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Introduction

Data mining is a broad, deep, and frequently ambiguous field. Authorities don’t even 

agree on a definition for the term. What I will do is tell you how I interpret the term, 

especially as it applies to this book. But first, some personal history that sets the 

background for this book…

I’ve been blessed to work as a consultant in a wide variety of fields, enjoying rare 

diversity in my work. Early in my career, I developed computer algorithms that examined 

high-altitude photographs in an attempt to discover useful things. How many bushels 

of wheat can be expected from Midwestern farm fields this year? Are any of those fields 

showing signs of disease? How much water is stored in mountain ice packs? Is that 

anomaly a disguised missile silo? Is it a nuclear test site?

Eventually I moved on to the medical field and then finance: Does this 

photomicrograph of a tissue slice show signs of malignancy? Do these recent price 

movements presage a market collapse?

All of these endeavors have something in common: they all require that we find 

variables that are meaningful in the context of the application. These variables might 

address specific tasks, such as finding effective predictors for a prediction model. Or 

the variables might address more general tasks such as unguided exploration, seeking 

unexpected relationships among variables—relationships that might lead to novel 

approaches to solving the problem.

That, then, is the motivation for this book. I have taken some of my most-used 

techniques, those that I have found to be especially valuable in the study of relationships 

among variables, and documented them with basic theoretical foundations and well-

commented C++ source code. Naturally, this collection is far from complete. Maybe 

Volume 2 will appear someday. But this volume should keep you busy for a while.

You may wonder why I have included a few techniques that are widely available in 

standard statistical packages, namely, very old techniques such as maximum likelihood 

factor analysis and varimax rotation. In these cases, I included them because they are 

useful, and yet reliable source code for these techniques is difficult to obtain. There are 

times when it’s more convenient to have your own versions of old workhorses, integrated 
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into your own personal or proprietary programs, than to be forced to coexist with canned 

packages that may not fetch data or present results in the way that you want.

You may want to incorporate the routines in this book into your own data mining 

tools. And that, in a nutshell, is the purpose of this book. I hope that you incorporate 

these techniques into your own data mining toolbox and find them as useful as I have in 

my own work.

There is no sense in my listing here the main topics covered in this text; that’s what 

a table of contents is for. But I would like to point out a few special topics not frequently 

covered in other sources.

•	 Information theory is a foundation of some of the most important 

techniques for discovering relationships between variables, 

yet it is voodoo mathematics to many people. For this reason, I 

devote the entire first chapter to a systematic exploration of this 

topic. I do apologize to those who purchased my Assessing and 

Improving Prediction and Classification book as well as this one, 

because Chapter 1 is a nearly exact copy of a chapter in that book. 

Nonetheless, this material is critical to understanding much later 

material in this book, and I felt that it would be unfair to almost force 

you to purchase that earlier book in order to understand some of the 

most important topics in this book.

•	 Uncertainty reduction is one of the most useful ways to employ 

information theory to understand how knowledge of one variable lets 

us gain measurable insight into the behavior of another variable.

•	 Schreiber’s information transfer is a fairly recent development that 

lets us explore causality, the directional transfer of information from 

one time series to another.

•	 Forward stepwise selection is a venerable technique for building up 

a set of predictor variables for a model. But a generalization of this 

method in which ranked sets of predictor candidates allow testing of 

large numbers of combinations of variables is orders of magnitude 

more effective at finding meaningful and exploitable relationships 

between variables.

Introduction
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•	 Simple modifications to relationship criteria let us detect profoundly 

nonlinear relationships using otherwise linear techniques.

•	 Now that extremely fast computers are readily available, Monte Carlo 

permutation tests are practical and broadly applicable methods for 

performing rigorous statistical relationship tests that until recently 

were intractable.

•	 Combinatorially symmetric cross validation as a means of detecting 

overfitting in models is a recently developed technique, which, while 

computationally intensive, can provide valuable information not 

available as little as five years ago.

•	 Automated selection of variables suited for predicting a given target 

has been routine for decades. But in many applications you have 

a choice of possible targets, any of which will solve your problem. 

Embedding target selection in the search algorithm adds a useful 

dimension to the development process.

•	 Feature weighting as regularized energy-based learning (FREL) is a 

recently developed method for ranking the predictive efficacy of a 

collection of candidate variables when you are in the situation of 

having too few cases to employ traditional algorithms.

•	 Everyone is familiar with scatterplots as a means of visualizing the 

relationship between pairs of variables. But they can be generalized 

in ways that highlight relationship anomalies far more clearly than 

scatterplots. Examining discrepancies between joint and marginal 

distributions, as well as the contribution to mutual information, in 

regions of the variable space can show exactly where interesting 

interactions are happening.

•	 Researchers, especially in the field of psychology, have been using 

factor analysis for decades to identify hidden dimensions in data. 

But few developers are aware that a frequently ignored byproduct of 

maximum likelihood factor analysis can be enormously useful to data 

miners by revealing which variables are in redundant relationships 

with other variables and which provide unique information.

Introduction
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•	 Everyone is familiar with using correlation statistics to measure 

the degree of relationship between pairs of variables, and perhaps 

even to extend this to the task of clustering variables that have 

similar behavior. But it is often the case that variables are strongly 

contaminated by noise, or perhaps by external factors that are 

not noise but that are of no interest to us. Hence, it can be useful 

to cluster variables within the confines of a particular subspace of 

interest, ignoring aspects of the relationships that lie outside this 

desired subspace.

•	 It is sometimes the case that a collection of time-series variables are 

coherent; they are impacted as a group by one or more underlying 

drivers, and so they change in predictable ways as time passes. 

Conversely, this set of variables may be mostly independent, 

changing on their own as time passes, regardless of what the other 

variables are doing. Detecting when your variables move from one of 

these states to the other allows you, among other things, to develop 

separate models, each optimized for the particular condition.

I have incorporated most of these techniques into a program, DATAMINE, that is 

available for free download, along with its user’s manual. This program is not terribly 

elegant, as it is intended as a demonstration of the techniques presented in this book 

rather than as a full-blown research tool. However, the source code for its core routines 

that is also available for download should allow you to implement your own versions of 

these techniques. Please do so, and enjoy!

Introduction
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CHAPTER 1

Information and Entropy
Much of the material in this chapter is extracted from my prior book, 
Assessing and Improving Prediction and Classification. My apologies to 
those readers who may feel cheated by this. However, this material is criti-
cal to the current text, and I felt that it would be unfair to force readers to 
buy my prior book in order to procure required background.

The essence of data mining is the discovery of relationships among variables that we 

have measured. Throughout this book we will explore many ways to find, present, and 

capitalize on such relationships. In this chapter, we focus primarily on a specific aspect 

of this task: evaluating and perhaps improving the information content of a measured 

variable. What is information? This term has a rigorously defined meaning, which we 

will now pursue.

�Entropy
Suppose you have to send a message to someone, giving this person the answer to a 

multiple-choice question. The catch is, you are only allowed to send the message by 

means of a string of ones and zeros, called bits. What is the minimum number of bits 

that you need to communicate the answer? Well, if it is a true/false question, one bit will 

obviously do. If four answers are possible, you will need two bits, which provide four 

possible patterns: 00, 01, 10, and 11. Eight answers will require three bits, and so forth. 

In general, to identify one of K possibilities, you will need log2(K) bits, where log2(.) is the 

logarithm base two.

Working with base-two logarithms is unconventional. Mathematicians and 

computer programs almost always use natural logarithms, in which the base is e≈2.718. 

The material in this chapter does not require base two; any base will do. By tradition, 

when natural logarithms are used in information theory, the unit of information is called 
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the nat as opposed to the bit. This need not concern us. For much of the remainder of 

this chapter, no base will be written or assumed. Any base can be used, as long as it is 

used consistently. Since whenever units are mentioned they will be bits, the implication 

is that logarithms are in base two. On the other hand, all computer programs will use 

natural logarithms. The difference is only one of naming conventions for the unit.

Different messages can have different worth. If you live in the midst of the Sahara 

Desert, a message from the weather service that today will be hot and sunny is of little 

value. On the other hand, a message that a foot of snow is on the way will be enormously 

interesting and hence valuable. A good way to quantify the value or information of a 

message is to measure the amount by which receipt of the message reduces uncertainty. 

If the message simply tells you something that was expected already, the message 

gives you little information. But if you receive a message saying that you have just won 

a million-dollar lottery, the message is valuable indeed and not only in the monetary 

sense. The fact that its information is highly unlikely gives it value.

Suppose you are a military commander. Your troops are poised to launch an invasion 

as soon as the order to invade arrives. All you know is that it will be one of the next 64 

days, which you assume to be equally likely. You have been told that tomorrow morning 

you will receive a single binary message: yes the invasion is today or no the invasion 

is not today. Early the next morning, as you sit in your office awaiting the message, 

you are totally uncertain as to the day of invasion. It could be any of the upcoming 64 

days, so you have six bits of uncertainty (log2(64)=6). If the message turns out to be yes, 

all uncertainty is removed. You know the day of invasion. Therefore, the information 

content of a yes message is six bits. Looked at another way, the probability of yes today 

is 1/64, so its information is –log2(1/64)=6. It should be apparent that the value of a 

message is inversely related to its probability.

What about a no message? It is certainly less valuable than yes, because your 

uncertainty about the day of invasion is only slightly reduced. You know that the invasion 

will not be today, which is somewhat useful, but it still could be any of the remaining 63 

days. The value of no is –log2((64–1)/64), which is about 0.023 bits. And yes, information 

in bits or nats or any other unit can be fractional.

The expected value of a discrete random variable on a finite set (that is, a random 

variable that can take on one of a finite number of different values) is equal to the sum 

of the product of each possible value times its probability. For example, if you have a 

market trading system that has a probability of winning $1,000 and a 0.6 probability of 

losing $500, the expected value of a trade is 0.4 * 1000 – 0.6 * 500 = $100. In the same way, 

Chapter 1  Information and Entropy
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we can talk about the expected value of the information content of a message. In the 

invasion example, the value of a yes message is 6 bits, and it has probability 1/64. The 

value of a no message is 0.023 bits, and its probability is 63/64. Thus, the expected value 

of the information in the message is (1/64) * 6 + (63/64) * 0.023 = 0.12 bits.

The invasion example had just two possible messages, yes and no. In practical 

applications, we will need to deal with messages that have more than two values. 

Consistent, rigorous notation will make it easier to describe methods for doing so. Let 

χ be a set that enumerates every possible message. Thus, χ may be {yes, no} or it may be 

{1, 2, 3, 4} or it may be {benign, abnormal, malignant} or it may be {big loss, small loss, 

neutral, small win, big win}. We will use X to generically represent a random variable that 

can take on values from this set, and when we observe an actual value of this random 

variable, we will call it x. Naturally, x will always be a member of χ. This is written as xεχ. 

Let p(x) be the probability that x is observed. Sometimes it will be clearer to write this 

probability as P(X=x). These two notations for the probability of observing x will be used 

interchangeably, depending on which is more appropriate in the context. Naturally, the 

sum of p(x) for all xεχ is one since χ includes every possible value of X.

Recall from the military example that the information content of a particular 

message x is −log(p(x)), and the expected value of a random variable is the sum, across 

all possibilities, of its probability times its value. The information content of a message 

is itself a random variable. So, we can write the expected value of the information 

contained in X as shown in Equation (1.1). This quantity is called the entropy of X, and 

it is universally expressed as H(X). In this equation, 0*log(0) is understood to be zero, so 

messages with zero probability do not contribute to entropy.

	
H X p x p x( )= ( ) log( ( ))-å

xec 	
(1.1)

Returning once more to the military example, suppose that a second message also 

arrives every morning: mail call. On average, mail arrives for distribution to the troops 

about once every three days. The actual day of arrival is random; sometimes mail will 

arrive several days in a row, and other times a week or more may pass with no mail. You 

never know when it will arrive, other than that you will be told in the morning whether 

mail will be delivered that day. The entropy of the mail today random variable is −(1/3) 

log2 (1/3) – (2/3) log2 (2/3) ≈0.92 bits.

Chapter 1  Information and Entropy
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In view of the fact that the entropy of the invasion today random variable was about 

0.12 bits, this seems to be an unexpected result. How can a message that resolves an 

event that happens about every third day convey so much more information than one 

about an event that has only a 1/64 chance of happening? The answer lies in the fact 

that entropy is an average. Entropy does not measure the value of a single message. It 

measures the expectation of the value of the message. Even though a yes answer to the 

invasion question conveys considerable information, the fact that the nearly useless no 

message will arrive with probability 63/64 drags the average information content down 

to a small value.

Let K be the number of messages that are possible. In other words, the set χ contains 

K members. Then it can be shown (though we will not do so here) that X has maximum 

entropy when p(x)=1/K for all xεχ. In other words, a random variable X conveys the most 

information obtainable when all of its possible values are equally likely. It is easy to see 

that this maximum value is log(K). Simply look at Equation (1.1) and note that all terms 

are equal to (1/K) log(1/K), and there are K of them. For this reason, it is often useful to 

observe a random variable and use Equation (1.1) to estimate its entropy and then divide 

this quantity by log(K) to compute its proportional entropy. This is a measure of how 

close X comes to achieving its theoretical maximum information content.

It must be noted that although the entropy of a variable is a good theoretical indicator 

of how much information the variable conveys, whether this information is useful is 

another matter entirely. Knowing whether the local post office will deliver mail today 

probably has little bearing on whether the home command has decided to launch an 

invasion today. There are ways to assess the degree to which the information content of 

a message is useful for making a specified decision, and these techniques will be covered 

later in this chapter. For now, understand that significant information content of a variable 

is a necessary but not sufficient condition for making effective use of that variable.

To summarize:

•	 Entropy is the expected value of the information contained in a 

variable and hence is a good measure of its potential importance.

•	 Entropy is given by Equation (1.1) on page 3.

•	 The entropy of a discrete variable is maximized when all of its 

possible values have equal probability.

•	 In many or most applications, large entropy is a necessary but not a 

sufficient condition for a variable to have excellent utility.

Chapter 1  Information and Entropy
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�Entropy of a Continuous Random Variable
Entropy was originally defined for finite discrete random variables, and this remains its 

primary application. However, it can be generalized to continuous random variables. 

In this case, the summation of Equation (1.1) must be replaced by an integral, and the 

probability p(x) must be replaced by the probability density function f(x). The definition 

of entropy in the continuous case is given by Equation (1.2).

	
H X = f x f x dx( ) - ( ) ( )( )

-¥

¥

ò log
	

(1.2)

There are several problems with continuous entropy, most of which arise from 

the fact that Equation (1.2) is not the limiting case of Equation (1.1) when the bin size 

shrinks to zero and the number of bins blows up to infinity. In practical terms, the most 

serious problem is that continuous entropy is not immune to rescaling. One would 

hope that performing the seemingly innocuous act of multiplying a random variable 

by a constant would leave its entropy unchanged. Intuition clearly says that it should 

be so because certainly the information content of a variable should be the same as the 

information content of ten times that variable. Alas, it is not so. Moreover, estimating 

a probability density function f(x) from an observed sample is far more difficult than 

simply counting the number of observations in each of several bins for a sample. Thus, 

Equation (1.2) can be difficult to evaluate in applications. For these reasons, continuous 

entropy is avoided whenever possible. We will deal with the problem by discretizing 

a continuous variable in as intelligent a fashion as possible and treating the resulting 

random variable as discrete. The disadvantages of this approach are few, and the 

advantages are many.

�Partitioning a Continuous Variable for Entropy
Entropy is a simple concept for discrete variables and a vile beast for continuous 

variables. Give me a sample of a continuous variable, and chances are I can give you a 

reasonable algorithm that will compute its entropy as nearly zero, an equally reasonable 

algorithm that will find the entropy to be huge, and any number of intermediate 

estimators. The bottom line is that we first need to understand our intended use for the 

entropy estimate and then choose an estimation algorithm accordingly.

Chapter 1  Information and Entropy
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A major use for entropy is as a screening tool for predictor variables. Entropy has 

theoretical value as a measure of how much information is conveyed by a variable. But 

it has a practical value that goes beyond this theoretical measure. There tends to be a 

correlation between how well many models are able to learn predictive patterns and the 

entropy of the predictor variables. This is not universally true, but it is true often enough 

that a prudent researcher will pay attention to entropy.

The mechanism by which this happens is straightforward. Many models focus 

their attention roughly equally across the entire range of variables, both predictor and 

predicted. Even models that have the theoretical capability of zooming in on important 

areas will have this tendency because their traditional training algorithms can require an 

inordinate amount of time to refocus attention onto interesting areas. The implication 

is that it is usually best if observed values of the variables are spread at least fairly 

uniformly across their range.

For example, suppose a variable has a strong right skew. Perhaps in a sample of 

1,000 cases, about 900 lie in the interval 0 to 1, another 90 cases lie in 1 to 10, and the 

remaining 10 cases are up around 1,000. Many learning algorithms will see these few 

extremely large cases as providing one type of information and lump the mass of cases 

around zero to one into a single entity providing another type of information. The 

algorithm will find it difficult to identify and act on cases whose values on this variable 

differ by 0.1. It will be overwhelmed by the fact that some cases differ by a thousand. 

Some other models may do a great job of handling the mass of low-valued cases but find 

that the cases out in the tail are so bizarre that they essentially give up on them.

The susceptibility of models to this situation varies widely. Trees have little or 

no problem with skewness and heavy tails for predictors, although they have other 

problems that are beyond the scope of this text. Feedforward neural nets, especially 

those that initialize weights based on scale factors, are extremely sensitive to this 

condition unless trained by sophisticated algorithms. General regression neural nets and 

other kernel methods that use kernel widths that are relative to scale can be rendered 

helpless by such data. It would be a pity to come close to producing an outstanding 

application and be stymied by careless data preparation.

The relationship between entropy and learning is not limited to skewness and 

tail weight. Any unnatural clumping of data, which would usually be caught by a 

good entropy test, can inhibit learning by limiting the ability of the model to access 

information in the variable. Consider a variable whose range is zero to one. One-third 

of its cases lie in {0, 0.1}, one-third lie in {0.4, 0.5}, and one-third lie in {0.9, 1.0}, with 

Chapter 1  Information and Entropy
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output values (classes or predictions) uniformly scattered among these three clumps. 

This variable has no real skewness and extremely light tails. A basic test of skewness 

and kurtosis would show it to be ideal. Its range-to-interquartile-range ratio would 

be wonderful. But an entropy test would reveal that this variable is problematic. The 

crucial information that is crowded inside each of three tight clusters will be lost, unable 

to compete with the obvious difference among the three clusters. The intra-cluster 

variation, crucial to solving the problem, is so much less than the worthless inter-cluster 

variation that most models would be hobbled.

When detecting this sort of problem is our goal, the best way to partition a continuous 

variable is also the simplest: split the range into bins that span equal distances. Note that 

a technique we will explore later, splitting the range into bins containing equal numbers 

of cases, is worthless here. All this will do is give us an entropy of log(K), where K is the 

number of bins. To see why, look back at Equation (1.1) on page 3. Rather, we need to 

confirm that the variable in question is distributed as uniformly as possible across its 

range. To do this, we must split the range equally and count how many cases fall into 

each bin.

The code for performing this partitioning is simple; here are a few illustrative 

snippets. The first step is to find the range of the variable (in work here) and the factor for 

distributing cases into bins. Then the cases are categorized into bins. Note that two tricks 

are used in computing the factor. We subtract a tiny constant from the number of bins to 

ensure that the largest case does not overflow into a bin beyond what we have. We also 

add a tiny constant to the denominator to prevent division by zero in the pathological 

condition of all cases being identical.

low = high = work[0];                // Will be the variable's range

for (i=1; i<ncases; i++) {           // Check all cases to find the range

   if  (work[i] > high)

      high = work[i];

   if  (work[i] < low)

      low = work[i];

   }

Chapter 1  Information and Entropy
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for (i=0; i<nb; i++)              // Initialize all bin counts to zero

   counts[i] = 0;

factor = (nb - 0.00000000001) / (high - low + 1.e-60);

for (i=0; i<ncases; i++) {             // Place the cases into bins

   k = (int) (factor * (work[i] - low));

   ++counts[k];

   }

Once the bin counts have been found, computing the entropy is a trivial application 

of Equation (1.1).

entropy = 0.0;

for (i=0; i<nb; i++) {                           // For all bins

   if  (counts[i] > 0) {                           // Bin might be empty

      p = (double) counts[i] / (double) ncases;       // p(x)

      entropy -= p * log(p);                  // Equation (1.1)

      }

   }

entropy /= log(nb);                            // Divide by max for proportional

Having a heavy tail is the most common cause of low entropy. However, clumping in 

the interior also appears in applications. We do need to distinguish between clumping 

of continuous variables due to poor design versus unavoidable grouping into discrete 

categories. It is the former that concerns us here. Truly discrete groups cannot be 

separated, while unfortunate clustering of a continuous variable can and should be dealt 

with. Since a heavy tail (or tails) is such a common and easily treatable occurrence and 

interior clumping is rarer but nearly as dangerous, it can be handy to have an algorithm 

that can detect undesirable interior clumping in the presence of heavy tails. Naturally, 

we could simply apply a transformation to lighten the tail and then perform the test 

shown earlier. But for quick prescreening of predictor candidates, a single test is nice to 

have around.

The easiest way to separate tail problems from interior problems is to dedicate one 

bin at each extreme to the corresponding tail. Specifically, assume that you want K bins. 

Find the shortest interval in the distribution that contains (K–2)/K of the cases. Divide 

this interval into K–2 bins of equal width and count the number of cases in each of these 
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interior bins. All cases below the interval go into the lowest bin. All cases above this 

interval go into the upper bin. If the distribution has a very long tail on one end and a 

very short tail on the other end, the bin on the short end may be empty. This is good 

because it slightly punishes the skewness. If the distribution is exactly symmetric, each 

of the two end bins will contain 1/K of the cases, which implies no penalty. This test 

focuses mainly on the interior of the distribution, computing the entropy primarily from 

the K–2 interior bins, with an additional small penalty for extreme skewness and no 

penalty for symmetric heavy tails.

Keep in mind that passing this test does not mean that we are home free. This test 

deliberately ignores heavy tails, so a full test must follow an interior test. Conversely, 

failing this interior test is bad news. Serious investigation is required.

Below, we see a code snippet that does the interior partitioning. We would follow this 

with the entropy calculation shown on the prior page.

ilow = (ncases + 1) / nb - 1;          // Unbiased lower quantile

if  (ilow < 0)

    ilow = 0;

ihigh = ncases - 1 - ilow;              // Symmetric upper quantile

// Find the shortest interval containing 1-2/nbins of  the distribution

qsortd (0, ncases-1, work);          // Sort cases ascending

istart = 0;                                      // Beginning of  interior interval

istop = istart + ihigh - ilow - 2;      // And end, inclusive

best_dist = 1.e60;                        // Will be shortest distance

while (istop < ncases) {                // �Try bounds containing the same n of  cases

   dist = work[istop] - work[istart]; // Width of  this interval

   if  (dist < best_dist) {                 // We're looking for the shortest

      best_dist = dist;                     // Keep track of  shortest

      ibest = istart;                          // And its starting index

      }

  ++istart;                                      // Advance to the next interval

   ++istop;                                     // Keep n of cases in interval constant

   }
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istart = ibest;                                  // This is the shortest interval

istop = istart + ihigh - ilow - 2;

counts[0] = istart;                           // The count of  the leftmost bin

counts[nb-1] = ncases - istop - 1;  // and rightmost are implicit

for (i=1; i<nb-1; i++)                       // Inner bins

   counts[i] = 0;

low = work[istart];                           // Lower bound of  inner interval

high = work[istop];                          // And upper bound

factor = (nb - 2.00000000001) / (high - low + 1.e-60);

for (i=istart; i<=istop; i++) {             // Place cases in bins

   k = (int) (factor * (work[i] - low));

   ++counts[k+1];

   }

�An Example of Improving Entropy
John decides that he wants to do intra-day trading of the U.S. bond futures market. 

One variable that he believes will be useful is an indication of how much the market is 

moving away from its very recent range. As a start, he subtracts from the current price a 

moving average of the close of the most recent 20 bars. Realizing that the importance of 

this deviation is relative to recent volatility, he decides to divide the price difference by 

the price range over those prior 20 bars. Being a prudent fellow, he does not want  

to divide by zero in those rare instances in which the price is flat for 20 contiguous 

bars, so he adds one tick (1/32 point) to the denominator. His final indicator is given by 

Equation (1.3).

	
X =

CLOSE MA

HIGH LOW

- ( )
( )- ( )+

20

20 20 0.03125 	
(1.3)

Being not only prudent but informed as well, he computes this indicator from a 

historical sample covering many years, divides the range into 20 bins, and calculates its 

proportional entropy as discussed on page 4. Imagine John’s shock when he finds this 

quantity to be just 0.0027, about one-quarter of 1 percent of what should be possible! 

Clearly, more work is needed before this variable is presented to any prediction model.
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Basic detective work reveals some fascinating numbers. The interquartile range 

covers −0.2 to 0.22, but the complete range is −48 to 92. There’s no point in plotting a 

histogram; virtually the entire dataset would show up as one tall spike in the midst of a 

barren desert.

He now has two choices: truncate or squash. The common squashing functions, 

arctangent, hyperbolic tangent, and logistic, are all comfortable with the native domain 

of this variable, which happens to be about −1 to 1. Figure 1-1 shows the result of 

truncating this variable at +/−1. This truncated variable has a proportional entropy of 

0.83, which is decent by any standard. Figure 1-2 is a histogram of the raw variable after 

applying the hyperbolic tangent squashing function. Its proportional entropy is 0.81. 

Neither approach is obviously superior, but one thing is perfectly clear: one of them, 

or something substantially equivalent, must be used instead of the raw variable of 

Equation (1.3)!

Figure 1-1.  Distribution of truncated variable
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�Joint and Conditional Entropy
Suppose we have an indicator variable X that can take on three values. These values 

might be {unusually low, about average, unusually high} or any other labels. The nature 

or implied ordering of the labels is not important; we will call them 1, 2, and 3 for 

convenience. We also have an outcome variable Y that can take on two values: win and 

lose. After evaluating these variables on a large batch of historical data, we tabulate the 

relationship between X and Y as shown in Table 1-1.

Figure 1-2.  Distribution of htan transformed variable

Chapter 1  Information and Entropy



13

This table shows that 80 cases fell into Category 1 of X and also the win category of Y, 

while 20 cases fell into Category 1 of X and also the lose category of Y, and so forth. The 

second number in each table cell is the fraction of all cases that fell into that cell. Thus, 

the (1, win) cell contained 0.16 of the 500 cases in the historical sample.

The third number in each cell is the fraction of cases that would, on average, fall into 

that cell if there were no relationship between X and Y. If two events are independent, 

meaning that the occurrence of one of them has no impact on the probability of occurrence 

of the other, the probability that they will both occur is the product of the probabilities that 

each will occur. In symbols, let P(A) be the probability that some event A will occur, let P(B) 

be the probability that some other event B will occur, and let P(A,B) be the probability that 

they both will occur. Then P(A,B)=P(A)*P(B) if and only if A and B are independent.

We can compute the probability of each X and Y event by summing the counts across 

rows and columns to get the marginal counts and dividing each by the total number of 

cases. For example, in the Y=win category, the total is 80+100+120=300 cases. Dividing 

this by 500 gives P(Y=win)=0.6. For X we find that P(X=1)=(80+20)/500=0.2. Hence, the 

probability of (X=1, Y=win), if X and Y were independent, is 0.6*0.2=0.12.

Table 1-1.  Observed Counts and Probabilities, Theoretical Probabilities

Y Marginal

win lose

|   80   20 100

| 1 0.16 0.04

|

|

0.12 0.08

|  100  100 200

X | 2 0.20 0.20

|

|

0.24 0.16

|  120     80 200

| 3 0.24 0.16

| 0.24 0.16

Marginal  300   200 500
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The observed probabilities for four of the six cells differ from the probabilities 

expected under independence, so we conclude that there might be a relationship 

between X and Y, though the difference is so small that random chance might just as 

well be responsible. An ordinary chi-square test would quantify the probability that the 

observed differences could have arisen from chance. But we are interested in a different 

approach right now.

Equation (1.1) on page 3 defined the entropy for a single random variable. We can 

just as well define the entropy for two random variables simultaneously. This joint 

entropy indicates how much information we obtain on average when the two variables 

are both known. Joint entropy is a straightforward extension of univariate entropy. Let χ, 

X, and x be as defined for Equation (1.1). In addition, let ¥, Y, and y be the corresponding 

items for the other variable. The joint entropy H(X, Y) is based on the individual cell 

probabilities, as shown in Equation (1.4). In this example, summing the six terms gives 

H(X, Y)≈1.70.

	
H X Y = p x,y p x,y( ) ( ) ( ( )), log- åå

yx eec ¥ 	
(1.4)

It often happens that the entropy of a variable is different for different values of 

another variable. Look back at Table 1-1. There are 100 cases for which X=1. Of these, 

80 have Y=win and 20 have Y=lose. The probability that Y=win, given that X=1, which is 

written P(Y=win|X=1), is 80/100=0.8. Similarly, P(Y=lose|X=1)=0.2. By Equation (1.1), the 

entropy of Y, given that X=1, which is written H(Y|X=1), is −0.8*log(0.8) – 0.2*log(0.2) ≈ 

0.50 nats. (The switch from base 2 to base e is convenient now.) In the same way, we can 

compute H(Y|X=2) ≈0.69, and H(Y|X=3) ≈0.67.

Hold that thought. Before continuing, we need to reinforce the idea that entropy, 

which is a measure of disorganization, is also a measure of average information content. 

On the surface, this seems counterintuitive. How can it be that the more disorganized 

a variable is, the more information it carries? The issue is resolved if you think about 

what is gained by going from not knowing the value of the variable to knowing it. If the 

variable is highly disorganized, you gain a lot by knowing it. If you live in an area where 

the weather changes every hour, an accurate weather forecast (if there is such a thing) 

is very valuable. Conversely, if you live in the middle of a desert, a weather forecast is 

nearly always boring.
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We just saw that we can compute the entropy of Y when X equals any specified 

value. This leads us to consider the entropy of Y under the general condition that we 

know X. In other words, we do not specify any particular X. We simply want to know, 

on average, what the entropy of Y will be if we happen to know X. This quantity, called 

the conditional entropy of Y given X, is an expectation once more. To compute it, we 

sum the product of every possibility times the probability of the possibility. In the 

example several paragraphs ago, we saw that H(Y|X=1) ≈0.50. Looking at the marginal 

probabilities, we know that P(X=1) = 100/500 = 0.20. Following the same procedure  

for X=2 and 3, we find that the entropy of Y given that we know X, written P(Y|X), is 

0.2*0.50 + 0.4*0.69 + 0.4*0.67 = 0.64.

Compare this to the entropy of Y taken alone. This is −0.6*log(0.6) – 0.4*log(0.4) ≈0.67. 

Notice that the conditional entropy of Y given X is slightly less than that of Y without 

knowledge of X. In fact, it can be shown that H(Y|X) ≤ H(Y) universally. This makes 

sense. Knowing X certainly cannot make Y any more disorganized! If X and Y are related 

in any way, knowing X will reduce the disorganization of Y. Looked at another way, X 

may supply some of the information that would have otherwise been provided by Y. 

Once we know X, we have less to gain from knowing Y. A weather forecast as you roll out 

of bed in the morning gives you more information than the same forecast does after you 

have looked out the window and seen that the sky is black and rain is pouring down.

There are several standard ways of computing conditional entropy. The most 

straightforward way is direct application of the definition, as we did earlier. Equation (1.5)  

is the conditional probability of Y given X. The entropy of Y for any specified X is shown 

in Equation (1.6). Finally, Equation (1.7) is the entropy of Y given that we know X.

	
P Y = y X = x =

P Y = y X = x

P X = x
( ) ( )

( )
,

	
(1.5)

	
H Y X =x = P Y =y X =x P Y =y X = x( ) (( )) ( (( )))log

ye ¥
å

	
(1.6)

	
H Y X P X x H Y X x( ) ( ) ( )= = =å

xec 	
(1.7)

An easier method for computing the conditional entropy of Y given X is to use the 

identity shown in Equation (1.8). Although the proof of this identity is simple, we will not 

show it here. The intuition is clear, though. The entropy of (information contained in) Y 

given that we already know X is the total entropy (information) minus that due strictly to X.  
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Rearranging the terms and treating entropy as uncertainty may make the intuition even 

clearer. The total uncertainty that we have about X and Y together is equal to the uncertainty 

we have about X plus whatever uncertainty we have about Y, given that we know X.

	
H Y X H X Y H X( ) = ( )- ( ), 	 (1.8)

We close this section with a small exercise for you. Refer back to Table 1-1 on page 13 

and look at the third line in each cell. Recall that we computed this line by multiplying the 

marginal probabilities. For example, P(X=1)=100/500=0.2, and P(Y=win)=300/500=0.6, 

which gives 0.2*0.6=0.12 for the (1,win) cell. These are the theoretical cell probabilities if 

X and Y were independent. Using the Y marginals, compute to decent accuracy H(Y). You 

should get 0.673012. Using whichever formula you prefer, Equation (1.7) or (1.8), compute 

H(Y|X) accurately. You should get the same number, 0.673012. When theoretical (not 

observed) cell probabilities are used, the entropy of Y alone is the same as the entropy of 

Y when X is known. Ponder why this is so.

No solid motivation for computing or examining conditional entropy is yet apparent. 

This will change soon. For now, let’s study its computation in more detail.

�Code for Conditional Entropy
The source file MUTINF_D.CPP on the Apress.com site contains a function for computing 

conditional entropy using the definition formula, Equation (1.7). Here are two code 

snippets extracted from this file. The first snippet zeros out the array where the marginal 

of X will be computed, and it also zeros the grid of bins that will count every combination 

of X and Y. It then passes through the entire dataset, filling the bins.

for (ix=0; ix<nbins_x; ix++) {

   marginal_x[ix] = 0;

   for (iy=0; iy<nbins_y; iy++)

     grid[ix*nbins_y+iy] = 0;

   }

for (i=0; i<ncases; i++) {

   ix = bins_x[i];

   ++marginal_x[ix];

   ++grid[ix*nbins_y+bins_y[i]];

   }
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After the bins have been filled, the following code implements Equations (1.5) 

through (1.7) to compute the conditional entropy:

CI = 0.0;

for (ix=0; ix<nbins_x; ix++) {            // Sum Equation (1.7) for all x in X

   if  (marginal_x[ix] > 0) {                  // �Term only makes sense if  positive marginal

      cix = 0.0;                                     // �Will cumulate H(Y|X=x) of  Equation (1.6)

      for (iy=0; iy<nbins_y; iy++) {       // Sum Equation (1.6)

         �pyx = (double) grid[ix*nbins_y+i�y] / (double) marginal_x[ix]; // Equation (1.5)

         if  (pyx > 0.0)                             // 0 log(0) = 0

            cix += pyx * log (pyx);            // Equation (1.6)

         }

      }

   CI += cix * marginal_x[ix] / ncases; // Equation (1.7)

   }

�Mutual Information
John has four areas of expertise: football, beer, bourbon, and poker. Mary has three areas 

of expertise: cooking, sewing, and poker. One night they meet at a hot game, decide that 

they make the perfect couple, and get married. Here are some statements about their 

expertise as a couple:

•	 John and Mary jointly have six areas of expertise: four from John, plus 

two from Mary (cooking, sewing) that are beyond any supplied by 

John. Equivalently, they have three from Mary, plus three from John 

(football, beer, bourbon) that are beyond any supplied by Mary. See 

Equation (1.9).

•	 John and Mary jointly have six areas of expertise: four from John, plus 

three from Mary, minus one (poker) that they have in common and 

thus was counted twice. See Equation (1.10).
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•	 John has three areas of expertise to offer (football, beer, and bourbon) 

if we already have access to whatever expertise Mary offers. These 

three are his four, minus the one that they share. See Equation (1.11).

•	 Similarly, Mary has two areas of expertise above and beyond 

whatever is supplied by John. See Equation (1.12).

Information that is shared by two random variables X and Y is called their mutual 

information, and this quantity is written I(X; Y). The following equations summarize 

the relationships among joint, single, and conditional entropy, and mutual information. 

Examination of Figure 1-3 on the next page may make the intuition behind these 

equations clearer.

	
H X Y H X H Y X H Y H X Y,( ) = ( )+ ( ) = ( )+ ( ) 	 (1.9)

	 H X Y =H X H Y I X Y,( ) ( )+ ( )- ( ); 	 (1.10)

	
H X Y H X I X Y( ) = ( )- ( ); 	 (1.11)

	
H Y X H Y I X Y( ) = ( )- ( ); 	 (1.12)

	
I X Y H X H X Y H Y H Y X;( ) = ( )- ( ) = ( )- ( ) 	 (1.13)

	 I X Y H X H Y H X Y; ,( ) = ( )+ ( )- ( ) 	 (1.14)

	 I X X H X;( ) = ( ) 	 (1.15)

Equation (1.13) or (1.14) may be used to compute the mutual information of a 

pair of variables. But it is often more convenient to use the official definition of mutual 

information. We will not prove that the definition given by Equation (1.16) concurs with 

the preceding equations, as it is tedious.

	
I X Y p x y

p x y

p x p y
( (

(

( (
; ) , ) log

, )

) )
= åå

y ¥x eec 	
(1.16)
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There is simple intuition behind Equation (1.16). Recall that events X and Y are 

independent if and only if the probability of them both happening equals the product 

of each of them happening: P(X, Y)=P(X)*P(Y). Thus, if X and Y in Equation (1.16) are 

independent, the numerator will equal the denominator in the log expression. The log 

of one is zero, so every term in the sum will be zero. The mutual information of a pair of 

independent variables will evaluate to zero, as expected.

On the other hand, if X and Y have a relationship, sometimes the numerator will 

exceed the denominator, and sometimes it will be less. When the numerator is larger 

than the denominator, the log will be positive, and when the converse is true, the log 

will be negative. Each log term is multiplied by the numerator, with the result that 

positive logs will be multiplied by relatively large weights, while the negative logs will 

be multiplied by smaller weights. The more imbalance there is between p(x,y) and 

p(x)*p(y), the larger will be the sum.

�Fano’s Bound and Selection of Predictor Variables
Mutual information can be useful as a screening tool for effective predictors. It is not 

perfect. For one thing, mutual information picks up any sort of relationship, even 

unusual nonlinear dependencies. This is fine as long as the variable will be fed to a 

model that can take advantage of such a relationship. But naive models may be helpless, 

missing the information entirely. Predictive information is a necessary but not sufficient 

condition.

Figure 1-3.  Relationships between X and Y
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Also, it can sometimes be the case that a single predictor alone is largely useless, 

while pairing it with a second predictor can work miracles. Neither weight nor height 

alone is a good indicator of physical fitness, but the two together provide valuable 

information. Therefore, any criterion that is based on a single predictor variable is 

potentially flawed. Algorithms given later will address this issue to some degree, though 

not perfectly.

Nonetheless, mutual information is widely applicable as a screening tool. In general, 

predictor variables that have high mutual information with the predicted variable will be 

good candidates for use with a model, while those with little or no mutual information 

will make poor candidates. Mutual information must not be used to create a final set 

of predictors. Rather, it is best used to narrow a large field of candidates into a smaller 

manageable set.

In addition to the obvious intuitive value of mutual information, it has a fascinating 

theoretical property that can quantify its utility. [Fano, 1961, “Transmission of 

Information, a Statistical Theory of Communications”, MIT Press.] shows that in a 

classification problem, the mutual information between a predictor variable and a 

decision variable sets a lower bound on the classification error that can be obtained. 

Note that there is guarantee that this accuracy can actually be realized in practice. 

Performance is dependent on the quality of the model being employed. Still, knowing 

the best that can possibly be obtained with an ideal model is useful.

Let Y be a random variable that defines a decision class from ¥={1, 2, …, K}. In 

other words, there are K classes. Let X be a finite discrete random variable whose value 

hopefully provides information that is useful for predicting Y. Note that we are not in 

general asking that the value of X be the predicted value of Y. X need not even have K 

values. In the example of Table 1-1 on page 13, K=2 (win, loss), and X has three values.

We have a model that examines the value of X and predicts Y. Either this prediction 

is correct or it is incorrect. Let Pe be the probability that the model’s prediction is in error. 

The binary entropy function is defined by Equation (1.17), and Equation (1.18) is Fano’s 

bound on the attainable error of the classification model.

	 h p p p 1 p p( ) = - ( )- -( ) -( )log log 1 	 (1.17)

	
P

H Y I X Y h P

Ke
e³

( )- ( )- ( )
-( )( )

;

log max 1,2 	
(1.18)
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Officially, the denominator of Fano’s bound is just log(K−1) applies only to situations 

in which K>2. To accommodate two classes, the denominator has been modified as 

shown earlier. Details can be found in [Erdogmus and Principe, 2003 “Insights on the 

Relationship Between Probability of Misclassification and Information transfer Through 

Classifiers.” IJCSS 3:1.].

One obvious problem with Equation (1.18) is that the probability of error appears on 

both sides of the equation. There are two approaches to dealing with this. Sometimes we 

will be able to come up with a reasonable estimate of the error rate, perhaps by means of 

an out-of-sample test set and a good model. Then we can just blithely plug it into h()  

in the numerator, rationalizing that the entropy and mutual information are also  

sample-based estimates. I’ve done it. In fact, I do it in one of the programs that will 

be presented later in this chapter. A more conservative approach is to realize that the 

maximum value of this term is h(0.5)=log(2). This substitution will ensure that the 

inequality holds, even though it will be looser than it would be if the exact value of Pe 

were known. Of course, if we already knew Pe, we wouldn’t need the bound!

This, of course, is a valid reason for not putting much store in computed values of 

Fano’s bound. If we already have a model in mind, any dataset that we use to compute 

Fano’s bound gives us everything we need to compute other, probably superior, 

estimates of the prediction error and assorted bounds. And if we don’t have a model and 

hence resort to using log(2) in the numerator, the bound can be overly conservative.

The real purpose of Equation (1.18) is that it alerts us to the value of the mutual 

information between X and Y. Mutual information is not just an obscure theoretical 

quantity. It plays a major role in setting a floor under the prediction accuracy that can 

be obtained. If we are comparing a number of candidate predictors, the denominator of 

Equation (1.18) will be the same for all competitors, and H(Y), the entropy of the class 

variable, will also be constant. The error term, h(Pe), may change a little, but I(X, Y) is 

the dominant force. The minimum attainable error rate is inversely related to the mutual 

information. Therefore, candidates that have high mutual information with the class 

variable will probably be more useful than candidates with low mutual information.

�Confusion Matrices and Mutual Information
Suppose we already have a set of predictor variables and a model that we use to predict a 

class. As before, Y is the true class of a case, and there are K classes. This time, we let X be 

the output of our model for a case. That is, X is the predicted value of Y.
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Let’s explore how mutual information relates to some three-by-three confusion 

matrices. Table 1-2 shows four examples. In each case, the row is the true class, and 

the column is the model’s decided class. Thus, row i and column j contain the number 

of cases that truly belong to class i and were placed by the model in class j. Obviously, 

we want the diagonal to contain most cases because the diagonal represents correct 

classifications.

Mutual information quantifies a different aspect of performance than error rate. The 

top three confusion matrices in Table 1-2 all have an error rate of 13 percent. The first, 

naive, has very unbalanced prior probabilities. Class Three makes up 80 percent of the 

cases. The model takes advantage of this fact by strongly favoring this class. The result 

is that the other two classes are mostly misclassified. But these errors do not contribute 

much to the total error rate because these other two classes make up only 20 percent of 

cases. Mutual information easily picks up the fact that the model has not truly solved the 

problem. The value of 0.173 is the lowest of the set, by far.

The sure and spread confusions have identical priors (34 percent, 33 percent, 33 percent) 

and equal error rates, 13 percent. Yet sure has considerably greater mutual information than 

spread. The reason for this difference is the pattern of errors. The spread confusion has its 

Table 1-2.  Assorted Confusion Matrices

 4  0  6

naive  0  3  7

MI=0.173  0  0 80

28  0  6

sure  0 26  7

MI=0.735  0  0 33

29  2  3

spread  2 29  2

MI=0.624  2  2 29

29  2  3

swap  2  2 29

MI=0.624  2 29  2
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errors evenly distributed among the classes, while the sure confusion has a consistent 

pattern of misclassification. Even though both models make errors at the same total 

rate, with the sure model you know in advance what sorts of errors can be expected. In 

particular, if the model decides that a case is in Class One or Class Two, we can be sure 

that the decision is correct. This knowledge of error patterns is additional information 

above and beyond what the error rate alone provides, and the increased mutual 

information reflects this fact.

Finally, look at the swap confusion matrix. It is identical to the spread confusion 

matrix, except that for Class Two and Class Three the model has reversed its decisions. 

