<html>

<body>

<h1>Hello	World!</h1>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

The	result	we	see	is:

	

	

Hello	World!
	

My	name	is	Joe.

My	friend	is	Sally.

	

	

	

When	you	add	a	header	tag,	the	text	between	the	header	tags	is	not	automatically	centered.
We	have	to	to	that	manually.	Let’s	change	our	html	to:

	

<!DOCTYPE	html>

<html>

<body>

<center><h1>Hello	World!</h1></center>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

Now	the	page	appears	as:

	

Hello	World!
	

	

My	name	is	Joe.

My	friend	is	Sally.

	

We	can	also	enhance	the	appearance	of	the	page	by	adding	subheadings.	This	is	done	by
specifying	the	header	level	with	an	integer	larger	than	1.	For	example	<h1>,<h2>,<h3>
etc.	where	<h1>	is	the	highest	header	level,	so	will	have	the	largest	text.

	

Let’s	add	a	header	and	put	a	subject	heading	as	follows:

	

<!DOCTYPE	html>

<html>

<body>

<center><h1>Hello	World!</h1></center>

<h2>Friends</h2>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

Now	the	web	page	looks	like	this:

	

Hello	World!
	

	

Friends
	

My	name	is	Joe.

My	friend	is	Sally.

	

Notice	that	some	spacing	is	automatically	placed	in	between	the	header	and	the	text	that
follows.	Basically	this	is	working	like	you	were	just	typing	away	in	a	word	processor,
except	we	are	putting	in	the	formatting	commands	behind	the	scenes.

	

In	the	next	chapter,	we’ll	see	how	to	format	text	colors.

	

	

	

	

Font	Color
	

A	plain	black	and	white	web	page	might	be	functional,	but	its	not	very	interesting.	Let’s
see	how	we	can	improve	the	appearance	of	our	web	pages	using	the	font	tag	and	color
attribute.	It’s	very	easy.	Let’s	return	to	the	html	we	had	in	the	last	lesson:

	

<!DOCTYPE	html>

<html>

<body>

<center><h1>Hello	World!</h1></center>

<h2>Friends</h2>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

	

To	have	a	text	string	appear	in	a	particular	color,	we	use	the	syntax:

	

Text	String

	

Hence,	we	can	have	text	appear	red	using:

	

Some	text

	

Changing	our	html	file	with	this	in	mind	we	can	make	the	main	header	red:

	

<!DOCTYPE	html>

<html>

<body>

<center><h1>Hello	World!</h1></center>

<h2>Friends</h2>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>
	

	

The	web	page	now	appears	as:

	

Hello	World!
	

Friends
	

My	name	is	Joe.

My	friend	is	Sally.

	

Let’s	say	we	wanted	the	“Friends”	sub-header	to	appear	as	blue	text.	All	we	have	to	do	is
add	another	font	tag	with	the	color	attribute,	for	the	“Friends”	text	string:

	

	

<!DOCTYPE	html>

<html>

<body>

<center><h1>Hello	World!</h1></center>

<h2>Friends</h2>

My	name	is	Joe.

My	friend	is	Sally.

</body>

</html>

	

Note	that	we	need	a	closing	tag		when	using	different	font	attributes.

	

Now	our	web	page	looks	like	this:

	

Hello	World!
	

Friends
	

My	name	is	Joe.

My	friend	is	Sally.

	

	

Besides	changing	color,	you	might	want	to	make	other	changes	to	fonts	such	as	setting	the
type	face.	We	will	explore	this	in	the	next	lesson.

Font	Size	and	Type	Face
	

In	this	lesson	we’ll	learn	how	to	change	font	size	and	type	face.	This	is	also	done	using	the
font	tag.	To	specify	a	font	size,	we	simply	write:

	

This	is	some	text.

	

where	x	is	an	integer.	For	example	we	can	write:

	

My	name	is	Joe.

	

You	can	set	different	attributes	using	the	same	font	tag.	Let’s	suppose	that	we	wanted	the
text	to	appear	red	and	set	the	font	size	to	5.	This	could	be	done	by	writing:

	

My	name	is	Joe.

	

This	produces:

	

My	name	is	Joe.
	

To	change	the	typeface,	we	can	set	the	face	attribute	in	a	font	tag.	For	example,	to	set	the
font	of	a	text	string	to	verdana,	we	write:

	

My	other	friend	is	Bob.

	

And	we	obtain:

	

My	other	friend	is	Bob.

	

As	before	we	can	combine	multiple	attributes	including	the	typeface.	So	lets	set	the	text	to
green,	the	face	to	verdana,	and	also	set	the	size	attribute	of	the	text.

	

My	other	friend	is	Bob.

	

This	gives	us:

	

My	Other	friend	is	Bob.
	

Being	able	to	change	these	font	attributes	gives	us	the	power	to	improve	the	appearance	of
our	web	pages.	Referring	to	the	html	of	the	last	chapter,	suppose	that	we	changed	it	to:

	

<body>

<center>

<h1>Hello	World!</h1>

</center>

<h3>Friends</h3>

My	name	is	Joe.

My	best	friend	is	Sally.

My	other	friend	is	Bob.

</body>

</html>

	

Now	we	see:

Hello	World!
	

Friends

My	name	is	Joe.
	

My	best	friend	is	Sally.
	

My	other	friend	is	Bob.
	

	

Paragraph	and	Div	Tags
	

Next	we	explore	two	more	formatting	tags	that	can	be	used	to	improve	the	appearance	of
your	web	pages	and	present	content	in	a	meaningful	way.	The	first	is	the	paragraph	tag.	It
does	exactly	what	it	says,	it	creates	a	formatted	paragraph	for	any	text	enclosed	within	the
tags	(by	adding	margins	and	spacing).	The	paragraph	tag	is	defined	by	<p>	and	you	must
add	a	closing	tag	</p>	where	you	want	the	paragraph	to	end.

For	example	we	can	write:

	

<body>

<p>Hello	world	this	is	some	text.	Here	is	a	second	line.</p>

<h2>This	is	my	heading</h2>

Another	line	of	text.	

Line	two	of	new	section.	

Some	more	text.

<h2>A	Different	Section</h2>

Text	for	the	second	section.

</body>

</html>

	

This	will	put	“Hello	world	this	is	some	text.	Here	is	a	second	line.”	into	a	paragraph	and
automatically	put	spacing	between	it	and	the	heading	on	the	next	line.

	

The	div	tag	is	used	to	group	together	elements	into	a	section	and	apply	formatting	to	them.
So	in	short	it	defines	a	section	in	your	html	document.	For	a	simple	example,	we	will	take
some	of	the	text	above	and	define	a	section	out	of	it	using	the	div	tag,	and	color	the	font
blue.	The	div	tag	is	written	as	<div	style=…>	and	you	use	a	closing	tag	to	end	the	section
as	</div>.

	

You	can	see	how	to	use	the	div	tag	here,	where	we	color	a	section	blue:

	

<body>

<p>Hello	world	this	is	some	text.	Here	is	a	second	line.</p>

<div	style=“color:	rgb(0,	0,	255);”>

<h2>This	is	my	heading</h2>

Another	line	of	text.	

Line	two	of	new	section.	

Some	more	text.

</div>

<h2>A	Different	Section</h2>

Text	for	the	second	section.

</body>

</html>

	

We	obtain	this	result:

	

Hello	world	this	is	some	text.	Here	is	a	second	line.

	

This	is	my	heading
Another	line	of	text.

Line	two	of	new	section.

Some	more	text.

	

A	Different	Section
Text	for	the	second	section.

	

	

	

Hyperlinks
	

The	internet	wouldn’t	have	much	functionality	if	you	could	only	look	at	one	web	page	at	a
time.	To	ease	the	ability	of	users	to	move	about	your	website	and	to	visit	related	pages	of
interest	we	need	to	add	hyperlinks	to	our	html	documents.	This	is	done	with	the	hyperlink
tag.

	

Oddly	the	hyperlink	tag	is	denoted	with	the	letter	a.	The	letter	a	is	used	because	it	means
anchor	text.	Hence	the	<a>	tag	defines	a	hyperlink	which	will	open	a	new	web	page	when
the	user	clicks	on	it.	As	you	probably	know	hyperlinks	are	displayed	to	the	user	as
underlined	text,	with	blue	color	for	a	page	they	have	not	opened	before	and	purple	for	web
pages	they’ve	already	visited.

	

Several	attributes	can	be	specified	with	the	hyperlink	tag.	The	most	important	is	the	href
attribute	which	tells	the	browser	which	link	to	open	when	the	user	clicks	on	the	text.	So
href	is	just	the	url	of	the	target	web	page.

	

HTML	5	introduces	some	new	attributes.	For	example,	you	can	use	download	to	tell	the
browser	to	begin	downloading	a	file	when	the	user	clicks	on	the	link.

	

The	target	specified	in	the	href	attribute	can	be	a	local	file	(relative	to	the	web	page)	or
any	URL.	The	syntax	you	will	use	is:

	

Text	displayed	to	user

	

The	text	displayed	to	the	user	can	be	anything,	most	web	page	developers	put	descriptive
text	that	makes	it	more	readable	and	more	amenable	to	search	engines.	But	you	can	just
put	the	URL	there	if	desired.	These	days	people	automatically	know	that	underlined	blue
text	is	a	hyperlink	so	putting	descriptive	text	is	preferred.

	

Here	is	an	example	that	will	display	a	link	to	the	New	York	Times	website:

	

<body>

Hello	World!

New	York	Times

	

This	looks	like	so:

	

Hello	World!

New	York	Times

	

If	we	wanted	to	just	display	the	actual	link	to	the	user,	we	could	write:

	

<body>

Hello	World!

http://nytimes.com

Then	we	would	get:

	

Hello	World!

http://nytimes.com

	

	

Now	suppose	you	want	to	open	a	file	on	your	own	server.	Consider	the	case	of	a	web	page
named	about.html	in	your	same	directory.	Then	you	would	write:

	

<body>

Hello	World!

About	Us

	

If	the	file	was	in	a	folder	called	“Info”	you’d	write:

	

<body>

http://nytimes.com

Hello	World!

/Info/About	Us

	

Often	links	are	placed	in	the	middle	of	a	text	string,	for	example:

	

Here	is	some	more	text	linking	to	cable	news

network	find	out	what	the	latest	news	is.

	

This	displays	as:
	

Here	is	some	more	text	linking	to	cable	news	network	find	out	what	the

latest	news	is.

Displaying	Images
	

Images	are	displayed	in	a	web	page	using	the	img	tag.	The	syntax	is:

	

<img	src=“link	to	image”	alt=“text	to	display	if	image	not	rendered”	style=“width:Xpx;
height:Ypx;>

	

You	can	link	to	images	on	your	own	server	or	to	any	image	on	the	web	if	you	know	the
URL.	To	give	a	specific	example	I	have	obtained	a	link	to	a	picture	of	the	actress	Selma
Hayek.	We	can	display	the	image	in	our	web	page	as	follows:

	

<body>

<h1>Selma	Hayek!</h1>

<img	src=“http://bit.ly/1HDOqOk”	alt=“Selma	Hayek	Not	Here”

style=“width:	200px;	height:	250px;”>

</body>

	

If	the	image	doesn’t	render,	the	text	“Selma	Hayek	Not	Here”	will	be	displayed	in	its
place.	Here	is	how	the	web	page	looks:

	

Selma	Hayek!
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

To	see	how	the	alt	attribute	works,	you	can	copy	and	paste	from	the	preview	in	Kompozer
to	a	text	document,	and	you	will	see:

	

Selma	Hayek!