The error rate blows up to 67 percent, while the mutual information remains at 0.624, 

the same as spread. This highlights an important property of mutual information. It 

is not really measuring classification performance directly. Rather, it is measuring 

transfer of useful information through the model. In other words, we are measuring 

one or more predictor variables and then processing these variables by a model. The 

variables contain some information that will be useful for making a correct decision, as 

well as a great deal of irrelevant information. The model acts as a filter, screening out 

the noise while concentrating the predictive information. The output of the model is the 

information that has been distilled from the predictors. The effectiveness of the model 

at making correct decisions is measured by its error rate. But its ability to extract useful 

information from a cacophony of noise is measured by its mutual information. The fact 

that the swap model has high mutual information along with a high error rate reflects 

the fact that the model has done a good job of finding the needles in the haystack. Its 

decisions really do contain useful information. The requirement that a sentient observer 

may be needed to process this information in a way that helps us to achieve our ultimate 

goal of correct classification is something that is ignored by mutual information.

�Extending Fano’s Bound for Upper Limits
As in the prior section, assume that we have a confusion matrix. In other words, we have a 

model whose output X is a prediction of the true class Y. Fano’s lower bound on the error 

rate, shown in Equation (1.18) on page 20, can be slightly tightened if we wish. Also in this 

special case, we can compute an approximate upper bound on the classification error.

As was the case for the lower bound, there is little direct practical value in computing 

an upper bound using information theory. The data needed to compute the bound 

is sufficient to compute better error estimates and bounds using other methods. 
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However, careful study of the upper bound not only confirms the importance of mutual 

information as an indicator of predictive power but also yields valuable insights into 

effective classifier design. We will see that if we can control the way in which the classifier 

makes errors, we may be able to improve the theoretical limits on its true error rate.

Both the tighter lower bound and the new upper bound depend on the entropy of 

the error given the decision. We saw in Equation (1.18) for the lower bound that the 

numerator contained the binary entropy function defined in Equation (1.17). If we 

are willing to assume even more detailed knowledge of the pattern of errors, we can 

compute the conditional error entropy using Equation (1.19). In this equation, h(.) is the 

binary entropy function of Equation (1.17), and the quantity on which it operates is the 

probability of error given that the model has chosen class x. Because H(e|X) is less than 

or equal to the binary entropy of the error, the lower bound given by Equation (1.20) is 

tighter than that of Equation (1.18).

	
H e X P X x h P X xe( ) ( ) ( )= = =å

xec 	
(1.19)

	
P

H Y I X Y H e X

Ke ³
( )- ( )- ( )

-( )( )
;

log max 1,2 	
(1.20)

The file MUTINF_D.CPP on the Apress.com site contains a function for computing 

the conditional error entropy of Equation (1.19). Here is a code snippet from this file to 

demonstrate the computation:

for (ix=0; ix<nbins_x; ix++) {    // For all decision classes

   marginal_x[ix] = 0;                // Will sum marginal distribution of  X

   �error_count[ix] = 0;               // �Will count errors associated with each decision

   }

for (i=0; i<ncases; i++) {           // Pass through all cases

   ix = bins_x[i];                         // The model's decision for this case

   ++marginal_x[ix];                  // Cumulate marginal distribution

   if  (bins_y[i] != ix)                   // If  the true class is not the decision

      ++error_count[ix];              // Then this is an error, so count it

   }
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CI = 0.0;                                   // �Will cumulate conditional error entropy here

for (ix=0; ix<nbins_x; ix++) {    // For all decision classes

   �if  (error_count[ix] > 0 && err�or_count[ix] < marginal_x[ix]) { // Avoid degenerate math

      �pyx = (double) error_count[ix] / (double) marginal_x[ix];    // P(e|X=x)

      �CI += (pyx * log(pyx) + (1.0-pyx) * log(1.0-pyx)) * marginal_x[ix] / ncases; // Eq 1.19

      }

   }

To compute an upper bound for the error rate, we need to define the conditional 

entropy of Y given that the model chose class x and this choice was an error. This 

unwieldy quantity is written as H(Y|e, X=x), and it is defined by Equation (1.21). The 

upper bound on the error rate is then given by Equation (1.22).
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The key fact to observe from Equation (1.22) is that the denominator is the 

minimum of erroneous entropy over all values of x, the predicted class. If the errors are 

concentrated in one or a few predicted classes, this minimum will be small, leading to 

a large upper bound on the theoretical error rate. This tells us that we should strive to 

develop a model that maximizes the entropy over all erroneous decisions, as long as we 

can do so without compromising the mutual information that is crucial to the numerator 

of the equation. In fact, the denominator of this equation is maximized (thus giving a 

minimum upper bound) when all errors are equiprobable.
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As was stated earlier, there is little or no practical need to compute this upper 

bound. It is of mainly theoretical interest. But if you want to do so, code to compute the 

denominator of Equation (1.22), drawn from the file MUTINF_D.CPP, is as follows:

/*

   Compute the marginal of  x and the counts in the nbins_x by nbins_y grid

*/

   for (ix=0; ix<nbins_x; ix++) {

      marginal_x[ix] = 0;

      for (iy=0; iy<nbins_y; iy++)

        grid[ix*nbins_y+iy] = 0;

      }

   for (i=0; i<ncases; i++) {

      ix = bins_x[i];

      ++marginal_x[ix];

      ++grid[ix*nbins_y+bins_y[i]];

      }

/*

   �Compute the minimum entropy, conditional on error and each X Note that the computation  

in the inner loop is almost the same as in the conditional entropy. The only difference is that  

since we are also conditioning on the classification being in error, we must remove from the  

X marginal the diagonal element, which is the correct decision.

   The outer loop looks for the minimum, rather than summing.

*/

   minCI = 1.e60;

   for (ix=0; ix<nbins_x; ix++) {

      �nerr = marginal_x[ix] - grid[ix*nbins_y+ix]; // Marginal that is in error

      if  (nerr > 0) {

         cix = 0.0;
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         for (iy=0; iy<nbins_y; iy++) {

            if  (iy == ix)     // This is the correct decision

               continue;    // So we exclude it; we are summing over errors

            pyx = (double) grid[ix*nbins_y+iy] / (double) nerr;    // Term in Eq 1.21

            if  (pyx > 0.0)

               cix -= pyx * log (pyx);                                              // Sum Eq 1.21

            }

         if  (cix < minCI)

            minCI = cix;

         }

      }

Equation (1.22) will often give an upper bound that is ridiculously excessive, 

sometimes much greater than one. This is especially true if H(e|X) is replaced by 

zero in the conservative analog to how we may replace this quantity by log(2) for the 

lower bound. As will be vividly demonstrated in Table 1-3 on page 35, this problem 

is particularly severe when the denominator of Equation (1.22) is tiny because of a 

grossly nonuniform error distribution. In this case, we can be somewhat (though only 

a little) aided by the fact that a naive classifier, one that always chooses the class whose 

prior probability is greatest, will achieve an error rate of 1–maxxp(x), where p(x) is the 

prior probability of class x. If there are K classes and they are all equally likely, a naive 

classifier will have an expected error rate of 1–1/K. If for some reason you do choose to 

use Equation (1.22) to compute an upper bound for the error rate, you should check it 

against the naive bound to be safe.

�Simple Algorithms for Mutual Information
In this section we explore several of the fundamental algorithms used to compute 

mutual information. Later we will see how these can be modified and incorporated into 

sophisticated practical algorithms.
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Equation (1.16) on page 18 is the standard definition of mutual information, although 

it is perfectly legitimate, and occasionally more efficient, to use any of the identities that 

preceded this equation. The file MUTINF_D.CPP contains a function that implements this 

definition. Here is a code snippet from this file, slightly modified for clarity:

/*

   Compute the marginals and the counts in the nbins_x by nbins_y grid

*/

   for (i=0; i<nbins_y; i++)

      marginal_y[i] = 0;

   for (i=0; i<nbins_x; i++) {

      marginal_x[i] = 0;

      for (j=0; j<nbins_y; j++)

         grid[i*nbins_y+j] = 0;

      }

   for (i=0; i<ncases; i++) {

      ix = bins_x[i];

      iy = bins_y[i];

      ++marginal_x[ix];

      ++marginal_y[iy];

      ++grid[ix*nbins_y+iy];

      }

/*

   Compute the mutual information

*/

   MI = 0.0;  // Will sum Eq 1.16 here

   for (i=0; i<nbins_x; i++) {

      px = (double) marginal_x[i] / (double) ncases;
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      for (j=0; j<nbins_y; j++) {

        py = (double) marginal_y[j] / (double) ncases;

        pxy = (double) grid[i*nbins_y+j] / (double) ncases;

        if  (pxy > 0.0)

           MI += pxy * log (pxy / (px * py));   // Eq 1.16

        }

      }

This algorithm assumes that the data is discrete. What if one or both of the variables 

are continuous? We saw on page 7 that the best way to partition a continuous variable 

to compute its entropy is to divide its range into bins based on equal spacing. This type 

of partitioning can produce unusually dense as well as unusually sparse bins, which 

is exactly what we want when we are estimating entropy. But for estimating mutual 

information, we would like the bin counts to reflect the relationship between the 

variables, rather than the marginal distributions. In the ideal situation, the marginal 

distribution of both variables would be uniform (all marginal bins would have equal 

counts) so that the counts in the grid represent the relationship between the variables to 

the maximum degree possible. This leads to a simple yet reasonably effective algorithm 

for computing the mutual information of a pair of continuous variables, or a continuous 

variable and a discrete variable. Later, on page 45, we will see a superior method for 

the case of two continuous variables. But for quick-and-dirty use or for the case of one 

variable being continuous and one being discrete, equal-marginal partitioning is useful.

To this end, I have an automated partitioning algorithm (source in PART.CPP) that I 

use in my own work. I do not guarantee that it is optimal in any particular sense, largely 

because there are numerous competing definitions of optimality for partitions. On the 

other hand, it has always behaved well for me. In particular, if you specify a desired 

number of bins that is at least as large as the number of different values of the variable, 

it will return the actual number of bins and create a single bin for each different value. 

Also, if the variable has few or no ties and you specify a bin count that is small relative 
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to the number of cases, it will compute bins whose counts are approximately or exactly 

equal. Finally, if the variable is continuous but has numerous ties, it will group cases into 

bins in a way that makes sense and seems to work well. The function is called as follows:

void partition (

    int n,                 // Input: Number of  cases in the data array

    double *data,    // Input: The data array

    int *npart,          // Input/Output: Number of  partitions to find; Returned as

                             �// �actual number of  partitions, which happens if  massive ties

    double *bnds,   // Output: Upper bound (inclusive) of  each partition

    short int *bins   // Output: Bin id (0 through npart-1) for eac h case

    )

The first step is to copy the data and sort it into ascending order. We need to preserve 

the indices of the original points, as we will need this information to assign cases to bins 

as the last step. Also, compute an integer array of ranks to identify ties. This is not strictly 

necessary, as we could simply use the floating-point data. But integer comparisons can 

be much faster than real comparisons on some hardware, which could make a difference 

for huge arrays.

    for (i=0; i<n; i++) {

       x[i] = data[i];             // Copy the data for sorting

       indices[i] = i;             // Indices will be preserved here

       }

    qsortdsi (0, n-1, x, indices);    �// Sort ascending, also moving indices

    ix[0] = k = 0;                // Compute ranks, including ties

    for (i=1; i<n; i++) {

       �if  (x[i] - x[i-1] >= 1.e-12 * (1.0 + fabs(x[i]) + fabs(x[i-1])))   // Check for effective tie

          ++k;      // If  not a tie, advance the counter of  unique values

       ix[i] = k;

       }
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Compute an initial set of equal-size bins, ignoring ties for now. If there are no ties, 

this is all we need to do.

    k = 0;                        // Will be start of  next bin up

    for (i=0; i<np; i++) {  // For all partitions

       j = (n-k)/(np-i);       // Number of  cases in this partition

       k += j;                    // Advance the index of  next one up

       bin_end[i] = k-1;    // Store upper bound of  this bin

       }

Iteratively refine the bin boundaries until no boundary splits a tied value into 

different bins. Note that the upper bound of the last partition is always the last case in the 

sorted array, so we don’t need to worry about it splitting a tie, as there are no cases above 

it. All we care about are the np–1 internal boundaries. Each iteration does two things. 

First, it removes the first splitting bound that it finds. Then it attempts to replace this lost 

bound by inserting a new bound in a sensible way.

    for (;;) {                        // Iterate until no ties are split across a boundary

       tie_found = 0;           // Flags if  we found a split tie

       for (ibound=0; ibound<np-1; ibound++) {                   �// Check all boundaries

          if  (ix[bin_end[ibound]] == ix[bin_end[ibound]+1]) {    �// Splits a tie?

             // This bound splits a tie. Remove this bound.

             for (i=ibound+1; i<np; i++)

                bin_end[i-1] = bin_end[i];

             --np;                    // We just lost a bound

             tie_found = 1;     // Flag that we found a split tie and fixed it

             break;                 // Just remove one bad bound at a time

             }

          } // For all bounds, looking for a split across a tie

       if  (! tie_found)          // If  we got all the way through the loop

          break;                    // without finding a bad bound, we are done
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       // The offending bound is now gone. Try splitting each remaining

       // bin. For each split, check the size of  the smaller resulting bin.

       // Choose the split that gives the largest of  the smaller.

       // Note that np has been decremented, so now np < *npart.

       istart = 0;

       nbest = -1;

       for (ibound=0; ibound<np; ibound++) {   // Check all bounds

          istop = bin_end[ibound];                      // End of  this bin

          // Now processing a bin from istart through istop, inclusive

          for (i=istart; i<istop; i++) {         // Try all possible splits of  this bin

             if  (ix[i] == ix[i+1])                    // If  this splits a tie

                continue;                             // Don't check it

             nleft = i - istart + 1;                 // Number of  cases in left half

             nright = istop - i;                     // And right half

             if  (nleft < nright) {                   // If  the left half  is smaller

                if  (nleft > nbest) {                // Keep track of  the max

                   nbest = nleft;                    // This is the best so far

                   ibound_best = ibound;     // And its base bound

                   isplit_best = i;                  // Its location in the base bin

                   }

                }

             else {                                     // Ditto when right half  is smaller

                if  (nright > nbest) {

                   nbest = nright;

                   ibound_best = ibound;

                   isplit_best = i;

                   }

                }

             }

          istart = istop + 1;                      // Move on to the next bin

          } // For all bounds, looking for the best bin to split
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       // The search is done. It may (rarely) be the case that no further

       // splits are possible. This will happen if  the user requests more

       // partitions than there are unique values in the dataset.

       // We know that this has happened if  nbest is still -1. In this case

       // we (obviously) cannot do a split to make up for the one lost above.

       if  (nbest < 0)        // If  no further splits are possible

          continue;          // Then don't do it!

       // We get here when the best split of  an existing partition has been

       // found. Save it. The bin that we are splitting is ibound_best,

       // and the split for a new bound is at isplit_best.

       for (ibound=np-1; ibound>=ibound_bes t; ibound--)      // Move up old bounds

          bin_end[ibound+1] = bin_end[ibound];                       // To make room for new one

       bin_end[ibound_best] = isplit_best;                              // The new split

       ++np;                                                                             // Count it

       } // Endless search loop

At this point the partitioning is complete. Return the bounds to the user. Also return 

the bin membership of each case.

    *npart = np; // Return the final number of  partitions

    for (ibound=0; ibound<np; ibound++)

      bnds[ibound] = x[bin_end[ibound]];

    istart = 0;                                                   // The current bin starts here

    for (ibound=0; ibound<np; ibound++) {      // Process all bins

      istop = bin_end[ibound];                          // Inclusive end of  this bin

      for (i=istart; i<=istop; i++)

        bins[indices[i]] = (short int) ibound;

      istart = istop + 1;

      }
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�The TEST_DIS Program
The file TEST_DIS.CPP is a program that illustrates the techniques discussed so far. It 

allows the user to specify properties for a pair of variables, and then it generates random 

datasets having the specified properties and computes mutual information and some 

related measures. This program is for demonstration and exploration only. Later in this 

chapter we will present a program that reads actual datasets and processes them. The 

TEST_DIS program is invoked by typing its name followed by five parameters:

TEST_DIS nsamples ntries type parameter ptie

•	 nsamples: Number of cases in the dataset

•	 ntries: Number of Monte Carlo replications

•	 type: Type of test

•	 0=bivariate normal with specified correlation

•	 1=discrete bins with uniform error distribution

•	 2=discrete bins with triangular error distribution

•	 3=discrete bins with cyclic error distribution

•	 4=discrete bins with attractive class error distribution

•	 parameter: Depends on type of test

•	 0: Correlation

•	 >0: Error probability

•	 ptie: If type=0, probability of a tied case, else ignored

The bivariate normal test generates two normally distributed random variables 

having the specified correlation. These continuous variables are partitioned into bins 

using the partition() subroutine presented in the prior section. All other tests generate 

a confusion matrix having the specified error probability. The uniform error test 

distributes the misclassifications to all erroneous bins with equal probability. The 

triangular test places most of the errors in the upper triangle. The cyclic test places 

the errors in a nearby class. The attractive test favors one or two unnaturally attractive 

classes. These all represent different types of model failure. Full details of the error 

distributions can be found in the source code.

Chapter 1  Information and Entropy



35

A variety of numbers of bins are tested, depending on the number of cases that the 

user wants for each sample. The tests are repeated ntries times. For each test, it is possible 

to compute the theoretically correct mutual information. This enables the program to 

keep track of the bias and standard error of the mutual information estimates. It also 

computes loose and tight lower and upper bounds for misclassification error. The tight 

lower bounds are based on Equation (1.20) and the tight upper bounds on Equation 

(1.22). The loose lower bound is obtained by subtracting h(0.5)=log(2) in the numerator, 

as described on page 21, and the loose upper bound is obtained by not subtracting 

anything. The means of these bounds are computed across replications of the test. The 

program also counts how often the true value of the error rate falls outside the computed 

bounds. This demonstrates how the nature of the model’s error distribution affects the 

width and quality of the bounds.

Table 1-3 shows the results from four runs of the TEST_DIS program. In all cases, 

10,000 cases were in each sample. The test was replicated 1,000 times, the error rate was 

set at 0.1, and 32 bins were used. Observe that in all four scenarios, the estimated mutual 

information was very close to the true value, and the standard error of the estimate was 

only slightly greater than the bias, indicating that the estimates were very stable.

The loose error bounds, supposedly bounding the true value of 0.1, were universally 

worthless. The tight bounds were very good for the well-behaved model that had 

uniformly distributed errors. They deteriorated badly, though in different directions, for 

the triangular and cyclic error distributions. For a model with an attractive class, both the 

lower and the upper bounds were totally worthless. Not shown in this table is that the 

computed bounds never failed to enclose the true error rate.

Table 1-3.  Some Tesults from the TEST_DIS Program

True Est Bias StdE |   Loose   | |   Tight  |

1 2.85 2.80 0.05 0.06 −0.02 0.24 0.08 0.11

2 2.88 2.84 0.04 0.04 −0.03 0.51 0.08 0.25

3 3.07 3.07 0.00 0.01 −0.09 0.66 0.02 0.11

4 3.04 3.04 0.00 0.01 −0.10 0.97 0.01 0.97
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The discussion of the TEST_DIS program is necessarily brief here. Careful study of the 

source code will show how the theoretical mutual information is computed, along with 

error bounds. Also, calling methods for the functions discussed earlier in the chapter are 

demonstrated.

�Continuous Mutual Information
Near the beginning of this chapter we saw that entropy is fundamentally a property 

of finite discrete random variables, those that can take on only a finite number of 

fixed values. Entropy can be extended to continuous random variables by replacing 

summation with integration, but the continuous analog of entropy is of dubious worth 

in practical applications. Luckily, the situation is considerably better when it comes to 

mutual information. In prior sections we saw how the partition() function or something 

similar could be used to discretize a continuous variable into bins, and then the discrete 

mutual information could be computed from the bin counts. If both random variables 

are continuous, there are much better ways of estimating their mutual information, 

which is defined in Equation (1.23). (Note that if one variable is continuous and one is 

discrete, as would be the case when predicting a class based on a continuous predictor, 

the recommended procedure is to discretize the continuous variable into equal-sized 

bins and compute discrete mutual information.)
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One beautiful aspect of Equation (1.23) is that it is immune to transformations of the 

variables. Suppose g(.) and h(.) are one-to-one continuous differentiable functions over 

the domain of x and y, respectively. Let x′ =g(x) and y′=h(y). Then I(x;y)=I(x′;y′). This is in 

sharp contrast to continuous entropy, which is not even immune to linear rescaling, let 

alone nonlinear transformation.

An immensely useful corollary of this property is that observed values of the 

variables can be transformed to ranks or to any predefined distribution prior to 

computing their mutual information. This simplifies and stabilizes numerical 

algorithms.
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�The Parzen Window Method
To use Equation (1.23), we need to know the joint and marginal density functions, fX,Y(.), 

fX(.), and fY(.). Naturally, we almost never have any knowledge of these functions other 

than what our data sample provides. In most cases we aren’t even willing to assume 

a functional form such as normality. The most common way of handling this difficult 

situation is to use a Parzen window approximation.

The intuition behind a Parzen window is that areas of the domain in which the 

probability density is large will manifest this in the data sample by the appearance of 

many cases in this area. Similarly, if the probability density is small in some area of 

the domain, few or no cases from this area will appear in the sample. This leads to a 

generalized binning of the samples. Instead of defining strict boundaries for bins and 

counting how many cases fall into each bin, we define a weighting function, a movable 

window that spans the sample. When we want to compute the probability density at 

some point in the domain, we center the window at that point and compute a weighted 

sum of the cases nearby. Cases that are close to the domain point receive a large weight, 

while further cases receive a small weight. Very distant cases receive no weight at all. 

This technique is called the method of Parzen windows, after its inventor.

The density approximation is simple for the one-dimensional case, which covers 

the marginal distributions. Let the sample values be x1, x2, …, xn. Assume that we have 

a weighting function W(d), which should be large when d is near zero and become 

smaller as d moves away from zero. Let s be a scale factor. Then the Parzen density 

approximation is given by Equation (1.24).
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It should be clear that if the argument x has numerous cases nearby, the sum will be 

relatively large, because W will have many arguments near zero. Conversely, if there are 

no cases near x, the sum will be small, because the argument for W will be large (and 

hence W small) for all cases.

This is exactly what we want. The scale factor, sigma, determines the width of the 

window. If it is small, implying a narrow window, only cases in the immediate vicinity 

of x will impact the sum. If sigma is large, even distant cases will have an effect on the 

estimated density.
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Parzen (1962) and Specht (1990a) provide a rigorous description of the properties 

that W() must have in order for the Parzen method to be an effective density estimator. 

Here, we say only that these properties are reasonable: W() must be bounded, go to 

zero rapidly as the argument goes away from zero, and integrate to unity (which is a 

fundamental property of a density function). The weight function favored by many is the 

ordinary Gaussian function of Equation (1.25).
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The Parzen density estimator is easily generalized to more than one dimension, as 

shown in Equations (1.26) and (1.27).
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The file PARZDENS.CPP contains complete source code for computing Parzen density 

estimators in one, two, and three dimensions. Here we examine only a few snippets, 

modified for clarity when necessary, that illustrate the ideas just presented.

One aspect of the supplied code must be emphasized. Mutual information via the 

Parzen window method tends to be most stable when the variables have at least roughly 

normal distributions. For this reason, the Parzen window code applies a universal 

normalization transform before computing the density. (Recall that mutual information 

is immune to this nonlinear transformation.) The implication is that these routines 

cannot be used for general density computation. They are intended to be used only 

when integrating Equation (1.23), the definition of continuous mutual information. If 

you want to use them for other applications, you must remove the normalization code 

and compute the scale factor appropriately.
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To estimate a normalized Parzen density in one dimension, create a ParsDens_1 

object. The constructor header looks like this:

ParzDens_1::ParzDens_1 (

    int nd,            // Number of  data points

    double *tset,  // The data array

    int div)           // Resolution divisor

The constructor first transforms the input data to a normal distribution. This is 

a standard statistical algorithm. To transform a dataset to a given distribution, first 

compute the cumulative distribution function (CDF) of the data and then map each 

point to the inverse CDF of the desired distribution. The sorting algorithm qsortdsi() 

swaps the indices along with the data.

for (i=0; i<nd; i++) {

     indices[i] = i;

     d[i] = tset[i];

     }

   qsortdsi (0, nd-1, d, indices);

   for (i=0; i<nd; i++)

      d[indices[i]] = inverse_normal_cdf  ((i + 1.0) / (nd + 1));

The sigma scale factor in Equation (1.24) is represented by std in the code. It is equal 

to 2.0 divided by the user’s specified resolution, div. The private variable var will be used 

in the density computation later. The integration routine will need to know the complete 

practical range of the variable. Since we know that the data now follows a standard 

normal distribution, it is trivial to compute these limits. Finally, we compute the 

normalizing factor of Equations (1.24) and (1.25) so that the function integrates to unity, 

an essential property of a density. The code to do all this is as follows:

   std = 2.0 / div;

   var = std * std;

   high = 3.0 + 3.0 * std;

   low = -high;

   factor = 1.0 / (nd * sqrt (2.0 * PI * var));
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If there are numerous data points, which is the rule in practice, the summation in 

Equation (1.24) is slow. For this reason, the code only uses Equation (1.24) when nd 

is small. For large values, the constructor evaluates the density using Equation (1.24) 

for a reasonable number of points, and then it constructs a cubic spline interpolating 

function. This spline is used in future calls to the density evaluation function. Since 

integration involves a huge number of function calls, the savings is enormous. The spline 

code is tedious and uninteresting, so it will not be discussed here. See PARZDENS.CPP 

and SPLINE.CPP for details.

After the constructor has been called, the density (in the normalized domain, not the 

original domain) is estimated by calling the density() member function. Either it uses the 

spline approximation or it implements Equation (1.24) directly.

   sum = 0.0;

   for (i=0; i<nd; i++) {

      diff  = x - d[i];

      sum += exp (-0.5 * diff  * diff  / var);

      }

   return sum * factor;

The two-dimensional Parzen density code is a straightforward extension of the  

one-dimensional code, so it will not be shown here. It, too, uses interpolation to save 

time with large datasets. In this case, bilinear interpolation with quadratic extension is 

used. See PARZDENS.CPP and BILINEAR.CPP for details.

To compute the mutual information of a pair of variables using the Parzen window 

method, first create a MutualInformationParzen object. The constructor header and the most 

important line of code look like this:

MutualInformationParzen::MutualInformationParzen (

   int n,                      // Number of  cases

   double *depvals,   // They are here

   int div)                   // Number of  divisions, typically 5-10

{

dens_dep = new ParzDens_1 (n, depvals, div);

}
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One of the two variables is supplied to the constructor. It is called depvals in the 

code, even though the inherent symmetry of mutual information means that there is no 

distinction between dependent and independent variables. The reason for this naming 

and for supplying one variable to the constructor is that this routine will often be used 

for evaluating the mutual information between a dependent variable and each of a set 

of candidates for independent variable. By doing as much processing as possible in the 

constructor, we avoid redundant computation later.

When we want to compute the mutual information between the dependent variable 

and a candidate predictor, the member function mutinf() is called. Its essential code, 

modified for clarity, is as follows:

   this_dens_dep = dens_dep;

   this_dens_trial = new ParzDens_1 (n, x, n_div);

   this_dens_bivar = new ParzDens_2 (n, depvals, x, n_div);

   criterion = integrate (this_dens_trial->low, this_dens_trial->high,..., outercrit);

The variables that start with this are statics local to the module, used to pass their 

data to local functions that the generic integration routine integrate() calls. This code does 

very little. It creates a univariate Parzen density for the candidate variable, and it creates 

a bivariate Parzen density for both variables. It then integrates outercrit() over the range of 

the candidate variable.

The real work of the algorithm is in the integration criterion routines outercrit() and 

innercrit(). These make up the integrand of Equation (1.23) and demonstrate a standard 

technique for double integration. The outer criterion, which is integrated over the range 

of the trial variable as shown in the prior code, itself integrates the inner criterion over 

the range of the dependent variable. The inner criterion needs both variables, as well as 

the density of the trial variable, so the two statics make it easy to pass this information 

from the outer criterion to the inner.

static double this_x, this_px; // Needed for two-dimensional integration

double outer_crit (double t)

{

   double val, high, low;
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   high = this_dens_dep->high;

   low = this_dens_dep->low;

   this_x = t;

   this_px = this_dens_trial->density (this_x);

   val = integrate (low, high,..., inner_c rit);

   return val;

}

double inner_crit (double t)   // Integrand of  Equation (1.23)

{

   double py, pxy, term;

   py = this_dens_dep->density (t);

   pxy = this_dens_bivar->density (t, this_x);

   term = this_px * py;    // Denominator

   if  (term < 1.e-30)        // Prevent dividing by zero

      term = 1.e-30;

   term = pxy / term;       // Will take log of  this

   if  (term < 1.e-30)        // Prevent taking log of  zero

      term = 1.e-30;

   return pxy * log (term);

}

The code shown here is slightly different from the code on the Apress.com site. In 

addition to a few changes that clarify operation, there is a difference related to the fact 

that the Parzen code supplied with this text converts the data to a normal distribution. 

Since this is the case, it is both inefficient and slightly (though not seriously) inaccurate 

for the inner and outer criteria to use a one-dimensional Parzen window for the 

marginal distributions. We already know that they are normal, so the code on the 

accompanying disc replaces the Parzen window with direct evaluation of the standard 

normal density. Comments to this effect appear in the code. This is so that the user who 

wants to experiment can easily switch back and forth between the two methods.

Thus far, we have conveniently pushed aside the issue of the scaling factor, sigma 

in Equations (1.24) and (1.26), and std in the code for the Parzen density. This is not 

a trivial issue. In fact, it is such a serious issue that many people avoid using Parzen 

windows to approximate mutual information. There are other algorithms, such as the 

excellent adaptive partitioning method shown in the next section. However, Parzen 

windows have a place in a complete toolbox. When the dataset contains just a few cases, 
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perhaps several dozen, other methods are severely compromised. In this situation, 

a wide window will capture most of the important information in the distribution 

without running an inordinate risk of confusing random variation with true mutual 

information. Also, despite that an excessively wide window will bias the computed 

mutual information downward, while an excessively narrow window will bias it upward, 

this bias will be reflected nearly equally in all candidate predictors. So if the purpose of 

computing mutual information is to evaluate the relative quality of predictor candidates, 

the ranking of the candidates will be only minimally impacted by the window width, 

especially if the width is on the large side of optimal.

How do we choose a good window width? Ideally, we have software that plots a 

histogram with the Parzen density overlaid. By trying several different window widths, 

we can easily find the value that best captures the essence of the distribution. See, for 

example, Figures 1-4 through 1-7. In the absence of such a tool, a decent rule of thumb 

for the Parzen window software supplied with this text is to use a division factor of about 

five for very small samples, ten if the sample contains several hundred cases, and 15 if 

there are more than a thousand cases.

Figure 1-4.  Sigma is much too small
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Figure 1-6.  Sigma is on the large side of optimal

Figure 1-5.  Sigma is on the small side of optimal
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�Adaptive Partitioning
This section describes what is probably the best general-purpose algorithm for 

estimating the mutual information of two continuous variables. It is considerably 

more complex than the Parzen-window method just described, but the complexity is 

worthwhile. The algorithm is conceptually elegant and widely effective in practice. It also 

avoids the need to tweak a fussy parameter, which we must do for the Parzen window. It 

does involve two tunable parameters, but the algorithm is remarkably insensitive to their 

values, so in practice having to set two parameters is almost never a problem.

Recall that the naive way to compute the mutual information of a pair of continuous 

variables is to partition the bivariate space into a checkerboard of bins by defining 

boundaries for each marginal distribution and then plugging the bin counts into the 

discrete formula for mutual information. This was discussed on page 29. The problem 

with the naive method is that it pays too much attention to areas of the bivariate domain 

that have few or no cases, while perhaps paying too little attention to dense areas where 

most of the information lies. The algorithm on page 29 partially solves this problem by 

Figure 1-7.  Sigma is much too large
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at least ensuring that the marginals have equal-sized bins. But it is nice to extend this 

property to two dimensions.

Figure 1-8 on page 47 is a contour plot of the bivariate density of a pair of variables. 

Most cases lie in a J-shaped cluster, with fewer cases around the perimeter of the main 

pattern. No cases lie in the white areas. It should be obvious that if we were to divide this 

bivariate space into, say, 20 divisions for each variable, most of the 20*20=400 bins would 

be empty. This leads to serious problems with bias and error variance in the mutual 

information estimate.

[Darbellay and Vajda, 1999. “Estimation of the Information by an Adaptive 

Partitioning of the Observation Space.”  IEEE Transaction on Information Theory 45:4.] 

present a beautiful algorithm that adaptively partitions the bivariate space in such a 

way that attention is focused on areas of high density. They also demonstrate that for a 

variety of distributions, their algorithm has much less error than naive algorithms.

Look at Figure 1-9. It shows the distribution of Figure 1-8 partitioned into a  

two-by-two grid. The upper-left block is empty, so it can be ignored. Each of the 

remaining three blocks is partitioned into a two-by-two grid as shown in Figure 1-10. 

Two more blocks can be eliminated, one because it is empty and one because it is 

nearly empty. Partitioning again gives us Figure 1-11, in which several more blocks are 

eliminated. It should be apparent that eventually the entire focus will be on areas of 

support for the density.

How far do we take the partitioning? If we stop too soon, relationships between the 

two variables will be obscured because details will be lost by tossing cases into overly 

large bins. This will downwardly bias the mutual information estimate. Conversely, if 

we stop too late, random variation will masquerade as actual information, inflating the 

estimate of the mutual information. This problem, of course, is not unique to adaptive 

partitioning. Anyone who experiments with the TEST_DIS program, discussed on page 34, 

will see it vividly displayed with naive partitioning of a bivariate normal distribution. The 

big difference is that since adaptive partitioning operates in two dimensions, intelligent 

stopping criteria are easier to implement than with naive algorithms.
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Figure 1-8.  A bivariate distribution

Figure 1-9.  First partitioning
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Figure 1-10.  Second partitioning

Figure 1-11.  Third partitioning
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The stopping decision is based on several tests. The first and most important is a 

simple chi-square test of the upcoming partition. The block whose candidacy for two-by-

two subdivision is being tested is subjected to the subdivision on a trial basis. Let n1, n2, 

n3, and n4 be the bin counts of the four subdivisions, respectively. Let e1, e2, e3, and e4 be 

the expected bin counts under the null hypothesis that there is no relationship between 

the horizontal and vertical variables. These four expected counts will be exactly or 

almost exactly equal depending on whether the numbers of rows and columns are even 

(and hence exactly splitable in half) or odd (an exact split in half cannot be done). If the 

two variables are unrelated, the observed bin counts will equal the expected bin counts 

except for random variation. But if there is a relationship between the two variables, the 

counts will be skewed away from their expected values, with some bin being favored at 

the expense of another. The standard two-by-two chi-square test statistic is shown in 

Equation (1.28).
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(1.28)

If this test statistic fails to exceed the threshold for a small significance level, we 

conclude that the trial subdivision is probably pointless. However, it is possible that 

there really is a deterministic skewing of the data in the enclosing block, but a simple 

two-by-two subdivision fails to pick it up. This does not happen often, but it is still 

worth considering. For this reason, if the two-by-two chi-square test fails to detect a 

nonrandom distribution and if the enclosing block is relatively large, we subdivide into 

a four-by-four set of blocks and perform a chi-square test. If this test also fails to detect a 

nonrandom data distribution, we conclude that nothing is to be gained by subdividing 

the enclosing block, compute its contribution to the total mutual information, and 

henceforth ignore it.

But if either the original two-by-two chi-square test or the subsequent four-by-four 

test determines that the enclosing block is not uniform, we partition it into four smaller 

blocks. We check the size of each of these smaller blocks. If it is tiny, we compute its 

contribution to the total mutual information and declare that block finished. If it is still 

large enough for possible future splitting, we push it onto a stack of blocks to be explored 

and continue processing.
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When a block is determined to be finished, whether because it is small or because 

it is uniform, its contribution to the total mutual information is computed by using a 

discrete approximation to Equation (1.23) on page 36. This is shown in Equation (1.29),  

in which px is the fraction of the X marginal distribution encompassed by the X 

dimension of the block, py is the fraction of the Y marginal distribution encompassed 

by the Y dimension of the block, and pxy is the fraction of the bivariate distribution 

encompassed by the area of the block.

	
MI Contribution p

p

p pxy
xy

x y

= log
	

(1.29)

We will soon present a detailed discussion of the code that implements adaptive 

partitioning. But since it is quite complex, we begin with a simplified statement of the 

algorithm. Note that the code includes an optional provision to prevent splitting across 

tied data. It is senseless to define a subdivision in which some cases land on one side of 

the trial partition while other cases whose value on the variable are equal lie on the other 

side. It makes more sense to place all equal values on the same side of the boundary. 

However, truly continuous data will never have any ties, and this provision adds to the 

already severe complexity of the algorithm. For these reasons, the simplified statement 

here will ignore ties. The topic will be covered in the discussion of the code. The 

algorithm is as follows:

Convert the data (n cases) to ranks.

Initialize nstack=1. This is the number of  rectangles on the to-do stack. Also initialize this one stack 

entry to be the entire dataset. Nstack will be decremented when a rectangle is popped from the stack, 

and incremented when a rectangle is pushed onto the stack.

While nstack > 0 {

         Pop a rectangle from the stack

         Compute the X and Y boundaries for splitting the rectangle 2-by-2

         �Compute the expected and actual bin counts in each of  the four sub-rectangles
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         �Perform a 2-by-2 chi-square test. Set the flag splitable to true if  the test found a significant 

disparity in bins counts, else false.

         �If  splitable = false and the rectangle is big {

                  Perform a 4-by-4 chi-square test.

                  If  the test finds a significant disparity, set splitable true.

                  }

         �If  splitable = true {

                  For each of  the four sub-rectangles {

                           If  this rectangle is not tiny {

                                   Push it onto the stack

                                 �  Rearrange rectangle indices to reflect this partitioning

                                   }

                           Else {

                                   �Use Equation (1.29) to evaluate this sub-rectangle's contribution

                                   }

                           }

                  }

         �Else {

                �  Use Equation (1.29) to evaluate this current rectangle's contribution

                  }

         }

Complete code to implement the adaptive partitioning algorithm can be found in the file 

MUTINF_C.CPP in the accompanying code set. This code is quite complex, especially since 

keeping track of the nested rectangles in an efficient manner is tricky. Therefore, we will 

break it down into sections, slightly simplifying as needed, and discuss it one part at a time.

One of the two core components of the program is an array called indices. It is 

initialized to the integers 1 through n. As the algorithm progresses and rectangles are 

subdivided, this array will be shuffled. At any time, we can define a rectangular block by 
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pointing to its starting and ending elements in this array. This lets us efficiently handle 

nesting of rectangles. For example, we may have an enclosing block that starts at element 

50 of indices and ends at element 89. It may consist of four smaller blocks, defined by 

elements 50-59, 60-69, 70-79, and 80-89, respectively.

The other core component is a stack of rectangles to be processed. Each stack entry 

has the following six members:

•	 Xstart, Xstop: Starting and ending (inclusive) ranks of X in the 

rectangle

•	 Ystart, Ystop: Starting and ending (inclusive) ranks of Y in the rectangle

•	 DataStart, DataStop: Rectangle’s starting and ending elements of indices

The program begins by converting each of the two variables to integer ranks. It also 

keeps track of tied values so that later we can avoid splitting tied cases into different 

partitions. Note that rather than testing for exact equality, we test for values that are 

nearly equal in terms of double precision. This is a good habit in most programming 

environments, although the reader is free to be strict if desired. Here is the code for the x 

variable. The other variable, y, is treated similarly.

   for (i=0; i<n; i++) {

      work[i] = xraw[i];          // Copy the data, as we will sort it

      indices[i] = i;                // Preserve the original locations

      }

   qsortdsi (0, n-1, work, indices);    // Sort ascending, also moving indices

   for (i=0; i<n; i++) {

      x[indices[i]] = i;           // We now have ranks

      �if  �(i < n-1 && work[i+1] - work[i] < 1.e-12 * (1.0 + fabs(work[i]) + fabs(work[i+1])))

         �x_tied[i] = 1;            // This case is tied with one above

      else

         x_tied[i] = 0;

      }
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To initialize, the indices array is set equal to the entire dataset, and one rectangle, the 

entire dataset, is placed on the to-do stack. The stack entries are inclusive, so the last 

index is n–1.

   for (i=0; i<n; i++)               // For the entire dataset

      indices[i] = i;                  // These are the case indices

   stack[0].Xstart = 0;           // Lowest X rank in this rectangle

   stack[0].Xstop = n-1;        // And highest

   stack[0].Ystart = 0;           // Ditto for Y

   stack[0].Ystop = n-1;

   stack[0].DataStart = 0;      // �Index into indices of  the first case in the rectangle

   stack[0].DataStop = n-1;   // And the last case

   nstack = 1;                        // �This is the top-of-stack pointer: One item in stack

The mutual information will be cumulated in MI. The program loops over the same 

code, processing one rectangle at a time, as long as there is at least one rectangle on the 

stack. The first step in the loop is to pop the rectangle off the stack.

   MI = 0.0;                                 // Will cumulate mutual information here

   while (nstack > 0) {                 // As long as there is a rectangle to do

      // Get the rectangle pushed onto the stack most recently

      �--nstack;                                                          // �Pop the rectangle off  the stack

      fullXstart = stack[nstack].Xstart;                     // Starting X rank

      fullXstop  = stack[nstack].Xstop;                     // And ending

      fullYstart = stack[nstack].Ystart;                     // Ditto for Y

      fullYstop  = stack[nstack].Ystop;

      currentDataStart = stack[nstack].DataStart;   // The cases start here

      currentDataStop  = stack[nstack].DataStop;   // And end here

Compute the center of this rectangle in preparation for the two-by-two trial split. 

This center will be the rightmost (largest) index in the left (smaller rank) subrectangle. If 

this case happens to be tied with the next one up, we don’t want to split here, as such a 

split would put tied cases on opposite sides of the partition. So, we set a flag to indicate 
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whether we have this problem. If not, we are done. But if this exact center is tied, we 

attempt to move it off-center as little as possible, stopping as soon as we find a split that 

is not tied. In the pathological case that we never succeed, the tie flag remains set. We 

will check it later. This code is repeated for the y variable. Here we show only the x code.

      centerX = (fullXstart + fullXstop) / 2;        // �Exact center, the ideal boundary

      X_AllTied = (x_tied[centerX] != 0);          // �Does it happen to be tied here?

      if  (X_AllTied) {                             // If  so, try to move it

         for (ioff=1; centerX-ioff  >= fullXstart; ioff++) {   // �Try to keep the offset small

            if  (! x_tied[centerX-ioff]) {                  // �If  this is not tied

               X_AllTied = 0;                           // We succeeded, so reset flag

               centerX -= ioff;                         // The new boundary is here

               break;                               // �Done searching

               }

            if  (centerX + ioff  == fullXstop)        // �Quit if  we hit the edge

               break;

            if  (! x_tied[centerX+ioff]) {              // Try the other direction

               X_AllTied = 0;

               centerX += ioff;

               break;

               }

            }

          }

If either variable happens to be entirely tied, ideally a rare condition, the rectangle is 

declared to be nonsplitable. Otherwise, we trivially compute the starting and stopping 

indices of the four subrectangles defined by the split. The expected bin count in each 

partition is the total bin count times the fraction of the total x side and times the fraction 

of the total y side. The actual count in each partition is computed by tallying the number 

of cases that lie on each side of each center bound.

      if  (X_AllTied || Y_AllTied)      // If  either variable is entirely tied

         splitable = 0;                // No sense trying to split

      else {
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         trialXstart[0] = trialXstart[1] = fullXstart; // The four sub-rectangles

         trialXstop[0]  = trialXstop[1]  = centerX;

         trialXstart[2] = trialXstart[3] = centerX+1;

         trialXstop[2]  = trialXstop[3]  = fullXstop;

         trialYstart[0] = trialYstart[2] = fullYstart;

         trialYstop[0]  = trialYstop[2]  = centerY;

         trialYstart[1] = trialYstart[3] = centerY+1;

         trialYstop[1]  = trialYstop[3]  = fullYstop;

         // Compute the expected count in each of  the four sub-rectangles

         for (i=0; i<4; i++)

            �expected[i] = (currentDataStop - currentDataStart + 1) *           // Total count

                 �(trialXstop[i]-trialXstart[i]+1.0) / (fullXstop-fullXstart+1.0) *    // X fraction

                 �(trialYstop[i]-trialYstart[i]+1.0) / (fullYstop-fullYstart+1.0);     // Y fraction

         // Compute the actual count in each of  the four sub-rectangles

         actual[0] = actual[1] = actual[2] = actual[3] = 0;

�         for (i=currentDataStart; i<=currentDataStop; i++) { // �All cases in this rectangle

            k = indices[i];           // Index of  this case

            if  (x[k] <= centerX) {         // Is it on the left side?

               if  (y[k] <= centerY)        // Is it in the top half

                   ++actual[0];

               else

                   ++actual[1];

               }

            else {

               if  (y[k] <= centerY)

                  ++actual[2];

               else

                  ++actual[3];

               }

            }

Chapter 1  Information and Entropy



56

Compute the two-by-two chi-square test. If the actual counts are sufficiently different 

from the expected counts, declare the rectangle worth splitting.

         testval = 0.0;                  // Will cumulate test statistic here

         for (i=0; i<4; i++) {                 // The four sub-rectangles

            diff  = fabs (actual[i] - expected[i]) - 0.5;  // Equation (1.28)

            testval += diff  * diff  / expected[i];

            }

         splitable = (testval > chi_crit)? 1 : 0; // Does it exceed the criterion?