	

	

Selma	Hayek	Not	Here

	

You	can	put	other	tags	around	the	image	to	improve	the	appearance	of	your	web	page.	For
example,	if	we	wanted	to	center	the	image,	we	would	write:

	

<body>

<h1>Selma	Hayek!</h1>

<center>

<img	src=“http://bit.ly/1HDOqOk”	alt=“Selma	Hayek”

style=“width:	200px;	height:	250px;”>

</center>

</body>

</html>

Video	Players	on	Web	Pages
	

Our	next	topic	is	the	video	tag.	Using	<video	you	can	put	a	link	to	a	video	you	want	to	use
and	display	it	using	HTML	5	in	a	full	featured	video	player.	The	best	way	to	teach	this	is
to	simply	show	an	example.

	

<body>

<video	width=“400”	controls=””>

<source	src=“savagearchives.info/video/20-Timer-sm.mp4”	type=“video/mp4”>

Your	browser	does	not	support	HTML5	video.

</source>

</video>

<p>Video	courtesy	of	<a	href=“http://www.xcode-training-and-tips.com/”

target=“_blank”>Xcode	Training.

</p>

</body>

	

So	we	start	with	the	<video>	tag,	then	follow	it	with	the	<source>	tag	which	tells	the
browser	the	URL	where	the	video	is	located.	As	usual	the	URL	can	be	a	local	file	or	any
URL	on	the	internet.

	

The	code	has	a	bit	of	text	that	is	displayed	if	the	browser	does	not	support	HTML	5.
Kompozer	has	not	been	updated	in	awhile	so	when	I	preview	this	code	in	Kompozer	I	see
this:

	

Your	browser	does	not	support	HTML5	video.

	

Video	courtesy	of	Xcode	Training.

	

	

	

On	the	other	hand,	opening	it	in	the	browser	we	see:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Ordered	and	Unordered	Lists
	

In	this	lesson	we	are	going	to	learn	how	to	display	bulleted	and	numbered	lists	using
HTML.	This	is	done	using	the	unordered	list	or	ordered	list	tag.	An	unordered	list	is	just	a
bulleted	list	of	items.	To	create	an	unordered	list,	you	will	enclose	your	list	items	within	an
opening		tag	and	a	closing		tag.	Each	list	item	is	denoted	with	a	list	item	or	
tag.	You	need	a	closing		tag	at	the	end	of	each	list	item.

	

As	an	example,	let’s	create	a	list	of	friends	names.	In	most	cases	you	will	have	a	header	of
some	kind	to	denote	the	list.	This	can	be	done	by	putting	the	text	introducing	your	list	in
between	paragraph	tags.	So	let’s	start	by	putting	a	title	for	our	list	as	follows:

	

<p>My	Best	Friends:</p>

	

Now	we	will	need	to	enclose	the	list	with		and	:

	

<p>My	Best	Friends:</p>

	

Each	bulleted	list	item	will	appear	as	item	text.	Let’s	make	our	list	of	names:

	

<p>My	Best	Friends:</p>

Sally

Jose

Paul

	

What	this	produces	is	the	following:

	

My	Best	Friends:

	

•		Sally

•		Jose

•		Paul

	

Using		in	place	of		produces	a	numbered	list.	The	tag		means	ordered	listing.
For	example:

	

<p>Countries:</p>

China

United	States

United	Kingdom

France

	

Gives	us:

	

Countries:

	

1.					China

2.					United	States

3.					United	Kingdom

4.					France

	

Big	and	Small	tags
	

The	Big	and	Small	tags	provide	you	with	a	means	to	carefully	control	text	size.	You	can
nest	big	and	small	tags	to	get	a	string	of	text	to	be	the	size	you	want.

	

To	use	a	Big	tag	simply	place	an	opening	<big>	at	the	start	of	the	text	you	want	to	be
larger	font.	To	make	it	larger	add	as	many	<big>	tags	as	necessary.	At	the	end	of	the	text
you	want	to	have	larger	font,	place	a	corresponding	closing	tag</big>.

	

The	small	tag	works	in	an	analogous	manner.	For	example:

	

<h1>My	Web	Page</h1>

<p>Video	<big><big><big>is</big></big></big>	<small><small>
<small>courtesy</small></small></small>

of	Xcode	training</p>

	

Produces:

	

Video	is	courtesy	of	Xcode	training

Basic	Text	Formatting	Tags

In	this	lesson	we	will	introduce	tags	used	to	make	text:

	

•		Bold

•		Italic

•		Underlined

	

To	make	a	string	of	text	bold,	enclose	it	in		and		tags.	For	example:

	

Barak	Obama	is	President	of	the	United	States

	

produces:

	

Barak	Obama	is	President	of	the	United	States

	

To	put	a	string	in	italics	enclose	it	in	<i>	and	</i>	tags:

	

Barak	Obama	is	<i>President</i>	of	the	United	States

	

gives	us:

	

Barak	Obama	is	President	of	the	United	States

	

To	underline	a	string	of	text,	enclose	it	in	<u>	and	</u>	tags:

	

Barak	Obama	is	President	of	the	<u>United	States</u>

	

This	gives	us:

	

Barak	Obama	is	President	of	the	United	States

	

You	can	of	course,	nest	tags	to	apply	more	than	one	type	of	formatting.	We	can	make
“United	States”	bold	and	underlined:

	

Barak	Obama	is	President	of	the	<u>United	States</u>

	

Giving:

	

Barak	Obama	is	President	of	the	United	States

	

To	also	make	it	italic,	just	add	<i>	and	</i>	tags:

	

Barak	Obama	is	President	of	the	<i><u>United	States</u></i>

	

This	gives:

	

Barak	Obama	is	President	of	the	United	States

	

Superscript	and	Subscript	Tags
	

Text	often	requires	superscripts	and	subscripts.	You	can	to	this	in	html	using	the	sup	and
sub	tags.	Each	also	requires	a	closing	tag	otherwise	any	text	that	follows	will	also	be
altered	by	the	tag

	

Often	superscripts	are	used	to	indicate	references.	To	create	a	superscript	enclose	the
desired	superscript	text	in	the	tags	^{and}.	For	example	if	we	wanted	the	text:

	

Barak	Obama	won	the	2012	Presidential	Election	in	the	United	States.	19

	

We	would	use	the	following	html:

	

<i>Barak	Obama</i>	won	the	2012	<i>Presidential	Election</i>	in	the	
<u>United

States</u>.	¹⁹

	

To	create	a	subscript,	simply	enclose	the	text	in	_{and}	tags.	To	obtain:

	

Xi

	

We	would	use:

	

X_i

	

	

Quoting	Passages	of	Text
	

There	are	two	tags	that	are	useful	for	displaying	quotes	on	your	webpages.	The	first	is	the
<q>	tag	which	simply	encloses	text	in	quotes.	Suppose	that	we	had	this	phrase	of	plain
text	in	our	html	file:

	

Not	only	our	future	economic	soundness	but	the	very	soundness	of	our	democratic
institutions	depends	on	the	determination	of	our	government	to	give	employment	to	idle
men.