It may sometimes be the case that the rectangle really does have a nonuniform data 

distribution, but the cases happen to be roughly equally distributed among the four 

subrectangles. We can usually avoid this trap by splitting it into a four-by-four set of 

16 partitions. Of course, this makes sense only if the rectangle contains more than just 

a few cases. I don’t bother checking for ties in this finer split because it would greatly 

complicate the code, and this is a fairly rare occurrence anyway. The decision from the 

two-by-two split is the final decision the vast majority of the time. Moreover, ties will 

never occur in truly continuous data, so handling ties is a moot point in many or most 

situations.

      if  (! splitable && fullXstop-fullXstart > 30 && fullYstop-fullYstart > 30) {

           ipx = fullXstart - 1;      // Will be last index of  prior sub-rectangle

           ipy = fullYstart - 1;      // Used for computing X and Y fractions

           for (i=0; i<4; i++) {      // �Find the four x and y boundaries in this loop

              xcut[i] = (fullXstop - fullXstart + 1) * (i+1) / 4 + fullXstart - 1; // Rightmost limit

              xfrac[i] = (xcut[i] - ipx) / (fullXstop - fullXstart + 1.0); // Fraction in X direction

              ipx = xcut[i];                               // For next pass

              ycut[i] = (fullYstop - fullYstart + 1) * (i+1) / 4 + fullYstart - 1; // Ditto for Y

              yfrac[i] = (ycut[i] - ipy) / (fullYstop - fullYstart + 1.0);

              ipy = ycut[i];

              }
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           // Compute expected counts

           for (ix=0; ix<4; ix++) {

              for (iy=0; iy<4; iy++) {

                 expected[ix*4+iy] = xfrac[ix] * yfrac[iy] *

                                                  (currentDataStop-currentDataStart+1);

                 actual44[ix*4+iy] = 0;

                 }

              }

           // Compute actual counts

           for (i=currentDataStart; i<=currentDataStop; i++) { // �All cases in rectangle

              k = indices[i];                // Index of  this case

              for (ix=0; ix<3; ix++) {   // Compare x to all three inner boundaries

                 if  (x[k] <= xcut[ix])     // Stop before we cross incorrect boundary

                    break;

                 }

              for (iy=0; iy<3; iy++) {   // Ditto for Y

                 if  (y[k] <= ycut[iy])

                    break;

                 }

              ++actual44[ix*4+iy];     // Tally the count

              }

           // Compute the chi-square test

           testval = 0.0;

           for (ix=0; ix<4; ix++) {

              for (iy=0; iy<4; iy++) {

                 diff  = fabs (actual44[ix*4+iy] - expected[ix*4+iy]) - 0.5;

                 testval += diff  * diff  / expected[ix*4+iy];

                 }

              }

           �splitable = (testval > 22.0) ? 1 : 0; // �Discrepancy on four-by-four test?

           }  // If  trying 4x4 split

        } // Else not all tied
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If the rectangle is to be split, we now process the four subrectangles. If they are 

not tiny, push them onto the stack for processing later. Also preserve the indices of the 

enclosing rectangle, because we will need them for rearranging the indices to reflect the 

partition.

      if  (splitable) {         // If  we are to split it

        for (i=currentDataStart; i<=currentDataStop; i++)  // Preserve its indices

            current_indices[i] = indices[i];                   // for rearrangement soon

         ipos = currentDataStart;            // �Will rearrange indices starting here

         for (iSubRec=0; iSubRec<4; iSubRec++) { // Check all 4 sub-rectangles

            if  (actual[iSubRec] >= 3) { // Big enough to push onto stack for further splitting?

               stack[nstack].Xstart = trialXstart[iSubRec];

               stack[nstack].Xstop = trialXstop[iSubRec];

               stack[nstack].Ystart = trialYstart[iSubRec];

               stack[nstack].Ystop = trialYstop[iSubRec];

               stack[nstack].DataStart = ipos;

               stack[nstack].DataStop = ipos + actual[iSubRec] - 1;

               ++nstack;

The current, enclosing rectangle runs from currentDataStart through currentDataStop in 

indices. Rearrange these indices so that the subrectangle that we just pushed has all of its 

cases together in a contiguous string. If we don’t push any of the four, we don’t need to 

worry about them because we will not be processing them in the future.

               if  (iSubRec == 0) {                  // Upper-left sub-rectangle

                   for (i=currentDataStart; i<=currentDataStop; i++) { // �All cases in rectangle

                      k = current_indices[i];                                           // �Index of  this case

                      if  (x[k] <= centerX && y[k] <= centerY)                 // �Is it in upper-left?

                         indices[ipos++] = current_indices[i];                  // If  so, move it

                      }

                   }
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               else if  (iSubRec == 1) {

                  for (i=currentDataStart; i<=currentDataStop; i++) {

                     k = current_indices[i];

                     if  (x[k] <= centerX && y[k] > centerY)

                         indices[ipos++] = current_indices[i];

                     }

                  }

               else if  (iSubRec == 2) {

                  for (i=currentDataStart; i<=currentDataStop; i++) {

                     k = current_indices[i];

                     if  (x[k] > centerX && y[k] <= centerY)

                         indices[ipos++] = current_indices[i];

                     }

                  }

               else { // iSubRec == 3

                  for (i=currentDataStart; i<=currentDataStop; i++) {

                     k = current_indices[i];

                     if  (x[k] > centerX && y[k] > centerY)

                         indices[ipos++] = current_indices[i];

                     }

                  }

               } // If  this sub-rectangle is large enough to be worth pushing

If this subrectangle is tiny, there is no reason to push it for an attempt at splitting 

further. Just compute its contribution to the mutual information using Equation (1.29).

            else { // This sub-rectangle is small, so get its contribution now

                if  (actual[iSubRec] > 0) { // It only contributes if  it has cases

                   px = (trialXstop[iSubRec] - trialXstart[iSubRec] + 1.0) / n;

                   py = (trialYstop[iSubRec] - trialYstart[iSubRec] + 1.0) / n;

                   pxy = (double) actual[iSubRec] / n;
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                   MI += pxy * log (pxy / (px * py));  Equation (1.29)

                   }

                } // Else this sub-rectangle is too small to push, so process it

            } // For all 4 sub-rectangles

        } // If  splitting

The only other possibility is that the enclosing rectangle failed both the two-by-two 

and the four-by-four chi-square tests, meaning that it was so uniform that it was not 

worth splitting. In this case, process it using Equation (1.29).

      else {  // Else the chi-square tests failed, so we do not split

         px = (fullXstop - fullXstart + 1.0) / n;

         py = (fullYstop - fullYstart + 1.0) / n;

         pxy = (currentDataStop - currentDataStart + 1.0) / n;

         MI += pxy * log (pxy / (px * py)); // Equation (1.29)

         }

      } // While rectangles in the stack

This algorithm requires the user to specify only two parameters: the threshold for the 

two-by-two chi-square test and that for the four-by-four. The latter is so uncritical that 

the value 22.0 is hard-coded into the routine. The former is only slightly critical. Values 

between about four and eight suffice in a wide variety of circumstances. I use a value of 

six in all of my work, and I find this value to be universally applicable.

�The TEST_CON Program
The file TEST_CON.CPP contains a complete program that demonstrates how to call 

the routines for using Parzen windows and adaptive partitioning to estimate mutual 

information for continuous variables. It also lets the user compare the performance of 

the two methods. The program repeatedly generates a bivariate normal dataset with 

specified correlation and uses both methods to estimate their mutual information. The 

bias and standard error of the estimates is displayed. Later in this chapter we will present 
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a practical program for reading datasets and analyzing mutual information. The TEST_

CON program is for demonstration and experimentation only. The program is invoked as 

follows:

TEST_CON nsamps ntries correl ptie nosplit ndiv chi

•	 nsamps: Number of cases in the dataset

•	 ntries: Number of Monte Carlo replications

•	 correl: Correlation, 0-1

•	 ptie: Probability of a tie, 0-1 (0 is generally recommended)

•	 nosplit: If nonzero, adaptive partitioning prevents splits across ties

•	 ndiv: Number of divisions for the Parzen window width

•	 chi: Two-by-two chi-square threshold for adaptive partitioning

�Asymmetric Information Measures
Mutual information is symmetric in the sense that I(X;Y) = I(Y;X). In other words, 

mutual information shows how much information two variables carry in common. 

This may be troubling when our goal is to use one variable, say X, to predict another, 

say Y. Their mutual information is based as much on the ability of Y to predict X as the 

ability of X to predict Y. This becomes an especially serious problem when one wants to 

speak of causality, a changing value of one variable causing a change in the probability 

distribution of another variable. This section will discuss two common approaches to 

investigating asymmetric information.

�Uncertainty Reduction
Please turn back to page 19 and look at Figure 1-3, a depiction of the relationship 

between two variables. The two overlapping circles represent the uncertainty inherent 

in each variable before its value is known. Their region of overlap represents the 

information that is in common between them. Now suppose we have a predictor X that 

can take on three values, and a predicted variable Y that can take on two values. Table 1-4 

shows an extreme example of asymmetric information.
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We see that there are 41 cases for which X=1 and Y=1, but no cases for which X=1 and 

Y=2. Examination of the other entries shows that X is a perfect predictor of Y; if we know 

X, then we know Y with absolute certainty. This is likely a useful thing to know about our 

data. But the converse is not true. When Y=1, our knowledge of whether X is one or two 

is essentially a coin toss. If our goal is to use X to predict Y, inclusion of this asymmetry in 

our test statistic may be counterproductive.

This can be visualized in Figure 1-3 on page 19. Call one of the entropy circles Y. 

Now consider how much of that circle is encompassed by the overlapping region. If the 

overlap encompasses most of the Y circle, then the mutual information between X and Y 

eliminates most of the uncertainty in Y. Conversely, if the overlap is only a small portion 

of the Y circle, the mutual information does little to reduce the uncertainty in Y. Note 

that the relationship between the overlap and the X circle (its entropy or uncertainty) 

plays no direct role in this computation.

This concept can be quantified by comparing the entropy of Y, which is written as 

H(Y), with the conditional entropy of Y given that we know X, which is written as H(Y|X). 

If these two quantities are equal, then X contributes nothing to our knowledge of Y; it has 

no predictive power. Conversely, if H(Y|X) is zero, meaning that knowledge of X removes 

all uncertainty of Y, then X is a perfect predictor of Y.

The relative amount by which uncertainty in Y is reduced by knowledge of X can 

be expressed as shown in Equation (1.30). We have already seen the identity shown in 

Equation (1.31). Employing this identity in the definition gives the usual computation 

formula shown in Equation (1.32).

	
Uncertainty reduction

H Y H Y X

H Y
=

( )- ( )
( ) 	

(1.30)

	
H Y X H X Y H X( ) = ( )- ( ), 	 (1.31)

Table 1-4.  Asymmetric Predictive Information

Y=1 Y=2

X=1  41   0

X=2  38   0

X=3   0  92
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Uncertainty reduction

H X H Y H X Y

H Y
=

( )+ ( )- ( )
( )

,

	
(1.32)

The file STATS.CPP provided on my web site contains a small subroutine for 

computing uncertainty reduction. It is listed here. Little explanation is needed because 

this subroutine is a direct implementation of the basic information formulas. A brief 

summary of its operation follows the code listing.

void uncert_reduc (

   int nrows,                  // Number of  rows in data

   int ncols,                   // And columns

   int *data,                   // �Nrows by ncols (changes fastest) matrix of  cell counts

   double *row_dep,     // Returns asymmetric UR when row is dependent

   double *col_dep,      // Returns asymmetric UR when column is dependent

   double *sym,            // Returns symmetric UR

   int *rmarg,                // Work vector nrows long

   int *cmarg                 // Work vector ncols long

   )

{

   int irow, icol, total;

   double p, numer, Urow, Ucol, Ujoint;

   if  (nrows < 2 || ncols < 2) { // Careless user!

      *row_dep = *col_dep = *sym = 0.0;

      return;

      }

   total = 0;

   for (irow=0; irow<nrows; irow++) {

      rmarg[irow] = 0;

      for (icol=0; icol<ncols; icol++)

         rmarg[irow] += data[irow*ncols+icol];

      total += rmarg[irow];

      }
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   for (icol=0; icol<ncols; icol++) {

      cmarg[icol] = 0;

      for (irow=0; irow<nrows; irow++)

         cmarg[icol] += data[irow*ncols+icol];

      }

   Urow = 0.0;

   for (irow=0; irow<nrows; irow++) {

      if  (rmarg[irow]) {

         p = (double) rmarg[irow] / (double) total;

         Urow -= p * log (p);

         }

      }

   Ucol = 0.0;

   for (icol=0; icol<ncols; icol++) {

      if  (cmarg[icol]) {

         p = (double) cmarg[icol] / (double) total;

         Ucol -= p * log (p);

         }

      }

   Ujoint = 0.0;

   for (irow=0; irow<nrows; irow++) {

      for (icol=0; icol<ncols; icol++) {

         if  (data[irow*ncols+icol]) {

            p = (double) data[irow*ncols+icol] / (double) total;

            Ujoint -= p * log (p);

            }

         }

      }

   numer = Urow + Ucol - Ujoint;

   if  (Urow > 0)

      *row_dep = numer / Urow;

   else

      *row_dep = 0.0;
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   if  (Ucol > 0)

      *col_dep = numer / Ucol;

   else

      *col_dep = 0.0;

   if  (Urow + Ucol > 0)

      *sym = 2.0 * numer / (Urow + Ucol);

   else

      *sym = 0.0;

}

The first block of code cumulates the row marginals as well as the total case count. The 

second block cumulates column marginals. The next three blocks compute the row, column, 

and joint entropies, respectively. Finally, Equation (1.32) is used to compute the uncertainty 

reduction in each direction. The pooled symmetric measure computed last is not often used.

�Transfer Entropy: Schreiber’s Information Transfer
In 2000, Thomas Schreiber published a seminal paper on modern information theory: 

Measuring Information Transfer. His paper, [Schreiber, 2000. “Measuring Information 

transfer”, Physical Review Letters, 85:2.], showed how we could measure a form of causality, 

the transfer of information from one time series to another. Later, [Vicente et al, 2011. 

“Transfer Entropy: A Model-Free Measure of Effective Connectivity for the Neurosciences” 

Journal of Computational Neuroscience 30:1.] provided some additional practical 

applications of Schreiber’s information transfer. We now present the basic algorithm, along 

with code for computing information transfer (often also called transfer entropy).

Both of these papers discuss methods for dealing with the curse of dimensionality that 

plagues this computation when data is limited. These specialized algorithms come with 

problems of their own, and the ideal algorithm to choose is strongly application-dependent. 

For this reason, here we will stick with the original and most straightforward algorithm. If 

you are dealing with limited data and want to experiment with alternative algorithms, you 

should see these two papers for suggestions.

By the way, it is worth mentioning up front that the long-popular Grainger Causality 

is a special case of transfer entropy in which one assumes that the underlying model 

is linear autoregressive with Gaussian noise. If you are willing to accept these often 

restrictive assumptions, then Grainger Causality might be preferable to transfer entropy 

due to its more efficient use of data. However, in many applications these assumptions 

are too onerous to be applicable.
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What is causality? Rather than digging into a deep theoretical discussion, we’ll 

simply restate Granger’s two rules:

	 1)	 The cause precedes the effect.

	 2)	 The cause contains unique information, not available in any other 

variable.

Note that the second rule is generally impossible to verify in practice because we 

cannot know for sure whether there are other variables related to the causative that we 

are not aware of. Still, it’s nice to consider this rule in the context of an application.

To quote [Vicente et al, 2011], who in turn quotes an earlier source, “A signal X is 

said to cause a signal Y if the future of Y is better predicted by adding knowledge from 

the past and present of signal X than by using the past and present of Y alone.” The 

code presented later shifts this back in time by one measurement period, developing 

the measure of causality in terms of the present value of Y being impacted by past 

values of X and Y. This alternate approach is more amenable to data analysis. But the 

traditional mathematical development that predicts future values of Y will be used 

in the explanations here to remain consistent with tradition. The two approaches are 

equivalent and differ only in starting and ending subscripts.

What we are discussing here is not the mutual information between Y and prior 

values of X. We might believe that this mutual information, which involves only values of 

X prior to the current value of Y, is a good way to quantify information transfer from X to Y.  

However, [Schreiber, 2000] shows that this approach has limited value and numerous 

problems.

An algorithm for estimating information transfer would ideally have at least the 

following four properties. Transfer entropy satisfies them all to a reasonable degree.

•	 It should not require the investigator to describe the nature of the 

expected interaction in advance of analysis. This property allows the 

algorithm to be useful for investigation.

•	 It should respond to common nonlinear causality modes, including 

purely nonlinear effects. Methods that respond only to linear 

components of causality, such as Granger’s, are seriously limited in 

applicability.

•	 It should not be limited to just one delay for the causality. Different 

delays should be detectable.
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•	 It should be reasonably robust against crosstalk, the phenomenon 

of a signal or noise component that appears simultaneously in X 

and Y. Many sources of data suffer this effect. For example, EEG 

measurements have common-mode noise, and equities share 

market-wide swings.

To rigorously present the algorithm, we need a compact notation for signifying 

the current and recent historical values of a time series. In particular, at time t we will 

represent the k most recent values of X (including the current value) as Xt
(K) = (Xt, Xt-1, …, 

Xt-k+1), and similarly for Y.

We also need a brief detour to discuss the Kullback-Liebler distance between two 

discrete probability distributions. Suppose P and Q are discrete probability distributions 

over some domain indicated by i. Then the Kullback-Liebler distance between P and Q is 

given by Equation (1.33).

	

D P ||Q = p i
p i

q ii
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(1.33)

A little intuition about this definition is in order. Suppose, for example, that the 

two distributions are identical. In other words, the probability of every possible event 

is the same in both distributions. In this case, the ratio will be one for every i, and the 

log of one is zero. So the K-L distance will be zero. Now suppose that for some event the 

probability under P of that event is much larger than under Q. The ratio is greater than 

one, so the log will be positive, and the weight will be unusually large, resulting in a large 

contribution to the sum. Conversely, suppose for some event its probability under Q is 

much larger than its probability under P. Now the ratio will be less than one, the log will 

be negative, but the weight will be small, so only a small value will be subtracted from 

the sum. The more the two distributions diverge, the greater will be the sum.

We state without proof that this sum can never be negative, which is a nice property 

for a distance! But it is not symmetric: D(P || Q) does not necessarily equal D(Q || P). 

Rather, the K-L distance measures the amount of information lost when the distribution 

Q is used to approximate P. In most applications, P is the (assumed) true distribution 

of the data, while Q is some experimental approximation of P, perhaps based on a 

proposed model or other tentative explanation of P.
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We are now ready to proceed. Recall that we know current and historical values 

of Y, and this knowledge gives us some ability to predict the next value of Y. Our goal 

in computing information transfer is to measure the degree to which the additional 

knowledge of current and historical values of X adds to our ability to predict the next 

Y. Equivalently, we will measure the amount of predictive information that is lost by 

denying ourselves knowledge of X.

Suppose we are at observation time t. If we have knowledge of the historical values of 

both X and Y, then we can write the probability of the next (t+1) value of Y as p(yt+1|yt (n),  

xt (m)), where n and m may be different (we may know different lengths of X and Y 

history). But if we do not know X, then the probability of the next value of Y is p(yt+1|yt (n)). 

If X has no causative effect on Y, then these two probabilities are equal for all possible 

outcomes. But if X does have causative effect, then they will differ.

We are now in a position to define transfer entropy. Recall that the Kullback-Liebler 

distance D(P || Q) measures the amount of information lost when the distribution Q is 

used to approximate P. The actually observed data provides p(yt+1|yt
(n), xt

(m)). What if we 

were to approximate this with the probability distribution that lacks access to X, namely, 

p(yt+1|yt
(n))? The former plays the role of P, and the latter plays the role of Q. Because of 

the conditional probabilities, we must sum across the conditions. The information lost 

by denying knowledge of X is the transfer entropy from X to Y, and it is defined as shown 

in Equation (1.34).
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We can define the required conditional probabilities in terms of primitive 

probabilities, shown here using our current notation:
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The file TRANS_ENT.CPP on my web site computes transfer entropy. It differs from 

the presentation just shown in one small way. The mathematical presentation uses the 

current and prior values of X and Y to predict the next value of Y to conform to already 

published work. But in programming terms, it is easier to use strictly historical values of 

X and Y to predict the current value of Y. These two approaches are equivalent, differing 

only in subscripts.

There is one feature in the program that adds versatility but is not represented in the 

mathematical presentation given earlier. So to make sure everything is clear, here is a 

rigorous statement of the problem addressed by the program:

•	 y: The series being predicted

•	 x: The series whose causative nature is being evaluated

•	 n: The length of each series

•	 nbins_y: The number of values that y can take on

•	 nbins_x: The number of values that x can take on

•	 yhist: The number of historic y observations used for prediction

•	 xhist: The number of historic x observations used for prediction

•	 xlag: See the problem statement and the comment that follows

We are given two series, x and y, each having n cases. It is assumed that p(y[i]) is a 

function of y[i-1], y[i-2], …, y[i-yhist]. But does x[i-xlag], x[i-xlag-1], …, x[i-xlag-xhist+1] 

influence the conditional state probabilities of y? This function measures the extent to 

which this occurs.

The traditional version of transfer entropy computation has xlag=1, meaning that the 

value of x concurrent with y is not allowed to participate in influencing y. However, many 

applications employ a dataset in which the X series is already implicitly lagged with 

respect to Y. For example, most model-based market-trading datasets compute X based 

strictly on the current and prior values of the market, and they compute Y based strictly 

on future values of the market. Rather than requiring the user to shift the data series 

or adjust addressing, this routine lets the user set xlag=0 to account for X already being 

lagged.
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Note that we have nbins_x ^ xhist * nbins_y ^ (yhist+1) cells in the probability 

matrix corresponding to (yt+1, yt
(yhist), xt

(xhist)). (The symbol ^ means “raised to the power.”) 

This blows up very, very quickly. For this reason, the majority of applications will use 

xhist=yhist=1 and have both nbins_x and nibins_y at most three, and often just two.

To clarify the program code, we use three single letters to represent the otherwise 

complex terms in the algorithm.

•	 a: The current value of y, which is being predicted

•	 b: The yhist historic values of y

•	 c: The xhist historic values of x

Using this compact notation, the transfer entropy of Equation (1.34) is expressed in 

the much less fierce Equation (1.37). Corresponding to Equations (1.35) and (1.36) we 

have p(a|b,c) = p(a,b,c) / p(b,c) and p(a|b) = p(a,b) / p(b).

	

Transfer entropy p a b c
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Now that this simpler notation is in place, we can present the routine in segments. It 

is called as shown here. Note that the values in x and y range from zero through nbins_x-1 

and nbins_y-1, respectively.

double trans_ent (

   int n,              // Length of  x and y

   int nbins_x,    // Number of  x bins.

   int nbins_y,    // Ditto y

   short int *x,    // Independent variable, which impacts y transitions

   short  int *y,   // Dependent variable

   int xlag,          // �Lag of  most recent predictive x: 1 for traditional, 0 for concurrent

   int xhist,         // Length of  x history. At least 1

   int yhist,         // Ditto y

   int *counts,    // Work vector (see comments in code for length)

   double *ab,    // Ditto

   double *bc,    // Ditto

   double *b       // Ditto

   )
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The first step is to compute several frequently used constants: nx=nbins_x^xhist and 

ny=nbins_y^yhist. This is done as follows:

   nx = nbins_x;

   for (i=1; i<xhist; i++)      // Number of  bins for X history

      nx *= nbins_x;

   ny = nbins_y;

   for (i=1; i<yhist; i++)      // Number of  bins for Y history

      ny *= nbins_y;

   nxy = nx * ny;                 // Total number of  history bins

Count the number of cases that lie in each of the possible bins determined by the X 

history, the Y history, and the current value of Y. The counts are kept in an array with X 

history changing fastest, then Y history, and current Y changing last. We make sure not to 

start so early in the array that a negative subscript would be used.

   memset (counts, 0, nxy * nbins_y * sizeof(int));

   istart = xhist + xlag - 1;

   if  (yhist > istart)

      istart = yhist;

   for (i=istart; i<n; i++) {

      // Which of  the nbins_x ^ xhist X history bins does this case lie in?

      ix = x[i-xlag];

      for (j=1; j<xhist; j++)

         ix = nbins_x * ix + x[i-j-xlag];

      // Which of  the nbins_y ^ yhist Y history bins does this case lie in?

      iy = y[i-1];

      for (j=2; j<=yhist; j++)

         iy = nbins_y * iy + y[i-j];

      ++counts [ y[i] * nxy + iy * nx + ix ]; // Increment the correct bin

      }

   total = n - istart;
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The next step is to compute the marginal probabilities, which will be used in later 

computation. This is just basic summation.

   for (i=0; i<nbins_y*ny; i++)

      ab[i] = 0.0;

   for (i=0; i<nx*ny; i++)

      bc[i] = 0.0;

   for (i=0; i<ny; i++)

      b[i] = 0.0;

   for (ia=0; ia<nbins_y; ia++) {

      for (iy=0; iy<ny; iy++) {

         for (ix=0; ix<nx; ix++) {

            p = (double) counts [ia * nxy + iy * nx + ix] / (double) total;

            ab[ia*ny+iy] += p;

            bc[iy*nx+ix] += p;

            b[iy] += p;

            }

         }

      }

Finally, we compute the transfer entropy. This is just a straightforward 

implementation of the defining equations.

   trans = 0.0;

   for (ia=0; ia<nbins_y; ia++) {

      for (iy=0; iy<ny; iy++) {

         for (ix=0; ix<nx; ix++) {

            p = (double) counts [ia * nxy + iy * nx + ix] / (double) total;     // p(a,b,c)

            if  (p <= 0.0)

               continue;

            numer = p / bc[iy*nx+ix];           // p(a | b,c)

            denom = ab[ia*ny+iy] / b[iy];     // p(a | b)

            trans += p * log (numer / denom);   // Equation (1.37)

            }

         }

      }
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We close this section by noting that my web site contains a program called 

TRANSFER.CPP (in the code set for my Assessing… book) that uses transfer entropy to 

sort a list of predictor candidates. This is similar to the SCREEN_UNIVAR.CPP program, 

so we will not bother listing it here. However, we will note one crucial difference 

between the two programs. SCREEN_UNIVAR.CPP shuffles the dependent variable to 

do the Monte Carlo permutations. This is the efficient way to do it, as there is only one 

dependent variable, while there are many independent candidates. But when data for 

transfer entropy is shuffled, we cannot take this approach. The reason is that shuffling 

the dependent variable would destroy any predictive power associated with its own 

historical values, when all we want to destroy is the relationship with the independent 

variable. Therefore, we must shuffle each candidate. Examination of the code will make 

clear how this is done.
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CHAPTER 2

Screening for 
Relationships
Data miners are usually confronted with a daunting array of variables from which they 

hope to discover useful relationships. One could always just test them individually, in 

groups, or in a stepwise procedure, using a sophisticated model similar or identical to 

that which the developer wants to ultimately deploy. This direct approach would usually 

be the best in the sense that it would discover the relationships that will ultimately be 

most useful.

Unfortunately, in most situations, this direct approach is much too costly in terms 

of computational resources. Training sophisticated models can be horrendously slow 

and hence must be done with as little exploratory work as possible. Data miners need 

relatively fast screening procedures that can reduce a mountain of contenders to a much 

smaller subset of variables that are most likely to be useful in the application. This is the 

subject of this chapter.

�Simple Screening Methods
Naturally, there are infinite methods for quickly screening candidate variables for 

relationships with one or more other variables (called the target variable or set of 

variables). However, a few are especially popular, and for good reasons. Thus, we will 

focus our in-depth presentation on those that are most commonly used, while lightly 

covering a few more that are uncommon but appropriate in special circumstances. Also 

note that relationships other than with regard to a target are possible. Some of these will 

be presented in the next chapter.
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�Univariate Screening
The most basic screening technique is to examine each candidate individually, looking 

at its relationship with the target without regard to any possible fortuitous interaction 

with other candidates. This method has the great advantage that it is fast, almost 

certainly the fastest of any of the common methods. This makes it mandatory whenever 

the developer has to deal with an unusually large number of candidates. But it does 

suffer from failing to make use of potentially vital interaction information. The classic 

example is predicting health risks from height and weight; the two together provide 

vastly more information than either alone.

�Bivariate Screening
We can significantly alleviate the weakness of univariate screening by examining 

all possible pairs of candidates. This still does not allow us to capitalize on valuable 

interactions with a third variable, but in practice the information gain from taking 

candidates two at a time can be huge. Unfortunately, the cost can be prohibitive. For 

example, with 100 candidates there will be 100*99/2=4950 pairs to check. With 1,000 

there will be almost half a million pairs. Unless the relationship criterion being evaluated 

is very fast to compute (such as with massive parallel processing), bivariate screening 

will be impractical when there are a large number of candidates.

�Forward Stepwise Selection
This venerable algorithm has been in use for centuries (or at least it seems so). The idea 

is almost trivial. We find the single candidate variable that has the greatest relationship 

with the target. Then we find the variable that, if considered in conjunction with the 

one chosen first, adds the most to the relationship. Then we find a third variable from 

among the remaining candidates, which when considered in conjunction with the first 

two produces the greatest relationship with the target. This continues for as long as the 

developer desires.

The advantage of this method is that at each stage the number of candidate variables 

being tested for a relationship with the target is the minimum possible, thus delaying the 

devastation of a combinatoric explosion. The disadvantage is that it can easily produce 

a suboptimal set of predictors. For example, suppose X1 and X2 alone have little or no 

relationship with the target but together have a great relationship. And suppose X3 is 
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modestly related to the target. If the user requests that two candidates be selected, X3 

will be chosen first, and the wonderful X1, X2 pair will be missed. Never underestimate 

this issue; it can be devastating.

�Forward Selection Preserving Subsets
There is a straightforward extension of forward stepwise selection that can often produce 

a significant improvement in performance at little cost. We simply preserve the best few 

candidates at each step, rather than preserving just the single best. For example, we may 

find that X4, X7, and X9 are the three best single variables. (Three is an arbitrary choice 

made by the developer, considering the trade-off between quality and compute time.) 

We then test X4 paired with each remaining candidate, X7 paired with each, and finally 

X9 paired with each. Of these many pairs tested, we identify the best three pairs. These 

pairs will each be tested with the remaining candidates as trios, and so forth. The beauty 

of this algorithm is that we gain a lot with relatively little cost. The chance of missing 

an important combination is greatly reduced, while compute time goes up linearly, not 

exponentially. I highly recommend this approach.

�Backward Stepwise Selection
In the rare instance that computational resources allow, backward stepwise selection is 

optimal or close to it. The idea is that we throw all competitors into the pot and evaluate 

this group’s relationship with the target. Then we find the single competitor whose 

elimination produces the least reduction in the relationship criterion. Keep eliminating 

this way until the remaining candidate set is the size desired by the developer.

Obviously, this method is only rarely practical. If the number of candidates is even 

moderately large, computation of the relationship criterion will almost certainly be 

impossible because of time constraints, accuracy (numerical stability) issues, memory 

requirements, or all of the above. Still, if you can pull it off, it usually doesn’t get any better.

�Criteria for a Relationship
Later in this chapter we will explore detailed algorithms that screen variables for 

relationships. But first, I present some of the most common and effective criteria for 

measuring the degree of a relationship between two variables. This will be extended to 

relationships between groups of variables in later sections.
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�Ordinary Correlation
Perhaps the oldest and most venerable measure of the relationship between two 

variables is Pearson r, often called just correlation (despite the fact that numerous 

alternative measures of correlation exist). It is sensitive to a linear relationship between 

them. Any curvature in their relationship will reduce their correlation, even if the actual 

relationship is strong. And if while one variable steadily increases but the other increases 

for a while and then decreases, we may find that their correlation is tiny, regardless 

of how strong their true relationship is. This can be a serious disadvantage. Another 

problem is that ordinary correlation is terribly sensitive to outliers (data values far 

outside the majority of values). Outliers will dominate the calculation, likely obscuring 

any legitimate relationship that exists within the mass of cases. Still, correlation is fast to 

compute, and it does capture many of the most common types of relationship. Thus, it is 

a vital member of our tool set.

Correlation ranges from -1, for a perfect inverse linear relationship, to +1 for 

a perfect positive linear relationship. A correlation of zero means that no linear 

relationship exists. If we have n pairs of values, xi and yi for i from 1 to n, then we 

compute the mean of x using Equation (2.1), and the mean of y similarly, and then 

compute their correlation with Equation (2.2).
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Here is code for ordinary correlation, extracted from the file SCREEN_UNIVAR.CPP. It 

is a straightforward implementation of the prior equations.

static double compute_r (

   int ncases,                 // Number of  cases (rows) in data matrix

   int varnum,                // Column of  predictor in database

   int n_vars,                 // Number of  columns in database

   double *data,              // The data is here; ncases rows by n_vars columns

   double *target            // The target (ncases long)

   )
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{

   int icase;

   double xdiff, ydiff, xmean, ymean, xvar, yvar, xy;

   xmean = ymean = 0.0;

   for (icase=0; icase<ncases; icase++) {        // Equation (2.1)

      xmean += data[icase*n_vars+varnum] ;   // Get predictor candidate ‘varnum’

      ymean += target[icase];                           // The target is separate from candidates

      }

   xmean /= ncases;

   ymean /= ncases;

   xvar = yvar = xy = 1.e-30;                            // Prevent division by zero later

   for (icase=0; icase<ncases; icase++) {        // Equation (2.2)

      xdiff  = data[icase*n_vars+varnum] - xmean;

      ydiff  = target[icase] - ymean;

      xvar += xdiff  * xdiff;

      yvar += ydiff  * ydiff;

      xy += xdiff  * ydiff;

      }

   return xy / sqrt (xvar * yvar);

}

�Nonparametric Correlation
A serious problem with ordinary correlation (Pearson r) is its sensitivity to outlying data 

values. Even one wild data point can render ordinary correlation worthless. This can be 

remedied by ranking each of the two variables from smallest to largest and determining 

the degree to which their ranks correspond (small ranks of one variable correspond to 

small ranks of the other, and similarly for large ranks). A common and highly effective 

rank-based measure of correlation is Spearman rho. Suppose we recompute the two 

variables, assigning to each a value of 1 for the smallest value of that variable, 2 for the 

second-smallest, and so forth. Subsequent calculations are based on these ranks rather 

than the raw data.
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If either variable has tied values, we must compensate for these ties. For each tied 

value, assign to all members of the tied set the mean rank that they would have if they 

were not tied. Let tk,X be the number of tied values at a given rank for the X variable. 

Let TieCorrectionk,X be given by Equation (2.3). Let SumTieCorrectionX be the sum of 

TieCorrectionk,X for the X variable, as expressed in Equation (2.4). Define SSX as shown 

in Equation (2.5). These quantities are defined similarly for the Y variable. For each 

case, compute the difference in ranks, and sum these squared differences, as shown in 

Equation (2.6). Remember that in this equation, the x and y values refer to ranks, not 

the original data. Finally, compute the Spearman rho with Equation (2.7). The code for 

computing Spearman rho, extracted from SCREEN_UNIVAR.CPP, follows these equations.
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static double compute_rho (// Returns Spearman rho in range -1 to 1

   int ncases,        // Number of  cases (rows) in data matrix

   int varnum,       // Column of  predictor in database

   int n_vars,        // Number of  columns in database

   double *data,    // The data is here; ncases rows by n_vars columns

   double *target,  // The target (ncases long)

   double *x,         // Work vector ncases long

   double *y          // Work vector ncases long

   )

{

   int icase, j, k, ntied;

   double val, x_tie_correc, y_tie_correc, dn, ssx, ssy, rank, diff, rankerr, rho;
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   // We need to rearrange input vectors, so copy them to work vectors

   for (icase=0; icase<ncases; icase++) {

      x[icase]= data[icase*n_vars+varnum];     // Fetch predictor ‘varnum’ from database

      y[icase] = target[icase];                            // The target is kept separate

      }

   // Compute ties in x, compute correction as SUM (ties**3 - ties)

   // The following routine sorts x ascending and simultaneously moves y

   qsortds (0, ncases-1, x, y);

   x_tie_correc = 0.0;

   for (j=0; j<ncases;) {                   // Convert x to ranks, cumulate tie corec

      val = x[j];                                  // X for this case

      for (k=j+1; k<ncases; k++) {    // Find all ties

         if  (x[k] > val)

             break;

         }

      ntied = k - j;                          // tk,X

      x_tie_correc += (double) ntied * ntied * ntied - ntied; // Equations (2.3) and (2.4)

      rank = 0.5 * ((double) j + (double) k + 1.0);    // Tied rank is mean rank across ties

      while (j < k)                                                     // Assign this value to all ties here

          x[j++] = rank;

      } // For each case in sorted x array

   // Now do same for y

   qsortds (0, ncases-1, y, x);

   y_tie_correc = 0.0;

   for (j=0; j<ncases;) { // Convert y to ranks, cumulate tie corec

      val = y[j];

      for (k=j+1; k<ncases; k++) {    // Find all ties

         if  (y[k] > val)

            break;

         }

      ntied = k - j;

      y_tie_correc += (double) ntied * ntied * ntied - ntied; // Equations (2.3) and (2.4)

      rank = 0.5 * ((double) j + (double) k + 1.0);         // Tied rank is mean rank across ties
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      while (j < k)                                                     // Assign this value to all ties here

         y[j++] = rank;

      } // For each case in sorted y array

   // Final computations

   dn = ncases;

   ssx = (dn * dn * dn - dn - x_tie_correc) / 12.0;     // Equation (2.5)

   ssy = (dn * dn * dn - dn - y_tie_correc) / 12.0;

   rankerr = 0.0;

   for (j=0; j<ncases; j++) {        // Cumulate squared rank differences

      diff  = x[j] - y[j];

      rankerr += diff  * diff;          // Equation (2.6)

      }

   rho = 0.5 * (ssx + ssy - rankerr) / sqrt (ssx * ssy + 1.e-20); // Equation (2.7)

   return rho;

}

�Accommodating Simple Nonlinearity
Ordinary correlation and Spearman rho respond to linear relationships between 

variables, while many real-life variables have nonlinear relationships that are difficult 

to quantify with these measures. Later in this chapter we will explore powerful general-

purpose information-based algorithms for discovering any relationship between 

variables, even if the relationship is profoundly nonlinear. But those methods can have 

drawbacks of their own, such as excessive runtime, troublesome sensitivity to user-

specified parameters, and suboptimal exploitation of observed values of variables. There 

is a middle ground that can be useful in many applications.

The concept is simple: designate one variable as a “target” to be predicted and the 

other variable as a predictor. Compute a least-squares quadratic equation for predicting 

the target from the predictor. Then the measure of relationship is the R-squared of this 

prediction.

The advantages of this method are similar to those of ordinary correlation: it is 

relatively fast to compute, it does not require that the user specify any parameters, and 

it makes excellent use of all information contained in the variables. Nonetheless, it 

responds not only to a linear relationship but also to the sort of curvature often found 
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in real-life variables, going so far as to even handle complete reversal of the relationship 

across the range. This is a powerful property.

It is worth noting (though usually of little practical consequence) that unlike most 

other criteria described in this section, this method is not symmetric. Reversing the 

roles of the predictor and the target variable will produce different results. But in most 

applications, directionality is inherent, so the labeling is natural.

I will not go into the mathematical derivation of this least-squares fit. It is tedious 

and well covered in numerous other sources. However, I will present the source code 

and point out that the fit is done with singular value decomposition. See the file  

SVDCMP.CPP for more details on this excellent fitting method. The criterion computation 

code, extracted from SCREEN_UNIVAR.CPP, is shown here:

static double compute_quad (

   SingularValueDecomp *sptr, // Used for finding optimal coefficients

   int ncases,                 // Number of  cases (rows) in data matrix

   int varnum,                // Column of  predictor in database

   int n_vars,                 // Number of  columns in database

   double *data,           // The data is here; ncases rows by n_vars columns

   double *target            // The target (ncases long)

   )

{

   int icase;

   double xdiff, ydiff, xmean, ymean, xstd, ystd;

   double *aptr, *bptr, coefs[3], sum, mse;

/*

   Standardize the data for stability and simplified calculation.

   Making the target have unit variance means that the mse is the unpredictable fraction.

   Making the predictors have smallish mean and similar variance helps stability.

*/

   xmean = ymean = 0.0;

   for (icase=0; icase<ncases; icase++) {

      xmean += data[icase*n_vars+varnum];   // Get this predictor variable

      ymean += target[icase];                           // The target is kept separate

      }
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   xmean /= ncases;

   ymean /= ncases;

   xstd = ystd = 1.e-30;

   for (icase=0; icase<ncases; icase++) {

      xdiff  = data[icase*n_vars+varnum] - xmean;

      ydiff  = target[icase] - ymean;

      xstd += xdiff  * xdiff;

      ystd += ydiff  * ydiff;

      }

   xstd = sqrt (xstd / ncases);

   ystd = sqrt (ystd / ncases);

/*

   Fill in SingularValueDecomp object and compute optimal coefficients

*/

   aptr = sptr->a;

   bptr = sptr->b;

   for (icase=0; icase<ncases; icase++) {

      xdiff  = (data[icase*n_vars+varnum] - xmean) / xstd;

      ydiff  = (target[icase] - ymean) / ystd;

      *aptr++ = xdiff  * xdiff; // Quadratic term

      *aptr++ = xdiff;           // Linear term

      *aptr++ = 1.0;             // Constant term

      *bptr++ = ydiff;           // Predicted value

      }

   sptr->svdcmp ();

   sptr->backsub (1.e-7, coefs);

/*

   �Compute the error. We pass through the data. For each case, predict the target and sum the mean 

squared error of  the prediction.

*/

   mse = 0.0;
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   for (icase=0; icase<ncases; icase++) {

      xdiff  = (data[icase*n_vars+varnum] - xmean) / xstd;         // Standardized predictor

      ydiff  = (target[icase] - ymean) / ystd;                                 // Standardized target

      sum = coefs[0] * xdiff  * xdiff  + coefs[1] * xdiff  + coefs[2]; // Prediction

      ydiff  -= sum;                         // True minus predicted is error of  this prediction

      mse += ydiff  * ydiff;              // Cumulate mean squared error

      }

   return 1.0 - mse /ncases;         // Target is standardized, so this is R-squared

}

It should be noted that when the SingularValueDecomp object is created, we could 

specify that the a matrix be preserved for reuse in the error computation. This avoids 

repeating the standardization, at the cost of more memory. The choice is yours.

�Chi-Square and Cramer’s V
When two variables are categorical (gender, college major, political affiliation, etc.), the 

standard way to assess their degree of relationship is the chi-square test. We create a 

matrix in which the categories of one variable form the rows, and those of the other form 

the columns. The occurrences of each possible pairing of categories are counted within 

the dataset being analyzed. The expected count for each pairing under the assumption 

that the variables are unrelated is computed and then compared to the actually observed 

counts. The more the observed counts depart from their expected values, the more the 

variables are related.

But the chi-square test need not be restricted to categorical variables. It is legitimate 

to partition the range of numeric variables into bins and treat these bins as if they were 

categories. Of course, this results in some loss of information because variation within 

each bin is ignored. But if the data is noisy or if one wants to detect relationship patterns 

of any form without preconceptions, a chi-square formulation may be appropriate.

Suppose variable X is partitioned into KX bins, and variable Y is partitioned into KY 

bins. Let NX,i be the number of cases whose variable X falls in bin i. Similarly, let NY,j be 

the number of cases whose variable Y falls in bin j. The total number of cases is N. Then 

the marginal distribution of X is given by Equation (2.8), and similarly for Y.
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Suppose X and Y are unrelated. The probability that a case will be in bin i for X and 

bin j for Y is the product of the marginals, as shown in Equation (2.9). The expected 

number of cases in this conjunction of bins is this probability times the total number of 

cases, as shown in Equation (2.10).

	
F i j F i F jX Y X Y, ,( ) = ( ) ( ) 	 (2.9)
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Let Oi,j be the observed number of cases in bin i for X and bin j for Y. If X and Y are 

unrelated, this quantity will tend to be close to Ei,j, the expected cell count under the 

assumption of independence. But if the variables are related, then some combinations of 

bins will be favored, while others will be less common. This departure from expectation 

is computed with Equation (2.11).
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Chi-squared itself has little intuitive meaning in terms of its values. It is highly 

dependent on the number of cases and the number of bins for each variable, so any 

numeric value of chi-squared is essentially uninterpretable. This can be remedied by 

a simple monotonic transformation to produce a quantity called Cramer’s V shown in 

Equation (2.12). This ranges from zero (no relationship between X and Y) to one (perfect 

relationship).
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Here is code for computing Cramer’s V. This is extracted from the file SCREEN_

UNIVAR.CPP. The calling parameter list is as shown here. The routine follows. The 

marginals, shown in Equation (2.8), are already computed prior to calling this routine to 

save redundant effort.

static double compute_V (

   int ncases,                          // Number of  cases

   int nbins_pred,                   // Number of  predictor bins

   int *pred_bin,                     // Ncases vector of  predictor bin indices
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   int nbins_target,                 // Number of  target bins

   int *target_bin,                    // Ncases vector of  target bin indices

   double *pred_marginal,      // Predictor marginal

   double *target_marginal,    // Target marginal

   int *bin_counts                    // Work area nbins_pred*nbins_target long

   )

{

   int i, j;

   double diff, expected, chisq, V;

   for (i=0; i<nbins_pred; i++) {   // Zero bin counts

      for (j=0; j<nbins_target; j++)

         bin_counts[i*nbins_target+j] = 0;

      }

   for (i=0; i<ncases; i++)      // Cumulate bin counts Oi,j

      ++bin_counts[pred_bin[i]*nbins_target+target_bin[i]];

   chisq = 0.0;

   for (i=0; i<nbins_pred; i++) {

      for (j=0; j<nbins_target; j++) {

         expected = pred_marginal[i] * target_marginal[j] * ncases; //Equation (2.9), (2.10)

         diff  = bin_counts[i*nbins_target+j] - expected;

         chisq += diff  * diff  / (expected + 1.e-20); // Equation (2.11)

         }

      }

   V = chisq / ncases;  // This and remaining lines are Equation (2.12)

   if  (nbins_pred < nbins_target)

      V /= nbins_pred - 1;

   else

      V /= nbins_target - 1;

   V = sqrt (V);

   return V;

}
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�Mutual Information and Uncertainty Reduction
Mutual information and uncertainty reduction were thoroughly discussed in the prior 

chapter, so I will gloss over them quickly here, reviewing them only in the context of 

univariate screening.

These two measures of association are similar to the chi-square/Cramer’s V 

measures of the prior section in that they rely on partitioning the range of the variables 

into discrete bins (although we did see a way of computing mutual information from 

continuous data). In fact, in many applications, the chi-square method and the mutual 

information method will give similar results. The actual numbers will be different, of 

course, but the ordering of a set of candidate predictors will often be almost identical. 

Nonetheless, they do measure slightly different quantities, so it is in our best interest to 

include both in our toolbox.

I should also remind you that uncertainty reduction is asymmetric; one variable 

must be designated as a predictor, and the other as a target (predicted). Reversing this 

labeling will produce different results. This is usually a good property because most 

applications have this same asymmetry.

�Multivariate Extensions
The chi-square and information-based measures have been presented in the context of 

quantifying the relationship between two variables. However, it is easy to extend them to 

multiple variables. There are two completely different approaches to this.

The first and most common approach assumes we want to measure the degree to 

which one or more variables, taken as a set, are related to one or more other variables, 

also taken as a set. There is just one relationship we are interested in, although one or 

both sides of this relationship may be a set of variables rather than just a single variable. 

I’ll present a useful application of this on page 116.

The method is simple: just unwrap the bins in each set, producing a new set of bins 

on each side whose dimension is the product of the number of bins in the unwrapped 

side. For example, suppose we are assessing the relationship between X and Y, 

considered together, with Z. Suppose we have divided X into 2 bins, Y into 3, and Z into 4.  

We unwrap X and Y into 6 bins, one for each of the 2*3 possible combinations of X 

and Y. This gives us a 6-by-4 matrix on which we can perform our usual chi-square or 

information-based calculations.
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Another multivariate extension, not often used, allows the user to test for a group 

relationship, an association among more than two variables. In this case, we create a 

three-dimensional (or however many variables are tested) grid. Equation (2.8) is used 

to compute the marginal across each dimension; Equation (2.9) gives the individual 

cell probabilities, extended to higher dimensions as needed; Equation (2.10) gives 

the expected cell counts; and Equation (2.11), extended to the requisite number of 

dimensions, gives the chi-square value. However, traditional probability calculations 

and a conversion to Cramer’s V no longer apply in this case. We must use Monte Carlo 

permutation tests (described in the next chapter) to evaluate the significance of results.

�Permutation Tests
Many of the measures of association described in prior sections have sufficient 

theoretical understanding among experts that we could use traditional exact statistical 

tests to compute the probability that an observed strong relationship could have arisen 

from luck alone, with the variables in fact being unrelated. However, not all of these 

measures have this property. Also, some of the tests (such as for chi-square with small 

cell counts) are far from accurate. But most importantly, when we are data mining, 

luck plays a disturbingly large role if we search for relationships among a large number 

of candidate variables. Thus, traditional statistical tests usually take a back seat to 

specialized tests aimed at dealing with the various ways that random luck can invalidate 

apparently correct results. In this section, we will examine a family of such tests that is 

extremely powerful and useful in data mining.

�A Modestly Rigorous Statement of the Procedure
We begin with some potentially intimidating mathematics behind the tests to be soon 

described. Be assured that you can safely skip this section. But for those who care…

Suppose we have a scalar-valued function of a vector. We’ll call this g(v). In our 

current context, v would be the vector of cases for one variable (typically the target, if 

one is using such a label) and g(.) would be a measure of association of this variable with 

another variable (typically a predictor candidate). This might be any of the measures 

described in the prior section.
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Let Ф(.) be a permutation. In other words, Φ(v) is the vector v rearranged to a 

different order. Suppose v has n elements. Then there are n! possible permutations. We 

can index these as Φi where i ranges from 1 through n!. For the moment, assume that 

the function value of every permutation is different: g(Φi(v)) ≠ g(Φj(v)) when i≠j. We’ll 

discuss ties later.

Define Φ★ as the original permutation, the ordering of v that is observed in the 

experiment and that corresponds to the order of the other variable. This is the arrangement 

of pairings that the universe happened to provide in our real life. Now draw from the 

population of possible orderings m more times and similarly define Φ1 through Φm. Again, 

for the moment, assume that we force these m+1 draws to be unique, perhaps by doing the 

draws without replacement. We’ll handle ties later.

Compute g(Φ★(v)) and g(Φi(v)) for i from 1 through m. Define the statistic Θ as 

the fraction of these m+1 values that are less than or equal to g(Φ★(v)). Suppose the 

distribution of g(Φ(v)) under sampling of v from the universe of possible values for this 

variable does not depend on Φ. This is the null hypothesis. In the current context, this 

means that among the population of possible values of the target, the distribution of 

our relationship measure does not depend on the ordering of the observed values of the 

target; the target and the predictor have no relationship Then the distribution of Θ does 

not depend on the labeling of the permutations, or on g(.). In fact, Θ follows a uniform 

distribution over the values 1/(m+1), 2/(m+1), …, 1. This is easy to see. Sort these m+1 

values in increasing order. Because each of the draws that index the permutations has 

equal probability and because we are (temporarily) assuming that there will be no ties, 

the order is unique. Therefore, g(Φ★(v)) may occupy any of the m+1 ordered positions 

with equal probability.

Let F(Θ) be the cumulative distribution function of Θ. As m increases, F(Θ) 

converges to a continuous uniform distribution on (0,1). In other words, the probability 

that Θ will be less than or equal to, say, 0.05 will equal 0.05, and the probability that Θ 

will exceed, say, 0.99 will be 0.01, and so forth.

We can use this fact to define a statistical test of the null hypothesis that Φ★, 

our original permutation, is indeed a random draw from among the n! possible 

permutations, as opposed to being a special permutation that has an unusually large 

(or small) value of g(Φ★(v)), the measure of relationship. To perform a left-tail test 

(unusually small relationship), set a threshold equal to the desired p-value, and reject 

the null hypothesis if the observed Θ is less than or equal to the threshold. To perform 

a right-tail test (unusually large relationship), set a threshold equal to one minus the 
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desired p-value, and reject the null hypothesis if the observed Θ is greater than the 

threshold.

We have conveniently assumed that every permutation gives rise to a unique 

function value and that every randomly chosen permutation is unique. This precludes 

ties. However, the experimental situation may prevent us from avoiding tied function 

values, and selecting unique permutations is tedious. We are best off simply taking 

possible ties into account. Note that when comparing g(Φ★(v)) to its m compatriots, tied 

values that are strictly above or below g(Φ★(v)) are irrelevant. We only need to worry 

about ties at g(Φ★(v). A left-tail test will be conservative in this case. Unfortunately, a 

right-tail test will become anti-conservative. The solution is to shift the count boundary 

to the conservative end of the set of ties. The code shown later actually computes 

conservative p-values directly, and it slightly modifies the counting procedure 

accordingly.

Remember that an utterly crucial assumption for this test is that when the null 

hypothesis is true (the variables are unrelated), all of the n! possible permutations, 

including of course the original one, have an equal chance of appearing, both in real 

life and in the process of randomly selecting m of them to perform the test. Violations of 

this assumption can creep into an application in subtle ways. The most common culprit, 

serial correlation in both variables, will be addressed later in this section.

�A More Intuitive Approach
I suspect that most readers skipped over the theoretical discussion just shown. That’s 

fine. Here is a more intuitive look at permutation tests.

The scenario under which this particular test might be employed is as follows: 

We have two variables, which for the sake of clarity we will call the predictor and the 

target, though they need not have this directional relationship. We choose a test statistic 

that will measure the relationship between these two variables. This may be mutual 

information, Cramer’s V, or any other statistic that we favor. We then compute our 

measure of relationship.

A naive experimenter would look at the computed relationship figure and, if it is 

impressive, capitalize on this relationship in some way. But there is an aspect of the 

relationship measure that is every bit as important as its magnitude: the probability 

that truly unrelated variables could have scored as well by virtue of good luck. If this 

probability is anything but tiny, we must be skeptical.
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Here is one way to handle this situation. Suppose we randomly permute one of 

the variables, typically the target. This destroys any actual relationship between the 

unpermuted predictor and the permuted target. They are now randomly paired up. We 

recompute the relationship measure. If this value is less than that obtained from the raw, 

unpermuted data, we are happy for this small bit of evidence that the two variables are 

truly related. But it’s not very convincing evidence. If the variables were truly unrelated, 

there would still be a 50-50 chance of observing this result. So we need to test more 

random permutations.

If we test nine random permutations and the relationship measure for the original 

data exceeds all of them, we have more convincing evidence. In particular, if the 

variables were unrelated, there is a 1/10 chance that good luck would have placed it at 

the top. After all, in this situation, any of these ten orderings of the changes (one of them 

being the original order) has an equal shot at being the best.

What if the original relationship measure is the second best of the ten? There is a 

2/10 probability that it will land in the best or second-best slot. So, suppose we had 

decided in advance that if the original measure is at least the second best, we would 

confidently conclude that our variables are related. If in truth they are unrelated, we 

would have a 20 percent chance of being fooled by good luck.

Suppose we decide in advance to conclude that our variables are related if the 

relationship measure on the original data has at least a specified rank among all 

permutations. It should be apparent that there is a simple formula for computing the 

probability of this event under the scenario that the variables are unrelated.

Let m be the number of random permutations tested (not counting the original), 

and let k be the number of these random permutations (again, not counting the original) 

whose relationship measure equals or exceeds that of the original. Then, the probability 

that the original measure will achieve this exalted position or better by sheer luck is  

(k+1) / (m+1). You can understand this formula if you visualize the m+1 statistics 

(original plus m permuted) lined up in order. Note that the original statistic has equal 

probability of occupying any of these m+1 slots if the variables are unrelated.

A traditional statistical test of the null hypothesis that the variables are unrelated, 

versus the alternative that they are, would be performed as follows: Decide in advance 

what level of error probability you are willing to accept. This error, often called the 

alpha level, is an upper bound for the probability that you will erroneously reject the 

null hypothesis. Here, this error is concluding that the variables are related when in 
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fact they are not. Choose a large value of m, and compute k from the previous formula. 

Then perform the random replications and count how many of them have a relationship 

statistic that equals or exceeds that of the original data. If k of them or fewer do so, we 

can reject the null hypothesis. If the null hypothesis is true (the variables are unrelated), 

we will make this error with probability at most our specified alpha.

�Serial Correlation Can Be Deadly
Recall that a fundamental assumption of a Monte Carlo permutation test is that every 

possible permutation must be equally likely if the null hypothesis is true. If there is any 

sort of dependence in the vector being permuted, with serial correlation being by far the 

most common, then full permutation will destroy this serial correlation. This makes the 

test anti-conservative, more likely to indicate that a relationship is present when it is not. 

This is an extremely serious error.

But note that this is a problem only if both vectors contain dependencies. As long as 

at most one of the two variables has dependencies, we can permute the other one. And if 

we are using a symmetric measure of relationship, we can even permute the dependent 

variable because this revised pairing is equivalent to permuting the “good” variable!

In the next section, we will see a permutation algorithm that does a good (though not 

perfect) job of handling the situation of both variables having serial correlation.

It must be emphasized that this phenomenon is not an artifact of just the Monte 

Carlo permutation test. This is a universal phenomenon, which is why Statistics 101 

courses always emphasize the importance of independent observations. The simple 

explanation of why this occurs is that any sort of dependence reduces the effective 

degrees of freedom of the test. The testing procedure looks at the number of cases and 

proceeds accordingly, but the dependence in the data increases the variance of the test 

statistic beyond what would be expected from a sample of the given size. Thus, we are 

more likely to falsely reject the null hypothesis.

�Permutation Algorithms
Surprising as it may seem, permutation can be a significant eater of time in a Monte 

Carlo permutation test. It is not unusual for permuting a variable to require about as 

much computer time as computing the relationship criterion. Therefore, we must 
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program it as efficiently as possible, paying special attention to the speed of the random 

number generator. Here is the “standard” permutation algorithm:

   i = n_cases;       // Number remaining to be shuffled

   while (i > 1) {      // While at least 2 left to shuffle

      j = (int) (unifrand_fast () * i); // Random must range from 0 (inclusive) to 1 (exclusive)

      if  (j >= i)          // This should not be necessary, but safety is good

         j = i - 1;

      dtemp = target[--i];    // Swap i and j cases

      target[i] = target[j];

      target[j] = dtemp;

      }

If both variables have serial correlation, there is an alternative shuffling algorithm 

that greatly reduces (though it does not completely eliminate) the deadly anti-

conservative behavior of ordinary shuffling. Still, any anti-conservative tendency is 

scary, so we should exercise care in interpreting these results. But this algorithm is better 

than nothing and is perfectly reasonable for rough results.

The idea is that instead of swapping cases randomly, we rotate the permuted series. 

This keeps serial dependencies largely intact, but it still destroys the pairing of values 

of the two series and hence destroys the relationship between the series, which is what 

must do to generate the null hypothesis distribution. Here is this rotational permutation 

algorithm. Note that we use a scratch vector, work_target.

   j = (int) (unifrand_fast () * n_cases);  // Rand ranges from 0 (inclusive) to 1 (exclusive)

   if  (j >= n_cases)                       // Should not be necessary, but play it safe

      j = n_cases - 1;

   for (i=0; i<n_cases; i++)            // Rotate into work vector

      work_target[i] = target[(i+j)%n_cases];

   for (i=0; i<n_cases; i++)           // Copy rotated vector back into target vector

      target[i] = work_target[i];

�Outline of the Permutation Test Algorithm
Later, we will explore specific versions of the Monte Carlo permutation test, adapted 

for specialized applications. However, before advancing further, I will summarize the 

material shown so far by presenting a general outline of the most basic procedure. 

This will serve as a foundation for more sophisticated applications. Here it is in words:
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for permutation from 0 through n_permutes-1

       if  permutation > 0

            shuffle one variable (typically the target)

       compute ‘criterion’, the measure of  relationship

       if  permutation = 0

            original criterion = criterion

            count = 1

       else

            if  criterion >= original criterion

                    count = count + 1

probability = count / n_permutes

The probability computed by this algorithm is the approximate probability that, if the 

two variables are truly unrelated, a measure of their relationship at least as large as that 

observed could be obtained by pure good luck. If you find a wonderfully nice relationship, 

before trying to capitalize on it, you should run this test and confirm that the computed 

probability is small. If it is not small, you should be highly suspicious of your results. 

Undetected good luck has a way of coming back to bite you when you least expect it.

Just to dot all my i’s and cross all my t’s, I’ll note that rejecting a potential relationship based 

on a nonsmall probability is perilously close to a sin that statisticians call accepting a null 

hypothesis, a serious no-no. Thus, we must avoid saying that a relationship with a nonsmall 

probability is worthless. We should just be suspicious, especially if the sample is large.

�Permutation Testing for Selection Bias
We come now to what I believe is the most important use of Monte Carlo permutation 

tests: accounting for selection bias (the bias inherent in selecting the best of many 

competitors). The problem with the probability computed with the algorithm just shown 

is that if more than one predictor candidate is tested for a relationship with a target (the 

usual situation!), then there is a large probability that some truly worthless candidate 

will be lucky enough to achieve a high level of the relationship measure and hence 

achieve a very small probability. In fact, if all candidates are worthless, the probabilities 

of the candidates will follow a uniform distribution, frequently obtaining small values 

by random chance. This situation can be remedied by conducting a more advanced test 
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that accounts for this selection bias. The unbiased probability for the best performer 

in the candidate set is the probability that this best performer could have attained its 

exalted level of performance by sheer luck if all candidates were truly worthless.

We can easily compute the unbiased probability for all candidates, not just the best. 

For those other, lesser candidates, the computed unbiased probability is an upper bound 

(a conservative measure) for the true unbiased probability of the candidate. Thus, a very 

small unbiased probability for any candidate is a strong indication that the candidate 

has true predictive power. Unfortunately, unlike the regular (often called the solo) 

probability, large values of the unbiased probability are not necessarily evidence that 

the candidate is worthless. Large values, especially near the bottom of the sorted list of 

relationship measures, may be due to over-estimation of the true unbiased probability. 

I am not aware of any algorithm for computing correct unbiased probabilities for any 

candidate other than the best. However, because this measure is conservative, it does 

have great utility in selecting promising predictors.

The algorithm, modified to handle selection bias, is shown here:

for permutation from 0 through n_permutes-1

         if  permutation > 0

              shuffle the target

         for ‘variable’ covering all predictor candidates

               compute ‘criterion’, the measure of  relationship between variable and target

               if  permutation = 0

                       original criterion[variable] = criterion

                       solo_count[variable] = unbiased_count[variable] = 1

               else

                       if  criterion[variable] >= original criterion[variable]

                             solo_count[variable] = solo_count[variable] + 1

         if  permutation > 0

               best_criterion = MAX (criterion for all predictor candidates)

               for ‘variable’ covering all predictor candidates

                       if  best_criterion >= original_criterion[variable]

                             unbiased_count[variable] = unbiased_count[variable] + 1

for ‘variable’ covering all predictor candidates

        solo_probability[variable] = solo_count[variable] / n_permutes

        unbiased_probability[variable] = unbiased_count[variable] / n_permutes
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The first step to understanding this algorithm is to note that for the solo probabilities, 

for each candidate predictor this is identical to the simple algorithm shown on page 94.

But this algorithm contains one additional step. For shuffled runs, it finds the 

maximum of the relationship measures for all candidates. Then, for each candidate, it 

compares this “best” measure to the original score for the candidate and increments 

the unbiased counter accordingly. For whichever candidate has the greatest original 

relationship, this is in perfect conformation: the greatest measure for permuted data 

is compared to the greatest measure for the original data. Hence, this provides the 

probability that, if all candidates were worthless, the obtained best relationship could 

have been obtained by pure luck. But do note that for candidates other than the best, this 

probability is conservative.

�Combinatorially Symmetric Cross Validation
The primary goal of most data mining operations is not just discovery of relationships 

that exist within a dataset that is in our hands. Rather, what we really want is to 

discover relationships that exist in the general population of interest. It does us little 

good (and perhaps great harm!) if we collect a dataset, analyze the daylights out of it, 

proudly proclaim a momentous discovery, and then learn that our discovery cannot be 

reproduced in subsequent data collections. Such a situation is usually associated with 

overfitting our relationship model.

We saw one approach to dealing with this issue in the prior section, when we used 

a permutation test to estimate the probability that results as good as those observed 

could have been obtained by pure luck. In this section, we take a completely different 

approach. It is based on the fact that the data in our sample contains two components: 

true values and random noise. For every variable measured in every case, the value in 

our dataset is composed of an unobservable true value plus contamination by noise. 

So when we measure the relationship between variables, we are not getting a measure 

of the relationship between the true values. Instead, we are measuring the relationship 

between our observed values, which for all we know may consist of more noise than 

truth! Especially if many variables are under investigation, it may be that a randomly 

fortuitous alignment of noise patterns may result in deceptive relationships that do not 

exist in the general population.
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This is particularly problematic if our measure of relationship is overly powerful. To 

take an extreme example, a careless developer may postulate that a dependent variable 

is related to an independent variable by a degree-ten polynomial and measure the 

degree of relationship by the R-squared of the fit. In the vast majority of applications, 

this would be called overfitting, because the measure is much too capable of capitalizing 

on phantom relationships between the noise components. As a less extreme but still 

serious example, if we were to compute a bin-based measure such as discrete mutual 

information or Cramer’s V and use a bin resolution that is too fine, we could find 

nonreproducible relationships between the noise components.

The CSCV algorithm presented in this section, which is loosely based on ideas 

given in “The Probability of Backtest Overfitting” by David Bailey, Jonathan Borwein, 

Marcos Lopez de Prado, and Jim Zhu, is much more context-sensitive than the Monte 

Carlo permutation testing of the prior section. The theoretical (though not necessarily 

practical) assumption is that, in some sense best left undefined, the set of variables 

competing in a relation contest with some other variable is complete and representative. 

Roughly speaking, this means that the tested competitors encompass all possible 

competitors in the application and do not include any variables that do not naturally fit 

in the application.

Okay, I know. Quit rolling your eyes. Not only is this description vague, but it is also 

impossible to achieve in real life. The good news is that, in practice, violations of this 

assumption, unless they are outrageously egregious, are almost always of little or no 

consequence. The main thing we need to be concerned with is that we do not include 

in the competition any variables that a reasonable person would know in advance have 

nothing to do with the application. Accidental inclusion of worthless variables is not a 

serious problem; in fact, this is usually impossible to avoid in practical data mining. Just 

don’t deliberately include crazy things.

For example, suppose we are hoping to discover personal traits that predict the 

efficacy of some new drug. We would certainly include the person’s age, weight, gender, 

blood type, and so forth. We might even stretch a little by including the person’s hair 

color, hobbies, pets in their home, and other traits that have no obvious relationship to 

drug response. But we should not include the Dollar/Yen foreign exchange rate on the 

day they were born. Inclusion of too many such variables will distort results.
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Also, we should not cheat by deliberately omitting competitors that we know in 

advance may have a reasonable chance of being useful. In the earlier drug example, we 

must not say, “I know from experience that weight will be a powerful predictor, so there 

is no sense even testing it.” Such an omission will seriously distort results. Of course, 

if you accidentally omit a useful predictor, so be it. You can’t always know in advance 

everything that is useful. Just don’t do it deliberately.

Let’s pause for a moment and digress into the fact that the CSCV algorithm is far 

more general than its presentation here. In this text and subsequent code, we employ 

it for one purpose, as an aid for evaluating relationships between individual competing 

variables and a single other variable. On page 102 we will see the algorithm in its most 

general version, and at that point it should be clear how to generalize it. Here are a few 

examples of how CSCV can aid in the evaluation of competing multiple comparisons:

•	 One group of variables is jointly related to another group of variables. 

Choose the variables that make up each set so as to maximize their 

joint relationship.

•	 A model has numerous competing sets of parameters. In other words, 

the competitors are parameter values rather than variables, and we 

find the most effective parameter set.

•	 A financial market trading system has competing versions or 

parameter sets. This is the application that [Bailey et al, 2015] 

considers.

Now that the preliminaries are out of the way, let’s talk about exactly what we will 

be doing in this test. We have collected a sample of data, our dataset, and computed 

performance statistics for the competitors. Because our performance statistics are based 

on a sample that is contaminated by noise, our computed values will not exactly equal 

the (unmeasurable) true values in the population from which our sample was drawn. 

We hope that they are close. In particular, when we determine the best competitor, that 

having the maximum performance statistic, we hope that its true performance in the 

population is also outstanding.

Chapter 2  Screening for Relationships



100

What is a good criterion to use in order to define “outstanding” performance 

out-of-sample (not in our dataset)? The choice employed for this test is to compare 

the out-of-sample (OOS) performance of the best competitor (or any competitor in 

general) to the median OOS performance of all competitors. It’s a fairly low bar, but 

we define outstanding performance as being above the median. If a competitor’s OOS 

performance is above the median OOS performance of all competitors, we say that this 

competitor is outstanding.

Now it should be clear why the field of competitors should be “complete” and 

“representative” for the application. Suppose some competitors that are known a 

priori to be useful are omitted. The median will be skewed downward from what it 

would be in a fair fight. Similarly, suppose we include a bunch of competitors that a 

reasonable person would know in advance to be useless. In this case we have again 

deliberately skewed the median downward. In either case, the relative performance 

of our competitors will be inflated from what it would be in a more ideal situation. Of 

course, either error still leaves us with a valid test in the sense of results being relative to 

the set of competitors. So we still have a useful test, even if the assumptions are seriously 

violated. It’s just that we may not be able to interpret results as well as we would like.

We’ve been blithely tossing around “OOS performance”  as if we have it in hand. 

Unfortunately, it’s not measurable because it generally is defined in terms of an infinite 

population. We could approximate OOS performance by splitting our data into two parts, 

selecting promising competitors from one part, and estimating their OOS performance 

with the other part. But that’s wasteful. There’s a better way: cross validation.

Ordinary cross validation has a problem in many applications, including the one 

we are discussing. In each fold (unless we use just two folds), the in-sample (IS) set is 

much larger than the OOS set. This can skew many important families of performance 

statistics. Thus, we use a modified version of cross validation called combinatorially 

symmetric cross validation (CSCV).

In CSCV, we split the dataset into an even number of subsets. Then we choose half 

of the subsets to be the IS set, which leaves the remaining half (of equal or nearly equal 

number of cases) to serve as the OOS set. Repeat to cover all combinations. For example, 

suppose we split the data into four subsets, numbered 1, 2, 3, and 4. First we combine 

subsets 1 and 2 to be an IS set, leaving 3 and 4 to be the OOS set. Then we let 1 and 3 be 

IS, leaving 2 and 4 to be OOS. There are six such partitions possible.

For each partition, we use the IS set to find the best competitor. We also compute 

the OOS performance of each competitor and find the median OOS performance of all 
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competitors. Note whether the OOS performance of the best IS performer is above the 

median (good news) versus less than or equal to the median (bad news). If we count the 

number of partitions in which the latter is true and divide this count by the total number 

of partitions, we get a fraction 0-1 that is an approximation to the probability that the 

best performer will underperform its competitors out of sample, which is a sad state of 

affairs. As such, we can say that this probability is a (distant) relative to the ordinary p-

value that we all know and love.

Just to make this clear, suppose that the criterion we are using to judge performance 

is effective at capturing authentic information. In the software is available for this book, 

this criterion is a measure of the relationship between a single competing variable and 

another single variable. In the case of finding optimal parameters for a model, this 

criterion might be R-squared. Whatever we use, suppose for now that it is an effective 

measure of performance quality.

Furthermore, suppose that at least one of our competitors is truly good. In the 

context of this text, this means that at least one of the competing variables truly has a 

significant relationship with the other variable. In the context of model training (not 

covered here), this means that at least one of the competing finite number of parameter 

sets defines an effective model.

Under these two assumptions, whichever competitor has the best value of this 

criterion in-sample is likely truly the best, or at least nearly the best. Thus, we would 

expect its performance out of sample to also be exemplary. As a result, few or no 

partitions would find its OOS performance to be less than or equal to the median, and 

the computed probability would be zero or tiny.

If either of these two suppositions is violated, the situation is very different. For 

example, it may be that our carelessly designed criterion is a degree-ten polynomial 

fit that focuses heavily on noise and hence is nearly powerless at identifying truly 

outstanding competitors. Or it may be that all of the competitors are worthless. Maybe 

none of the competing variables has any relationship with the other variable. Or maybe 

a predictive model is fundamentally flawed, and no parameter set can make it truly 

work. For either type of supposition violation, IS and OOS performance will be largely 

unrelated and be pretty much random values. Thus, the OOS performance of the best IS 

performer will be all over the map, sometimes above the median and sometimes below. 

The IS performance has not captured anything that is indicative of OOS performance.

This discussion has focused on the best IS performer, as that is the most intuitive 

presentation. But it’s legitimate to compute this probability for all ranks of competitors 
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(second best, third best, etc.). If the probability is small for many of the best IS 

performers, then we can have considerable confidence that their performance will 

continue out of sample.

It may be useful to compute, for a specified even number of subsets S, how many 

partitions of the dataset will be involved. This is the number of combinations of S things 

taken S/2 at a time. The standard computational formula can be implemented with 

a simple loop, provided that the division is done in floating point rather than integer 

arithmetic. Here is a good way, with n_sub being the number of subsets, S, and half_S 

being half of that.

   dtemp = 1.0;

   for (i=0; i<half_S; i++)

      dtemp *= (double) (n_sub - i) / (double) (half_S - i);

   ncombo = (int) (dtemp + 0.5);

�The CSCV Algorithm
In this section we present the general CSCV algorithm, using C-like pseudocode. 

We’ll use the specific application of a set of predictor variables competing for degree 

of relationship with a single other variable, called the target variable. However, at the 

appropriate points we will note how this algorithm could be easily modified for assessing 

the quality of parameter sets in developing a model. Also, for the sake of clarity, intuitive 

explanations will be liberally interspersed with the pseudocode.

First, we must be clear about how the single target variable and the set of competing 

predictor candidates are stored. The target is simple; it’s just an array of ncases values. 

The predictor candidates are a bit more complicated. We have a database matrix 

with ncases rows and n_vars columns. However, we do not demand that all of these 

variables compete. We may want to ignore some of them. In fact, we will have only 

npreds competitors, and their column indices in the dataset are in the array preds, which 

is npreds long. This generalization is not needed for the algorithm, but it is convenient 

for the caller because it avoids the need to create a special database containing only 

competitors.
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For convenience, here are the variables that appear often in the code:

            double *dataset          Complete dataset

            int ncases                   Number of  cases (rows) in dataset

            int n_vars                   Number of  variables (columns) in dataset

            double *all_target       All target values, ncases of  them

            int npreds                    Number of  predictors (competitors)

            int *preds                    Indices in database of  predictors; npreds of  them

            int n_sub                    Number of  subsets, S = 2 * half_S

            int half_S                    Half  of  S

            double *crits               Output

            int *indices                  Work vector n_sub long

            int *lengths                  Work vector n_sub long

            int *flags                      Work vector n_sub long

            int *sorted_index        Work vector nvars long

            double *IS_crits          Work vector nvars long

            double *OOS_crits     Work vector nvars long

            double *work_pred     Work vector ncases long

            double *work_targ      Work vector ncases long

The first step is to partition the ncases cases in the predictor dataset and target array 

into n_sub (S) subsets. The array indices (n_sub long) will contain the starting index of 

each subset, and the corresponding array lengths will contain the number of cases in 

each subset. If ncases is an exact multiple of n_sub, the lengths will of course all be equal. 

If not, at least they should be close. Once we have these two arrays computed, it will be 

easy to locate the cases that correspond to each subset.

   istart = 0;

   for (i=0; i<n_sub; i++) {                                // For all S subsets

      indices[i] = istart;                                       // This subset starts here

      lengths[i] = (ncases - istart) / (n_sub-i);    // It contains this many cases

      istart += lengths[i];

      }

We have two things to initialize. Throughout the algorithm, the ncases array flags 

identifies whether each case is in the training set (the flag is 1) or the test set (the flag is 0).  

The processing of partitions begins with the first half of the subsets being the training set, 
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and the second half the test set, so initialize accordingly. Also, the npreds array crits will 

count the number of times each training-set rank competitor has OOS performance less 

than or equal to the median. We initialize this to zero. It is a double instead of an integer 

because we will later convert it to a probability.

   for (i=0; i<half_S; i++)      // This is the first partition tested

      flags[i] = 1;                    // Training case

   for (; i<n_sub; i++)

      flags[i] = 0;                    // Test case

   for (ivar=0; ivar<npreds; ivar++)

      crits[ivar] = 0.0;

We now begin the main outer loop that processes every partition. We don’t need to 

know in advance how many partitions (combinations) there will be because later we’ll 

easily know when we’ve done them all.

   for (icombo=0;; icombo++) { // Main loop processes all combinations

The first step in this loop is to gather the in-sample targets. We count them with n. 

For subset ic, the cases in this subset start at indices[ic], and there are lengths[ic] of them.

      n = 0;                                               // Will count cases in the training set

      for (ic=0; ic<n_sub; ic++) {              // For all S subsets of  the complete dataset

         if  (flags[ic]) {                                 // If  this subset is in the training set

            for (i=0; i<lengths[ic]; i++) {       // Get the target for this subset

               k = indices[ic]+i;                     // Case index

               target[n++] = all_target[k];

               }

            }

         }

We similarly gather the competitors in the training set. Each competitor is done 

individually, looping through all npreds of them. For each, ipred (supplied by the caller 

via preds) identifies its column in the complete dataset. Once the values for a competitor 

are gathered, we call compute_criterion() to compute the criterion and save the value in 

IS_crits. We also initialize a sort index. The call to qsortdsi() will sort the npreds criteria, 

simultaneously moving sorted_index so we know what’s where later when we need ranks.
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      for (ivar=0; ivar<npreds; ivar++) {    // For all competitors

         n = 0;                                             // Will count cases just as for target

         ipred = preds[ivar];                        // Index in complete database

         for (ic=0; ic<n_sub; ic++) {            // For all S subsets of  the complete dataset

            if  (flags[ic]) {                               // If  this subset is in the training set

               for (i=0; i<lengths[ic]; i++) {     // Get predictor candidate for this subset

                  k = indices[ic]+i;                   // Case index

                  competitor[n++] = dataset[k*n_vars+ipred];

                  }

               }

            }

         IS_crits[ivar] = compute_criterion (n, competitor, target);

         sorted_index[ivar] = ivar;

         }

      qsortdsi (0, npreds-1, IS_crits, sorted_index);

We do exactly the same thing for the OOS cases, except that we do not sort them 

quite yet. First, gather the OOS targets. Then, separately for each competitor, gather 

those values, and compute and save the OOS criterion.

      n = 0;                                         // Will count cases in the test set

      for (ic=0; ic<n_sub; ic++) {        // For all S subsets of  the complete dataset

         if  (! flags[ic]) {                         // If  this subset is in the test set

            for (i=0; i<lengths[ic]; i++) { // Get the target for these cases in this subset

               k = indices[ic]+i;               // Case index

               target[n++] = all_target[k];

               }

            }

         }
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      for (ivar=0; ivar<npreds; ivar++) {      // For all competitors

         n = 0;                                              // Will count cases, just as we did above

         ipred = preds[ivar];                         // Index in complete database

         for (ic=0; ic<n_sub; ic++) {             // For all S subsets of  the complete dataset

            if  (! flags[ic]) {                              // If  this subset is in the test set

               for (i=0; i<lengths[ic]; i++) {      // Get this competitor for this subset

                  k = indices[ic]+i;                    // Case index

                  competitor[n++] = dataset[k*n_vars+ipred];

                  }

               }

            }

         OOS_crits[ivar] = compute_criterion (n, competitor, target);

         }

This is a good time for a brief aside on alternatives to competing for a relationship 

to a target variable. The basic data structure and algorithm remain the same for other 

alternatives. The data cases are in rows, and the competitors are in columns. For 

example, if the competitors are parameter sets for a model, each column represents 

a complete set of parameters, and each row represents the individual error for a case. 

In other words, the data value in row i column j would be the error for case i when 

parameter set j is used to define the model. Then the criterion for a collection of IS or 

OOS subsets would be a pooled quality measure such as R-squared for those cases.

We need to compute the median OOS performance across all competitors. There are 

algorithms for computing the median that are somewhat faster than sorting, but the speed 

of this step is inconsequential, so I take the easy way of just sorting. We must not disturb 

the order of the OOS criteria, so we cannot sort that array. But we no longer need the 

IS_crits data, because we already have the ranks via sorted_index, so we just copy the OOS 

criteria to the IS array and sort it to get the median.

      for (ivar=0; ivar<npreds; ivar++)

         IS_crits[ivar] = OOS_crits[ivar];

      qsortd (0, npreds-1, IS_crits);

      if  (npreds % 2)

         median = IS_crits[npreds/2];

      else

         median = 0.5 * (IS_crits[npreds/2-1] + IS_crits[npreds/2]);
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We just computed the median (across all competitors) of the OOS criterion.  

See if the OOS performance of each IS rank is less than or equal to the OOS median.  

Note that ivar in crits[ivar] refers to the rank, not the predictor index itself. For example, 

crits[0] refers to the worst-performing predictor candidate in sample in this partition, and 

crits[npreds-1] refers to the best IS performer, which is typically where our interest lies. 

Larger values of crits imply worse OOS performance.

      for (ivar=0; ivar<npreds; ivar++) { // For all competitors

         if  (OOS_crits[sorted_index[ivar]] <= median)

            ++crits[ivar];

         }

Now we come to the real brain-buster part of the code: advancing to the next 

partition. Recall that we need to loop through every possible collection of S/2 subsets 

taken from the total of S subsets. Each collection will serve as the training set for a trial, 

with the remaining S/2 subsets serving as the test set. We initialized the first partition to 

have all S/2 ones first and to have the zeros last.

If you search the Internet, you will find numerous algorithms to do this, many of 

which are explicitly recursive. This algorithm happens to be mine, although it is possible, 

even likely, that someone else came up with it first and published it. Like the other 

algorithms that I’ve seen, it is recursive, but not explicitly so. I cannot offer a rigorous 

proof that it is correct. However, I have tested it quite thoroughly and never found it to fail.

Understanding its operation is aided by working through the code for eight 

partitions, writing on a sheet of paper the first dozen or two partitions. Here is the code; 

an intuitive explanation follows:

      n = 0;                                        // Will count 1s to we know how many to fill later

      for (iradix=0; iradix<n_sub-1; iradix++) {        // Search left to right for 1-0 pattern

         if  (flags[iradix] == 1) {            // Maybe; here’s the 1. Count it in case we switch and fill

            ++n;                                    // This many flags up to and including this one at iradix

             if  (flags[iradix+1] == 0) {    // We’ve got the 1-0 pattern

                 flags[iradix] = 0;             // Advance the 1 and replace it with a 0

                 flags[iradix+1] = 1;         // Which gives us a whole new pattern

                 for (i=0; i<iradix; i++) {   // Must reset everything below this change point

                    if  (--n > 0)                   // Fill in the required number of  1s first

                        flags[i] = 1;
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                    else                            // Then fill the rest with 0s

                        flags[i] = 0;

                    } // Filling in below

                 break;                            // We have our new partition, so done for now

                 } // If  next flag is 0

             } // If  this flag is 1

         } // For iradix

      if  (iradix == n_sub-1) {             // True if  we cannot advance to a new partition

         ++icombo;                             // Must count this last one for probability division

         break;                                    // All partitions have been processed

         }

      } // Main loop processes all combinations

The initial partition has all ones at the beginning and all zeros at the end. Each time 

a new partition is needed, the algorithm starts at the beginning of the flag array and 

searches forward, looking for the first occurrence of a one followed by a zero. The first 

time this pattern is encountered, the one will be shifted to the right and replaced by a 

zero. Not only does this give a new partition, never seen before, but any permutation of 

the flags prior to this pair is also unique. If this is not clear, consider that the changed 

pair cannot change back to one-zero and then change again to zero-one without at least 

one flag beyond it changing.

Once this shift has occurred, we reset all flags prior to this pair, putting the requisite 

number of ones at the beginning and setting the remaining flags to zero. This is where 

the implicit recursion enters the picture. The next time the algorithm is called upon to 

advance to the next partition, it will do so on a smaller subset of the flags, those to the left 

of the pair just switched.

Eventually the point is reached that no one-zero pairs occur inside the active area. When 

this happens, the rightmost one in the flag array is pushed to the right one slot, and the mass 

of ones has just irrevocably advanced. After the final partition (all ones on the right) appears, 

the one-zero pattern will no longer be found in the flag array, and we are done.

The final step is trivial: divide all criterion counts by the number of partitions to get 

an approximate probability that the OOS performance for each IS rank is less than or 

equal to the median OOS performance.

   for (ivar=0; ivar<npreds; ivar++)

      crits[ivar] /= icombo;
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Remember that the ivar positions in crits do not correspond to candidates but 

candidate ranks. The rankings will in general be different for different partitions. Still, 

it is legitimate to map these criteria to the candidates in the order of their final ranking. 

After we have computed the performance criteria for all candidates and ranked them, 

we assign the probability estimate crits[npreds-1] to whichever candidate had the best 

performance, and so forth, down to assigning crits[0] to the worst performer.

�An Example of CSCV OOS Testing
Here is a simple example of using CSCV OOS median testing to evaluate the relationship 

of a set of competing candidates with a single target variable. The synthetic variables in 

the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each 

other) random time series.

•	 SUM1234 = RAND1 + RAND2 + RAND3 + RAND4

We use five-bin uncertainty reduction as our performance criterion, testing RAND0 

to RAND9 as competitors to predict SUM1234. Eight CSCV subsets are used. The 

following results are obtained:

      Variable         UncertReduc         P(<=median)

         RAND4            0.0801               0.0000

         RAND3            0.0784               0.0000

         RAND1            0.0706               0.0000

         RAND2            0.0703               0.0000

         RAND5            0.0013               0.8571

         RAND8            0.0012               0.8286

         RAND7            0.0010               0.9000

         RAND0            0.0010               0.8000

         RAND6            0.0009               0.8857

         RAND9            0.0006               0.7286

Not surprisingly, RAND1 to RAND4 have the highest values of uncertainty reduction. 

But note how extremely effective the CSCV probabilities are. The probabilities for the 

four variables having a true relationship are a perfect zero, while the probabilities for the 

unrelated variables are very high. Of course, this is a particularly easy test, but it does 

demonstrate the efficacy of the technique.
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In my own work, I have found great value in using this CSCV algorithm to detect 

overfitting of the model. If you have a model that is so powerful that it is learning noise to 

the detriment of authentic patterns, you will likely find that its performance criterion is 

impressive, but none of the competitors has a wonderfully low CSCV probability. That’s 

a major red flag, not to be dismissed!

�Univariate Screening for Relationships
This section presents the most basic, the fastest-to-compute, and easy-to-understand 

technique for variable screening. In this algorithm, we have a single variable, which 

we call the target, and a (usually large) collection of variables, which we call predictor 

candidates. Usually, our application will embody this directionality, although it need 

not. There is nothing inherent in this algorithm that requires one variable be used to 

predict another. We are simply screening for a relationship.

The complete source code for this algorithm is in SCREEN_UNIVAR.CPP. It’s much too 

long to list here in the text. At the most basic level, the algorithm is exactly as shown in 

the pseudocode on page 97. But there are two complications.

First, this code provides the user with a variety of relationship criteria from which to 

choose. Some of these require discretization into bins before processing is done, while 

others operate directly on continuous data. Complicating things even more is an option 

that is immensely valuable for extremely noisy data (such as financial market price 

changes). This option lets the program focus on only extreme values of the predictor 

candidates, those values most likely to carry predictive information, while ignoring cases 

that do not have extreme values. And to pile yet another complication on top of this tails-

only option, every predictor candidate will have different extreme cases, so we cannot 

do target bin assignments based on the entire dataset. We must compute target bin 

thresholds separately for each candidate. This is a simple concept but very nasty coding. 

I won’t bother discussing my code for this here; you may role your eyes at my code and 

choose to do it in a way that you find more comfortable. If you do want to copy my code, 

it’s in the source file.

Another complication with this algorithm is that modern processors have multiple 

cores, and it would be foolish to fail to take advantage of this. My implementation is fully 

multithreaded, making use of every available core. Because you may be unfamiliar with 

methods for multithreading, I’ll deal with this subject in some detail here.
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One concept critical to multithreading is that a Windows thread can launch only 

a special function with a single parameter. Naturally, we’ll need to pass a boatload of 

parameters to the criterion-computation routine. So, what we do is define a structure 

that contains all necessary parameters, fill in the contents of this structure, and then pass 

this structure as our solitary parameter. The structure may look something like this:

typedef  struct {

   int varnum;     // Index of  predictor (in database, not preds)

   int ncases;      // Number of  cases

   int n_vars;      // Number of  columns in database

   ...

   double crit;     // Criterion is returned here

} UNIVAR_CRIT_PARAMS;

In the calling routine, we define a variable and set as many members as possible 

before beginning. As threads are launched, we set any remaining parameters that could 

not be set until launch time, such as the ID of the variable being evaluated.

   UNIVAR_CRIT_PARAMS univar_params[MAX_THREADS];

   ....

      for (ithread=0; ithread<max_threads; ithread++) {

         univar_params[ithread].ncases = n_cases;

         univar_params[ithread].n_vars = n_vars;

         ...

         }

On the next page, we see a C-like pseudocode outline for the entire multithreaded 

screening algorithm. Ideally, this will let you more easily comprehend the code in the 

SCREEN_UNIVAR.CPP source file. It also serves as a useful template if you want to write 

your own screening code from scratch.