	

If	we	enclose	it	in	<q>	and	</q>	tags,	on	the	web	page	it	will	be	displayed	like	this:

	

“Not	only	our	future	economic	soundness	but	the	very	soundness	of	our	democratic
institutions	depends	on	the	determination	of	our	government	to	give	employment	to	idle
men.”

	

We	can	also	enhance	the	display	of	the	quote	using	the	<blockquote>	tag.	What	this	does
is	set	off	and	indent	the	quote.	So	if	we	had:

	

Here	is	a	line.

Not	only	our	future	economic	soundness	but	the	very	soundness	of	our	democratic
institutions	depends	on	the	determination	of	our	government	to	give	employment	to	idle
men.

Here	is	another	line.

	

Changing	our	HTML	to:

	

Here	is	a	line.

<blockquote><q>Not	only	our	future	economic	soundness	but	the	very	soundness	of	our
democratic	institutions	depends	on	the	determination	of	our	government	to	give
employment	to	idle	men.</q></blockquote>

Here	is	another	line.

	

Will	give	us:

	

Here	is	a	line.

	

													 “Not	only	our	future	economic	soundness	but	the	very	soundness	of	our

														democratic	institutions	depends	on	the	determination	of	our	government	to
give																																											employment	to	idle	men.”

	

Here	is	another	line.

	

Creating	Tables
	

Tables	allow	you	to	display	data	in	a	row	and	column	format.	There	are	three	tags	you	will
need	to	create	a	simple	table:

	

•		<Table>

•		<TR>	-table	row

•		<TD>	-table	data	cell

	

<TR>	is	a	tag	that	tells	the	browser	to	begin	a	new	row	in	the	table.	Anything	in	between
the	opening	tag	<TR>	and	the	closing	tag	</TR>	constitutes	a	single	row.	Individual	cells
in	the	row	are	denoted	by	<TD>	with	the	closing	tag	</TD>.

	

To	see	how	to	set	up	an	example,	let’s	suppose	that	we	are	displaying	sports	scores.	We
can	add	a	centered	headline:

	

<center>

<h1>Basketball	Scores	from	Final	Four</h1>

</center>

	

Now	lets	add	our	table.	We	begin	by	adding	the	table	tag,	specifying	border	width:

	

<center>

<table	summary=“Example”	border=“1”>

</table>

	

The	summary	is	not	displayed	on	the	page.	Now	lets	add	our	rows:

	

<center>

<table	summary=“Example”	border=“1”>

<tr>

<td>	Game	One	</td>

<td>	Michigan	75	</td>

<td>	Kentucky	73	</td>

</tr>

<tr>

<td>	Game	Two	</td>

<td>	Arizona	68	</td>

<td>	Duke	61	</td>

</tr>

</table>

</center>

	

	

Drawing	Lines	on	Web	Pages
	

In	this	lesson	we	are	going	to	learn	how	to	draw	horizontal	and	vertical	lines.	Drawing
horizontal	lines	with	html	is	very	easy	using	the	<hr>	tag.	All	you	need	to	do	is	place	an
<hr>	tag	where	you	want	the	line	to	appear.	For	example,	our	html	looks	like	this:

	

<body>

<center>

<h1>Basketball	Scores	from	Final	Four</h1>

</center>

<hr>

<center>

<table	summary=“Example”	border=“1”	cellpadding=“16”	width=“100%”>

<tbody>

<tr>

<th	bgcolor=”#ccffff”	width=“50%”>	Game	One	</th>

<td	bgcolor=”#ffffcc”	width=“25%”>	Michigan	75	</td>

<td	width=“25%”>	Kentucky	73	</td>

</tr>

<tr>

<th>	Game	Two	</th>

<td>	Arizona	68	</td>

<td>	Duke	61	</td>

</tr>

</tbody>

</table>

</center>

</body>

	

We	see:

	

	

You	can
also
draw
vertical
lines
using
the
<hr>
tag,	but
it	takes
a	bit	of
a	trick.
The

following	code	using	2	<hr>	tags	in	a	row	will	draw	a	vertical	line	down	the	center	of	the
web	page:

	

<hr

style=“padding:	0px;	height:	400px;	width:	2px;	margin-bottom:	-8px;”>

<hr	style=“padding:	0px;	height:	100px;	width:	2px;	margin-top:	-8px;”>

	

Drop	Down	Lists
	

On	many	occasions	you	will	want	to	give	website	visitors	the	ability	to	select	an	option
from	a	drop	down	list	Lets	see	how	to	set	a	list	like	this	one	up	for	your	web	page:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

This	is	done	using	the	<select>	tag.	You	enclose	the	choices	you	want	to	present	to	the
user	in	between	and	opening	and	closing	select	tag,	using	the	<option>	tag	for	each	item.
The	format	used	for	the	option	tag	is	to	present	the	value	and	text	displayed	to	the	user.
For	example:

	

<option	value=“Alaska”>Alaska</option>

	

The	entire	code	for	the	page	shown	above,	including	header,	horizontal	line	and	drop
down	list	with	the	code	relevant	for	the	drop	down	list	highlighted	in	red	is	as	follows:

	

<body>

<h1>My	Great	Header</h1>

<p>Some	text	for	my	great	webpage.</p>

<hr>

<select>

<option	value=“Alaska”>Alaska</option>

<option	value=“California”>California</option>

<option	value=“Delaware”>Delaware</option>

<option	value=“Florida”>Florida</option>

<option	value=“Texas”>Texas</option>

</select>

</body>

	

Playing	Audio	Files
	

In	this	lesson	we’re	going	to	learn	how	to	set	up	an	audio	player	on	your	web	page.	It	will
be	complete	with	play/pause	buttons,	volume	control,	and	time	played	displayed.	These
controls	are	displayed	by	default.