Allocate working memory and any objects that are universally needed

Fetch all selected candidates and target from database

Perform any required initial calculations, such as finding bin boundaries and counts
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For irep=0 to requested Monte-Carlo replications

   Shuffle the target if  we are past the first (unshuffled) replication

   Allocate any objects that are dependent on the order of  the targets

   Set thread parameters (thread_params) that are the same for all threads

   n_threads = 0       Counts the number of currently active threads

   ivar = 0                  Indexes (through n_candidates-1) the variable being tested

   empty_slot = -1     Will be next available thread slot

   Start thread loop   This is an ‘endless’ loop, exited only with a break

      if  (ivar < n_candidates)    More variables to test?

         if  (empty_slot < 0)         True while filling thread slots

             k = n_threads;

         else

             k = empty_slot;          Start this new thread in the slot recently vacated

         thread_params[k].ivar = ivar       We’ll need to know which variable this is

         thread_params[k].(other stuff) = whatever    Other parms known only at launch

         threads[k] = newly created thread  Launch this new thread

         ++n_threads                                   And count it

         ++ivar                                             On to the next candidate

      if  (n_threads == 0)                         One of two exits from the thread loop

         Break out of  thread loop

      �The next ‘if’ is true if all available threads are busy and we have not yet completed 

launching all work

      if  (n_threads == max_threads && ivar < n_candidates)

         finished_id = ID of  the first thread to finish OS call to wait for a thread to finish

         Next line fetches and saves the criterion for the variable just processed

         criterion[thread_params[finished_id].ivar] = thread_params[finished_id].criterion

         empty_slot = finished_id     This slot is now available

         close thread 'finished_id'

         --n_threads
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      Next ‘if’ is true if no more candidates remain to be processed

      else if  (ivar == n_candidates)

         Wait for all n_threads remaining threads to finish    This is a system call

         for (i=0; i<n_threads; i++)      We get here only when all threads are finished

            criterion[thread_params[i].ivar] = thread_params[i].criterion

            close thread 'i'

         Break out of  thread loop        We are completely done with computation

      End of  thread loop                    Loop back up to top of thread loop

   Free any objects that are dependent on the order of  the targets

   At this point, all criteria are computed and each is in crit[ivar]

   Preserve and sort these for printing, and handle solo permutation test

   For ivar=0 to n_candidates

      if  (irep == 0)                  Unpermuted runis

         sorted_crits[ivar] = original_crits[ivar] = crit[ivar]

         index[ivar] = ivar         This will let us print results sorted best to worst

         mcpt_bestof[ivar] = mcpt_solo[ivar] = 1

      else if  (crit[ivar] >= original_crits[ivar])

         ++mcpt_solo[ivar]

      End of  'for all candidates' loop

   For the first (unpermuted) run, sort criteria, keeping ‘index’ synchronized

   if  (irep == 0)

      Sort 'sorted_crits' ascending, simultaneously moving 'index'

   else     This is a permuted run

      The next line and loop find the max criterion for this permuted run

      best_crit = criterion[0];

      For ivar=1 through n_candidates-1

         if  (criterion[ivar] > best_crit)

             best_crit = criterion[ivar];

         End of  'for candidates' loop
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      Handle the unbiased permutation test

      For ivar=0 through n_candidates-1

         if  (best_crit >= original_crits[ivar])

             ++mcpt_bestof[ivar]

         End of  'for all candidates' loop

   End of  MCPT replications loop

All computation is complete. Print results, sorted from max to min criterion

for (i=n_candidates-1; i>=0; i--)

   k = index[i];

   Print name, criterion, and mcpt probabilities for candidate k

   End of  'for n_candidates' counting down loop

Free all working memory and remaining objects

�Three Simple Examples
This section demonstrates three situations, all using synthetic data to clarify the issues. 

The variables in the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each 

other) random time series.

•	 DEP_RAND0 to DEP_RAND9 are derived from RAND0 to RAND9 by 

introducing strong serial correlation up to a lag of nine observations. 

They are independent of one another.

•	 SUM12 = RAND1 + RAND2

•	 SUM34 = RAND3 + RAND4

•	 SUM1234 = SUM12 + SUM34

The first test run attempts to predict SUM1234 from RAND0 to RAND9, SUM12, and 

SUM34. The output looks like this:
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--------> Mutual Information with SUM1234 <-------

       Variable        MI     Solo pval    Unbiased pval

          SUM34    0.2877        0.0001           0.0000

          SUM12    0.2610        0.0001           0.0001

          RAND3    0.1307        0.0001           0.0001

          RAND4    0.1263        0.0001           0.0001

          RAND1    0.1129        0.0001           0.0001

          RAND2    0.1085        0.0001           0.0001

          RAND8    0.0015        0.2994           0.9828

          RAND5    0.0014        0.3673           0.9950

          RAND6    0.0012        0.5303           1.0000

          RAND7    0.0010        0.7384           1.0000

          RAND0    0.0008        0.8332           1.0000

          RAND9    0.0006        0.9605           1.0000

These results should be totally unsurprising. But do take note of the fact that the 

unbiased probabilities (pval) are even more indicative of the worthlessness of the 

worthless candidates.

The next example shows what happens when worthless and serially correlated 

predictors are tested with a serially correlated target. We use DEP_RAND1 to DEP_

RAND9 to predict DEP_RAND0, a situation that should demonstrate no predictive power 

whatsoever. The mutual information table is as follows:

--------> Mutual Information with DEP_RAND0 <--------

        Variable        MI    Solo pval  Unbiased pval

       DEP_RAND2    0.0044       0.0001         0.0002

       DEP_RAND4    0.0030       0.0018         0.0175

       DEP_RAND3    0.0025       0.0110         0.0881

       DEP_RAND6    0.0023       0.0249         0.2004

       DEP_RAND9    0.0023       0.0242         0.2062

       DEP_RAND8    0.0023       0.0287         0.2284

       DEP_RAND1    0.0022       0.0317         0.2494

       DEP_RAND5    0.0019       0.0883         0.5509

       DEP_RAND7    0.0008       0.8682         1.0000

Chapter 2  Screening for Relationships



116

The mutual information figures are all tiny, yet the p-values show extreme 

significance. The careless user would surely be fooled by this, because not only are the 

solo p-values mostly small but even the unbiased p-value has been fooled for one or 

two of the candidates. This is what happens when we perform a naive statistical test on 

serially correlated data. Yikes.

The final example shows how the cyclic modification of the Monte Carlo 

permutation test can at least partially remedy the situation. We repeat the same test 

as that just shown, except that instead of using complete permutation, we use cyclic 

permutation. The results are shown here:

---------> Mutual Information with DEP_RAND0 <-------

       Variable        MI     Solo pval  Unbiased pval

      DEP_RAND2    0.0044        0.0513       0.3529

      DEP_RAND4    0.0030        0.2408       0.9316

      DEP_RAND3    0.0025        0.3976       0.9918

      DEP_RAND6    0.0023        0.5007       0.9976

      DEP_RAND9    0.0023        0.5237       0.9982

      DEP_RAND8    0.0023        0.4719       0.9988

      DEP_RAND1    0.0022        0.5344       0.9990

      DEP_RAND5    0.0019        0.6643       1.0000

      DEP_RAND7    0.0008        0.9920       1.0000

�Bivariate Screening for Relationships
Sometimes a single variable acting alone has little or no predictive power, but in 

conjunction with another it becomes useful. The classic example is the height and 

weight of an individual, predicting coronary health. Either predictor alone has relatively 

little predictive power, but the two taken together can have great power.

Of course, in an ideal situation we could try every possible subset of predictor 

candidates. But this is impossible in most practical applications. In fact, for binning-type 

relationship criteria such as chi-square and mutual information, handling even three 

predictors simultaneously is often impractical because of excessively small bin counts. 

And the combinatoric explosion for the number of possible subsets is violent.
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But two predictors at once is often a useful compromise between the simplistic 

weakness of just one versus the impracticality of more than two. In this section, I’ll 

present an efficient algorithm for exhaustively screening all possible pairs of candidates. 

Two criteria are employed: mutual information and uncertainty reduction, although 

other criteria could be substituted.

We alluded to the technique used here back on page 88. Now we will be specific, 

showing how bin dimension unrolling can be performed efficiently. The idea is that the 

matrix of predictor bins is unrolled into a single vector, which itself forms one dimension 

of the predictor/target bin matrix. For example, suppose the two predictors are each split 

into three bins, and the target is split into four. The unrolled predictor dimension would 

consist of 3×3=9 bins, meaning that we perform the analysis with a 9 by 4 matrix.

The algorithm presented has an interesting bonus feature: it allows the user to 

specify multiple target candidates. The algorithm will optionally find individual targets 

that have maximum predictability from associated bivariate pairs of predictors. One 

example of the utility of multiple target candidates is when the application is predicting 

future movement of a financial market with the goal of taking a position and then ideally 

closing the position with a profit.  Should we employ a tight stop to discourage severe 

losses? Or should we use a loose stop to avoid being closed out by random noise? We 

might test multiple targets corresponding to various degrees of stop positioning and then 

determine which of the competitors is most predictable.

The easiest way to present the complete algorithm is to break it into sections, 

sometimes showing exact code and sometimes just an outline. We begin with an outline 

of the overall process, with special emphasis on the Monte Carlo permutation tests. You 

might want to review that prior section, especially the material on selection bias that 

begins on page 95.

Compute n_combo as the total number of  combinations of  predictors and target candidates.

Allocate working memory and any objects that are universally needed

Fetch all selected predictor and target candidates from database

Perform any required initial calculations, such as finding bin boundaries, counts, and marginals
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for (irep=0; irep<mcpt_reps; irep++) {

   Shuffle target if  in permutation run (irep>0)

   Compute and save criterion for all combinations (done with bivar_threaded())

   for (icombo=0; icombo<n_combo; icombo++) { // Update the MCPT

      if  (icombo == 0 || crit[icombo] > best_crit)

         best_crit = crit[icombo];

      if  (irep == 0) {       // Original, unpermuted data

         original_crits[icombo] = crit[icombo];

         mcpt_bestof[icombo] = mcpt_solo[icombo] = 1;

         }

      else if  (crit[icombo] >= original_crits[icombo])

         ++mcpt_solo[icombo];

      } // For all combinations

   if  (irep > 0) {

      for (icombo=0; icombo<n_combo; icombo++) {

         if  (best_crit >= original_crits[icombo]) // Valid only for largest

            ++mcpt_bestof[icombo];

         }

      } // If  irep>0

   } // For all MCPT replications

All computation is finished. Print.

Clean up and exit.

The algorithm shown here is similar to that presented on page 88. The nitty-gritty 

computation is done in subroutine bivar_threaded(), which we’ll soon explore. The 

complete source code can be found in the file SCREEN_BIVAR.CPP. But let’s begin with 

the routine for computing mutual information. This is a bin-unrolled version of the most 

basic definition of mutual information, shown in Equation (1.16) on page 18.
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static double compute_mi (

   int ncases,                     // Number of  cases

   int nbins_pred,               // Number of  predictor bins

   int *pred1_bin,               // Ncases vector of  predictor 1 bin indices

   int *pred2_bin,               // Ncases vector of  predictor 2 bin indices

   int nbins_target,             // Number of  target bins

   int *target_bin,               // Ncases vector of  target bin indices double

   *target_marginal,           // Target marginal

   int *bin_counts               // Work area nbins_pred_squared*nbins_target long

   )

{

   int i, j, k, nbins_pred_squared;

   double px, py, pxy, MI;

   // Zero all bin counts

   nbins_pred_squared = nbins_pred * nbins_pred; // Predictor bins unrolled

   for (i=0; i<nbins_pred_squared; i++) {

      for (j=0; j<nbins_target; j++)

           bin_counts[i*nbins_target+j] = 0;

      }

   // Compute bin counts for bivariate predictor and full table

   for (i=0; i<ncases; i++) {

      k = pred1_bin[i]*nbins_pred+pred2_bin[i];       // Index in unrolled predictor array

      ++bin_counts[k*nbins_target+target_bin[i]];     // Bin in predictor/target matrix

      }

   // Compute mutual information

   MI = 0.0;

   for (i=0; i<nbins_pred_squared; i++) {                 // Unrolled predictor bins

      k = 0;

      for (j=0; j<nbins_target; j++) // Sum across target bins to get predictor marginal

         k += bin_counts[i*nbins_target+j];

      px = (double) k / (double) ncases;
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      for (j=0; j<nbins_target; j++) {

         py = target_marginal[j];

         pxy = (double) bin_counts[i*nbins_target+j] / (double) ncases;

         if  (pxy > 0.0)

            MI += pxy * log (pxy / (px * py));           // Equation (1.16) on Page 18

         }

      }

   if  (nbins_pred_squared <= nbins_target)

      MI /= log ((double) nbins_pred_squared); // Normalize 0-1

   else

      MI /= log ((double) nbins_target);

   return MI;

}

This code assumes that both predictors are split into the same number of bins. This 

restriction is not necessary in general; it’s just a programming convenience for this 

demonstration. Thus, the number of unrolled predictor bins is the number of individual 

bins squared. Also, for easier user interpretability, the mutual information is divided by 

its maximum possible value, which normalizes the quantity to the range 0-1.

Last, we’ll explore the core of this algorithm, the subroutine that computes the 

criteria for all possible pairs of predictors and individual target candidates. As we’ve seen 

in prior multithreading examples, we need a data structure through which all parameters 

are passed to the threaded routine. It’s straightforward, so we’ll dispense with listing it or 

the trivial wrapper routine here; see SCREEN_BIVAR.CPP for a complete listing. Instead, 

we focus only on bivar_threaded(). Shown next is the basic listing, with error handling and 

other extraneous code omitted for clarity.

Pay attention to the fact that when we initialize the parameter-passing structure, 

each thread gets its own private bin_counts and bivar_counts work areas.

The trickiest part of this code is the short section with the comment Advance to the next 

combination on page 122. This counts up through all possible trios of two predictors and 

one target, with the target changing fastest. Study it.

static int bivar_threaded (

   int max_threads,                 // Maximum number of  threads to use

   int ncases,                          // Number of  cases

   int npred,                            // Number of  predictor candidates
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   int ntarget,                           // Number of  target candidates

   int nbins_pred,                    // Number of  predictor bins

   int *pred_bin,                      // Ncases vector of  predictor bin indices, npred of  them

   int nbins_target,                  // Number of  target bins

   int *target_bin,                    // Ncases vector of  target bin indices, ntarget of  them

   double *target_marginal,    // Target marginal, ntarget of  them

   int which,                             // 1=mutual information, 2=uncertainty reduction

   double *crit,                         // Output of  all criteria, npred*(npred-1)/2*ntarget long

   int *bin_counts,                   // Work area

                                               // max_threads*nbins_pred*nbins_pred*nbins_target

   int *bivar_counts                 // Work area max_threads*nbins_pred_squared long

   )

{

   int i, k, ret_val, ithread, n_threads, empty_slot;

   int ipred1, ipred2, itarget, icombo, n_combo;

   BIVAR_PARAMS bivar_params[MAX_THREADS];

   HANDLE threads[MAX_THREADS];

/*

   Initialize those thread parameters which are constant for all threads.

   �Each thread will have its own private bin_count and bivar_count matrices for working storage.  

They must not share scratch storage!

*/

   for (ithread=0; ithread<max_threads; ithread++) {

      bivar_params[ithread].ncases = n_cases;

      bivar_params[ithread].nbins_pred = nbins_pred;

      bivar_params[ithread].nbins_target = nbins_target;

      bivar_params[ithread].bin_counts = bin_counts +

                                                               ithread * nbins _pred * nbins_pred * nbins_target;

      bivar_params[ithread].bivar_counts = bivar_counts +

                                                                  ithread * nbins _pred * nbins_pred;

      bivar_params[ithread].which = which;

      } // For all threads, initializing constant stuff
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/*

   Do it

   We use icombo to define a unique set of  two predictors and one target.

   It ranges from 0 through npred * (npred-1) / 2 * ntarget.

*/

   n_threads = 0;                            // Counts threads that are active

   for (i=0; i<max_threads; i++)

      threads[i] = NULL;                   // Thread pointers

   // The first trio is the first predictor candidate, the second, and the first target

   ipred1 = itarget = icombo = 0     // icombo will encode the trio being processed

   ipred2 = 1;

   n_combo = npred * (npred-1) / 2 * ntarget; // This many combinations

   empty_slot = -1; // After full, will identify the thread that just completed

   for (;;) {          // Main thread loop processes all predictors

/*

   Start a new thread if  we still have work to do

*/

      if  (icombo < n_combo) {         // If  there are still some trios to do

         if  (empty_slot < 0)               // Negative while we are initially filling the queue

            k = n_threads;                  // This is the next available slot

         else                                      // The queue has been filled and running

            k = empty_slot;                // The most recently completed slot, now available

         bivar_params[k].icombo = icombo;  // Needed for placing final result

         bivar_params[k].pred1_bin = pred_bin+ipred1*ncases;

         bivar_params[k].pred2_bin = pred_bin+ipred2*ncases;

         bivar_params[k].target_bin = target_bin+itarget*ncases;

         bivar_params[k].target_marginal = target_marginal+itarget*nbins_target;

         threads[k] = (HANDLE) _beginthreadex (�NULL, 0, bivar_threaded_wrapper,  

&biv ar_params[k], 0, NULL);

         ++n_threads;
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         // Advance to the next combination; itarget changes fastest, ipred1 slowest

         ++icombo;

         if  (itarget < ntarget-1)

            ++itarget;

         else {

            itarget = 0;

            if  (ipred2 < npred-1)

               ++ipred2;

            else {

               ++ipred1;

               ipred2 = ipred1 + 1;

               }

            }

         } // if  (icombo < n_combo), meaning that we have more work to do

      if  (n_threads == 0) // Are we done?

         break;

/*

   Handle full suite of  threads running and more threads to add as soon as some are done.

   Wait for just one thread to finish. Feel free to change the 500000 timeout.

*/

      if  (n_threads == max_threads && icombo < n_combo) {

         ret_val = WaitForMultipleObjects (n_threads, threads, FALSE, 500000);

         crit[bivar_params[ret_val].icombo] = bivar_params[ret_val].crit;

         empty_slot = ret_val;      // Index of  thread that just finished

         CloseHandle (threads[empty_slot]);

         threads[empty_slot] = NULL;

         --n_threads;

         }
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/*

   Handle all work has been started and now we are just waiting for threads to finish

*/

      else if  (icombo == n_combo) {

         ret_val = WaitForMultipleObjects (n_threads, threads, TRUE, 500000);

         for (i=0; i<n_threads; i++) {

            crit[bivar_params[i].icombo] = bivar_params[i].crit;

            CloseHandle (threads[i]);

            }

         break;

         }

      } // Endless loop which threads computation of  criterion for all predictors

   return 0;

}

In the routine just listed, work can be roughly divided into three blocks. The first 

block (if  (icombo < n_combo)) checks to see whether there is still work to do. If so, it 

launches a new thread. The second block (if  (n_threads == max_threads && icombo < n_

combo)) is executed if all threads are busy and there is still work to do. It just sits and waits 

for a thread to finish. The third block (else if  (icombo == n_combo)) is executed just once, 

when all work has been launched. It sits and waits for all threads to finish.

�Stepwise Predictor Selection Using Mutual 
Information
In the prior chapter, you learned what mutual information is, why it is important, and 

how to compute it. In the prior section you saw how it (and other criteria) can be used to 

screen for individual relationships between a collection of candidates and a single target 

variable. Now you will learn how to use it intelligently to select a predictor variable set 

that is likely to be effective. This can be enormously valuable when you have a massive 

number of candidates and need to whittle this universe down to a manageable number 

before embarking on expensive training of sophisticated models. In particular, we will 

explore two specific algorithms that employ highly effective stepwise predictor selection.
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�Maximizing Relevance While Minimizing Redundancy
Let X1, X2, …, XM be a set of predictor candidates for predicting Y. Given some m<M, 

we want to find m members of this collection such that this subset, which we call S, 

has maximum joint dependency with Y. Joint dependency is an extension of mutual 

information in which one of the quantities is a collection of random variables rather 

than a single random variable. We can think of the joint dependency as the mutual 

information between S and Y, I(S;Y). For convenience, let S be the first m candidates. 

Then this joint dependency is given by Equation (2.13), a straightforward extension of 

Equation (1.23).
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Unfortunately, in practice this quantity is impossible to compute for m>2 and is often 

difficult even for m=2. The reason is that the multiple integration involves implicitly or 

explicitly partitioning the dataset in more than two dimensions, leading to excessive 

thinning of the density approximations. Consider the simplest case of m=2. Suppose 

there are 1,000 cases. We have a rectangular checkerboard for the two predictors, and we 

have a stack of these checkerboards to accommodate Y. Each case will have a position 

in this three-dimensional cube. If we were to partition each dimension into ten bins, 

we would have 103=1000 bins, leading to an average of just one case per bin. If m=3, 

there would be an average of one-tenth of a case per bin! Clearly, there is no hope of 

implementing the direct approach to finding the optimal subset S if m>2, and there’s 

probably no hope even for m=2 unless there are an enormous number of cases. The 

density approximations that are critical to the integrand are simply too inaccurate.

There is another problem, too. Combinatoric explosion is a standard nemesis of 

any predictor selection algorithm. If we are choosing m of M candidates, there are M!/

(m!(M–m)!) possible combinations. This is often so large that trying all of them is out of 

the question. A shortcut is needed.

There are several shortcuts in use, the most important of which were discussed 

earlier in this chapter. To briefly review, the simplest and most common is first-order 

incremental search, more commonly called forward stepwise selection. We first choose 

the single best predictor, where “best” is defined in terms of some ideally intelligent 

criterion. Then we find the predictor that, when combined with the first, produces the 
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maximum increment in whatever performance criterion is being evaluated. A third is 

added in the same way, and so forth.

It is theoretically possible for this method to fail, perhaps miserably. Suppose, for 

example, that variables 21 and 35 together do a superb job of predicting Y, although 

neither alone is any good. Maybe variable 17 is the best single predictor, while variable 

19 provides the best incremental power. These two variables together may not come 

even close to being as good as 21 and 35. This is sad but often unavoidable.

Other techniques do exist. Higher-order methods keep not just the best variable 

at each step but several of the best, which increases the likelihood of finding the 

optimal set. Backward selection starts by using all candidates and removing one at a 

time. However, first-order incremental search is the most efficient, making it the only 

practical choice in any application in which computational resources are limited. This 

is the approach used here, not only because of its efficiency but because of a fortuitous 

property of the algorithm when applied to joint dependency.

Peng, Long, and Ding (2005), in their paper “Feature Selection Based on Mutual 

Information: Criteria of Max-Dependency, Max-Relevance, and Min Redundancy,” 

provide a selection algorithm that is simple, elegant, and almost miraculously duplicates 

first-order incremental optimization of Equation (2.13), without ever having to evaluate 

the equation. I now present an intuitive development of this algorithm.

The relevance of a set of predictors S to a predicted variable Y is defined as the mean 

mutual information between Y and each predictor in S. This is shown in Equation (2.14), 

where |S| is the number of predictors in the set.
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It is tempting to simply maximize this quantity. We would begin by selecting the 

single predictor that has maximum mutual information with Y. Then we add the 

candidate that has second-max mutual information, and so forth, until we have m 

predictors in S. This would obviously maximize the relevance of S.

The problem with this simplistic approach is that it ignores the fact that S chosen this 

way will usually contain an enormous amount of redundancy. If two variables have high 

mutual information with Y, chances are they also have high mutual information with 

each other. It will probably be the case that if we simply choose a new variable that has 

high mutual information with Y, appending it to S will not improve the joint dependency 

between S and Y very much because it won’t be add much information that is new.

Chapter 2  Screening for Relationships



127

The algorithm of [Peng, Long, and Ding, 2005] solves this problem by choosing the 

next variable as the one having maximum value of its mutual information with Y, minus 

its redundancy with the existing set of predictors. The definition of redundancy is shown 

in Equation (2.15). Note that the redundancy of a predictor candidate with S is the same 

as the relevance of this candidate with S. The only difference is the name of the quantity. 

The term relevance is used when referring to the predicted variable, while redundancy is 

used when referring to another predictor candidate.
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In summary, the algorithm begins by choosing the single predictor that has 

maximum mutual information with Y. Let S be this one variable. From then on, we add 

one new variable at a time by choosing the one that maximizes the criterion shown in 

Equation (2.16), stopping when we have the desired number m of predictors in S.
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This algorithm makes obvious intuitive sense. At each step we want to 

simultaneously maximize the mutual information with Y while minimizing the average 

mutual information with the predictors already in S. What is not at all obvious is that 

this algorithm will choose exactly the same variables as would be chosen if we were 

able to evaluate Equation (2.13), something that we have already seen to be practically 

impossible. The proof can be found in the original paper. All we do here is marvel that 

we can capitalize on this extraordinary result.

There are two Monte Carlo permutation tests that can be performed as this 

algorithm executes. We can do a “solo” test by comparing the relevance of each 

individual candidate to its permuted values. This provides straightforward individual 

candidate significance tests. We can also, as each new variable is added to the “kept” set, 

test the significance of the “so-far” collection of variables. This is done by cumulating the 

sum of the individual relevances and comparing this sum to the corresponding values 

under permutation. For each quantity of kept variables, this provides the estimated 

probability that if the variables were all worthless, we could have achieved this much 

total relevance by sheer good luck.
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�Code for the Relevance Minus Redundancy Algorithm
The file SCREEN_RR.CPP contains a subroutine that implements the Peng-Long-Ding 

algorithm for relevance-minus-redundancy predictor selection. Rather than list it all 

in its complex glory, I’ll just provide a C-like outline of the algorithm stripped down 

to the bare essentials. This should be sufficient for you to produce your own custom 

implementation. The complete source file will fill in additional details, if needed. Here it 

is, with comments interspersed:

   Allocate working memory and any objects that are universally needed

   Fetch all selected candidates and target from database

   Perform any required initial calculations, such as finding bin boundaries and marginals

This is the main outermost loop for the Monte Carlo permutation test:

   for (irep=0; irep<mcpt_reps; irep++) {

      Shuffle target if  in permutation run (irep>0)

Here we call a subroutine that uses multithreading to compute the mutual 

information between each individual candidate and the target.

      First step: Compute and save (in crit) MI criterion for all individual candidates

We save this set of mutual information measures in relevance because they will be 

needed later, as we add new predictors to the kept set.

This will be the first term in Equation (2.16). Also, we find the maximum  

mutual information criterion among competitors.

      for (ivar=0; ivar<npred; ivar++) {

         relevance[ivar] = crit[ivar];  // Will need this for Step 2, addition of  more predictors

         if  (ivar == 0 || crit[ivar] > best_crit) {

            best_crit = crit[ivar];

            best_ivar = ivar;

            }

         }
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We keep in stepwise_crit and stepwise_ivar a record of the variables and associated 

criterion as they are added. We just found the first, so its subscript is zero. Also, sum_

relevance will cumulate the total relevance of the kept set. This plays no role whatsoever 

in the selection algorithm. Its sole purpose is to permit a Monte Carlo permutation test 

of the “so-far” significance of the kept set.

      stepwise_crit[0] = best_crit;       // Criterion for first var is largest MI 

      stepwise_ivar[0] = best_ivar;     // It's this candidate

      sum_relevance = best_crit;        // Will cumulate as more vars added

If this is the first (unpermuted) replication, then we preserve the “original” values 

of these quantities. We also initialize the count for the so-far permutation test. Then 

we preserve the original relevance and criterion (which are equal for step 1, the first 

variable) and initialize the counts for each solo permutation test. Finally, this would be a 

good place to print for the user a table of these first-step criteria, the mutual information 

of each candidate with the target.

      if  (irep == 0) {    // Original, unpermuted data

         original_stepwise_crit[0] = best_crit;   // Criterion for first var is largest MI

         original_stepwise_ivar[0] = best_ivar; // It's this candidate

         original_sum_relevance[0] = sum_relevance;

         stepwise_mcpt_count[0] = 1;              // Initialize cumulative MCPT

         for (ivar=0; ivar<npred; ivar++) {

            original_relevance[ivar] = current_crits[ivar] = crit[ivar];

            solo_mcpt_count[ivar] = 1;               // Initialize solo MCPT

            }

         Print sorted table of  individual MIs

         } // If  irep=0 (original, unpermuted run)

If we are no longer in the unpermuted replication, then we have to handle the two 

permutation tests. The “stepwise” test is for the collection of variables so far, which of 

course is just one, the single best, at this time. The “solo” test is done separately for each 

candidate, individually.
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      else {                                      // Count for MCPT

         if  (sum_relevance >= original_sum_relevance[0])

            ++stepwise_mcpt_count[0];

         for (ivar=0; ivar<npred; ivar++) {

            if  (relevance[ivar] >= original_relevance[ivar])

               ++solo_mcpt_count[ivar];

            }

         } // Permuted replication

At this time, we have computed and saved in relevance the mutual information of 

each candidate with the target, and we have selected the best for inclusion in the “kept” 

set. Now we iteratively add more candidates. Note that the redundancy of a candidate 

can change as predictors are added. This is because the kept set is increasing, so their 

mean redundancy changes. We will keep in sum_redundancy[] the total redundancy of 

each remaining candidate with the variables in the “kept” set. Initialize this to zero for all 

npred candidates.

       for (i=0; i<npred; i++)

         sum_redundancy[i] = 0.0;

      for (nkept=1; nkept<max_pred; nkept++) { // Main 'adding' loop

         Print candidates kept so far (if  in unpermuted rep)

Build in which_preds the k candidates not yet selected. This code is not shown here 

because although it is simple, it is distracting. See SCREEN_RR.CPP for the details of how 

I do it. Then call a routine (rr_threaded()) that uses multithreading to compute the mutual 

information between the variable just added and each of the remaining candidates 

(which_preds). These are placed in crit[] so we can soon update the redundancies.

A long time ago, we saved in relevance the first term in Equation (2.16). A moment ago 

we computed one member of the summation in the right term of this equation. We now 

update that sum and evaluate Equation (2.16) to get the criterion for each remaining 

candidate variable. Find the candidate with the maximum criterion.
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        for (i=0; i<npred-nkept; i++) { // Cumulate sum redundancy, then compute criteria

           k = which_preds[i];  // Index in preds of  this candidate

           sum_redundancy[k] += crit[i];

           current_crits[i] = relevance[k] - sum_redundancy[k] / nkept; // Equation (2.16)

           if  (i == 0 || current_crits[i] > best_crit) {

              best_crit = current_crits[i];

              best_ivar = k;

              }

           }

Preserve the best candidate and its criterion. Also sum the relevance for the “so-far” 

permutation test.

        stepwise_crit[nkept] = best_crit;

        stepwise_ivar[nkept] = best_ivar;

        sum_relevance += relevance[best_ivar];

If we are in the unpermuted replication, save these quantities for later printing and 

comparisons on which the permutation tests are based. Otherwise, do the counting for 

the permutation test.

        if  (irep == 0) {           // Original, unpermuted

           original_stepwise_crit[nkept] = best_crit;

           original_stepwise_ivar[nkept] = best_ivar;

           original_sum_relevance[nkept] = sum_relevance;

           stepwise_mcpt_count[nkept] = 1;

           }

         else {                        // Count for MCPT

           if  (sum_relevance >= original_sum_relevance[nkept])

              ++stepwise_mcpt_count[nkept];

           } // Permuted

         } // Second step (for nkept): Iterate to add predictors to kept set

     } // For all MCPT replications

That’s it. We can now print a table of final results and then free any objects and 

memory that were allocated at the start of this routine.
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�An Example of Relevance Minus Redundancy
This section demonstrates a revealing example of the algorithm using synthetic data to 

clarify the presentation. The variables in the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each 

other) random time series.

•	 SUM12 = RAND1 + RAND2

•	 SUM34 = RAND3 + RAND4

•	 SUM1234 = SUM12 + SUM34

The test run attempts to predict SUM1234 from RAND0 to RAND9, SUM12, and 

SUM34. The output is shown here, with comments interspersed:

*****************************************************************

*                                                               *

*    Relevance minus redundancy for optimal predictor subset    *

*      12 predictor candidates                                  *

*      12 best predictors will be printed                       *

*       5 predictor bins                                        *

*       5 target bins                                           *

*     100 replications of Monte-Carlo Permutation Test          *

*                                                               *

*****************************************************************

Initial candidates, in order of decreasing mutual information with SUM1234

        Variable         MI

           SUM34       0.2877

           SUM12       0.2610

           RAND3       0.1307

           RAND4       0.1263

           RAND1       0.1129

           RAND2       0.1085

           RAND8       0.0015

           RAND5       0.0014

           RAND6       0.0012
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           RAND7       0.0010

           RAND0       0.0008

           RAND9       0.0006

Predictors so far     Relevance     Redundancy      Criterion

           SUM34         0.2877         0.0000         0.2877

We see from the previous table that the first candidate chosen is the one that has 

maximum mutual information with the target. Naturally this would be either SUM12 or 

SUM34, and it happens to be the latter. Then, in the following table we see that SUM12 

has the largest relevance (its mutual information with the target) and essentially no 

redundancy with SUM34 (again, no surprise). This gives it the highest selection criterion, 

and it is chosen.

Additional candidates, in order of decreasing relevance minus redundancy

        Variable        Relevance        Redundancy        Criterion

           SUM12          0.2610            0.0014            0.2596

           RAND1          0.1129            0.0016            0.1112

           RAND2          0.1085            0.0009            0.1076

           RAND6          0.0012            0.0007            0.0005

           RAND0          0.0008            0.0009           −0.0000

           RAND8          0.0015            0.0017           −0.0002

           RAND5          0.0014            0.0016           −0.0002

           RAND9          0.0006            0.0008           −0.0002

           RAND7          0.0010            0.0012           −0.0003

           RAND3          0.1307            0.3154           −0.1847

           RAND4          0.1263            0.3158           −0.1895

Predictors  so far      Relevance        Redundancy        Criterion

            SUM34         0.2877            0.0000            0.2877

            SUM12         0.2610            0.0014            0.2596

Now we come to an important observation. One might think that the next candidate 

selected would be either RAND1, RAND2, RAND3, or RAND4, which are the four 

components of the SUM1234 target. However, the table on the next page shows that 

these four candidates actually fall at the bottom of the list! This is because they have 
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so much redundancy with SUM12 and SUM34 (taken as a group) that they will not be 

chosen next. In fact, RAND6, which has no relationship whatsoever with any of the other 

variables, is chosen based only on its tiny random relevance and slightly smaller random 

redundancy.

Additional candidates, in order of decreasing relevance minus redundancy

        Variable        Relevance        Redundancy        Criterion

           RAND6          0.0012            0.0009            0.0003

           RAND0          0.0008            0.0008            0.0000

           RAND8          0.0015            0.0015            0.0000

           RAND9          0.0006            0.0008           −0.0002

           RAND5          0.0014            0.0017           −0.0003

           RAND7          0.0010            0.0013           −0.0004

           RAND3          0.1307            0.1581           −0.0274

           RAND4          0.1263            0.1585           −0.0322

           RAND1          0.1129            0.1527           −0.0398

           RAND2          0.1085            0.1485           −0.0399

Predictors so far       Relevance        Redundancy        Criterion

          SUM34           0.2877            0.0000            0.2877

          SUM12           0.2610            0.0014            0.2596

          RAND6           0.0012            0.0009            0.0003

But now that the selected set’s redundancy with the remaining candidates has been 

“diluted” by the inclusion of the unrelated RAND6, RAND1to RAND4 jump to the top of 

the list because of their relatively large relevance but lessened redundancy.

Additional candidates, in order of decreasing relevance minus redundancy

        Variable        Relevance        Redundancy        Criterion

           RAND3          0.1307            0.1058            0.0249

           RAND4          0.1263            0.1061            0.0202

           RAND1          0.1129            0.1021            0.0107

           RAND2          0.1085            0.0995            0.0090

           RAND0          0.0008            0.0010           −0.0002

           RAND9          0.0006            0.0009           −0.0003
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           RAND5          0.0014            0.0017           −0.0003

           RAND8          0.0015            0.0018           −0.0004

           RAND7          0.0010            0.0015           −0.0006

Predictors so far       Relevance        Redundancy        Criterion

          SUM34           0.2877            0.0000            0.2877

          SUM12           0.2610            0.0014            0.2596

          RAND6           0.0012            0.0009            0.0003

          RAND3           0.1307            0.1058            0.0249

There is little point in continuing to show the inclusion steps. We now jump to the 

final table that lists all candidates in the order in which they were selected, along with 

associated p-values.

----------> Final results predicting SUM1234 <----------

Preds   Relevance   Redundancy   Criterion   Solo pval   Group pval

 SUM34     0.2877     0.0000       0.2877      0.010        0.010

 SUM12     0.2610     0.0014       0.2596      0.010        0.010

 RAND6     0.0012     0.0009       0.0003      0.570        0.010

 RAND3     0.1307     0.1058       0.0249      0.010        0.010

 RAND4     0.1263     0.0797       0.0465      0.010        0.010

 RAND1     0.1129     0.0617       0.0511      0.010        0.010

 RAND2     0.1085     0.0505       0.0581      0.010        0.010

 RAND8     0.0015     0.0014       0.0001      0.320        0.010

 RAND5     0.0014     0.0014      −0.0001      0.340        0.010

 RAND7     0.0010     0.0014      −0.0004      0.650        0.010

 RAND0     0.0008     0.0013      −0.0004      0.850        0.010

 RAND9     0.0006     0.0012      −0.0006      0.980        0.010

Two different p-values are printed for each predictor candidate. The Solo pval is 

the same quantity printed in the univariate test (page 110). This is the probability that 

if this predictor has no actual mutual information with the target, a mutual information 

(relevance here) as large as that obtained could have occurred. Understand that this 

quantity considers each candidate in isolation, not involving any other candidates. Note 

how nicely this reveals the uselessness of the third candidate chosen, RAND6.
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The Group pval considers the associated candidate along with every prior candidate. 

It tests the null hypothesis that the group of candidates selected so far, on average, has no 

mutual information with the target.

Regrettably, I am not aware of any way of computing what would be an especially 

useful p-value—one that tests the null hypothesis that selecting the candidate provides 

no additional (nonredundant) relevance. Such a p-value would be valuable for 

determining when to stop including additional candidates in the selected subset. The 

problem appears to be that the test statistic at any step is strongly dependent on the 

relevance of those predictors already selected. If anyone knows of a way around this 

problem, I would love to hear about it.

�A Superior Selection Algorithm for Binary Variables
If the predicted variable and all predictor candidates are binary, then we can use a stepwise 

selection algorithm that seems to be superior to the PLD algorithm (presented by F. Fleuret 

in the 2004 paper “Fast Binary Feature Selection with Conditional Mutual Information”). 

Recall that the PLD algorithm has the fabulous property that its selections are identical 

to those that would be obtained by forward stepwise selection based on the optimal but 

impossible Equation (2.13). Nonetheless, also recall that forward stepwise selection is itself 

suboptimal. The optimal method is to examine every possible combination of predictors, 

a task that is usually impractical, even if we could evaluate the criterion of Equation (2.13), 

which of course we cannot. So, there is room for improvement.

Actually, the Fleuret algorithm described in this section can theoretically be used for 

any discrete variables, not just binary. It’s just that unless the number of cases is huge, 

the algorithm fails because of sparse bins. For this reason, it is typically implemented 

only for binary data.

We need to introduce the notion of conditional mutual information. Recall from 

Equation (1.13) on page 18 that the mutual information shared by two variables is equal 

to the entropy of one of them minus its entropy conditional on the other. This is shown 

in Equation (2.17). Intuitively, this means that the information shared by X and Y is equal 

to the information in Y minus the information content of Y that is above and beyond that 

provided by X. Equivalently, the total information in Y is equal to that which is shared 

with X plus that which is above and beyond X.

	 I X Y I Y X H Y H Y X; ;( ) = ( ) = ( )- ( ) 	 (2.17)
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Now suppose that we already possess some information in the form of the value of 

some variable Z. We can then talk about the mutual information of X and Y given that we 

know Z, written as I(X;Y|Z). If Z happens to be totally unrelated to X and Y, its knowledge 

will have no impact on the mutual information of X and Y. At the other extreme, it may 

be that X and Y share a lot of information, but Z happens to completely duplicate this 

shared information. In this case, I(X;Y) will be large, but I(X;Y|Z) will be zero. Conditional 

mutual information can be computed with Equation (2.18). Observe that this is a simple 

extension of Equation (2.17), obtained by conditioning all terms on Z.

	
I X Y Z I Y X Z H Y Z H Y X Z; ; ,( ) = ( ) = ( )- ( ) 	 (2.18)

Conditional mutual information allows us to approach the problem of redundancy 

from a different direction. Recall from the PLD algorithm that our goal is to find a 

variable from among the candidates that has high mutual information with Y and low 

joint mutual information with the predictors already selected. We now have an excellent 

tool. Suppose X is a candidate for inclusion and Z is a variable that is already in S, the 

set of predictors chosen so far. The conditional mutual information of X and Y given 

Z measures how much the candidate X contributes to predicting Y above and beyond 

what we already get from Z. A good candidate will have a large value of I(X;Y|Z) for 

every Z in S. If there is even one variable Z in S for which I(X;Y|Z) is small, there is little 

point in including this candidate X, because it contributes little beyond what is already 

contributed by that Z. This inspires us to choose the candidate X that has the maximum 

value of the criterion shown in Equation (2.19).

	
Criterion X Y S I X Y Z

Z S
, ,( ) = ( )

Î
min ; 	 (2.19)

Equation (2.18) is a good intuitive definition of conditional mutual information, but 

it is not the easiest way to compute it. A better way is Equation (2.20).

	 I X Y Z H X Z H Y Z H Z H X Y Z; , , , ,( ) = ( )+ ( )- ( )- ( ) 	 (2.20)

The file MUTINF_B.CPP contains the complete source code to evaluate this equation 

for X, Y, and Z arrays. This code is simple but very tedious, so I will not reproduce it in 

its entirety here. The easiest approach, though not necessarily the most efficient, is to 
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use nested logical expressions to tally the two-by-two-by-two bin counts. This is done as 

shown here:

    n000 = n001 = n010 = n011 = n100 = n101 = n110 = n111 = 0;

    for (i=0; i<n; i++) {

       if  (x[i]) {

           if  (y[i]) {

              if  (z[i])

                 ++n111;

              else

                 ++n110;

              }

           else {

              if  (z[i])

                 ++n101;

              else

                 ++n100;

              }

           }

       else {

          if  (y[i]) {

              if  (z[i])

                 ++n011;

              else

                 ++n010;

              }

           else {

              if  (z[i])

                 ++n001;

              else

                 ++n000;

              }

           }

       }
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Once the eight bins counts are tallied, computing the four terms in Equation (2.20) is 

straightforward. For example, H(Z) can be computed with the following code:

      nz0 = n000 + n010 + n100 + n110;

      nz1 = n - nz0;

      if  (nz0) {

         p = (double) nz0 / (double) n;

         HZ = p * log (p);

         }

      else

         HZ = 0.0;

      if  (nz1) {

         p = (double) nz1 / (double) n;

         HZ += p * log (p);

         }

The other four terms are computed similarly. See the code for details. It should be 

noted that [Fleuret, 2004] discusses faster ways of summing the bin counts. Since the 

variables are all binary, values of X, Y, and Z can be encoded as bits in integers. By using 

logical conjunctions of these integers, along with table lookups, the bin counts can be 

found very quickly. I have not found speed to be a problem, so I have not implemented 

this algorithm.

The interesting part of the variable selection procedure is the stepwise algorithm. 

We begin by selecting the candidate that has maximum mutual information with Y. 

After that, for each step we evaluate the criterion of Equation (2.19) for each remaining 

candidate and choose the candidate having the greatest criterion. However, there is 

more to consider…

Fleuret describes a cute trick for avoiding having to check every candidate against 

every Z, which can consume enormous amounts of time if there are a lot of variables in 

the kept set S. When a new Z is tested in computing the minimum across all Zs in S, the 

minimum obviously cannot increase. So if the minimum across Z so far is already less 

than the best candidate criterion so far, there is no point in continuing to test more Zs for 

the candidate. This candidate has already lost the competition for this round. Of course, 

we need to keep track of, for each candidate, the place where we have stopped testing it 

against Zs. This is because on a later round of adding a variable, the best so far may be 

small, and a candidate whose testing was stopped early on a prior round may need to be 
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tested against more Zs to see whether it might be the best now. A tentative winner cannot 

be confirmed until it has been checked for all Zs, but a loser can be eliminated early.

Stepwise selection of predictor variables using the Fleuret algorithm is quite similar 

to routines already presented, so we will not examine it in detail here. Also, a complete 

implementation is available in the file MI_BIN.CPP. However, examination of a simplified 

snippet helps to understand proper implementation of the algorithm.

The loop shown in the following code is invoked after one variable, that having 

maximum mutual information with Y, has been picked. At this time, scores[icand] has 

been initialized to the mutual information between that candidate and Y, and last_

indices[icand] has been initialized to –1 for all candidates. This loop handles the stepwise 

addition of as many subsequent predictors as desired.

   while (nkept < maxkept) {            // While still adding predictors

      bestcrit = -1.e60;                      // Will be criterion of  the best candidate

      for (icand=0; icand<n_indep_vars; icand++) { // Try all candidates

         for (i=0; i<nkept; i++) {           // Is this candidate already in kept set?

            if  (kept[i] == icand)             // If  it's there

               break;                              // Quit searching for it

            }

         if  (i < nkept)                           // If  this candidate 'icand' is already kept

            continue;                            // Skip it

         // Compute I(Y;X|Z) for each Z in the kept set, and keep track of  min

         // We've already done them through last_indices[icand], so start

         // with the next one up. Allow for early exit if  icand already loses.

         for (iz=last_indices[icand]+1; iz<nkept; iz++) { // Continue checking all Zs

            if  (scores[icand] <= bestcrit)     // Has this candidate already lost?

               break;                                    // If  so, no need to keep doing Zs

            j = kept[iz];                                // Index of  variable in the kept set

            temp = mutinf_b (ncases, bins_dep, bins_indep + icand * ncases,

                              bins_indep + j * ncases); // I(Y;X|Z)

            if  (temp < scores[icand])           // Keep track of  min across all Zs

               scores[icand] = temp;

            last_indices[icand] = iz;            // Also remember how far we've checked

            } // For all kept variables, computing min conditional mutual information
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        criterion = scores[icand];              // Equation (2.19), possibly abbreviated

        if  (criterion > bestcrit) {                 // Did we just set a new record?

           bestcrit = criterion;                    // If  so, update the record

           ibest = icand;                            // Keep track of  the winning candidate

           }

        } // For all candidates

     // We now have the best candidate

     kept[nkept] = ibest;

     crits[nkept] = bestcrit;

     ++nkept;

     } // While adding new variables

�FREL for High-Dimensionality, Small Size Datasets
The curse of data miners is the situation of having a large number of variables and a 

small dataset. If, in addition, the data is noisy, most statistical analyses are hopeless. 

Spurious results are virtually inevitable. Even if the data is clean, statistical analysis is 

difficult. But if we are looking only for relationships between a single target variable 

and any of a multitude of competitors, [Yun Li et al, “FREL: A Stable Feature Selection 

Algorithm”, IEEE Transactions on Neural Networks and Learning Systems, July 2015.] 

provide an interesting algorithm called Feature Weighting as Regularized Energy-Based 

Learning, abbreviated FREL.

The FREL algorithm is a useful method for ranking, and even weighting, predictor 

candidate variables in a classification application that is relatively low noise but is 

plagued by high dimensionality (numerous predictor candidates) and small sample size. 

The implementation presented here is strongly based on their innovative algorithm, but 

with significant modifications that I believe improve on the original version by providing 

more accurate and stable weights (at the cost of slower execution). My implementation 

also includes an approximate Monte Carlo permutation test (MCPT) of the null 

hypothesis that all predictors have equal value, as well as an MCPT of the null hypothesis 

that the predictors, taken as a group, are worthless. Sadly, I am unable to devise a FREL-

based MCPT of any null hypothesis concerning individual predictors taken in isolation. 

We’ll discuss these issues in more detail later.

The next three or four pages will present a fairly theoretical discussion of the FREL 

algorithm in its most general form. Feel free to skim them. Understanding the theory is 

not necessary to program and use FREL.
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The model that inspires FREL is weighted nearest-neighbor classification. The 

distance between a test case having predictors x = {x1,…, xK} and a training-set case  

t = {t1, …, tK} is defined as the city-block distance between these cases, with each 

dimension having its own weight. This is defined in Equation (2.21).

	
D x t w x t

k
k k k,( ) = -å 	 (2.21)

Then, if we want to classify an unknown test case x based on a training set, we would 

compute the distance between the test case and each member of the training set. The 

chosen class for the test case would be the class of the training case having minimum 

distance from the test case.

Of course, performing this classification presupposes that we know appropriate 

weights. The procedure can be inverted and used to find optimal weights, and we could 

then interpret the weights as measures of importance of the predictors (assuming that 

the predictors have commensurate scaling!). All we would do is define a measure of 

classification quality and then find weights that maximize this quality measure.

An approach to machine learning that is becoming more and more popular is 

energy-based modeling. We have a set of random variables, which in the current context 

would be predictors, and a prediction target or class membership. The model defines 

a scalar energy as a function of the values of these variables, sometimes called their 

configuration. This energy is a measure of the compatibility of the configuration, with 

small values of energy corresponding to compatible configurations. If we have a known 

energy-based model and we want to make an inference (a prediction or classification) 

based on specified values of the predictors, we fix the predictors and vary the target or 

class variable to identify the configuration that minimizes the energy.

To find a good energy-based model, we tune the parameters of the model in such a 

way that “correct” configurations (as indicated by the training set) have small energy and 

“incorrect” configurations have large energy.

Once the structure of the model is specified, to find optimal parameters we 

define a loss functional (a function of a function). The model is a function that maps 

configurations of variables to energy values, and the loss functional maps models to 

scalar loss values. To train the model, we find the version (parameters for the model 

family) that minimizes the loss functional.

The most common version of this latter operation, which we will do here, is to define 

a per-sample loss functional as a function of the model and a single case and then 

average this per-sample measure across the entire training set.
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This is a good time for a brief digression to make sure that two crucial issues are 

clear. First, many models, such as nearest-neighbor classification and some types of 

kernel regression, implicitly include the entire training set (or some other dataset) as 

a key component of the model. Do not confuse this with discussions of the training 

set related to training. It’s still just the model, and we need not explicitly mention the 

presence of the training set as part of the model. Any “training set” that is an essential 

component of the model and the training set that we are using for optimizing the model 

are conceptually different entities, which may or may not actually be the same data. We 

simply ignore any “training set” that happens to be part of the model. Just think about 

the model.

Second, do not confuse energy with loss. Energy is a measure of the compatibility of 

a given variable configuration with a model, and it is used to make a prediction. Loss is a 

measure of the quality of a model in a way that generally is based on a training set, and it 

is used to find an optimal model.

The energy that a model M assigns to a hypothetical variable configuration {x, y} can 

be conveniently written as E(M, x, y). An extremely common and useful way to express 

the per-sample loss for a single training case {xi, yi} is L(yi, E(M, xi, ϒ), in which the term 

E(M, xi, ϒ) actually stands for multiple energy values, one for each possible value of y. In 

other words, the per-sample loss for a single case is a function of the true value of y for 

that case, and the energies given by the model for x associated with every possible y.

Note, by the way, that the distinction between function and functional become a bit 

murky here, depending on whether we think in terms of E being an observed number or 

a hypothetical function. In any case, the idea should be clear from context.

We are almost done presenting a general form of an effective loss function(al) for 

training an optimal (in the sense of the loss) model. We have seen the form of a per-

sample loss and stated that averaging this quantity over every sample in the training 

set is reasonable. The only remaining issue is that of regularization. This enables us to 

embed prior knowledge about the model in the final solution. Typically, this involves 

limiting the size of weights involved in the expression of the model, although other 

approaches are possible. With these things in mind, we can express the loss of a given 

model M for a given training set T (K cases) and regularization function R as shown in 

Equation (2.22). This is a scalar quantity that we will minimize in order to develop a good 

model.

	 L M T
K

L y E M x R M
k

k k, , , ,( ) = ( )éë ùû + ( )å1 ¡ 	 (2.22)
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To review, a good model will fulfill two requirements: it will have low energy for 

correct configurations and high energy for incorrect configurations. Looked at another 

way, when a good model is presented with a set of predictors x, its energy will be low 

when it is simultaneously presented with the correct y for that x, and its energy will be 

high when it is simultaneously presented with any incorrect y.

It is tempting, and often appropriate, to consider only the first half of this two-part 

requirement: the model will have low energy for correct configurations. This is especially 

true for models in which fulfilling the first half automatically fulfills the second half. 

As an example of this situation, suppose we have a regression equation as the model, 

and we define the energy associated with the model and a training case as the squared 

difference between the correct answer and the answer provided by the regression 

function. If we define the loss as this energy, then averaged across the entire training set, 

the loss is the mean squared error (MSE). The optimal model is produced by minimizing 

the MSE, a venerable approach.

The regression model just used as an example is a simple, common situation. But for 

many model architectures, this halfway method is not a good approach. It is much better, 

if not mandatory, to explicitly take into account the second half of the requirement: the 

energy of incorrect answers should be large. And intuitively, we don’t much care about 

easy situations, which are those incorrect answers that have huge energy. Even a weak 

model will do well with them. What we must worry about is those situations in which an 

incorrect answer has dangerously low energy. We want our model to be able to raise the 

energy of these problematic cases as much as possible above the energy of the correct 

answer.

This intuition leads to the following definition: The most offending incorrect 
answer for a case, which we will call ÿ, is the incorrect answer that has the lowest energy. 

This is the answer most likely to cause an error because it is the incorrect answer that is 

most difficult for the model to distinguish from the correct answer. The second half of 

the training criterion discussed earlier, that incorrect answers should have large energy, 

is more general than is necessary. All we really care about is that the most offending 

incorrect answer has energy as large as possible, compared to the energy of the correct 

answer. The other incorrect answers are of lesser importance because they are easier for 

the model to avoid.

In particular, what we often want to maximize is the difference between the energy of 

the most offending incorrect answer and the energy of the correct answer. This will give 

us a model that is optimal in the sense of effectively handling the most difficult cases, 

while letting the easy cases slide.
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A popular per-sample loss criterion, and which is presented here, is the log loss 

shown in Equation (2.23). Note how it is a monotonic function of the difference between 

the two energies, so optimizing either is equivalent to optimizing the other (for a single 

case i, not averaged across the training set!).

	 Loss M x y E M x y E M xi i i i i i, , log 1 exp , , , ,( )= + ( )- ( )éë ùû( )ÿ 	 (2.23)

Now that a theoretical foundation is laid, we can apply these ideas to the specific 

model used in the FREL paper and this text. Recall from the beginning of this section 

that we use weighted nearest-neighbor classification. Thus, in order to compute  

E(M, xi, yi) for training case i, we check all other training cases in the correct class, yi. The 

smallest distance is the energy for the correct class. Similarly, to compute E(M, xi, ÿ i), we 

search all other training cases in an incorrect class and find the distance to the nearest. 

Of course, although this is simple to describe and implement, it can be horrendously 

slow to compute. The quantity being minimized is the average across the training set 

of the per-sample losses shown in Equation (2.23). If there are n training cases and K 

predictors, a single evaluation of the grand loss function requires on the order of Kn2 

operations. Yikes! Luckily, FREL is most useful for situations in which the training set is 

small relative to the number of predictor candidates, so that squared term will ideally not 

be a serious problem.

�Regularization
All that remains to be settled is the regularization. In any reasonable application, the 

energy of the incorrect answers will, on average, exceed that of the correct answers; 

otherwise, the model would be worthless! For the loss function shown in Equation (2.23) 

applied to weighted nearest-neighbor classification, increasing the weights together 

will decrease the loss because the term being exponentiated will become increasingly 

negative. Thus, naive minimization of the loss will result in the weights blowing up 

without bound. Thus, we are inspired to penalize large weights. This is common practice, 

even in situations in which this blowup is not natural. The reason is that in many models, 

large weights are associated with overfitting and poor out-of-sample performance. Here 

we use the common method of penalizing by the sum of the squares of the weights, 

multiplied by a user-specified regularization factor. The sum of their absolute values is 

also common and may be implemented easily if desired.
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As we will see on page 151 when the FREL code is presented, I implement a separate 

weight stabilization scheme that kicks in if weights grow unreasonably large. If the 

user sets a positive regularization factor, this scheme will almost never play a role in 

optimization. However, if the user does not call for regularization (factor is zero), this 

scheme will prevent unrestrained runaway. For this reason, the regularization factor in 

my algorithm is a fairly noncritical parameter.

In practical terms, the effect of the regularization factor is to control the relative 

spread of weights. Suppose that predictability is concentrated in just one or a few 

candidates. If the user specifies a small or zero value for this parameter, the computed 

weights will strongly reflect this focus. However, if a large regularization factor is 

specified, the focus will be less intense; some of the weight will be redistributed away 

from the dominant predictors and given to predictors of lesser value. Intense focus on 

one or a few dominant predictors can, in some cases, be seen as a form of overfitting, 

but in other cases it is simply the “correct” response to the situation. I recommend that 

the user try several degrees of regularization (in any modeling scheme!) and compare 

results.

�Interpreting Weights
The optimal weights determined by minimizing (possibly regularized) loss can be 

interpreted as measures of importance of the individual predictors. However, two issues 

must be considered. First, the scaling of the predictors obviously impacts the weights, so 

their scaling should be commensurate. In my code, I take care of this by automatically 

scaling per their standard deviation, though some users may want to do it differently or 

not at all. Second, interpretation by the user is aided by normalizing the weights in some 

way for display. In this presentation, they are linearly normalized so as to sum to 100.

�Bootstrapping FREL
A frequently useful variation on the naive algorithm described so far is to take many 

bootstrap samples from the dataset and compute the final weight estimate by averaging 

the estimates produced from each bootstrap sample. The sampling must be done 

without replacement, as nearest-neighbor algorithms are irreparably damaged when the 

dataset contains exact replications of cases. Bootstrapping FREL has at least two major 

advantages over doing one FREL analysis of the entire dataset.
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•	 Stability is usually improved. A critical aspect of any weighting 

scheme is that the computed optimal weights should be affected 

as little as possible by small changes in the dataset. Such changes 

might be inclusion or exclusion of a few training cases or the 

addition of noise to the data. An average of bootstraps is much more 

robust against data changes compared to a single complete FREL 

processing.

•	 Because run time of the FREL algorithm is proportional to the square 

of the number of cases, we can greatly decrease the run time by 

performing many iterations of a small sample.

For these reasons, bootstrapping is generally recommended. The sample size must 

be large enough that each sample is virtually guaranteed to have a significant number of 

representatives from each target class. For the number of iterations, my own rough rule 

of thumb is that the product of the number of iterations times the sample size should be 

about twice the number of training cases.

�Monte Carlo Permutation Tests of FREL
A Monte Carlo permutation test is a useful, though time-consuming, way to test certain 

null hypotheses about the predictor candidates subjected to the FREL algorithm. It is 

vital to understand that these tests are significantly different from the permutation tests 

described starting on page 89. For one thing, I am not aware of any way of performing 

a perfect individual-candidate MCPT with FREL; the best I can do is come up with a 

rough approximation that appears to work well in practice. In the univariate screening 

tests described previously, the candidate predictors are handled individually, so the 

p-values (at least the solo tests) are independent. But FREL considers all candidates 

simultaneously. This dependence changes the nature of the MCPT. One effect is for 

dominant candidates to “suck” weight out of lesser candidates, thus reducing their 

apparent significance. But the most important effect is to radically change the nature of 

the null and alternative hypotheses of the test.

In univariate screening tests, the null hypothesis for each solo p-value is that the 

individual candidate is worthless, and the null hypothesis for the unbiased p-values 

is that all candidates are worthless. The power of the test is in identifying individual 

candidates that have predictive power. But for FREL, the individual MCPT tests have 

no useful power in situations in which all candidates have equal predictive power, 
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regardless of whether that power is tiny or large. The null hypothesis is still generated 

by making all candidates worthless, exactly as in other tests. But because of the joint 

estimation of weights, it is more intuitive (though not strictly correct!) to think of the null 

hypothesis as being that all candidates have equal predictive power, with the unbiased 

p-values compensating for the fact that we are testing numerous candidates, and any 

of them may be outstanding by random luck. In other words, these individual tests are 

related to the predictive power of each candidate relative to their competitors. Their 

individual predictive powers play no easily identifiable role in determining p-values.

With this in mind, we can look at the p-values of candidates at the top of the list, 

those ranked highest in terms of predictive power and having the largest weights, and 

consider the p-values as being the probability that if all candidates were truly equal in 

predictive power, the top-ranked candidates would have outperformed the others to the 

degree shown. Suppose we see a highly significant result for the single best candidate. It 

may be that this best candidate is almost worthless, and its competitors are completely 

worthless. Or it may be that this single candidate is excellent, while its competitors 

are merely very, very good. In either case we may see the best candidate having a 

highly significant p-value. We don’t know which situation is true; it’s all relative. Again, 

I emphasize that this interpretation is not strictly correct, but I believe that it is close 

enough, especially the unbiased p-values, to be effective indicators of the validity of the 

obtained results.

The sucking of weight from relatively poor predictors to good predictors has a 

peculiar and potentially confusing effect on the solo p-values. As we drop down the 

sorted list to the low-ranked candidates, we can see the solo p-values cover a wide range, 

jumping up and down between high and low significance randomly. This is illustrating 

in an exaggerated manner the fact that the p-values for worthless candidates in any 

statistical test have a uniform distribution, with all values being equally likely. This is 

yet another reason why we should focus on the unbiased p-values, ignoring the solo 

p-values except perhaps (and with great caution) for the few top-ranked candidates.

We can compute one additional p-value, which I call the Loss p-value. This is a 

“grand” measure of the ability of all predictors taken together to be effective at correct 

classification. The null hypothesis is that none of the candidates has any predictive 

power, and the Loss p-value is the probability that if this were so, we would have 

achieved a loss at least as low (good) as that obtained. This p-value being small is a 

necessary condition for any of the individual p-values to be meaningful. If we cannot be 

reasonably certain that at least one of the candidates has predictive power, then there is 

no point in considering their relative power!
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�General Statement of the FREL Algorithm
In the next section we’ll explore an efficient C++ implementation of the FREL algorithm. 

However, if you want to program it in a different language and want just a general 

outline, as well as to help C++ programmers understand the relative complex code that 

follows, I’ll first present my implementation of the FREL algorithm in its most general 

form, avoiding language-specific code as much as possible. In keeping with common 

practice when stating algorithms, we’ll use origin-one subscripting, even though C++ 

uses origin zero.

We begin with the core routine that is given a set of cases (predictor competitor 

matrix and target class vector) and a trial weight set. It computes the loss associated with 

this dataset and weight set. Here is the algorithm, and comments follow:

Subroutine compute_loss (Ncases, PredictorVecs, ClassVec, Weights)

loss = 0

For outer_case from 1 to Ncases

   ebest = eworst = infinite

   For inner_case from 1 to Ncases

       If  inner_case == outer_case

          continue

       Use Eq 2.21 on Pg 142 to compute distance between inner_case and outer_case

       If  ClassVec[inner_case] == ClassVec[outer_case]

          If  distance < ebest

              ebest = distance

       else

          If  distance < eworst

              eworst = distance

       End of  inner_case loop

   loss += log (1.0 + exp (ebest - eworst)) Equation (2.23) on Page 145

   End of  outer_case loop

loss += regularization penalty  Complete Equation (2.22) on Page 143

Return loss
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The outer_case loop will cumulate the sum of Equation (2.22) on page 143. Look 

back at Equation (2.23) on page 145. We’ll use an inner loop that checks every training 

case except the one being tested. At the end of this checking, we’ll have the first term of 

Equation (2.23), the energy of the correct answer, in ebest. Also, we’ll have the second 

term, the energy of the most offending incorrect answer, in eworst. The loss computed 

with Equation (2.23) is summed per Equation (2.22). After the sum is complete across 

the entire training set, we add in any desired regularization penalty.

We now present the routine that estimates the weights by combining bootstrap 

samples and calling an optimization routine. We’ll need a subroutine that, given a set 

of predictors and the target class vector, finds the optimal weights, which are those 

that minimize the loss as computed by compute_loss(). I find that Powell’s algorithm, 

implemented in POWELL.CPP, does a respectable job. Feel free to use a different 

optimizer if you want. Here is the bootstrapped weight estimator; a brief discussion 

follows:

Subroutine compute_weights ()

total_loss = 0

For i from 1 to Npredictors

   TotalWeights[i] = 0

For iboot from 1 to Nbootstraps

   Select BootSize cases from complete training set without replacement

   Call optimizer with these cases to find weights which minimize compute_loss()

   total_loss += this minimized loss

   For ivar from 1 to Npredictors

      TotalWeights[ivar] += OptimalWeights[ivar]

      End of  ivar loop

   End of  iboot loop

For ivar from 1 to Npredictors

   TotalWeights[ivar] /= Nbootstraps

   End of  ivar loop

Return total_loss

Chapter 2  Screening for Relationships



151

This routine cumulates the total loss for all bootstrap samples. This quantity has only 

one use: computation of the MCPT Loss p-value discussed at the end of the section that 

begins on page 147. This lets us test the null hypothesis that all predictor candidates are 

worthless versus the alternative that at least one of the competitors has predictive power.

We estimate the weight for each candidate predictor by taking Nbootstraps samples 

of size BootSize, without replacement, from the complete dataset. The optimal weights 

for each bootstrap sample are summed, and then the sum is divided by the number of 

bootstraps in order to get an average. This was discussed on page 146.

At last we can present the overall FREL procedure, including the Monte Carlo 

permutation tests. Here is a general statement of the algorithm:

For irep from 1 to MCPTreps

   if  irep > 1

      Shuffle target

   this_rep_loss = compute_weights()

   sum = 0

   For ivar from 1 to Npredictors

      weights[ivar] *= standard_deviation[ivar]

      sum += weights[ivar]

      End of  ivar loop

   For ivar from 1 to Npredictors

      weights[ivar] *= 100 / sum

      End of  ivar loop

   For ivar from 1 to Npredictors

      if  (ivar == 1 || weights[ivar] > best_crit)

         best_crit = weights[ivar];

      if  (irep == 1) {       // Original, unpermuted data

         original_weights[ivar] = weights[ivar]   // Save unpermuted weights

         mcpt_bestof[ivar] = mcpt_solo[ivar] = 1;

         }
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      else if  (weights[ivar] >= original_weights[ivar])

         ++mcpt_solo[ivar];

      End of  ivar loop

   if  (irep == 1)       // Original, unpermuted data

      original_loss = this_rep_loss;

      mcpt_loss = 1;

   else

      if  (this_reploss <= original_loss)

         ++mcpt_loss;

      For ivar from 1 to Npredictors

         if  (best_crit >= original_weights[ivar])

             ++mcpt_bestof[ivar];

         End of  ivar loop

   End of  irep loop

For ivar from 1 to Npredictors

   mcpt_solo[ivar] /= MCPTreps

   mcpt_bestof[ivar] /= MCPTreps

mcpt_loss /= MCPTreps

The main loop performs the MCPT replications. Remember that in this outline, we 

use origin-one to conform to common standards, with the first (unpermuted) replication 

being irep=1. In the C++ code that you’ll see later, the origin is zero.

If we are past the first replication, shuffle the target class vector. Then compute the 

optimal weights for the candidate predictors.

The next two blocks of code normalize the weights. Multiplying each weight by 

the standard deviation of the corresponding predictor makes the resulting weights 

independent of scaling, which is what we want in most applications. Keep in mind 

that a prudent user will not rely on this operation and instead will make sure that the 

predictors are commensurately scaled in advance. Significant differences in scaling 

degrade performance of the optimizer. Then, each weight is divided by their sum and 

multiplied by 100. This produces weights that sum to 100, an aid to interpretability.
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The next loop, which covers each predictor, does three things. First, it keeps track 

of the best performer’s criterion, best_crit, which will soon be needed. Second, if this is 

the first (unpermuted) replication, it saves the “true” weights and initializes the weight 

MCPT counters. Third, if this is a shuffled replication, it updates the solo MCPT counters.

After this loop is finished, we will have the best criterion in best_crit. We also have the 

loss for this replication in this_rep_loss. If this is the first, unpermuted replication, save 

this loss and initialize the MCPT loss counter. Otherwise, update this counter. Then, for 

each predictor candidate, compare the best criterion to that predictor’s original criterion 

in order to implement the unbiased test. Recall that strictly speaking, this test is not valid 

for any predictor other than the best. But as discussed earlier, these p-values are of some 

interest.

When all MCPT replications are complete, divide the counters by the number of 

replications to get the estimated p-values. If these actions are not clear, please review 

the MCPT section that begins on page 89, as well as the specialized FREL issues that are 

discussed on page 147.

�Multithreaded Code for FREL
The prior section discussed the FREL algorithm in general terms. Now we will dig 

into specifics, especially focusing on how the potentially slow FREL algorithm can be 

multithreaded to take advantage of modern processors. This code is extracted from  

FREL.TXT.

We begin with the core routine, which corresponds to the compute_loss() algorithm 

shown on page 149. The overwhelming fraction of total FREL compute time is spent 

in the innermost (ivar) loop of this routine, so every effort should be made to make it as 

efficient as possible.

Here is the calling parameter list. Because the work will be split across threads, we 

specify starting and stopping indices of cases being tested. The indices array identifies the 

ncases cases in this bootstrap sample taken from the complete database. Each element 

in this array is a row number in the database. The database can contain more variables 

(columns) than the npred predictors being tested, so preds identifies the variables 

(columns in database) we want to test. Note that if we were not multithreading, ncases 

would equal istop minus istart.
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static double block_loss (

   int istart,                  // Index of  first case being tested

   int istop,                  // And one past last case

   int *indices,             // Index of  cases; facilitates bootstraps

   int npred,                // Number of  predictors

   int *preds,               // Their column indices in ‘database’ are here

   int ncases,              // N of  cases in this bootstrap

   int n_vars,               // Number of  columns in database

   double *database,   // Full database, ncases rows and n_vars columns

   int *target_bin,        // Ncases vector of  target bin indices

   double *weights       // Input of  weight vector being tried

   )

{

   int k, ivar, icase, inner, iclass, inner_index, outer_index;

   double *cptr, *tptr, distance, ebest, eworst, loss;

There are three nested loops. The outermost determines the case being tested, and 

this is the dimension that is split across threads. The middle loop passes across the entire 

sample except for the case being tested, finding the two E terms in Equation (2.23) on 

page 145. The innermost loop computes the city-block distance, Equation (2.21) on page 

142. It may help to study the compute_loss() algorithm shown on page 149 in conjunction 

with this listing.

    loss = 0.0;

    for (icase=istart; icase<istop; icase++) {

       outer_index = indices[icase];                     // Index of  this case in complete database

       iclass = target_bin[outer_index];               // Its class

       cptr = database + outer_index * n_vars;   // Its predictors in database

       ebest = eworst = 1.e60;

       // Find the two E terms in Equation (2.23) on Page 145

       for (inner=0; inner<ncases; inner++) {       // Test against all other cases

          inner_index = indices[inner];                   // Index of  this case in complete database

          if  (inner_index == outer_index)              // Don't test it against itself

             continue;

          tptr = database + inner_index * n_vars; // Predictors of  inner case in database
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          // Compute the distance of  this inner case from the test case

          distance = 0.0;

          for (ivar=0; ivar<npred; ivar++) {     // For all predictors

             k = preds[ivar];                             // Index of  this predictor in database

              distance += weights[ivar] * fabs (cptr[k] - tptr[k]); // Eq 2.21 on Page 142

             }

          // Find the closest neighbor in this class and in any other class

          if  (target_bin[inner_index] == iclass) {

             if  (distance < ebest)

                ebest = distance;

             }

          else {

             if  (distance < eworst)

                eworst = distance;

             }

          } // For inner, the test cases

       distance = ebest - eworst;

       // Sum Equation (2.22) on Page 143

       if  (distance > 30.0)        // Prevent overflow. This is harmless.

           loss += distance;

       else

          loss += log (1.0 + exp (distance)); // Equation 2.23 on Page 145

       } // For icase

   return loss;

}

Note that the loss function, Equation (2.23) on page 145, must not be allowed to 

overflow when exponentiating. So we test it against 30, and substitute an essentially 

equal value if we are approaching overflow.
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As is standard in my work, we define a data structure for passing parameters and use 

a wrapper function that is executed in the threads.

typedef  struct {

   int istart;                   // Index of  first case being tested

   int istop;                   // And one past last case

   int *indices;              // Index of  cases; facilitates bootstraps

   int npred;                 // Number of  predictors

   int *preds;                // Their indices are here

   int ncases;               // Number of  cases in this bootstrap

   int n_vars;               // Number of  columns in database

   double *database;   // Full database

   int *target_bin;         // Bin index for targets

   double *weights;      // Weight vector

   double *loss;            // Computed loss function value is returned here

} FREL_PARAMS;

static unsigned int__stdcall block_loss_threaded (LPVOID dp)

{

   *(((FREL_PARAMS *) dp)->loss) = block_loss (((FREL_PARAMS *) dp)->istart,

                        ((FREL_PARAMS *) dp)->istop,

                        ((FREL_PARAMS *) dp)->indices,

                        ((FREL_PARAMS *) dp)->npred,

                        ((FREL_PARAMS *) dp)->preds,

                        ((FREL_PARAMS *) dp)->ncases,

                        ((FREL_PARAMS *) dp)->n_vars,

                        ((FREL_PARAMS *) dp)->database,

                        ((FREL_PARAMS *) dp)->target_bin,

                        ((FREL_PARAMS *) dp)->weights);

   return 0;

}

The following routine splits the work across multiple threads. Blocks of code will be 

interspersed with discussions. The calling parameter list contains many items already 

discussed, so we dispense with redundant explanations.

Chapter 2  Screening for Relationships



157

static double loss (

   int npred,                 // Number of  predictors

   int *preds,                // Their indices (columns in database) are here

   int ncases,               // Number of  cases in this bootstrap

   int n_vars,               // Number of  columns in database

   int *indices,              // Index of  cases; facilitates bootstraps

   double *database,   // Full database

   int *target_bin,         // Ncases vector of  target bin indices

   double *weights,      // Input of  weight vector being tried

   double regfac          // Regularization factor

   )

{

   int i, ivar, ithread, n_threads, n_in_batch, n_done, istart, istop, ret_val;

   double loss[MAX_THREADS], total_loss;

   FREL_PARAMS frel_params[MAX_THREADS];

   HANDLE threads[MAX_THREADS];

   n_threads = MAX_THREADS;

   if  (n_threads > ncases)            // No sense multithreading a tiny problem

       n_threads = 1;

/*

   Initialize those thread parameters which are constant for all threads.

*/

   for (ithread=0; ithread<n_threads; ithread++) {

      frel_params[ithread].npred = npred;

      frel_params[ithread].preds = preds;

      frel_params[ithread].ncases = ncases;

      frel_params[ithread].n_vars = n_vars;

      frel_params[ithread].indices = indices;

      frel_params[ithread].database = database;

      frel_params[ithread].target_bin = target_bin;

      frel_params[ithread].weights = weights;

      frel_params[ithread].loss = &loss[ithread];

      } // For all threads, initializing constant stuff
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   istart = 0;           // Batch start = training data start

   n_done = 0;       // Number of  training cases done so far

   for (ithread=0; ithread<n_threads; ithread++) { // Will launch all threads at once

      n_in_batch = (ncases - n_done) / (n_threads - ithread); // Cases left / batches left

      istop = istart + n_in_batch;                             // Stop just before this index

      // Set the pointers that vary with the batch: the starting and stopping cases

      frel_params[ithread].istart = istart;

      frel_params[ithread].istop = istop;

      threads[ithread] = (HANDLE) _beginthreadex (�NULL, 0, block_loss_threaded,  

&frel_param s[ithread], 0, NULL);

      n_done += n_in_batch;         // Count how many cases done so far

      istart = istop;                          // Start the next batch right after last case in this one

      } // For all threads / batches

At this point, all data has been launched, split across n_threads threads. Now we just 

sit and wait for them to finish. Note that error handling is omitted here for clarity. You 

can find it in FREL.TXT.

   WaitForMultipleObjects (n_threads, threads, TRUE, 1200000);

The summation across all training cases in this bootstrap sample, each being used as 

a test case, was split across multiple threads. We sum the results for the threads to get the 

total loss for this bootstrap sample. Also, close the threads so as to be a responsible and 

thrifty Windows user. Last of all, add in the regularization penalty.

   total_loss = 0.0;

   for (ithread=0; ithread<n_threads; ithread++) {

      total_loss += loss[ithread];

      CloseHandle (threads[ithread]);

      }

   total_loss /= ncases;  // Make it a per-case average

   // Add in the regularization penalty

   for (ivar=0; ivar<npred; ivar++)

      total_loss += regfac * weights[ivar] * weights[ivar];

   return total_loss;

}
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We come now to the code that does the bootstrap sampling and repeatedly call the 

loss() function just presented, pooling the bootstrapped weight estimates and loss. The 

calling parameter list is shown on the next page. But we begin with a bunch of static 

declarations. These are a sneaky but efficient way of passing parameters to the criterion 

routine that will be called by the optimizer. By doing it this way, we can use a general-

purpose optimization routine, avoiding the need for a routine specialized for this 

particular application.

static int criter (double *x, double *y);    // Computes the criterion being minimized

static int local_npred;                            // These are the same parameters that

static int *local_preds;                           // we’ve been seeing in prior routines

static int local_ncases;                          // As before, this is the bootstrap sample size

static int local_n_vars;

static int *local_indices;

static double *local_database;              // The entire database, all trainng cases

static int *local_target_bin;

static double *local_critwork;

static double local_regfac;

static int compute_wt (

   int npred,                   // Number of  predictors

   int *preds,                  // Their indices are here

   int ncases,                 // Number of  cases in complete database

   int n_vars,                 // Number of  columns in database

   int *indices,                // Index of  cases; facilitates bootstraps

   double *database,     // Full database

   int nbins_target,        // Number of  target bins

   int *target_bin,           // Ncases vector of  target bin indices

   int nboot,                   // Number of  bootstrap reps

   int bootsize,               // Size of  each bootstrap

   double *crits,             // Predictor weights for each bootstrap computed here

   double *critwork,        // Work vector npred long needed by criter()

   double *base,             // Work vector npred long for powell()

   double *p0,                // Work vector npred long for powell()

   double *direc,            // Work vector npred*npred long for powell()
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   double regfac,             // Regularization factor

   double *loss_value,    // Optimal loss (sum of  bootstrap losses) is returned here

   double *weights          // Weight vector returned here

   )

{

   int i, j, k, m, iboot, ret_val, class_count[MAX_MUTINF_BINS];

   double loss;

   char msg[2014];

   // These are needed by criter()

   local_npred = npred;

   local_preds = preds;

   local_ncases = bootsize;

   local_n_vars = n_vars;

   local_indices = indices;

   local_database = database;

   local_target_bin = target_bin;

   local_critwork = critwork;

   local_regfac = regfac;

We do a few things to initialize for the bootstrapping. The final weights will be the 

mean weight estimates across all bootstraps. We’ll also sum the loss across all bootstraps, 

which will be used only for a particular MCPT described later. Finally, we initialize the 

vector that will specify the case indices for each bootstrap replication.

   for (i=0; i<npred; i++)    // Results of  bootstraps will be summed in 'weights'

      weights[i] = 0.0;

   *loss_value = 0.0;         // Will be needed for global p-value

   for (i=0; i<ncases; i++)

      indices[i] = i;              // Identifies cases in each bootstrap sample

Here is the bootstrap loop. Because we use a nearest-neighbor algorithm as part 

of the criterion calculation, no case can be replicated in the sample. The easiest way to 

select without replacement is to shuffle in place and stop when we reach the bootstrap 

size. The first bootsize cases in the shuffled array define the bootstrap sample. We’ll 

discuss this code in a moment.
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   for (iboot=0; iboot<nboot; iboot++) {

      for (i=0; i<nbins_target; i++)

         class_count[i] = 0;   // This will be used in the next section of  code

      i = ncases;                  // Number remaining to be shuffled

      while (i > 1) {              // While at least 2 left to shuffle

         m = ncases - i;         // Number shuffled so far

         if  (m >= bootsize)

            break;

         j = (int) (unifrand_fast () * i);

         if  (j >= i)                   // Should never happen, but be safe

             j = i - 1;

         k = indices[m];

         indices[m] = indices[m+j];

         indices[m+j] = k;

         --i;

         ++class_count[target_bin[indices[m]]];      // We’ll need this in a moment

         } // Shuffling for bootstrap sample without replication

The first action in the bootstrap loop is to initialize every element of class_count to 

zero. These will count the number of occurrences of each class in the sample. You’ll 

learn more about this soon.

The shuffling loop shown previously is similar to the standard algorithm but 

changed so that shuffling moves from beginning to end instead of the more common 

end to beginning. That would have worked as well, but it’s more intuitive to submit the 

beginning of the array as the bootstrap rather than the end. That’s just my opinion.

To make sure this technique is clear, we’ll explore its actions. The counter i will always 

be the number of elements in the indices array that are not yet shuffled. It is initialized to the 

number of cases in the complete database. Then m = ncases - i is the number that have been 

shuffled, all of which will be at the beginning of the array. If we have reached the required 

number of cases (bootsize) for this sample, we are done. If not, we choose j randomly from 

the number of as-yet unshuffled cases. Fetch this randomly selected case and put in the 

next spot, swapping what was there into the slot from which we just fetched a case. This 

way, every case in the bootstrap sample will have an equal chance of being any dataset case 

except for any case that has already been selected for the sample. We also update the counter 

of how many times each target class has appeared in this bootstrap sample.
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The weight estimation algorithm will misbehave if we have no cases in some class. 

I set an arbitrary limit of requiring at least two cases in each class. If this requirement is 

not met, we reject this sample and try again.

      for (i=0; i<nbins_target; i++) { // Demand at least two of  each class in this sample

         if  (class_count[i] < 2)

             break;

         }

      if  (i < nbins_target) {

         --iboot;

         continue;

         }

The rest of this routine is fairly simple. As we’ll see in the next module, rather 

than optimizing the weights themselves, we optimize the log of the weights. This aids 

numerical stability. So we initialize the starting point for optimization to zero, which 

corresponds to weights of one. The powell() minimization routine requires that we provide 

the function value (the loss here) at the starting point, so we call the criterion function 

to get this quantity and then call the optimizer. Cumulate across bootstraps the loss and 

the optimal weights. Finally, after all bootstraps are complete, divide the sum of weight 

estimates by the number of bootstraps to get their average.

      for (i=0; i<npred; i++) // Starting point for this bootstrap

         crits[i] = 0.0;

      ret_val = criter (crits, &loss);

      ret_val = powell (0.1, 10, 0.0, 1.e-3, criter, npred,  

                         crits, &loss, base, p0, direc, 1);

      *loss_value += loss;

      for (i=0; i<npred; i++) // Cumulate for this bootstrap

         weights[i] += crits[i];

      } // For iboot

   for (i=0; i<npred; i++)

      weights[i] /= nboot;

}
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We won’t bother discussing the Powell’s method optimizer here; it is well 

documented in numerous references. The code for it is supplied in POWELL.CPP. You 

should feel free to substitute your own optimizer if you have something you think is 

better. Also feel free to tweak the convergence parameters in this function call. See 

POWELL.CPP for details.

What about this criter() routine that, given a trial set of weights, computes the loss for 

the current bootstrap sample? Here is the code, and a brief explanation follows:

static int criter (double *x, double *y)

{

   int i;

   double crit, penalty;

   penalty = 0.0; // This is not regularization. It just keeps the parameters reasonable.

   for (i=0; i<local_npred; i++) {

      if  (x[i] > 4.0) {

          local_critwork[i] = exp (4.0) + x[i] - 4.0;

          penalty += (x[i] - 4.0) * (x[i] - 4.0);

          }

      else if  (x[i] < -3.0) {

          local_critwork[i] = exp (-3.0) + x[i] + 3.0;

          penalty += (x[i] + 3.0) * (x[i] + 3.0);

          }

      else

          local_critwork[i] = exp (x[i]);

      }

   crit = loss (local_npred, local_preds, local_ncases, local_n_vars,

                    local_indices, local_database, local_target_bin,

                    local_critwork, local_regfac);

   *y = crit + penalty;

   return 0;

}
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Regularization is done in the loss() function,  not in this routine. But we do include 

a penalty term to prevent weight runaway, which will almost never be invoked if even 

slight regularization is done. Recall that we are optimizing the log of the weights. If this 

log grows too large (> 4) or small (< -3), we modify the variable-to-weight mapping 

function in a way that does not introduce discontinuity and penalize accordingly. This is 

very benign and is really just cheap, innocuous insurance against bad behavior.

The hard work is done. All that remains is the main routine that calls compute_wt(), 

optionally with shuffling for Monte Carlo permutation testing. However, it would be 

wasteful to list the code in detail here, because the important concepts of this procedure 

were described on page 151 already. Instead, I refer the reader to the FREL.TXT file and 

mention a few items of interest in regard to the frel() routine and that do not appear in 

that earlier outline:

•	 This code uses the partition() routine (page 30) to group the target 

variable into classes. This allows maximum generality, since the 

target can be continuous, but if it is already discrete, the existing 

classes will be respected except in pathological situations.

•	 Full or cyclic permutation is supported.

•	 When the first (unpermuted) replication is performed, a copy of the 

weights is kept, and these are then sorted, simultaneously moving a 

vector of indices. This facilitates later printing of the weights in sorted 

order.

�Some FREL Examples
Here are some simple examples of using FREL testing to evaluate the relationship of a 

set of competing candidates with a single target variable. The first example shows the 

effect of no regularization, the second demonstrates the impact of hugely excessive 

regularization, and the third modestly large regularization.

The synthetic variables in the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each 

other) random time series.

•	 SUM1234 = RAND1 + RAND2 + RAND3 + RAND4
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We begin by specifying a regularization factor of zero and running 100 MCPT 

replications. The following results are produced:

       Variable       Weight       Solo pval       Unbiased pval

          RAND4      24.4017        0.0100            0.0100

          RAND1      23.9127        0.0100            0.0100

          RAND2      22.3636        0.0100            0.0100

          RAND3      19.8841        0.0100            0.0100

          RAND6       2.7574        1.0000            1.0000

          RAND8       1.5689        1.0000            1.0000

          RAND5       1.4971        1.0000            1.0000

          RAND9       1.3692        1.0000            1.0000

          RAND7       1.2613        1.0000            1.0000

          RAND0       0.9839        1.0000            1.0000

Loss p-value = 0.010

Observe that the algorithm does a fabulous job of identifying the four variables 

that are related to the target. The weights for the good and worthless variables are very 

different, and both the solo and unbiased p-values could not be better.

We now use an absurdly large regularization factor, 10. As pointed out earlier, 

regularization tends to obscure differences between variables. We see it dramatically here, 

when only three of the four “good” variables make the top of the sorted list. Interestingly 

enough, the solo p-values still correctly identify the four good variables, while the 

unbiased p-values are terribly distorted. The lesson is that regularization comes at a price.

       Variable       Weight       Solo pval       Unbiased pval

          RAND1      10.1753        0.0100            0.0100

          RAND3      10.1326        0.0100            0.0900

          RAND4      10.0753        0.0100            1.0000

          RAND9      10.0517        1.0000            1.0000

          RAND0      10.0429        1.0000            1.0000

          RAND2       9.9708        0.0100            1.0000

          RAND8       9.9582        1.0000            1.0000

          RAND7       9.9575        1.0000            1.0000

          RAND6       9.8321        1.0000            1.0000

          RAND5       9.8036        1.0000            1.0000

Loss p-value = 0.010

Chapter 2  Screening for Relationships



166

Finally, we use a regularization factor of 0.1, which is fairly large but not ridiculous. 

See how the weight difference between the “good” and the “bad” variables are 

uncomfortably close. Nonetheless, the p-values do an excellent job of separation.

       Variable       Weight       Solo pval       Unbiased pval

          RAND1      15.6745        0.0100            0.0100

          RAND2      15.1372        0.0100            0.0100

          RAND3      15.0183        0.0100            0.0100

          RAND4      14.7490        0.0100            0.0100

          RAND9       7.0528        1.0000            1.0000

          RAND0       6.9595        1.0000            1.0000

          RAND5       6.5893        1.0000            1.0000

          RAND8       6.3851        1.0000            1.0000

          RAND6       6.3514        1.0000            1.0000

          RAND7       6.0830        1.0000            1.0000

Loss p-value = 0.010
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CHAPTER 3

Displaying Relationship 
Anomalies
Naive measures of association between variables, such as linear correlation, are 

primarily sensitive to gross relationships, those patterns that are easy to detect, see, and 

describe. In prior chapters we examined measures that go beyond such naiveté and are 

able to detect more subtle dependencies between variables, in other words, anomalies 

in otherwise uncomplicated relationships. But what if we want a visual representation of 

the pattern that connects them? In this chapter we present several ways of doing this.

The material in this chapter, as well as many (most?) techniques for measuring 

relationships between variables, is based on a fundamental statistical principle: two 

variables are unrelated if and only if their joint distribution equals the product of their 

marginal distributions. To take a simple example from a discrete distribution, suppose 

Variable 1 has probability 0.3 of having value A, and Variable 2 has 0.2 probability of 

having value M. If these two variables are independent, the probability of simultaneously 

observing these values (Variable 1 = A and Variable 2 = M) is 0.3 * 0.2 = 0.06. If in an 

experiment we observe that for one or more pairs of outcomes, the observed joint 

probability is not close to the product of the observed marginal probabilities, this is 

evidence that the variables are not independent.

If the variables are continuous, the same rule applies, although the lack of categories 

makes the intuition less straightforward. Let random variables X1 and X2 have density 

functions f1(x1) and f2(x2), respectively. Let their joint density function be f (x1, x2).  