	

To	play	audio	you	need	2	tags:

	

•		<audio>	tag

•		<source>	tag	with	a	path	to	your	file	and	telling	the	browser	what	type	of	audio	file
you	have

	

Setup	is	easy.	Begin	with	the	audio	tag:

	

<audio	controls=“”>

	

Next,	we	tell	it	where	our	source	file	is	and	what	type	of	file	we	have.	You	can	include
multiple	lines	to	include	different	file	formats	if	you	need	to	provide	those	for	different
browsers.

	

<source	src=“Genesis.mp3”	type=“audio/mpeg”>

	

In	my	example,	the	file	is	in	the	same	folder/directory	as	the	web	page.	If	yours	is	not	be
sure	to	provide	the	correct	path	to	the	file	for	the	src	attribute.

	

Next	you	need	to	provide	a	text	string	that	will	display	if	the	users	browser	cannot	display
the	audio	controls.

	

Our	entire	code	looks	like:

	

<audio	controls=””>

<source	src=“Genesis.mp3”	type=“audio/mpeg”>

Your	browser	does	not	support	audio	controls

</source>

</audio>

	

If	we	include	this	in	the	code	for	the	previous	web	page	we	were	working	on:

	

<body>

<h1>My	Great	Header</h1>

<p>Some	text	for	my	great	webpage.</p>

<hr>

<audio	controls=””>	<source	src=“Genesis.mp3”	type=“audio/mpeg”>	Your

browser	does	not	support	audio	controls

</source></audio>

</body>

Then	our	page	looks	like	this:

	

	

	

	

	

iFrame
Using	the	iframe	tag	allows	you	to	embed	another	web	page	or	URL	inside	your	web
page.	In	the	simplest	case,	we	can	just	pass	the	URL	as	follows:

	

<iframe	src=“http://nytimes.com></iframe>

	

However	there	are	many	properties	we	can	specify.	For	example,	we	can	set	the	width	and
height	of	the	frame:

	

<iframe	src=“http://nytimes.com”	width=“700”	height=“400”><iframe>

	

You	can	also	use	the	style	attribute	to	set	a	border.	We	could	for	example	set	our
embedded	web	page	inside	a	dotted	red	box	with	the	border	given	a	5	pixel	width:

	

<iframe	src=“http://nytimes.com”	style=“border:5px	dotted	red”></iframe>

	

Here,	we’ve	set	the	width	and	height	and	added	a	solid	blue	border:

	

<iframe	src=“http://nytimes.com”	style=“border:	5px	solid	blue;”

height=“500”	width=“700”></iframe>

	

Adding	this	to	the	html	we’ve	used	in	several	recent	examples:

	

<body>

<h1>My	Great	Header</h1>

<p>Some	text	for	my	great	webpage.</p>

<hr>

<iframe	src=“http://nytimes.com”	style=“border:	5px	solid	blue;”

height=“500”	width=“700”></iframe>

http://nytimes.com
http://nytimes.com
http://nytimes.com

</body>

	

Gives	us	this	web	page,	with	the	New	York	Times	embedded	inside	the	blue	frame:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Forms	input
	

The	<form>	tag	allows	you	to	create	an	input	form	to	do	things	like	collect	names,	email
addresses	and	so	on.	Everything	that	appears	on	the	form	is	enclosed	in	between	form
opening	and	closing	tags:

	

<form>

	

your	stuff	here

	

</form>

	

For	example	we	can	create	input	text	boxes	to	let	the	user	type	in	their	city	and	state:

	

<form>

City:

<input	type=“text”	name=“city”>

State:

<input	type=“text”	name=“state”>

</form>

	

Other	options	allow	you	to	add	radio	buttons	and	checkboxes.	Using	radio	buttons	as	an
example,	to	have	the	user	select	gender	as	male	or	female,	we	would	add	the	following
lines	in	between	the	form	opening	and	closing	tags:

	

<input	type=“radio”	name=“sex”	value=“male”	checked>Male

<input	type=“radio”	name=“sex”	value=“female”>Female

	

Of	course	you	have	to	provide	a	means	for	the	user	to	submit	the	data.	You	can	add	a
submit	button	with	this	line:

	

<input	type=“submit”	value=“Submit”>

	

To	make	something	happen	when	the	user	clicks	the	submit	button,	such	as	take	the	info
entered	above	and	sticking	it	into	a	database,	you	need	to	write	a	script	to	handle	the
submit	clicked	action.	The	script	itself	is	out	of	the	scope	of	this	tutorial,	but	lets	say	it
was	myaction.php.	Then	we	would	modify	the	opening	form	tag	to	have	the	form	execute
this	action	when	the	button	is	clicked:

	

<form	action=“myaction.php”>

	

	

	

	

	

	

	

	

CSS	for	Bi-Colored	Web	Page
	

In	this	simple	example	we	introduce	the	use	of	style	sheets	to	change	the	appearance	of
your	web	pages.	A	common	task	is	formatting	the	page	to	display	different	areas,	you
might	want	to	display	a	2	or	3	column	web	page	or	add	headers	and	footers	or	a	sidebar.	In
this	example	we	show	how	to	set	up	a	simple	side	bar,	distinguished	from	the	main	web
page	by	color:

The	first	thing	to	do	in	order	to	set	this	up	is	to	put	your	style	sheet	in	between	the	head
tags.	Our	very	simple	style	sheet	will	set	the	width	of	the	sidebar	and	its	background	color.
We	also	set	the	background	color	and	left	margin	for	the	main	part	of	the	page:

	

<head>

<style	type=“text/css”>

html,	body	{height:	100%;	margin:	0}

#content	{width:	100%;	height:	100%}

#left	{width:	250px;	height:	100%;	float:	left;	background-color:	#FFFFCC}

#right	{margin-left:	250px;	height:	100%;	background-color:	#CCFFFF}

</style>

</head>

	

In	the	body	section	of	the	html	file	we	use	<div>	tags	to	set	up	each	section.	There	will	be
a	<div>	for	the	sidebar	and	main	part	of	the	page.	We	also	need	an	extra	<div>	within
which	these	are	nested.	This	is	shown		here:

	

	

<div	id=“content”>

</div>

	

In	between	the	opening	and	closing	tags,	we	put	the	<div>	tags	for	each	section.	First	here
is	the	sidebar.	We	have	to	tell	the	browser	what	style	to	use.	This	is	done	by	setting	the	id
to	left:

	

<div	id=“left”>

<h2>sidebar</h2>

<p>Some	sample	text</p>

</div>

	

We	do	the	same	for	the	main	part	of	the	page:

	

<div	id=“right”>

<h1>My	Great	Webpage</h1>

<hr>

<p>Some	sample	text</p>

</div>

	

Now	of	course	you	can	put	anything	in	between	the	div	tags	of	each	section,	but	we	are
only	showing	some	text	here	for	some	simplicity.	The	entire	code	is	shown	here:

	

<html>

<head>

<style	type=“text/css”>

html,	body	{height:	100%;	margin:	0}

#content	{width:	100%;	height:	100%}

#left	{width:	250px;	height:	100%;	float:	left;	background-color:	#FFFFCC}

#right	{margin-left:	250px;	height:	100%;	background-color:	#CCFFFF}

</style>

</head>

<body>

<div	id=“content”>

<div	id=“left”>

<h2>sidebar</h2>

<p>Some	sample	text</p>

</div>

<div	id=“right”>

<h1>My	Great	Webpage</h1>

<hr>

<p>Some	sample	text</p>

</div>

</div>

</body>

</html>

	

	

	

	

	

	

More	Text	Formatting	Tags
	

To	highlight	a	section	of	text,	use	the	mark	tag.	For	example,	to	have	the	string	“Queen	of
England”	highlighted	in	yellow	we	write:

	

<p>Everyone	came	from	far	and	wide	to	see	the	<mark>Queen	of	England</mark>	as	she
rode	through	London.</p>

	

We	can	strikethrough	text	by	either	using	the	<s>	tag	or	the	<strike>	tag.	To	strike	through
the	phrase	“Prince	of	Wales”	in	this	sentence	we	can	use	either	of	the	two	examples:

	

<p>Rumors	about	who	would	be	the	next	<s>Prince	of	Wales</s>	filled	the	air.</p>

	

<p>Rumors	about	who	would	be	the	next	<strike>Prince	of	Wales</strike>	filled	the	air.
</p>

	

Suppose	you	want	to	enclose	part	of	a	webpage	or	form	in	a	box.	This	can	be	done	using
the	fieldset	and	legend	tags.

	

<fieldset>

<legend>Some	Boxed	Stuff:</legend>

<p>Some	sample	text.</p>

</fieldset>

	

Finally,	the	preformatted	tag	<pre>	allows	us	to	type	text	and	have	it	appear	on	the	web
page	as	typed.	If	we	just	type:

	

Hello	from	Times	Square

located	in	New	York	City

the	finest	city	in	all	the

world	except	maybe	Paris	or

London.

	

It	will	appear	as:

	

Hello	from	Times	Square	located	in	New	York	City	the	finest	city	in	all	the	world	except
maybe	Paris	or	London.

	

If	we	instead	enter	our	html	as:

	

<pre>Hello	from	Times	Square

located	in	New	York	City

the	finest	city	in	all	the

world	except	maybe	Paris	or

London.</pre>

	

That	tells	the	browser	to	use	our	formatting,	so	it	appears	as:

	

Hello	from	Times	Square

located	in	New	York	City

the	finest	city	in	all	the

world	except	maybe	Paris	or

London.

	

CSS	Style	Sheets
	

CSS	means	cascading	style	sheet.	It	is	simply	a	file	that	goes	along	with	your	html	file
which	specifies	the	look	and	formatting	of	the	html	file.	We	will	illustrate	this	with	a
simple	example.

	

First	create	a	file	called	thecssfile.css	and	place	it	in	the	same	folder	as	your	html	file.	In
this	example,	we	will	see	how	to	specify	how	text	with	certain	tags	appears	-	what	font	is
used,	what	style,	and	what	size.

	

Note:	Comments	in	a	css	file	are	lines	which	are	ignored	by	the	browser.	These	are
enclosed	between	the	characters	/*…*/.

	

/*	Example	comment	that	would	be	ignored	*/

	

What	you	do	in	a	css	file	is	list	tags	used	in	the	html	file	and	specify	values	for	various
attributes	enclosed	in	curly	braces.

	

tag_name{

	

properties

	

}

	

For	example,	we	can	specify	the	font	used	and	text	size	for	an	h1	header.

	

h1	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	24px;

font-style:	bold;

font-variant:	normal;

font-weight:	700;

line-height:	26.3999996185303px;

}

	

If	you	wanted	all	text	in	your	html	file	that	was	enclosed	in	paragraph	tags	<p>	to	have
helvetica	neue	font	with	size	12	pixels,	you	would	write:

	

p	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	12px;

font-style:	normal;

font-variant:	normal;

font-weight:	400;

line-height:	20px;

}

	

	

Or	suppose	that	we	want	all	quotes	on	our	web	page	to	have	italic	font.	We	can	do	this	by
specifying	the	properties	of	the	block	quote	tag	in	our	css	file:

blockquote	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	21px;

font-style:	italic;

font-variant:	normal;

font-weight:	400;

line-height:	30px;

}

	

As	you	learn	more	css	you	will	be	able	to	make	very	fancy	web	pages,	but	with	this	simple
example	we	are	seeing	some	advantages	of	using	css.	One	is	that	we	can	have	all	block
quotes	appear	in	italics	with	other	specified	font	properties	without	having	to	type	in	tags
every	single	time	in	our	html	file.