Then X1 and X2 are independent if and only if f (x1, x2) = f1(x1) f2(x2).
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We can make effective use of this defining property of independence by visually 

displaying its components as well as deviations from equality. But a graphical display 

should be continuous in order to be pleasing to the eye, so we need a way of computing 

f1(x1) and f2(x2) for arbitrary values of x1 and x2 across their entire practical domain. We 

will need this ability regardless of whether the variables are discrete or continuous, and 

it must provide reasonable results for small samples, as well as be reasonably fast to 

compute for large samples. The latter requirement can be troublesome, but we’ll do the 

best we can.

An excellent way to compute the joint and marginal densities is to use the Parzen 

window method described on page 37. You are encouraged to review that material. For 

convenience, the four key equations are shown here, as they will be implemented in 

the code that follows on page 173. Equation (3.1) is the univariate window, the ordinary 

exponential function, and Equation (3.2) is the corresponding univariate density 

estimator. Their multivariate extensions are shown in Equations (3.3) and (3.4). For our 

purposes, p=2 in these latter two equations.
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There are four ways of displaying these quantities that I have found useful: the 

marginal density product, the actual bivariate density, the marginal inconsistency, and 

the contribution to mutual information. We’ll explore these one at a time.

To provide a simple yet revealing comparison between the four types of plot, I 

generated a pair of random variables, INDEP and BLOB. The former is uniformly 

distributed from -50 to 50. The latter is similar, except that when INDEP lies between 15 

and 25, BLOB is changed to -30 plus a small uniform random variation ranging from -5 to 5.  

The four plots appear on the next two pages in Figure 3-1, Figure 3-2, Figure 3-3, and 

Figure 3-4, and explanations follow.

Chapter 3  Displaying Relationship Anomalies



169

Figure 3-1.  Marginal density product

Figure 3-2.  Actual density
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Figure 3-3.  Marginal inconsistency

Figure 3-4.  Mutual information contribution
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�Marginal Density Product
The marginal density plot shows the log of the product of the two marginal densities, 

f1(x1) f2(x2). It is useful as a “baseline” display, as it shows the bivariate density as it would 

exist if there were no relationship between the horizontal and vertical variables. Of the 

four types of plot, this is certainly the least useful and is often worthy of being ignored.

Figure 10-1 depicts a dark horizontal band, centered in the vertical (BLOB) 

dimension at -30. It extends across the entire horizontal (INDEP) range. The band exists 

at -30 because BLOB cases are concentrated there. But it extends across the entire range 

of INDEP because this plot ignores any relationship between the variables. Thus, the fact 

that BLOB is shifted to -30 for only a subset of the domain of INDEP is of no consequence 

to this plot. The plot is constructed based on only the separate distributions of each 

variable.

�Actual Density
The actual density plot is, in a sense, the opposite of the marginal product plot because 

it illustrates the full nature of the dependency between the horizontal and vertical 

variables. It depicts the log of the joint distribution of these two variables, f (x1, x2). As 

such, one can see where cases are concentrated and where they are thinly distributed.

Figure 10-2 clearly shows how, in the 15 to 25 range of INDEP, values of BLOB are 

concentrated around -30. The light bands above and below this dark area show that the 

-30 concentration has come at the expense of other values of BLOB when INDEP is in the 

15 to 25 range.

�Marginal Inconsistency
Recall that two variables are independent if and only if f (x1, x2) = f1(x1) f2(x2) everywhere. 

If there is even one location (x1, x2) where this defining property does not hold, then the 

variables are not independent. It is often in our interest to find those locations where this 

equality fails. Equation (3.5) is an effective way to measure the degree to which the joint 

density fails to equal the product of the marginal densities.
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When the joint equals the marginal product, Inconsistency will be zero. As the two 

depart more and more, Inconsistency will increase. Sometimes it may be more useful to 

avoid the absolute value so that relatively sparse joint density is indicated by a negative 

inconsistency. However, in my own work I have found it more informative to focus on 

only the degree of inconsistency, regardless of sign, and use other plots to determine 

the nature of the inconsistency. I find that my eye responds more easily to departures 

from normalcy when it has to look for only one feature (abnormally positive) rather than 

being open to two features (abnormally positive or negative).

Figure 10-3 does an excellent job of revealing the fact that something unusual 

happens when INDEP lies in the 15 to 25 range. Density above and below the vicinity 

of BLOB=-30 gets sucked into the -30 area. Whether a region of BLOB is a sucker or a 

suckee, this inconsistent behavior in the region is flagged by large values of Inconsistency.

Notice the less prominent horizontal dark band around BLOB=-30. This is because 

based purely on the BLOB marginal, one would expect a few more cases here, but the 

actual joint density is too small.

Lastly, the white (low inconsistency) bands around the border of the inconsistent regions 

are because the Parzen window averages cases. The opposing nature of inconsistency on 

opposite sides of the border average out to “consistent” behavior at the border.

�Mutual Information Contribution
Mutual information (page 17) is an effective measure of the degree to which two 

variables are related. Recall that Equation (3.6) is the fundamental definition of mutual 

information. The summation involves the product of two terms. One of them is the 

inconsistency we discussed in the prior section, though without the absolute value. 

The other is the probability of a potentially inconsistent location in the joint domain 

occurring. The summation is over the entire domain, all possible values of the two 

variables. It can be interesting to locate the areas of the joint domain that are the primary 

contributors to the mutual information.
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Any inconsistency between the joint density and the product of the marginals will 

be given weight in proportion to the probability of that region; regions in which the joint 

density is unusually high will be given especially large weighting of any inconsistency there.
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Figure 10-4 shows this in action. The area in which cases have an unusually high 

concentration is prominent, a reflection of the magnitude of both terms in the product 

within this region. This area simultaneously has a large joint density relative to the 

product of the marginals (high inconsistency), and it also has an unusually high 

concentration of cases in this neighborhood (high actual density), thus giving large 

weight to the inconsistencies in this area of the domain.

The lighter vertical and horizontal bands illustrate the opposing effect: these regions 

have unusually low density.

�Code for Computing These Plots
The file DENSITY_PLOTS.TXT contains the key computational code for generating the 

displayable grid for the four plots just discussed. Error checking and other aspects of 

the user interface have been omitted for clarity. In this section we will explore this code, 

section by section, to make sure its operation is clear.

The following variables will play significant roles in the code:

   database        �n_cases (rows) by n_vars (columns) dataset containing all data

   grid                 res by res displayable image which we compute

   val1                Horizontal variable, which we extract from the database

   val2                And vertical variable

   keys               Work area, needed only for histogram equalization

The user-specified parameters are shown next. Their purposes will be explained in 

more detail as relevant portions of the code are presented.

   varnum1         Column in the database of  horizontal variable

   varnum2         And vertical variable

   use_lowlim1   Flag: limit the lower range of  the horizontal variable? 

   lowlim_val1    Lower limit if  specified by user

   Similarly variables for upper limits and vertical variable

   res                  �Vertical and horizontal resolution of  the square image generated

   width               Fraction of  standard deviation used for Parzen window width

   shift                 Amount to shift displayed tone for better display

   spread            Amount to expand displayed tone range for better display
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   type                 Type of  display

      TYPE_DENSITY                        Actual density (similar to scatterplot)

      TYPE_MARGINAL                    � �Marginal density, shows 'no relationship' pattern

      TYPE_INCONSISTENCY          Marginal inconsistency

      TYPE_MI                                    Mutual information contribution

   hist                   Apply histogram normalization?

   sharpen           Sharpen display range to clarify boundary?

First, we allocate work areas. Note that if histogram normalization is not to be 

performed, we do not need to allocate keys. We allocate grid to be twice the display size. 

We’ll use the second half as a scratch work area later.

   grid = (double *) MALLOC (2 * res * res * sizeof(double));

   keys = (int *) MALLOC (res * res * sizeof(int));

   val1 = (double *) MALLOC (n_cases * sizeof(double));

   val2 = (double *) MALLOC (n_cases * sizeof(double));

It’s trivial to extract the data from the database. If you already have it in two arrays, 

you don’t need to do this. From here on, we will reference val1 (the horizontal variable) 

and val2 (vertical) only.

   for (i=0; i<n_cases; i++) {

      val1[i] = database[i*n_vars+varnum1];    // Horizontal variable

      val2[i] = database[i*n_vars+varnum2];    // Vertical variable

      }

We pass through the horizontal variable, finding the smallest and largest values, 

which will be used to control display scaling. If the user requests different limits for 

display, override the limits just found. Naturally, we could reorganize this code to avoid 

the loop if user-specified limits are supplied. But the loop is fast, and the code is clearer 

this way. Redo it if you’d like.

   smallest = largest = val1[0];

   for (i=1; i<n_cases; i++) {

      if  (val1[i] < smallest)

         smallest = val1[i];

      if  (val1[i] > largest)

         largest = val1[i];

      }
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   if  (use_lowlim1)

      smallest = lowlim_val1;

   if  (use_highlim1)

      largest = highlim_val1;

A careless user may have specified conflicting limits. The following check is cheap 

insurance against disaster:

   if  (largest <= smallest) {    // �Should never happen, but user may be careless

       largest = smallest + 0.1;

       smallest = largest - 0.2;

       }

At this point, the programmer would use these limits to set up labels for the display 

and maybe revise the display limits. Sometimes visual appearance is improved by 

extending the actual display limits beyond the data or user-specified limits. We leave it 

to you to implement this as desired. Just let (xmin, xmax) be the actual display range. Also, 

we perform these same operations with the vertical variable. There’s no sense being 

redundant in this presentation.

We now compute the scale factors (sigma in the denominator of Equations (3.2) and 

(3.4)) for the horizontal and vertical variables. The user-specified width is the fraction of 

each variable’s standard deviation to use for this scale factor, the width of the Parzen 

window.

   scale1 = scale2 = mean1 = mean2 = 0.0;

   for (i=0; i<n_cases; i++) {

      x = val1[i];

      if  (use_lowlim1 && x < lowlim_val1)

         x = lowlim_val1;

      if  (use_highlim1 && x > highlim_val1)

         x = highlim_val1;

      mean1 += x;

      x = val2[i];

      if  (use_lowlim2 && x < lowlim_val2)

         x = lowlim_val2;
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      if  (use_highlim2 && x > highlim_val2)

         x = highlim_val2;

      mean2 += x;

      }

   mean1 /= n_cases; 

   mean2 /= n_cases;

The previous code computes the mean of each variable, and the following code 

computes the standard deviation. If the user specified a display limit, we bound the 

variable accordingly. It can be argued that it would be better to avoid bounding when 

computing the mean and standard deviation. This is a personal preference. You may 

want to try it both ways and see which you prefer.

   for (i=0; i<n_cases; i++) {

      x = val1[i];

      if  (use_lowlim1 && x < lowlim_val1)

         x = lowlim_val1;

      if  (use_highlim1 && x > highlim_val1)

         x = highlim_val1;

      diff  = x - mean1;

      scale1 += diff  * diff;

      x = val2[i];

      if  (use_lowlim2 && x < lowlim_val2)

         x = lowlim_val2;

      if  (use_highlim2 && x > highlim_val2)

         x = highlim_val2;

      diff  = x - mean2;

      scale2 += diff  * diff;

      }

   scale1 = width * sqrt (scale1 / n_cases); // �User param times standard deviation

   scale2 = width * sqrt (scale2 / n_cases);

   if  (scale1 < 1.e-30) // Should never happen, but user may be careless

      scale1 = 1.e-30;

   if  (scale2 < 1.e-30)

      scale2 = 1.e-30;
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We do an initialization that, in a sense, may not always be required. Code that allows 

a user to abort the later computation of grid (which can be slow for numerous cases and 

high resolution) is not shown here. However, most programmers will want to include 

an abort option to placate impatient users. Whatever fraction has been completed prior 

to interruption should be displayed. Thus, we initialize the entire display grid to zero in 

order to avoid nonsense numbers during display.

Also, we zero the total joint probability for scaling later. This is not used for display at 

all. However, the scaling described later is useful if the programmer wants to print some 

numeric values for the user.

   for (i=0; i<res*res; i++)

      grid[i] = 0.0;   // Avoid nan in case user aborts

   total_joint = 0.0;       // Used for printing numbers later, not display

The core computation is now performed. This computes the basic display grid, 

using Equations (3.1) through (3.4). Later, we’ll do additional post-processing. But first, 

we handle the basics. Actually, we display the log of some quantities, which results in a 

much more interpretable image.

   for (horz=0; horz<res; horz++) {                        // �Left to right across display

      x = xmin + horz * (xmax - xmin) / (res - 1);     // �Map display horizontal to x value

      for (vert=0; vert<res; vert++) {                        // �Bottom to top of  display

         y = ymin + vert * (ymax - ymin) / (res - 1);   // �Map display vertical to y value

         xmarg = ymarg = joint = 0.0;                        // �Will sum Equations 3.2 and 3.4

         for (i=0; i<n_cases; i++) {                            // �Sum these two equations

            xdiff  = (val1[i] - x) / scale1;                       // �d in Equations 3.1 and 3.3

            ydiff  = (val2[i] - y) / scale2;

            xmarg += exp (-0.5 * xdiff  * xdiff);             // Sum Equation 3.2

            ymarg += exp (-0.5 * ydiff  * ydiff);

            joint += exp (-0.5 * (xdiff * xdiff + ydiff * ydiff));    // �Sum Equation 3.4

            }

         xmarg /= n_cases * scale1 * root_two_pi;   // �Complete Equation 3.2

         ymarg /= n_cases * scale2 * root_two_pi;

         joint /= n_cases * scale1 * scale2 * two_pi; // �Complete Equation 3.4
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      if  (xmarg < 1.e-50)                                 // �Do not allow zero denominator later

         xmarg = 1.e-50;

      if  (ymarg < 1.e-50)

         ymarg = 1.e-50;

      if  (joint < 1.e-100)

         joint = 1.e-100;

      if  (type == TYPE_DENSITY)

         grid[vert*res+horz] = log (joint);

      else if  (type == TYPE_MARGINAL)

         grid[vert*res+horz] = log (xmarg) + log (ymarg);

      else { // INCONSISTENCY or MUTUAL INFORMATION

         numer = joint;

         if  (numer < 1.e-100)

            numer = 1.e-100;

         denom = xmarg * ymarg;

         if  (denom < 1.e-100)

            denom = 1.e-100;

         grid[vert*res+horz] = log (numer) - log (denom); // �Eq (3.5) without abs value

                                                                                      // �We'll do Abs Val later

         if  (type == TYPE_MI) {                // If  user wants mutual information

            total_joint += numer;                // �Not used for display but useful for numbers

            grid[vert*res+horz] *= numer;  // This term in Equation (3.6)

            }

         } // Inconsistency or mutual information

      } // For vert

   } // For horz

In the previous code, we actually compute the log of the density and marginal 

product when these quantities are to be displayed. I have found that this helps 

visual appeal. Feel free to experiment with displaying raw values or using other 

transformations.

The hard work is done. However, we perform some post-processing to improve the 

quality of the display as well as to optionally print a few numeric values that may be of 

interest to the user.
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First, we handle displaying the contribution to mutual information. In the prior code 

block we computed the total joint probability. It’s tempting to think this should sum to 

one, but remember that we are not summing across discrete categories; we are summing 

an approximate continuous density across a discrete grid, so the sum depends on the 

resolution. The following code divides the contributions to mutual information by this 

total as a form of normalization. This will not affect the display, but the sum of these 

normalized values, totalMI, is a specialized measure of mutual information that may be of 

interest to users for comparisons.

We also keep track of the point (maxMIx, maxMIy) in the domain at which the mutual 

information contribution is greatest, as well as the value (maxMI) of this maximum. I 

apply a special transformation to maxMI that accentuates sharply localized features. 

Recall (on page 19) that totalMI cannot be negative, and it will be zero only if the sample 

demonstrates perfect independence between the variables. In the extreme limiting case 

that all of the contribution comes from a single grid entry, unnormalized maxMI=totalMI. 

In this case, normalized maxMI=res*res.

   if  (type == TYPE_MI) {    // If  user wants mutual information

      totalMI = 0.0;                 // Not used for display, only optional printing

      maxMI = -1.e100;           // Ditto

      for (horz=0; horz<res; horz++) {

         x = xmin + horz * (xmax - xmin) / (res - 1);   // �X value at this display position

         for (vert=0; vert<res; vert++) {

            y = ymin + vert * (ymax - ymin) / (res - 1); // And Y value

            grid[vert*res+horz] /= total_joint; // �Normalize (does not impact display)

            totalMI += grid[vert*res+horz];     // Guaranteed non-negative

            if  (grid[vert*res+horz] > maxMI) {

               maxMI = grid[vert*res+horz];

               maxMIx = x;

               maxMIy = y;

               }

            }

         }

      if  (totalMI > 0.0)

         maxMI *= res * res / totalMI;

      else

         maxMI = 0.0;

      }
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Now we consider displaying marginal inconsistency. The mutual information code in 

the prior section has no impact whatsoever on the display; it is strictly for producing some 

numerical values that may interest the user. This inconsistency code is the opposite; no 

numeric values for the user are computed, and the nature of the display itself is changed.

A significant problem with displaying raw values of the inconsistency given by 

Equation (3.5) on page 171 is that positive (concentration) and negative (sparsity) values 

are generally nonsymmetric. This has different implications depending on whether we 

take the absolute value shown in that equation and discussed in that section. For an 

effective visual display…

•	 If we do not take absolute value, we would like for inconsistency 

values of zero (the joint density equals the product of the marginals, 

indicating “normal” concentration) to have a visual appearance in 

the center of the display range.

•	 If we do take absolute values, we want “normal” regions displayed at 

one extreme and “abnormal” regions at the opposite extreme.

To satisfy these goals, we scale positive and negative values separately. Also, in this 

code we implement the absolute value shown in Equation (3.5) but not performed 

earlier when grid was computed. Some developers might find it more informative to 

refrain from taking the absolute value, for the reasons discussed earlier. I like it.

   if  (type == TYPE_INCONSISTENCY) {  // If  user wants marginal inconsistency

      max_pos = max_neg = 1.e-20;

      for (i=0; i<res*res; i++) {

         if  (grid[i] > 0.0 && grid[i] > max_pos)

            max_pos = grid[i];

         if  (grid[i] < 0.0 && (-grid[i]) > max_neg)

            max_neg = -grid[i];

         }

      for (i=0; i<res*res; i++) {

         if  (grid[i] > 0.0)

            grid[i] /= max_pos;

         if  (grid[i] < 0.0)

            grid[i] /= -max_neg;        // �Apply absolute value shown in Equation (3.5)

         }

      }
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A common technique for enhancing the visibility of differing tones or colors is 

histogram equalization. This technique applies a nonlinear transform to the data in such 

a way that every possible displayed tone or color occurs in the display in approximately 

equal quantity. The effect of this transformation is usually that small changes in the data 

are made more visible, while simultaneously reducing the prominence of large changes.

Recall that we allocated grid to be twice as long as needed. We’ll now use the 

second half as scratch storage for sorting the grid values. The sorting routine qsortdsi() 

simultaneously moves the index keys, so after sorting we know the rank of each value. 

The result of this mapping code is that each entry in grid is from zero to one according to 

the fractile of the original value.

We apply one last optional transform. If the user requests that the boundary between 

large (anomalous) and not-so-large values be sharpened, we cube each entry. The result 

is that only values near the upper limit keep their vaunted position; lower values are 

pushed toward zero. This makes areas of unusually large concentration stand out from 

the background.

   if  (hist) {

      for (i=0; i<res*res; i++)

         keys[i] = i;

      sorted = grid + res * res; // Use last half  for scratch

      memcpy (sorted, grid, res * res * sizeof(double));

      qsortdsi (0, res * res - 1, sorted, keys);

      for (i=0; i<res*res; i++)

         grid[keys[i]] = (double) i / (res * res - 1.0);

      if  (sharpen) {

         for (i=0; i<res*res; i++)

            grid[i] = grid[i] * grid[i] * grid[i];

         }

      } // Histogram equalization

If the user does not request histogram equalization, all we do is linearly rescale the 

values. This is more “authentic” in the sense that the display, whether in terms of tone or 

color, linearly reflects the grid values. The potentially extreme nonlinearity of histogram 

equalization can easily distort the visual perception of inconsistencies.
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Note that the rescaling to 0-1 done here is not based on the extremes in grid. It is not 

unusual for there to be one or a few outliers, which would result in undue compression of 

the mapping. Rather, we discard the 1 percent largest and smallest values in grid and rescale 

so as to map those slightly narrower extremes to the display extremes of zero and one.

We also implement the optional sharpening discussed in conjunction with the prior 

code block.

   else { // We scale by using ALMOST extremes

      sorted = grid + res * res; // Use last half  for scratch

      for (i=0; i<res*res; i++)

         sorted[i] = grid[i];

      qsortd (0, res * res - 1, sorted);

      i = (int) (0.01 * res * res);

      smallest = sorted[i];                   // Ignores smallest one percent

      largest = sorted[res*res-i-1];      // And largest

      mult = 1.0 / (largest - smallest + 1.e-20);      // �Insure against largest=smallest

      for (i=0; i<res*res; i++) {

         grid[i] = mult * (grid[i] - smallest);

         if  (grid[i] > 1.0)                  // Happens for largest one percent

            grid[i] = 1.0;

         if  (grid[i] < 0.0)                 // Happens for smallest one percent

            grid[i] = 0.0;

         if  (sharpen)

            grid[i] = grid[i] * grid[i] * grid[i];

         }

      } // No histogram equalization

We’re almost done. In most cases, the grid entries are now ready for display. However, 

users who want to highlight certain features, possibly for a demonstration or publication, 

may want to massage the display by shifting, compressing, or expanding the range of 

tones or colors. We provide the user with two parameters to accomplish this:

•	 Shift moves the overall display range. A positive value shifts the tones 

in the “high” direction, and negative shifts tones toward the “low” 

direction. The default of zero produces no change.
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•	 Spread expands or compresses the range of the display. The default of 

zero produces no change. Negative values are legal but rarely useful, as 

this compresses variation into a narrow range, making discrimination 

difficult. Positive values, rarely beyond five or so, expand the center 

of the display range while squashing the extremes. This emphasizes 

features in the interior of the grid range, at the expense of the extremes.

Recall that grid ranges from zero to one. Close examination of the expansion section of 

the following code shows that if spread is zero, no change in grid will occur. If grid[i]=0.5, it will 

remain unchanged, regardless of spread. As grid[i] moves away from 0.5, its transformed value 

will do the same monotonically, with the rate determined by the multiplier.

   if  (spread >= 0.0)              // Usual situation

      mult = spread + 1.0;

   else                                   // �Rarely useful, as it generally degrades the display

      mult = 1.0 / (1.0 - spread);

   for (i=0; i<res*res; i++) {

      grid[i] += 0.01 * shift;       // �This is where the display is shifted; 0.01 is arbitrary

      if  (grid[i] < 1.e-12)           // Needed for log below

         grid[i] = 1.e-12;

      if  (grid[i] > 1.0 - 1.e-12)   // Ditto

         grid[i] = 1.0 - 1.e-12;

      if  (grid[i] <= 0.5)

         grid[i] = 0.5 * exp (mult * log (2.0 * grid[i]));

      else

         grid[i] = 1.0 - 0.5 * exp (mult * log (2.0 * (1.0 - grid[i])));

      }

�Comments on Showing the Display
I don’t present any code for displaying grid. This is because display code is highly 

implementation-specific. My own code in the DATAMINE program uses numerous 

Windows API calls that might be unacceptable to other programmers. I choose to do 

this because it allows me to easily place scales and text on the display, at the expense of 
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taking a relatively long time to display, as it’s done one pixel at a time. Nevertheless,  

here are a few issues to keep in mind when writing your own code to display grid:

•	 Grayscale is good for publication in black-and-white formats, but 

colors are more visually pleasing. Avoid red-versus-green, as this is 

the most common form of color blindness. Red-versus-blue is good, 

as is yellow (red+green) versus blue. You can compute levels as 

follows:

red_level = (int) (val * 255.99);

blue_level = (int) ((1.0-val) * 255.99);

SetPixel (..., RGB (red_level, red_level, blue_level));

•	 Computing grid at full display resolution is impractical. Linearly 

interpolate in both directions. Bivariate linear interpolation 

algorithms are readily available and not shown here, as the exact 

implementation depends on the display method. Windows provides 

a routine (StretchDIBits) that rapidly does the interpolation, but 

labeling the display becomes much more difficult.

•	 When printing the display (as opposed to displaying it on a monitor), 

be aware that many printers have extremely high resolution, making 

interpolation much too slow. In this case, print small rectangles 

instead of individual pixels.
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CHAPTER 4

Fun with Eigenvectors
Suppose we measure the height and weight of a collection of people. We could make 

a plot of the results, using an asterisk for each person. The horizontal position is 

determined by the person’s height, and the vertical position is determined by the 

person’s weight. The resulting plot might look something like that shown in Figure 4-1.

Figure 4-1.  Simple principal components
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Not surprisingly, these two measurements are highly correlated; tall people tend to 

weigh more than short people. Of course, the correlation is not perfect; some people are 

built differently from others.

One thing that jumps out of a plot of highly correlated variables is that there exists a 

principal axis, the direction in which most variation lies. In this example, the principal 

axis can be labeled the size of the person. For each of these people, we can drop a line 

perpendicular to the size axis and see where this line intersects the axis. The location of 

this point, measured along this axis, is a good measurement of the “size” of the person.

But there is another dimension to consider. A parsimonious way to measure this 

other dimension is to consider the axis perpendicular to the first. In this example, this 

second axis depicts discrepancies between a person’s actual weight and the weight 

expected from their height. Is a person unusually heavy or light for their height? This 

is the question answered by the position on this axis, so we might label this axis Build. 

Notice that it is the Build axis that identifies the single outlier.

It should be apparent that a person’s (height, weight) pair of numbers provides 

exactly the same information as a person’s (size, build) pair. One measurement pair is a 

simple linear transformation of the other. They are just different ways of looking at the 

same information.

The preceding discussion motivates the concept of principal components. Given 

multivariate measurements, we can find alternate measurement axes that capture 

different aspects of the same information. Commonly, we will first find the axis that 

accounts for the most variation (size here), then that which accounts for most of the 

remaining variation (build here), and so forth. But as we will see, this just scratches the 

surface. Things far more interesting than principal components await.

�Eigenvalues and Eigenvectors
We begin with the foundational mathematics that will be needed for this chapter. If you 

are totally intimidated by the math, you may skip this section. However, this math is not 

particularly advanced, despite how fierce some of the matrix equations may look, and at 

least a basic understanding of this material would be of great benefit. Please try.
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Suppose A is a p by p matrix, x is a column vector p long, and  is a scalar.  

Then x is said to be an eigenvector of A, and  its associated eigenvalue, if and only if  

Equation (4.1) holds.

	 Ax x=ll 	 (4.1)

It should be apparent that any multiple of x is also an eigenvector; the concept of 

eigenvector applies only to direction, not length. Therefore, a common convention when 

computing eigenvectors is to normalize them to unit length. We will do so, and always 

make this assumption.

Although not critical to the topic at hand, it is interesting to note a simple geometric 

interpretation of eigenvectors. Multiplication of a vector by a matrix will, in general, 

rotate the vector. But the eigenvectors of a matrix have the property that when multiplied 

by the matrix, they do not change direction. They are a sort of “stationary” direction for 

the matrix.

The relevance of eigenvectors to this chapter’s material comes from another 

of their properties. Suppose we observe x, a p-vector drawn from a standardized 

multivariate normal distribution. In other words, each of its components has a normal 

distribution with mean zero and unit variance. The covariance matrix is also (due to the 

standardization) the correlation matrix. Call it R. Let V be a p by m matrix, with m<=p. 

Consider the new random vector, m long, defined by Equation (4.2).

	 y V x= ¢ 	 (4.2)

It can be shown (though we will not do so here, as the derivation is widely available 

elsewhere) that the covariance matrix of y is given by Equation (4.3).

	 C V RV= ¢ 	 (4.3)

Let’s explore some desirable properties of V, properties that will provide useful 

properties of y. Suppose for the moment that m=1; V has just a single column. Then 

the “covariance matrix” C is a single number, the variance of y. A set of weights for the 

members of x that results in y having the maximum possible variance has great intuitive 

appeal because this is the transformation that, in a sense, captures the most information 

about variation in x. See Figure 4-1 on page 185 and consider the size dimension.
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Obviously, multiplying the weights by a constant will multiply the variance of y 

by the square of that constant, so we must impose some sort of normalization on V. 

The most sensible restriction is that the square of the components of V sum to one. 

Equivalently, the length of the column is one.

It turns out that this single column of V is the eigenvector of R that corresponds to 

the largest eigenvalue. The proof of this fact is not difficult, but because it is tedious and 

easily available elsewhere, we dispense with its presentation.

Now suppose that we let m=2, so V has two columns. We let the first column be the 

eigenvector corresponding to the largest eigenvalue, as just described. How can we 

define the second column so that the second component of y is orthogonal to the first 

component (the two components of y are independent) and this second component of 

y has the maximum possible remaining variance? Not surprisingly, this second column 

is the eigenvector of R, which corresponds to the second-largest eigenvalue. This 

pattern repeats for all p possible columns of V. Thus, the eigenvectors of R provide the 

transformation matrix for mapping the standardized, likely correlated x variables to new 

independent y variables with the property that they capture the most, second most, and 

so forth, variance in x.

�Principal Components (If You Really Must)
Many developers take advantage of these orthogonal and descending variance 

properties to compute and employ the principal components of a dataset. They may 

have a collection of variables so large as to be unwieldy. By finding the eigenvalues and 

vectors of the correlation matrix, the developer can compute a much smaller set of new 

variables that capture the majority of the variation in the original set. For example, one 

might begin with 100 variables. The first principal component may account for perhaps 

20 percent of their total variance, the second another 10 percent, and so forth. It may 

turn out that just 15 new variables can capture as much as 90 percent of the original set’s 

variance. This would not be terribly unusual, and it is enticing.

Beware of that enticement. There is one important caveat about using principal 

components to whittle down the number of variables in an application: we likely don’t 

know in advance which components (if any!) convey the information in which we are 

interested. It is the case that in many applications, early components convey most 

of the useful information, while noise tends to be concentrated in the late principal 

components. But this is far from universal. For example, turn back to page 185 and look 
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at Figure 4-1. Suppose our goal is to predict how well a person would do in a football 

game. Clearly, the size dimension would be far more valuable than the build dimension. 

But the opposite would be true if we were trying to predict likelihood of developing 

diabetes. So, the very real danger of variable reduction via principal components is that 

we may discard the dimensions that are most important to our application!

If you do choose to be brave and compute the principal components of your 

standardized variables by weighting them according to the eigenvectors, you would 

generally do well to take one more step. The variance of each computed principal 

component is the eigenvalue associated with that eigenvector. Thus, before doing the 

weighting (Equation 4.2), it makes sense to divide each eigenvector by the square root 

of its eigenvalue. By doing so, the variance of each component is standardized to one. 

This equalization of variation is appreciated by most data mining and model training 

algorithms.

�The Factor Structure Is More Interesting
The world is filled with textbooks (mostly in the field of psychology) that explore in 

detail methods for using principal components and factor models (page 221) to discover 

and label dimensions of interest. These techniques can be useful, and I certainly will 

not scorn them. But such labeling techniques are not among my main reasons for 

computing eigenvalues and vectors of a dataset and will receive only passing note in the 

next section. If you desire a more complete discussion, you are encouraged to explore 

this material elsewhere. “Modern Factor Analysis” by Harry Harmon, though not so 

modern any more, is an exceptionally thorough and well written reference for the core 

material.

What particularly interests me in regard to eigenstructure as related to data mining is 

how each of our (potentially numerous) measured variables relates to the dominant axes 

of variation, whatever these axes may represent. Of course, finding descriptive names 

for axes of variation can often be interesting and useful; we’ll briefly explore a contrived 

example in the next section. But what is usually of greatest importance is the correlation 

between each variable and each principal component (or at least those corresponding 

to the largest eigenvalues). The axes may possibly be unnamed or even unnameable 

by mere mortals; psychologists love giving them names, while I, as a data miner, don’t 

usually care as much. But once again, I emphasize that I do not disparage a quest for 
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names; we’ll see an example in the next section in which naming can be interesting. It’s 

just that one should never be discouraged if a descriptive name does not pop out of the 

data; names are usually of secondary importance to data miners.

The matrix of variable/component correlations is called the factor structure matrix 

and is computed by multiplying each normalized (unit length) eigenvector by the square 

root of its corresponding eigenvalue. (For historical and theoretical reasons best omitted 

here, this matrix is also called the factor loading matrix.) Now let’s explore a simple, 

contrived example of how the factor structure can reveal interesting relationships 

between variables.

�A Simple Example
Using many years of a common equity market index, I computed a set of ten trend 

measurements as well as a set of ten corresponding volatility measurements with a 

moving window. In other words, for a 50-day window I looked at the first 50 days in the 

price history and computed a numeric measurement of the trend within that window. I 

also computed a measure of price volatility within that same window. Then I advanced 

the window forward in time by one day and did the same. These trend and volatility 

measurements were done with window lengths of 50, 51, 52, …, 59 days, giving a total 

of ten different window lengths. Obviously, there will be huge correlation between 

variables for these different window sizes, because the lengths are so similar. This was 

deliberate on my part so as to produce a clear demonstration of the technique.

The table shown next lists the four largest eigenvalues, along with their 

corresponding factor structures. The Cumulative row shows the cumulative percent 

of variation captured by each column and is computed as the cumulative sum of 

eigenvalues divided by the total of all eigenvalues.

      Eigenvalue       12.939      6.900       0.090       0.052

      Cumulative       64.693     99.193      99.643      99.904

        TREND_50       0.7829     0.6040      0.1416      0.0356

        TREND_51       0.7893     0.6030      0.1115      0.0280

        TREND_52       0.7949     0.6010      0.0796      0.0201

        TREND_53       0.7999     0.5980      0.0466      0.0119

        TREND_54       0.8041     0.5939      0.0133      0.0035

        TREND_55       0.8076     0.5890     −0.0195     −0.0052
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        TREND_56       0.8105     0.5831     −0.0510     −0.0140

        TREND_57       0.8127     0.5765     −0.0805     −0.0229

        TREND_58       0.8144     0.5692     −0.1075     −0.0319

        TREND_59       0.8155     0.5613     −0.1319     −0.0409

          VOL_50      −0.8214     0.5570      0.0461     −0.1036

          VOL_51      −0.8188     0.5652      0.0385     −0.0863

          VOL_52      −0.8160     0.5727      0.0287     −0.0644

          VOL_53      −0.8127     0.5796      0.0172     −0.0391

          VOL_54      −0.8090     0.5861      0.0052     −0.0124

          VOL_55      −0.8047     0.5919     −0.0072      0.0140

          VOL_56      −0.8003     0.5969     −0.0198      0.0393

          VOL_57      −0.7954     0.6012     −0.0316      0.0626

          VOL_58      −0.7902     0.6051     −0.0415      0.0826

          VOL_59      −0.7845     0.6086     −0.0496      0.0983

Now let’s explore some properties of this table. Recall that these are correlations. 

For example, the variable TREND_51 has a correlation of 0.1115 with the third principal 

component. Here are some notable features of this table:

•	 The first principal component, a single new variable, captures almost 

two-thirds (64.693 percent) of the entire variation inherent in the 

complete set of 20 variables.

•	 If we throw in the second principal component, we’ve garnered more 

than 99 percent of the variation.

•	 The dominant component, which accounts for almost two-thirds of 

the total variation of all variables across the dataset, is fascinating, 

as it is a contrast between trend and volatility. Large values of 

this principal component correspond to conditions within the 

window of strong upward trend (correlation with trend is about 0.8) 

combined with low volatility (correlation with volatility of about -0.8). 

Conversely, unusually small values of this first principal component 

correspond to strong downward trend and high volatility. So we 

might think of this new variable as telling us whether the market is 

engaged in a peaceful rise versus a turbulent plunge.
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•	 The second component indicates the degree and direction of 

departures from the dominant behavior embodied in the first 

component, as it is moderately positively correlated with all variables. 

Large values of this second principal component identify times when 

the market is trending upward but with high volatility. Similarly, very 

negative values signify a falling market with low volatility.

•	 The third, very minor, principal component distinguishes between 

effects that are happening for short versus long windows, with one 

type of interaction between trend and volatility.

•	 The fourth also distinguishes between short versus long, but with 

the opposite trend/volatility relationship. By now we’ve left less than 

one-tenth of 1 percent of the total 20-variable variation on the table!

�Rotation Can Make Naming Easier
I know I keep stating that naming axes is of secondary importance, and I hesitate to 

dwell on the topic too much. But there is one issue that should be at least mentioned, 

lest I be accused of negligence.

We saw in the prior section that just the two most dominant principal components 

account for more than 99 percent of the total variation in all 20 variables. And in this 

contrived example, the meanings of these two components were obvious. But this 

was the case only because I deliberately employed two sets of variables that enjoyed 

high within-set correlation. Usually we are not so fortunate, and we will encounter 

factor structure members (correlations) along a continuum. This can make naming, 

or at least guessing properties of the components, difficult. There is a technique called 

varimax rotation (other, less popular methods also exist) that can make interpretation 

easier. With no loss of information, this algorithm rotates the axes in such a way that 

correlations are driven to extreme values: +/- 1 and 0. By reducing the number of 

intermediate correlations, interpretability is often enhanced. The following table shows 

the first two principal components after varimax rotation:

                      Commun Pct

        TREND_50     97.78     0.1277       0.9805

        TREND_51     98.66     0.1329       0.9844

        TREND_52     99.31     0.1383       0.9869

        TREND_53     99.73     0.1439       0.9882
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        TREND_54     99.93     0.1498       0.9884

        TREND_55     99.91     0.1558       0.9873

        TREND_56     99.69     0.1619       0.9852

        TREND_57     99.29     0.1682       0.9821

        TREND_58     98.72     0.1745       0.9781

        TREND_59     98.01     0.1809       0.9733

          VOL_50     98.48    −0.9748      −0.1858

          VOL_51     98.99    −0.9789      −0.1782

          VOL_52     99.38    −0.9822      −0.1709

          VOL_53     99.65    −0.9847      −0.1637

          VOL_54     99.79    −0.9866      −0.1565

          VOL_55     99.79    −0.9877      −0.1493

          VOL_56     99.67    −0.9881      −0.1427

          VOL_57     99.41    −0.9877      −0.1362

          VOL_58     99.05    −0.9867      −0.1298

          VOL_59     98.59    −0.9853      −0.1232

We have three columns. Look at the last two columns. These correspond to the first 

two principal components, after rotation. Note that one column assigns large magnitude 

weights to the trend variables and small weights to the volatility. The other column does 

the opposite. This has a benefit and a cost. The benefit is that naming these two axes 

is suddenly a lot easier: one column can clearly be named Trend and the other named 

Volatility. But the cost is that we have lost the ordering property. We can no longer say 

that one of these components is dominant, and so forth.

The first column in this table is especially important. When we discard principal 

components (in this case, we discarded 18 of the 20, keeping only the first two for 

rotation), we inevitably lose some of the information in the original variables. The 

communality of a variable, usually expressed in percent, is the fraction of the variance 

of that variable that is encapsulated in the components that are kept. It is computed by 

summing the squares of the factor correlations across that variable’s row. For example, 

in this case we see that the first two principal components contain 97.78 percent of the 

variance of the TREND_50 variable, and this is 0.1277 squared plus 0.9805 squared. 

Knowing the communalities can help us identify variables that are under-represented in 

the principal components that we kept.
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This discussion of factor structure interpretation, and especially rotation, has been 

perhaps shamefully brief. If you are rolling your eyes in bafflement right now, I express 

a somewhat hesitant apology. However, this was a deliberate choice. The general topic 

of identifying axes by name or property is not a major activity in my own data mining 

experience, and hence it is not a major topic in this chapter. Moreover, these topics 

are covered in excruciating detail in numerous other texts, so expounding on them in 

detail would be a waste of valuable trees. At least this limited presentation provides an 

overview of what can be done, so that interested readers can look elsewhere for more 

details. We will soon see much more important (in my opinion!) uses for eigenvectors.

�Code for Eigenvectors and Rotation
Three files relevant to the prior discussion can be downloaded from my web site. These 

are the following:

•	 EVEC_RS.CPP: This is a ready-to-use C++ subroutine that computes 

eigenvalues and (optionally) eigenvectors of a real symmetric matrix.

•	 AN_EIGEN.TXT: This is essential code fragments that fetch data from 

a database and compute the factor structure information.

•	 AN_ROTATE.TXT : This is essential code fragments that perform 

varimax rotation of a factor structure.

None of these routines will be examined in full detail in this text because the 

algorithms are standard and widely available elsewhere; there is no point in being 

redundant. But each will be presented in sufficient detail so you can understand how to 

use them in your own code.

�Eigenvectors of a Real Symmetric Matrix
This subroutine, EVEC_RS.CPP, should be ready to compile with any C++ compiler.  

It uses a reliable and efficient standard algorithm for eigenvalue and optional 

eigenvector computation for a real symmetric matrix. First, the matrix is transformed to 

tridiagonal form using the Householder method. Then the eigenvalues are computed 

using the QL algorithm with implicit shifts. If eigenvectors are also desired, the rotations 

are cumulated. This cumulation is an expensive process, so eigenvectors should be 

computed only if they are needed.
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Note that several theoretically superior methods (divide-and-conquer, MRRR) are 

now available. However, they are still n-cubed operations and differ in speed only by 

a modest factor. They are tremendously more complex than the method given here, 

and simple, thoroughly vetted and documented C++ source code for them is difficult to 

obtain. FORTRAN versions are available in LAPACK.

This routine is called as follows:

int evec_rs (double *mat_in, int n, int find_vec,

                    double *vect, double *eval, double *workv)

•	 mat_in: Square input matrix, with columns changing fastest. The upper- 

right triangle (column greater than row) is ignored and may contain any 

values. This input matrix is left unchanged. If you want to modify the 

source code for more compact storage ((1,1), (2,1), (2,2), …),  

you should find it easy to do so, as this input matrix is simply copied 

into working storage and thereafter ignored.

•	 n: Size of the matrix.

•	 find_vec: If nonzero, the eigenvectors will also be computed. This 

tremendously increases compute time.

•	 vect: Square matrix n by n. The eigenvectors are output here if 

find_vec is nonzero. Even if find_vec is zero, this matrix must still be 

supplied, because it is used for scratch storage. It is legal to use the 

same matrix for mat_in and vect, in which case the input matrix is 

replaced.

•	 eval: Output of eigenvalues, sorted descending

•	 workv: Scratch vector n long

This routine returns the number of eigenvalues that, due to convergence problems, 

were not able to be computed. I’ve tested it with thousands of matrices, up to 5000 by 

5000, many very ill conditioned, and I’ve never seen it fail; in my experience, it always 

returns zero, indicating success. However, there is the theoretical possibility of failure, so 

I account for this possibility in my code.
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�Factor Structure of a Dataset
The file AN_EIGEN.TXT contains code fragments that illustrate the essential aspects of 

computing the factor structure of a dataset. The following variables appear in this code:

•	 n_cases: Number of cases (rows) in database

•	 n_vars: Number of columns in database (not all of which may take 

part)

•	 database: All data is here, an n_cases by n_vars matrix

•	 npred: Number of predictors (variables) taking part in this analysis

•	 preds[]: Array npred long that identifies the columns in the database 

for the variables to be used in this analysis

The first step is to allocate memory. The two variables that begin eigen_ are global 

because further user operations may be performed on them. The other allocations are 

temporary for this routine.

   cumulative = (double *) MALLOC (npred * sizeof(double));

   covar = (double *) MALLOC (npred * npred * sizeof(double));

   evals = (double *) MALLOC (npred * sizeof(double));

   structure = (double *) MALLOC (npred * npred * sizeof(double));

   means = (double *) MALLOC (npred * sizeof(double));

   stddev = (double *) MALLOC (npred * sizeof(double));

Compute the means and standard deviations so we can standardize the data. Note 

how we extract the required data from the database.

   for (i=0; i<npred; i++)

      means[i] = stddev[i] = 1.e-60; // Must not divide by zero later

   for (i=0; i<n_cases; i++) {

      for (j=0; j<npred; j++)

         means[j] += database[i*n_vars+preds[j]];

      }

   for (j=0; j<npred; j++)

      means[j] /= n_cases;
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   for (i=0; i<n_cases; i++) {

      for (j=0; j<npred; j++) {

         diff  = database[i*n_vars+preds[j]] - means[j];

         stddev[j] += diff  * diff;

         }

      }

   for (j=0; j<npred; j++)

      stddev[j] = sqrt (stddev[j] / n_cases);

Compute the covariance matrix, which is also a correlation matrix because the 

variables have been standardized. We do not have to compute the upper triangle 

because the matrix is symmetric, nor do we compute the diagonal, because it is 

identically 1.0 due to standardization. Copying the triangle at the end is needed only if 

required by a different eigen routine.

   for (i=1; i<npred; i++) {

      for (j=0; j<i; j++)

         covar[i*npred+j] = 0.0;

      }

   for (i=0; i<n_cases; i++) {

      for (j=0; j<npred; j++) {

         diff  = (database[i*n_vars+preds[j]] - means[j]) / stddev[j];

         for (k=0; k<j; k++) {

            diff2 = (database[i*n_vars+preds[k]] - means[k]) / stddev[k];

            covar[j*npred+k] += diff  * diff2;

            }

         }

      }

   for (j=0; j<npred; j++) {

      for (k=0; k<j; k++)

         covar[j*npred+k] /= n_cases;

      }
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   for (j=0; j<npred; j++) {

      covar[j*npred+j] = 1.0;                           // Definition, so not computed

      for (k=j+1; k<npred; k++)                       // �Copying the other triangle is not needed

         covar[j*npred+k] = covar[k*npred+j];  // �for evec_rs() and may be omitted

      }

Compute the eigenvalues and vectors using our evec_rs() routine. In the previous 

code, we copied the computed lower-left triangle to the upper right. But our evec_rs() 

ignores that upper triangle, so those two lines of copying code may be omitted. They are 

shown here only because some other routines may require the entire matrix. Then we 

compute the cumulative eigenvalues and divide by the sum to express the cumulative 

values as percents. It may rarely happen that tiny floating-point errors result in slightly 

negative eigenvalues, a theoretical impossibility here, so we enforce non-negativity.

   evec_rs (covar, npred, 1, structure, evals, means);

   sum = 0.0;

   for (i=0; i<npred; i++) { // We display cumulative eigenvalues

      if  (evals[i] < 0.0) // Happens only from tiny fpt errors

         evals[i] = 0.0;

      sum += evals[i];

      cumulative[i] = sum;

      }

   for (i=0; i<npred; i++)   // Make it percent

      cumulative[i] = 100.0 * cumulative[i] / sum;

The last step is to multiply each eigenvector by the square root of its eigenvalue in 

order to get the factor structure (also called the factor loadings in some contexts). It may 

rarely happen that tiny floating-point calculations result in correlations trivially beyond 

+/-1. To prevent this nonsense, we enforce theory.

   for (i=0; i<eigen_npred; i++) {

      for (j=0; j<eigen_npred; j++) {

         structure[i*npred+j] *= sqrt(evals[j]);

         if  (structure[i*npred+j] < -1.0) // �In a perfect fpt world this would never happen

            structure[i*npred+j] = -1.0;
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         if  (structure[i*npred+j] > 1.0)

            structure[i*npred+j] = 1.0;

         }

      }

�Varimax Rotation
The varimax rotation algorithm is iterative, but it converges quickly in nearly all cases. 