	

Here	is	the	complete	code	of	this	css	file:

	

/*	The	CSS	File	*/		

h1	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	24px;

font-style:	bold;

font-variant:	normal;

font-weight:	700;

line-height:	26.3999996185303px;

}

h3	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	14px;

font-style:	normal;

font-variant:	normal;

font-weight:	500;

line-height:	15.3999996185303px;

}

p	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	14px;

font-style:	normal;

font-variant:	normal;

font-weight:	400;

line-height:	20px;

}

blockquote	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	21px;

font-style:	italic;

font-variant:	normal;

font-weight:	400;

line-height:	30px;

}

pre	{

font-family:	Arial,	‘Helvetica	Neue’,	Helvetica,	sans-serif;

font-size:	13px;

font-style:	normal;

font-variant:	normal;

font-weight:	400;

line-height:	18.5714302062988px;

}

	

	

To	use	the	css	file,	you	need	to	add	a	reference	to	it	in	your	header	section	of	the	html	file.
This	is	placed	in	between	the	header	tags	<head>	and	</head>.	The	important	line	to	add
is:

	

<link	href=“thecssfile.css”	rel=“stylesheet”	type=“text/css”>

	

Be	sure	that	the	href	is	correct,	or	that	the	.css	file	is	in	the	same	folder	as	your	html	file.
There	are	some	other	codes	necessary	to	include	in	the	header	section	but	we	won’t	worry
about	what	they	do	just	yet	and	just	make	sure	they	are	listed:

	

<html>

<head>

<title>CSS	Example</title>

<meta	http-equiv=“Content-Type”

content=“text/html;	charset=iso-8859-1”>

<link	href=“thecssfile.css”	rel=“stylesheet”	type=“text/css”>

</head>

	

Then	we	can	add	some	things	to	our	html	body:

	

<body>

<h1>My	Great	Web	Page</h1>

<pre>This	is	some	random	text	written	for
display	on	the	web	page.	Hello
world
hello	world	hello	world	hello	world.
</pre>

<q></q>

<blockquote><q>This	is	the	best	day	in	the	world!</q></blockquote>

</body>

</html>

	

	

Now	that	we	have	specified	the	css	file	in	the	header,	all	the	text	listed	in	the	body	will
automatically	take	on	the	properties	specified,	so	for	instance	the	quoted	text	will	be	in
italics	even	though	we	didn’t	add	<i>	or		tags.

	

	

	

	

Element	and	id	Selectors
	

Although	in	the	last	example	we	created	an	external	css	file,	this	is	not	always	necessary.
You	can	include	your	style	sheets	directly	in	the	<head>,	</head>	tags.	Let’s	look	at	this
and	do	so	examining	two	ways	to	proceed.

	

An	element	selector	is	like	we	did	in	the	previous	lesson.	We	pick	an	element	(or	think	of
it	as	a	type	of	tag),	such	as	a	header,	block	quote,	or	paragraph,	and	then	specify	its
properties.	If	you	create	a	style	sheet	and	specify	the	properties	for	an	h3	header,	you	are
creating	an	element	selector.

	

For	example,	we	can	specify	styles	for	<p>,	<h1>,	and	<h2>	for	a	given	web	page:

	

<head>

<style>

p{

color:	blue;

text-align:center;

}

h2{

text-decoration:	underline;

text-align:center;

color:	red;

}

h1{

text-shadow:	2px	2px	#0000ff;

}

</style>

<title>Example	Web	page</title>

</head>

	

Another	way	to	set	styles	is	to	use	an	id	selector.	In	this	case	rather	than	defining
properties	for	a	specific	element	you	simply	define	the	properties	you	want	and	assign	it
an	identifier.

	

#mytag	{

text-align:center;

color:green;

}

	

Here	we	have	created	an	element	with	identifier	“mytag”.	In	this	case	you	set	an	html
element	in	your	page	to	have	these	properties	by	setting	its	id	attribute:

	

<p	id=“mytag”>Hello	from	vactionland.</p>

	

Element	and	id	selectors	can	be	mixed	in	the	same	style	sheet.

	

<html>

<head>

<style>

p{

color:	blue;

text-align:center;

}

h2{

text-decoration:	underline;

text-align:center;

color:	red;

}

#mytag	{

text-align:center;

color:green;

}

h1{

text-shadow:	2px	2px	#0000ff;

}

</style>

<title></title>

</head>

	

In	this	case,	if	we	just	use	<p>,	the	text	will	be	blue,	but	if	we	use	<p	id=“mytag”>,	the
text	will	appear	green.	Hence,	we	can	apply	the	style	we	need	at	will:

	

<body>

<h1>My	Great	Web	Page</h1>

<p>Example	text	for	a	paragraph</p>

<h2>Second	Header</h2>

<p	id=“mytag”>Hello	from	vactionland.</p>

<p>Here	is	a	second	paragraph	string.</p>

<h2	id=“mytag”>Third	Header	</h2>

</body>

	

The	resulting	web	page	is:

Web

Page	Backgrounds
	

	

Let’s	say	you	want	to	set	a	background	color	for	your	web	page	and	make	headers	appear
as	white	text.	We	can	choose	a	cyan	color	for	our	background:

	

	

	

This	is	easy	to	do	using	<style>.	Let’s	look	at	the	details	and	then	put	it	together	for	the
entire	page.	You	can	set	the	background	color	of	an	object	using	background-color	in	your
css.	In	the	example	here:

	

background-color:	#01c4de;

	

Will	give	the	color	displayed	in	the	image.	To	set	the	background	color	for	the	entire	web
page,	we	specify	that	we	want	this	to	be	the	background	color	for	the	body	tag.

body{

background-color:	#01c4de;

}

	

We	can
tell	the
browser
that	we
want	all
h1
headers
to	be

rendered	in	white	text	using:

	

h1{

		color:	white;

}

	

To	tell	the	browser	that	you	want	h2	headers	to	be	red,	centered	and	underlined	you	would
write:

	

h2{

text-decoration:	underline;

text-align:	center;

color:	red;

}

	

All	together	the	html	and	css	for	the	above	page	is:

	

<html>

<head>

<style>

body{

background-color:	#01c4de;

}

		p{
			color:	blue;

text-align:	center;

		}

h2{

text-decoration:	underline;

text-align:center;

color:	red;

		}

</style>

<title>Cyan	Web	Page</title>

</head>

<body>

<h1>My	Great	Web	Page</h1>

<p>Example	text	for	a	paragraph</p>

</body>

</html>

	

It’s	also	possible	to	use	an	image	for	your	background	rather	than	a	solid	color.	Suppose
that	we	had	an	image	named	forest.jpg	that	we	wanted	to	use	for	the	background.	To	do
this	change	the	body	tag	in	your	style	sheet	to:

	

body{

		background-image:	url(“forest.jpg”);

}

	

Make	sure	to	include	the	complete	path	to	your	image.	In	the	example	here,	the	image	has
been	placed	in	the	same	folder	as	the	web	page.	With	this	change,	the	web	page	now	loads
as:

	

	

	

	

	

	

	

Classes	in	CSS
	

In	this	lesson	we’re	going	to	take	a	step	towards	more	advanced	CSS	by	introducing	the
notion	of	classes.	We	will	use	this	to	build	a	web	page	like	this:

	

	

	

A	class
is	just
another
way	to

identify	elements	in	your	HTML	and	give	them	certain	attributes.	The	flexibility	of	the
class	allows	you	to	apply	characteristics	to	multiple	items	in	your	HTML	if	they	are
identified	as	being	a	member	of	that	class.	So	in	short,	a	class	selector	selects	HTML
elements	in	your	web	page	that	have	been	identified	as	being	that	class	and	applies	the
attributes	you	specify	to	it.

	

No	doubt	you’ve	already	seen	classes	in	HTML	files	you’ve	looked	at.	In	your	CSS	a
class	is	denoted	with	a	period	followed	by	the	name	assigned	to	the	class.	You	can	have	a
class	without	specifying	the	type	of	HTML	tag	it	applies	to	such	as:

	

.myclassname{

attributes	here

}

	

Or	you	can	apply	it	to	a	specific	tag,	such	as	the	paragraph	tag.	This	example	will	set	the
font	color	of	any	paragraph	marked	“myblueclass”	to	blue:

	

p.myblueclass{

color:	blue;

}

	

To	specify	that	a	paragraph	in	your	html	file	is	a	member	of	this	class,

	

<p	class=“myblueclass”>This	is	a	sample	paragraph	that	uses	the	myblueclass	CSS	class.
</p>

	

Remember	that	you	can	apply	a	class	to	multiple	elements	in	a	page.	For	example,	we	can
specify	that	all	HTML	elements	with	class=“center”	are	center-aligned	and	have	blue	text:

	

.center	{

text-align:	center;

color:	blue;

}

	

Then	you	can	apply	this	to	multiple	elements:

	

<h1	class=“center”>Header	with	the	center	class</h1>

<p>	A	normal	paragraph	without	special	formatting</p>

<p	class=“center”>A	formatted	paragraph.</p>

<p>Another	normal	paragraph</p>

	

This	produces:

	

Header	with	the	center	class
	

A	normal	paragraph	without	special	formatting

	

A	formatted	paragraph.

	

Another	normal	paragraph

	

So	we’ve	saved	some	labor.	We	are	able	to	apply	the	same	attributes	(center	and	blue	text)
to	different	HTML	elements.	So	lets	see	how	to	create	the	web	page	shown	at	the
beginning	of	this	chapter.

	

First	lets	add	the	flower	in	the	upper	left.

	

	

<style>

body{

		margin-left:	200px;

		background:	#5d9ab2	url(“flower.jpg”)	no-repeat	top	left;

}

	

Now	lets	create	a	class	with	the	property	of	centered	text.	The	class	will	be	called
container:

	

.container{

		text-align:	center;

}

	

The	next	class	we	create	will	draw	the	red	box:

	

.my_box{

border:	2px	solid	red;

margin-left:	auto;

margin-right:	auto;

width:	80%;

text-align:	center;

padding:	8px;

}

	

Finally	we	close	out	our	<style>	sheet	setting	h1	headers	to	white.

	

h1{

		color:	white;

}

	

Now	let’s	write	the	html	for	the	page:

	

<body>

<div	class=“container”>

		<div	class=“my_box”>

<h1>My	Great	Web	Page</h1>

<p>Some	text	to	display.	This	is	our	most	extensive	example	of	css	yet.</p>

</div>

</div>

</body>

	

Fixed	Attachments
	

In	this	lesson	we’ll	learn	to	fix	an	element	on	the	page.	In	other	words	when	you	scroll	the
page,	the	element	will	remain	in	place	while	the	rest	of	the	page	scrolls	past.	We	will	use
the	web	page	from	the	previous	lesson	and	leave	the	flower	in	place.

	

Its	actually	pretty	simple.	We	only	need	to	change	the	CSS	for	the	body	tag,	specifying	the
value	of	the	background-attachment	attribute.

	

Change	your	CSS	to:

	

body{

		margins-left:	200px;

		background:	#5d9ab2	url(“flower.jpg”)	no-repeat	top	left;

		background-attachement:	fixed;

}

	

That’s	all	there	is	to	it!	Save	your	file	and	load	in	the	browser	again	and	you’ll	find	that
the	flower	stays	in	the	upper	left	corner	of	the	page.	Add	a	large	amount	of	text	to	your
page	to	test	the	scrolling.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