It sweeps through every pair of columns (correlations of a factor with all variables) and 

explicitly computes the angle of rotation that maximizes a measure of optimality, where 

optimality is (loosely) defined as the correlations being as near +/-1 and 0 as possible. 

Of course, each time this pairwise rotation is done, optimality of a prior pair is impaired. 

Thus, multiple sweeps must be done until an entire set of all pairs has negligible change.

The exact equations for computing the optimal rotation angle are fierce and widely 

available in other references, so they will not be reproduced here. However, we will work 

through the code provided in AN_ROTATE.TXT so that you understand how to use this 

code in your own project. In this code, n_kept is the number of dominant (earliest) factors 

that we will rotate. It must be at least two and at most npred.

The first step is to compute the square root of the communalities. Recall (page 193)  

that the communality of a variable is the fraction of that variable’s variance that is 

accounted for by the factors that are retained. After computing these, we temporarily 

scale the factor structure. When rotation is complete, we will reverse this scaling to 

restore the correct communalities; rotation does not change communality. The original 

version of varimax rotation did not perform this scaling, but much experience indicates 

that it improves interpretability.

   for (i=0; i<npred; i++) {

      sum = 0.0;

      for (j=0; j<n_kept; j++)

         sum += structure[i*npred+j] * structure[i*npred+j];

      comm[i] = sqrt (sum);

      }
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   for (i=0; i<npred; i++) {

      sum = comm[i];

      for (j=0; j<n_kept; j++)

         structure[i*npred+j] /= sum;

      }

Now we have the main outer loop that repeatedly sweeps through all pairs of 

columns (factors) until a complete sweep results in no change. We impose an iteration 

limit of 100 as cheap insurance against an endless loop. In practice, we never come even 

close to this limit. We set the convergence flag to True (1) before we start the pairwise 

sweeping. If even a single rotation is done during a sweep, this flag is reset to False. At the 

end of the outer iteration loop, if the flag is still True, we break out of the loop.

   for (iter=0; iter<100; iter++) { // �limit is for safety and should never come even close

      converged = 1;                    // �We'll reset this if  an adjustment is made

      for (first_col=0; first_col<n_kept-1; first_col++) { // �Do all pairs of  cols

         for (second_col=first_col+1; second_col<n_kept; second_col++) {

            �A = B = C = D = 0.0;     // We will sum these down the row (all vars)

At this point we have a pair of columns (first_col and second_col) that will be rotated. 

Now we have to figure out how much to rotate. Without delving into details that are 

tedious and widely available elsewhere, the idea is that there is an optimality criterion 

that we want to maximize. The derivative of this criterion with respect to the rotation 

angle phi will be zero at the maximum, and the second derivative will be negative. The 

angle that satisfies these two rules can be explicitly computed. To do so, sum down rows 

the quantities we will need to compute the rotation angle.

            for (ivar=0; ivar<npred; ivar++) {        // Sum down all rows

               row_ptr = structure + ivar * npred;  // �This var's row in structure matrix

               load1 = row_ptr[first_col];

               load2 = row_ptr[second_col];

               Uterm = load1 * load1 - load2 * load2;

               Vterm = 2.0 * load1 * load2;

               A += Uterm;

               B += Vterm;

               C += Uterm * Uterm - Vterm * Vterm;

               D += 2.0 * Uterm * Vterm;

               } // For ivar
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            numer = D - 2.0 * A * B / npred;

            denom = C - (A * A - B * B) / npred;

            phi = 0.25 * atan2 (numer, denom);    // This is the rotation angle

If the angle by which we are to rotate this pair of columns is tiny, there is no point 

bothering. Otherwise, do the rotation and reset the convergence flag to False.

            if  (fabs(phi) < 1.e-10)    // �No point rotating this pair of  columns if  angle is tiny

               continue;                    // So go on to the next pair of  columns

            sin_phi = sin (phi);

            cos_phi = cos (phi);

            for (ivar=0; ivar<npred; ivar++) {       // Rotate this pair of  columns

               row_ptr = structure + ivar * npred; // �This var's row in structure matrix

               load1 = row_ptr[first_col];

               load2 = row_ptr[second_col];

               row_ptr[first_col] =  cos_phi * load1 + sin_phi * load2;

               row_ptr[second_col] = -sin_phi * load1 + cos_phi * load2;

               }

            converged = 0; // We just made an adjustment, so we are not converged

            } // For second column

          } // For first column

      if  (converged)

          break;

      } // For iter (main outer loop)

The final step is to undo the communality scaling that we did at the start of this routine.

   for (i=0; i<npred; i++) {

      sum = comm[i];

      for (j=0; j<n_kept; j++)

         structure[i*npred+j] *= sum;

      }
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�Horn’s Algorithm for Determining Dimensionality
Whether one wants to compute principal components or name axes, discover axes of 

variation without naming them, or employ the variable clustering technique described 

in the next section, it is important to be able to decide how many dimensions of the 

data are relevant. On page 190 we saw a simple contrived example in which twenty 

variables could be reduced to just two while retaining nearly all variation inherent in 

the set. For other datasets, it may be that little or no dimension reduction is possible. It 

would be nice to have a theoretically supportable method for determining the number of 

dimensions inherent in the data, with the assumption that discarded dimensions are just 

noise, devoid of useful information.

Of course, before pursuing this line of thought, we must once more emphasize that 

this is a potentially dangerous operation. We already saw in the height/weight example 

that opened this chapter, the Size dimension would likely be useful for assessing football 

performance, while the Build dimension would be applicable to diabetes screening. 

And in the example on page 190, it is clear that components past the strongly dominant 

first two also contain clearly identifiable information. So, dimension reduction is always 

fraught with the danger of discarding precisely the information most valuable to your 

application. With that caveat, we continue.

The traditional way to determine the appropriate number of dimensions is to plot 

the eigenvalues, left to right on the plot, in descending order. This is called a scree plot. 

Typically, the eigenvalues will drop off quickly at first and then form a knee and flatten. 

The developer visually determines the location of the knee and sets a cutoff at that 

number of components to retain. The problem with this approach is that it is inherently 

subject to human interpretation and bias.

A fairly justifiable approach, commonly used, relies on the fact that if the variables 

are completely independent (no dominant axes due to underlying components that 

impact multiple variables), then their theoretical correlation matrix will be an identity 

matrix, and hence all eigenvalues will equal 1.0. The degree to which the eigenvalues 

separate above and below 1.0 indicates the degree to which the measured variables are 

being driven by underlying common factors. This inspires a rule that says we should 

keep all principal components whose eigenvalues exceed 1.0.
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The small but troubling problem with this rule is that for finite datasets, random 

variation will cause significant spreading of the eigenvalues, even if the data has been 

drawn from a population of truly independent variables. A better approach, especially 

if the number of cases is not enormous compared to the number of variables, is to use 

a Monte Carlo procedure to estimate the actual distribution of the ordered eigenvalues 

under the hypothesis that all variables are independent.

The paper [Horn, J. (1965). “A rationale and test for the number of factors in factor 

analysis.” Psychometrika, 30(2), 179–185.] suggested that a large number (hundreds at 

least) of data matrices of the same size as that under study be generated, each being 

sampled from a population of independent variables. For each sample, compute and 

sort the eigenvalues of the correlation matrix. Then compute the average, across all 

samples, of each ordered eigenvalue. We would almost surely find that the average of the 

largest eigenvalue significantly exceeds 1.0, with subsequent ordered values similarly 

departing from theory. Then we use these averages as the cutoff thresholds, instead of 

the theoretical value of 1.0.

The actual algorithm is slightly different from what might be implied by the 

description just given. The issue is that random variation in the Monte Carlo procedure 

could result in gaps in the selection procedure. For example, if the ordered thresholds 

were directly applied, we might find that factors 1, 2, 3, and 5 are kept, with factor 4 

falling under its threshold and hence rejected. So what is done is to use the thresholds 

as a stopping criterion: start at the largest eigenvalue and work downward, stopping the 

first time a threshold is violated.

Recent experience indicates that limiting users to the mean across Monte Carlo 

replications is overly restrictive. A more general approach is to let the user specify 

in advance a percentile across replications. For each ordered position, the specified 

percentile of that ordered eigenvalue is used as the threshold for rejection.

�Code for the Modified Horn Algorithm
The stopping algorithm just described is simple to implement. Assume for the moment 

that we have used a Monte Carlo algorithm to compute the eigenvalue thresholds, and 

they are in the array thresh. So, thresh[0] contains the threshold for the largest eigenvalue, 

thresh[1] the threshold for the second-largest, and so forth. In the original Horn 
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algorithm, thresh[0] would be the mean across all Monte Carlo replications of the largest 

eigenvalue, and so forth. In the more modern method that will be presented later, these 

would be a user-specified percentile of each ordered eigenvalue. To determine how 

many factors to retain, we can use the following trivial code:

      for (n_kept=0; n_kept<npred; n_kept++) {

         if  (evals[n_kept] <= thresh[n_kept])

            break;

         }

The trickier part is computing these thresholds. Conceptually, it’s not difficult. But 

because we will be building correlation matrices and finding eigenvalues many times 

(typically several hundred or so), it behooves us to use multithreading so as to take 

advantage of modern multicore CPUs. This is the code that will now be presented. If you 

want to keep it simple and use a single thread should find it easy to do so.

Recall that Windows allows passing only a single parameter to a threaded routine, 

so we’d better make it a good one. In this case we will pass a pointer to a structure that 

contains everything needed. Here is this structure:

typedef  struct {

   int nc;                 // Number of  cases

   int nv;                 // Number of  variables

   double *covar;    // Scratch for covariance matrix

   double *evals;    // Computed eigenvalues

   double *workv;   // Scratch vector for evec_rs()

   int ieval;              // Needed for placing result in all_evals

} MC_EVALS_PARAMS;

This is the routine that performs a single Monte Carlo replication. Single-threaded 

implementations will call it as many times as desired in a simple loop. Multithreaded 

applications such as the one presented here will run multiple copies simultaneously.

The first step is to fetch the items passed in the structure. This is for clarity only; 

a programmer could just as well directly reference the structure each time. I like my 

approach better. Note that we assign the evals and workv members to two different 

variables. Again, this is just for clarity. We will use these two vectors for different things at 

different times, so using context-appropriate names helps reduce confusion.
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static unsigned int_stdcall evals_threaded (LPVOID dp)

{

   int i, j, icase, n_cases, n_vars;

   double *xvec, *means, *covar, xtemp, *evals, *workv;

   n_cases = ((MC_EVALS_PARAMS *) dp)->nc;

   n_vars = ((MC_EVALS_PARAMS *) dp)->nv;

   covar = ((MC_EVALS_PARAMS *) dp)->covar;

   xvec = evals = ((MC_EVALS_PARAMS *) dp)->evals;  // �Borrow for computing covar

   sums = workv = ((MC_EVALS_PARAMS *) dp)->workv;  // Ditto

We will compute the lower-left triangle of the covariance (and then correlation) 

matrix of a standardized, uncorrelated normal random variable. The upper-right triangle 

is ignored by the evec_rs() routine that computes eigenvalues. So, begin by zeroing the 

areas where the mean and covariance will be cumulated.

   for (i=0; i<n_vars; i++) {

      sums[i] = 0.0;

      for (j=0; j<=i; j++)

         covar[i*n_vars+j] = 0.0;

      }

This loop generates the required number of cases. This should be the same as the 

number of cases in the dataset being analyzed. The function normal_pair() computes 

two standard (mean zero, unit variance) random numbers at a time, which is the most 

efficient way to do it. This function is provided in the file RANDOM.CPP, which is available 

for free download from my web site. The first loop within the icase loop constructs the 

random vector xvec.

   for (icase=0; icase<n_cases; icase++) {

      // Generate the random vector

      for (i=0; i<n_vars; i++) {

         if  (i % 2 == 0)

            normal_pair (&xvec[i], &xtemp);

         else

            xvec[i] = xtemp;

         }
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The second loop inside the icase loop cumulates the means and sum of squares. In a 

more general setting, we would want to make two passes through the data. The first pass 

cumulates the mean, and the second pass cumulates the sum of squared deviations from 

the mean. But that method, though most accurate, requires storing the entire dataset. As 

it may be huge, and we would need a separate dataset for each of the multiple threads, it 

would be nice to avoid this storage. It happens that in this application, we can get away 

with the otherwise dangerous “no-store” method. I’ll discuss this more on the next page. 

For now, just examine this code to see what’s being done.

      // Cumulate for this random vector

      for (i=0; i<n_vars; i++) {

         sums[i] += xvec[i];

         for (j=0; j<=i; j++)

            covar[i*n_vars+j] += xvec[i] * xvec[j];

         }

      } // For all cases

Suppose we want to compute the covariance of a set of observed scalar random 

variables x and y. Let mx be the computed mean of x, and let my be the computed mean  

of y. Then the “traditional” and (usually) accurate formula for their covariance is given 

by Equation (4.4).
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Unfortunately, this equation requires storage of the entire data matrix so that we 

can use it after computing the means. It doesn’t take much manipulation to derive the 

mathematically equivalent Equation (4.5), which can be computed in a single pass 

through the dataset and hence does not require storage of the data.
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However, Equation (4.5) has a potentially deadly flaw when implemented on a 

computer. If both random variables have means whose magnitudes are large compared 

to their standard deviations, the subtraction in this equation will involve numbers 

that are both very large compared to their difference. Because computers have limited 
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precision, many (or even most!) significant digits can be lost. Thus, Equation (4.5) should 

never be used in a general-purpose application. Either Equation (4.4) should be used, or 

the quite complex online parallel formula used. This formula is available from the Sandia 

National Laboratories site, among others.

But we are in luck here. The random variables are drawn from populations that 

have zero mean. Thus, the subtraction in Equation (4.5) is innocuous. Here is this code, 

without the division by n (yet).

   // Compute n_cases times covariance

   for (i=0; i<n_vars; i++) {

      for (j=0; j<=i; j++)

         covar[i*n_vars+j] -= sums[i] * sums[j] / n_cases;

      }

Now we convert this to a correlation matrix. The standard formula is given  

by Equation (4.6). Our covar matrix computation skipped the division by n in  

Equation (4.5), but this common factor cancels in Equation (4.6). We compute the 

lower triangle off-diagonal elements and then just set the diagonal to 1.0. Finally, 

compute the eigenvalues.
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   for (i=0; i<n_vars; i++) {

      covar[i*n_vars+i] = sqrt (covar[i*n_vars+i]);

      for (j=0; j<i; j++)

         covar[i*n_vars+j] /= covar[i*n_vars+i] * covar[j*n_vars+j];

      }

   for (i=0; i<n_vars; i++)  // Definition of  correlation matrix

      covar[i*n_vars+i] = 1.0;

   evec_rs (covar, n_vars, 0, covar, evals, workv);

   return 0;

}
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The preceding code handles the core computation. We now present the routine that 

coordinates multithreading of the core code. Its calling parameters are as follows:

int mc_evals (

   int nc,                     // Number of  cases

   int nv,                      // Number of  variables

   int mc_reps,           // Number of  MC replications

   int max_threads,    // Max number of  threads to use

   double fractile,        // Desired fractile, 0-1

   double *threshold   // Computed values of  each eval for specified fractile

   )

Here are the declarations and allocation of scratch memory. If the user has specified 

more threads than replications, drop back the number of threads. Note that Windows 

imposes an upper limit on the number of threads that can run simultaneously. 

Specifying at most 64 should be safe for all modern versions of Windows.

{

   int i, j, k, ieval, ithread, n_threads, empty_slot, ret_val;

   double *covar, *evals, *workv, *all_evals;

   MC_EVALS_PARAMS mc_evals_params[MAX_THREADS];

   HANDLE threads[MAX_THREADS];

   if  (mc_reps < 1)  // Silly caller

      mc_reps = 1;

   if  (max_threads > mc_reps)

      max_threads = mc_reps;

/*

   Allocate memory

*/

   covar = (double *) MALLOC (nv * nv * max_threads * sizeof(double));

   evals = (double *) MALLOC (nv * max_threads * sizeof(double));

   workv = (double *) MALLOC (nv * max_threads * sizeof(double));

   all_evals = (double *) MALLOC (nv * mc_reps * sizeof(double));
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Most parameters will be the same for all threads, so initialize them now. Notice that 

each thread requires its own copy of the three work areas (covar, evals, workv) so that they 

don’t mess around with one another’s private things.

   for (ithread=0; ithread<max_threads; ithread++) {

      mc_evals_params[ithread].nc = nc; mc_evals_params[ithread].nv = nv;

      mc_evals_params[ithread].covar = covar + ithread * nv * nv;

      mc_evals_params[ithread].evals = evals + ithread * nv;

      mc_evals_params[ithread].workv = workv + ithread * nv;

      } // For all threads, initializing constant stuff

Get ready for and then begin the “endless” loop that handles threading. We count in 

n_threads the number of threads that are currently active, and ieval will count replications 

done. Each replication is a single thread. Each thread’s handle will be stored in threads, 

and a NULL entry indicates that the corresponding thread is inactive  

(not started or closed).

   n_threads = 0;       // Counts threads that are active

   for (i=0; i<max_threads; i++)

      threads[i] = NULL;

   ieval = 0;                 // Index of  this trial in all_evals

   empty_slot = -1;     // �After full, will identify the thread that just completed

   for (;;) {                   // Main thread loop processes all replications

Compassionate programmers allow the user to interrupt potentially slow processing. 

It may be that a thread has completed, but the others are still running. Thus, we must 

crunch down the list of active threads, wait for the rest of them to finish, close them, and 

exit with an error code.

      if  (escape_key_pressed || user_pressed_escape ()) {

          for (i=0, k=0; i<max_threads; i++) {

             if  (threads[i] != NULL)

                 threads[k++] = threads[i];

             }
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          ret_val = WaitForMultipleObjects (k, threads, TRUE, 50000);

          for (i=0; i<k; i++)

             CloseHandle (threads[i]);

          ret_val = ERROR_ESCAPE;

          goto FINISH;

          }

Here is where we launch a thread if there is more work to be done. Recall that ieval 

counts eigenvalue-computation replications, and mc_reps is the number requested by 

the user. While we are initially filling the max_threads queue, empty_slot will remain at its 

initialized value of -1. But after the queue is filled, whenever a thread finished its work, 

empty_slot will be set to the position in the thread list of this now-free slot. So when we 

now launch a new thread, we use that just-freed slot.

We need to save in the ieval member of the parameter structure the number of this 

replication, as when the thread finishes, this will tell us where to put the result.

Under very rare pathological situations, Windows may not launch the thread. In this 

case, we must close all open threads and return an error code. Otherwise, we increment 

the number of active threads and the number of replications in progress or done. We 

know we are completely done when n_threads drops to zero: no active threads anymore.

      if  (ieval < mc_reps) {   // If  there are still some to do

          if  (empty_slot < 0)   // Negative while we are initially filling the queue

             k = n_threads;

          else

             k = empty_slot;

          mc_evals_params[k].ieval = ieval;      // Needed for placing final result

          threads[k] = (HANDLE) _beginthreadex (NULL, 0, evals_threaded,

                                                                           &m c_evals_params[k], 0, NULL);

          if  (threads[k] == NULL) {   // �Very pathological event; should never happen

             for (i=0; i<n_threads; i++) {

                if  (threads[i] != NULL)

                   CloseHandle (threads[i]);

                }
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             ret_val = ERROR_INSUFFICIENT_MEMORY;

             goto FINISH;

             }

          ++n_threads;

          ++ieval;

          } // if  (ieval < mc_reps)

      if  (n_threads == 0) // Are we done?

          break;

It may be that the full quota of threads are running, but there are still more 

replications to do. In this situation, we must pause here and wait for a thread to finish so 

as to free up a slot to launch another thread. The large wait time in milliseconds is fairly 

arbitrary; feel free to customize it. To be a conscientious programmer, we must prepare 

for the possibility of an error. Handle it as you see fit.

The WaitForMultipleObjects() call will return as soon as a thread finishes. When this 

happens, we must gather the nv array of eigenvalues computed by the thread and store 

them in all_evals. Note that they are stored with the replication changing fastest, which 

facilitates sorting later.

Finally, we preserve the index of this now free slot in the thread array, because this is 

the slot where the next thread will go. We close this thread now that its work is done, and 

we set its slot to NULL to indicate that the thread is closed. Decrement the number of 

active threads.

      if  (n_threads == max_threads && ieval < mc_reps) {

          ret_val = WaitForMultipleObjects (n_threads, threads, FALSE, 500000);

          if  (ret_val == WAIT_TIMEOUT || ret_val == WAIT_FAILED ||

              ret_val < 0 || ret_val >= n_threads) {

             ret_val = ERROR_INSUFFICIENT_MEMORY;

             goto FINISH;

             }

          k = mc_evals_params[ret_val].ieval;

          for (i=0; i<nv; i++)

               all_evals[i*mc_reps+k] = mc_evals_params[ret_val].evals[i];
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          empty_slot = ret_val;

         CloseHandle (threads[empty_slot]);

          threads[empty_slot] = NULL;

          --n_threads;

          }

The last possibility is that we have no more work to start, as all replications have been 

launched and are completed or still running. When this time comes, we just sit here and 

wait until all threads have run to completion. As before, we are good little programmers 

and handle the possibility of an error. Exactly as we did in the prior code block, we 

collect the computed eigenvalues from each thread. But this time we must handle all 

threads in a loop, not just a single completed thread. While we are doing this, close the 

threads. At this point we are finished with all threaded eigenvalue computation and so 

break out of the “endless” loop.

      else if  (ieval == mc_reps) {

         ret_val = WaitForMultipleObjects (n_threads, threads, TRUE, 500000);

         if  (ret_val == WAIT_TIMEOUT || ret_val == WAIT_FAILED ||

             ret_val < 0 || ret_val >= n_threads) {   // �Rare pathological error condition

            ret_val = ERROR_INSUFFICIENT_MEMORY;

            goto FINISH;

            }

         for (i=0; i<n_threads; i++) {   // For each thread that finished

            k = mc_evals_params[i].ieval;

            for (j=0; j<nv; j++)              // Get its computed eigenvalues

               all_evals[j*mc_reps+k] = mc_evals_params[i].evals[j];

            CloseHandle (threads[i]);

            }

         break;

         }

      } // Endless loop which threads computation of  evals for all reps
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All that’s left to do is to compute the user-specified fractile (across replications) for 

each ordered eigenvalue. Compute k as the unbiased index and restrict it to legal values 

in case we have a careless user. Then, for each ordered eigenvalue, sort the replications 

and save the value as the threshold that will be used for choosing the number of factors 

to retain.

   k = (int) (fractile * (mc_reps+1)) - 1;

   if  (k < 0)

       k = 0;

   if  (k >= mc_reps)

       k = mc_reps - 1;

   for (i=0; i<nv; i++) {

      qsortd (0, mc_reps-1, all_evals + i * mc_reps);

      threshold[i] = all_evals[i*mc_reps+k];

      }

   ret_val = 0;

FINISH:

   if  (covar != NULL)

       FREE (covar);

   if  (evals != NULL)

       FREE (evals);

   if  (workv != NULL)

       FREE (workv);

   if  (all_evals != NULL)

       FREE (all_evals);

   return ret_val;

}

�Clustering Variables in a Subspace
In any application involving a large number of variables, it’s nice to be able to identify 

sets of variables that have significant redundancy. Of course, we may be unlucky and 

have a situation in which the small differences between largely redundant variables 

contain the useful information. However, this is the exception. In most applications, 
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it is the redundant information that is most important; if some type of effect impacts 

multiple variables, it’s probably important. Because dealing with fewer variables 

is always better, if we can identify groups of variables that have great intra-group 

redundancy, we may be able to eliminate many variables from consideration, focusing 

on a weighted average of representatives from each group, or perhaps focusing on 

a single factor that is highly correlated with a redundant group. Or we might just be 

interested in the fact of redundancy, garnering useful insight from it.

One popular way to identify redundant variables is to display scatterplots of variables 

on principal or rotated orthogonal axes. Variables that lie near one another in the plot 

have a form of redundancy in the subspace defined by that pair of axes. This method 

is especially popular in the field of psychology. But it has three drawbacks. First, it 

relies on visual impressions, which are notoriously subjective and may be difficult 

to see if variables crowd together. More seriously, such displays are possible in only 

two dimensions at a time. It is possible, even likely, that some variables will exhibit 

strong redundancy in some low-dimension subspace while being very independent in 

another, unobserved dimension. It’s easy to be fooled, so arbitrary multiple-dimension 

consideration is much better. Last but not least, innocently flipping the sign of a variable 

flips its position in the plot to the opposite quadrant, destroying visual cues.

Let’s develop an intuitive method for detecting redundancy of variables when this 

redundancy is restricted to a particular subspace. Suppose we have three unobservable, 

uncorrelated underlying factors: V1, V2, and V3. These give rise to observed variables 

according to the following formulas:

X1 = 1.5 V1  −  1.0 V2  +  0.7 V3
X2 = 3.0 V1  −  2.0 V2  −  3.0 V3
X3 = 2.0 V1  +  1.0 V2  +  1.0 V3

It should be apparent that these three observed variables do not have much 

redundancy with one another. X3 has a response to V2 opposite the other two observed 

variables, and X2 has a response to V3 opposite the others as well. Their correlation 

matrix would not contain values of more than moderate magnitude.

But now suppose we know (by some sort of magic, in this example!) that the 

unobserved third factor, V3, is of no concern to us. Perhaps it is just noise that 

unjustifiably reduces correlations, and we’d rather remove its influence on our studies. 

We then see that X2 is just twice X1! In other words, these two variables are completely 

redundant when considered in the context of the two unobservable underlying factors 
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that we believe most important. Of course, in our application, neither alone can 

substitute for the knowledge gained from both of them, because the “noise” factor V3 

impacts them quite differently. But the knowledge of this redundancy itself may give 

us valuable insight into the process being studied. And if we know that, in terms of the 

useful information, they are redundant, we may be able to replace these two variables 

with just their average, or their first principal component. Knowledge is power.

Continuing this intuitive development, we now are at the point of knowing 

that our observed variables are defined in terms of their important unobserved 

components as follows:

X1 = 1.5 V1  −  1.0 V2
X2 = 3.0 V1  −  2.0 V2

How can we rigorously measure the redundancy of X1 and X2 , in this case coming 

up with a measure of perfect redundancy? There are many ways, but my favorite is to 

consider each observed variable as a vector in the space defined by the orthogonal 

underlying factors. Here, these vectors would be (1.5, -1.0) and (3.0, -2.0). We just 

compute the angle between these two vectors, agreeing that smaller angles equate to 

greater redundancy. In this example, the angle is zero: perfect redundancy.

Recall that the angle  between two vectors x and y is given by Equation (4.7), in 

which • means dot product, and ||.|| means Euclidean length.
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This gives us an alternative but equivalent way to measure redundancy: the dot 

product of the two vectors when their lengths have been normalized to equal one. This 

dot product will range from a low of -1 when the vectors point in opposite directions to 

a high of +1 when they are identical. This leads to another consideration: are X1 and X2 

redundant when X1 = -X2? In most applications, we would say yes, because the sign of a 

variable is just dependent on some aspect of how it is measured. Another way of looking 

at this issue is that knowledge of X1 provides perfect knowledge of X2 when one is just the 

negative of the other. This surely fits the definition of redundancy! So we should modify 

our redundancy criterion in one small way: let it be the absolute value of the dot product 

of the normalized vectors.
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But what are the vectors? The example just shown used values made up for this 

demonstration. How can we find coefficients for computing observed variables in 

terms of unobserved common factors? If you’ve been paying attention to this chapter, 

you will instantly know that the dominant (or perhaps all) principal components fit the 

bill nicely. As has been stated before, it is very often (though not always!) the case that 

early (large eigenvalue) principal components contain most of the useful information 

in a set of observed variables, while the late (small eigenvalue) components tend to be 

mostly irrelevant noise. Thus, we are strongly inclined to let these dominant principal 

components play the role of common factors.

We already saw how to compute the factor structure (correlations of factors with 

variables) by multiplying each eigenvector by the square root of its corresponding 

eigenvalue. We state without proof (available in many multivariate statistics textbooks) 

a rather remarkable fact: the factor structure matrix is also the matrix of coefficients 

for computing the standardized observed variables from the values of the principal 

components (common factors).

Thus, to compute the redundancy of a pair of variables in what is often a sensible 

manner, we decide how many of the dominant principal components are important. 

Keep that many columns of the factor structure matrix, and normalize the length of each 

row to unity so that we don’t have to worry about the denominator in Equation (4.7). 

Then the redundancy of two variables in this context is the absolute value of the dot 

product of the corresponding two rows in this re-normalized factor structure matrix.

Now that we know how to measure the redundancy of a pair of variables, we must 

consider how to group variables into sets with high internal redundancy. As far as 

clustering algorithms go, hierarchical clustering is considered by many (including 

myself) to provide the highest quality groups. The major disadvantage of this algorithm 

is that its compute time is proportional to the cube of the number of items being 

clustered, a deadly flaw if the items number in the thousands or more. But not many 

practical applications have this many variables, so this is my recommended method.

The algorithm begins by letting each variable (row in the normalized factor structure 

matrix) define its own one-item group. Then it tests every possible pair of groups, finding 

the pair that is closest (most redundant; maximum absolute value of dot product). 

These two groups are merged into a single group, and a representative matrix row for 

this new group is defined. This process repeats until we get down to a single group or the 

redundancy measure drops to excessively small values.

When two groups are merged, there are two common methods for defining the 

row vector for the combined group. The easier and often slightly superior method is to 
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just arbitrarily choose the row vector of one of the two groups being merged. A more 

complex and occasionally inferior method is to compute a combined centroid, a size-

weighted average of the row vectors of the two merged groups. This will be discussed in 

more detail in the next section.

�Code for Clustering Variables
The file AN_CVARS.TXT contains the core C++ code for the algorithm just described. 

Error checking, user escape, and other peripheral issues are omitted for clarity. The 

calling parameters and local variables are declared as shown next. Initialize the number 

of groups to be the number of variables, as we begin with each variable being its own 

group. We rename the number of variables from the global npred to nvars purely for 

clarity. The ngrp_to_print parameter lets the user control the size of the DATAMINE.LOG 

file’s content from this operation; once the number of groups drops this low or lower, the 

group membership (list of variables) for each group is printed at each step. This can be 

very long if there are numerous variables.

int an_cvars (

   int n_dim,                // Number of  initial dimensions to consider

   int ngrp_to_print,    // Start printing when n of  groups drops this low

   int type                    // Centroid versus leader method

   )

{

   �int i, j, nvars, icand1, icand2, ibest1, ibest2, n_groups, *group_id, *n_in_group;

   double x, dotprod, length, best_dotprod, *centroids;

   char msg[256], msg2[256];

   �n_groups = npred;  // �Number of  groups; initially, every variable is its own group

   �nvars = npred;         // �This name just makes things more clear; no other reason

Allocate memory. These three items have the following uses:

•	 group_id: For each variable, this holds the ID of the group to which it 

belongs

•	 n_in_group: For each group, this holds the number of variables in the 

group
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•	 centroids: For each group, this holds the vector that defines its leader 

or centroid

   group_id = (int *) MALLOC (nvars * sizeof(int));

   n_in_group = (int *) MALLOC (nvars * sizeof(int));

   centroids = (double *) MALLOC (nvars * n_dim * sizeof(double));

The following code initializes the algorithm. When we begin, each variable defines 

its own group, so we set the group IDs and group sizes accordingly. By normalizing each 

vector to unit length, we don’t have to worry about the denominator in Equation (4.7).

   for (i=0; i<nvars; i++) {

      group_id[i] = i;               // �For each variable, this is the group to which it belongs

      n_in_group[i] = 1;          // Size of  each group

      length = 0.0;                  // �Will cumulate squared length of  this variable's vector

      for (j=0; j<n_dim; j++)

         length += structure[i*nvars+j] * structure[i*nvars+j];

      length = 1.0 / sqrt (length);

      for (j=0; j<n_dim; j++)    // �Normalize the length of  this variable's vector

         centroids[i*n_dim+j] = length * structure[i*nvars+j];

      }

The hierarchical clustering algorithm now begins. Each pass through the outer loop 

merges a single pair of groups, thus decreasing the number of groups by one. Recall that 

our merging criterion (measure of redundancy) is the absolute value of the dot product 

of the two candidate vectors. We’ll keep track of the score of the best candidate pair in 

best_dotprod.

   while (n_groups > 1) {

      best_dotprod = -1.0;

      // Try every pair of  groups (icand1 and icand2)

      for (icand1=0; icand1<n_groups-1; icand1++) {

         for (icand2=icand1+1; icand2<n_groups; icand2++) {

            dotprod = 0.0;                              // Will cumulate for this candidate pair

            for (i=0; i<n_dim; i++)

                 dotprod += centroids[icand1*n_dim+i] * centroids[icand2*n_dim+i];

            dotprod = fabs (dotprod);            // Handle symmetry
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               if  (dotprod > best_dotprod) {        // �Keep track of  the pair with best criterion

                  best_dotprod = dotprod;

                  ibest1 = icand1;

                  ibest2 = icand2;

                  }

               } // For icand2

           } // For icand1

For the user’s information, print the results of this merger. Tiny floating-point errors 

may cause the computed dot product to trivially exceed its theoretical limit. This would 

be a problem for the acos() routine that is used to get the corresponding angle for the 

user, so make sure it does not happen.

      if  (best_dotprod > 1.0)    // Should never happen, but handle tiny fpt errors

          best_dotprod = 1.0;

      sprintf_s (msg,

          "Merged groups %d and %d separated by %.2lf  degrees; now have %d groups",

          ibest1+1, ibest2+1, acos(best_dotprod)*180.0/PI, n_groups-1);

      audit (msg);      // This writes to the DATAMINE.LOG file

We will soon absorb the group having the larger index into the smaller. If the user 

requests the leader method, we just leave the “centroid” of the absorbing group alone. 

But if the centroid method is requested, we must compute the centroid of the merged 

group as a size-weighted average of the two merging groups. A more theoretically 

correct method would be to project the two vectors onto a plane and subdivide the angle 

between them on this plane. But the approximation used here is very good. Besides, I see 

no practical benefit to the projection method, so there is no point bothering. Remember 

that we must keep the vector at unit length, so normalize it.

      if  (type) { // Did the user request centroid method?

          // �Recompute the (approximate) centroid of  the absorbing (smaller id) group

          length = 0.0;

          for (j=0; j<n_dim; j++) {

             x = (n_in_group[ibest1] * centroids[ibest1*n_dim+j] + 

                    n_in_group[ibest2] * centroids[ibest2*n_dim+j]) / 

                   (n_in_group[ibest1] + n_in_group[ibest2]);

             centroids[ibest1*n_dim+j] = x;

             length += x * x;

             }
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          length = 1.0 / sqrt (length);

          for (j=0; j<n_dim; j++)

             centroids[ibest1*n_dim+j] *= length; // The length must always be one

          } // If  type is centroid (not leader)

Here is where we absorb the larger-index group into the smaller. The following 

operations are involved in this merger:

•	 Increment the group size of the absorbing group by the size of the 

absorbed group.

•	 Any group formerly marked as belonging to the absorbed group must 

be remapped to belong to the absorbing group.

•	 The group ID of the absorbed group is now unused, so remap all 

larger group IDs to be one smaller, thus filling in the gap.

•	 To match the “crunching down” of variable group IDs above the 

absorbed group, similarly move down by one slot every group size 

and centroid for groups above the absorbed group.

•	 Decrement the number of groups.

      n_in_group[ibest1] += n_in_group[ibest2]; //� Group 1 just absorbed group 2

      // Remap the largest and then pull down all groups above largest.

      for (i=0; i<nvars; i++) {

         if  (group_id[i] == ibest2)  // If  this variable was in Group 2

            group_id[i] = ibest1;      // �Reclassify it as being in Group 1, the absorbing group

         if  (group_id[i] > ibest2)    // Groups above absorbed group

            --group_id[i];                 // �Now have to fill in the hole below them

         }

      for (i=ibest2+1; i<n_groups; i++) { // �Crunch down stuff  above absorbed group

         n_in_group[i-1] = n_in_group[i];

         for (j=0; j<n_dim; j++)

            centroids[(i-1)*n_dim+j] = centroids[i*n_dim+j];

         }
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         // Optionally print group membership here

         --n_groups;     // �We just lost a group (ibest2 was absorbed into ibest1)

         } // while (n_groups > 1)

// Finished. Free group_id, n_in_group, and c entroids here.

�Separating Individual from Common Variance
We’ve seen how computing the principal components of a correlation matrix, trivially 

derived from the eigenvectors, has many uses. We can identify the dominant directions 

of variance, which is usually quite revealing of the underlying structures of a set of 

measured variables. More importantly (in my own work, at least) is that we can then 

cluster variables in a dominant subspace to identify groups of redundant or nearly 

redundant measurements taken in the context of the subspace, ignoring contributions 

from less dominant (more likely noise) subspaces. Finally, developers willing to believe 

that small-eigenvalue directions have little or no relevance to their application can 

discard these directions and thereby create a smaller subset of new variables for their 

application, those based strictly on dominant components.

But when it comes to exploratory data analysis, a key first step in any research 

endeavor, simple principal components study suffers from several weaknesses that can 

seriously impede its utility. These weaknesses, discussed soon, arise from Equation (4.2)  

on page 187. To understand why, remember that a major goal in this preliminary data 

exploration is to determine if our observed variables (or some designated subset of 

them) are arising from some other, usually much smaller, set of unobserved (or at least 

unmeasured) common factors.

As an example from the medical field, we may be studying a large collection of 

patients and measuring the degree, presence, or absence of specific health conditions 

such as height, weight, various blood count statistics, frequency of headache, blood 

pressure, depression, and so forth. What may be difficult or impossible to observe is their 

unreported food consumption, illegal or unprescribed drug usage, sexual proclivities, 

marital happiness, and a myriad of other touchy issues. If we can at least determine the 

existence of underlying common factors driving the observed variables, we may be able 

to benefit from nothing more than the knowledge of their existence in terms of how 

they impact the observed variables. If we are lucky, we may perhaps even come up with 

reasonable names for these common factors, though in my experience, assigning names 
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is of secondary importance compared to understanding their impact on the observed 

variables.

We can use ordinary multiple regression to invert Equation (4.2) on page 187 in order 

to devise Equation (4.8), which computes our observed variables x if we are given values 

for the unobserved common factors y.

	 X Ay= 	 (4.8)

To keep things simple in this presentation, we continue the assumption stated at 

the start that the observed variables that make up the x vector have been standardized 

to have zero mean and unit variance. This is not strictly required in the traditional 

developments. However, this assumption imposes no practical limitations of any sort, 

and it greatly simplifies the math that follows, as we can ignore means and scaling 

constants. What is required in this and traditional presentations is that the y vector 

components, the unobserved common factors, has zero mean and unit variance. If you 

want more rigorous mathematics instead of the simplified versions in this text, you can 

easily find detailed presentations all over the Internet and in statistics references.

Surprisingly to many, it turns out that the A matrix of Equation (4.8) is just the factor 

structure matrix we discussed on page 189. In other words, the matrix of correlations 

between the observed variables and the unobserved common factors is also the 

regression matrix that lets us (if we were able!) compute the observed variables from 

the unobserved common factors. (Wow!) If the correlation matrix of the observed data 

is full rank (no perfect colinearity), and if we keep all eigenvectors, this computation 

is exact. Otherwise, the computed values of x from Equation (4.8) are least- squares 

approximations.

We have one last interesting tidbit to present before getting on with the main topics 

of this section: a serious problem with principal components when used for initial 

data exploration, and a solution for this problem. Recall that we are designating R as 

the correlation matrix of the raw data x. Another fundamental equation from principal 

components is that we can reproduce this correlation matrix from the factor structure 

(often called the factor loading matrix when used in this regression context). This is 

shown in Equation (4.9).

	 R AA= ¢ 	 (4.9)
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If A contains all factors (a square matrix), the reproduction is exact. If some columns 

of A have been removed (some principal components discarded as unimportant), then 

the reproduction is an approximation.

Pant, pant. At long last we are ready to discuss the data-exploration issues with 

Equation (4.2) on page 187 and the two equations just shown. The heart of the problem 

is that the observed-to-factor equation, (4.2), and the factor-to-observed equation, (4.8),  

are nothing more than transformations. They map one set of variables to another set 

of variables. And Equation (4.9) is almost trivial, showing how under the principal 

components model, the correlation matrix of the data is explained by nothing more 

than the product of the factor loading matrix with its own transpose. This formulation 

does have a certain elegant simplicity, but we would much rather have a more general, 

powerful model for expressing the impact of unobservable common factors on our 

observed variables.

In particular, in addition to the variance that is attributable to the common factors, 

we would like to be able to account for any degree of variance in each observed variable 

that is unique to that variable. It is a severe limitation to require that all of the variation 

we see in an observed variable be attributable to common factors. We want to assume 

the existence of unique variance as well. This unique variance may be valid information 

not related to the common factors, or it may just be random noise. Regardless, requiring 

that the hypothetical common factors be able to account for all variance in all observed 

variables is a significant impediment to easy interpretation of numerical results. It forces 

the computed A matrix to conform to unreasonable expectations. Noise happens, and if 

we pretend it doesn’t, we pay a price.

So let’s slightly modify the model. Equation (4.8) shows that our observed variables 

are just linear combinations of the unobserved factors. We make one seemingly trivial 

change, and in return we get enormously increased power. Just let the observed vector x 

also include an error vector ε, as shown in Equation (4.10).

	 X Ay= + e 	 (4.10)

We make the innocuous assumption that the error vector follows a multivariate 

normal distribution with mean zero, and the covariance matrix of this error vector is 

diagonal. In other words, the errors for the observed variables are uncorrelated, and 

their variances need not be equal. These variances are traditionally designated by the 

Greek letter Psi (Ψ).
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Before venturing any further into the mathematics of what is traditionally called 

maximum likelihood factor analysis, let’s take a look at a motivational example of what 

the inclusion of this little error term can do for us. I created ten independent random 

variables called RAND0 through RAND9. I then defined three new random variables in 

terms of several of them, with the idea that RAND1 through RAND4 can serve as both 

unobserved common factors and observed variables:

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

Look at the two tables on the next page, which arise from keeping the four most 

dominant eigenvectors of this dataset’s correlation matrix. And you might want to review 

the definition of communality given on page 193. Communality is the sum of the squares 

of the factor structure for that variable, and it expresses the fraction of the variance of 

each observed variable that is explained by the retained factors. The observed variables 

have been standardized to unit variance, so one minus the communality of a variable 

can be loosely interpreted as the unexplained variance, the variance of an observed 

variable not attributable to the common factors that the user retained. This is loosely 

analogous to Psi, the variance of the error term just discussed.

The topmost of these two tables is a principal components analysis, which disallows 

explicit inclusion of unexplained variance. Psi can only be roughly inferred as one 

minus the communality, a clumsy and often inaccurate approach. (For example, with 

RAND0, 0.8056 = 1 - 0.01222 - 0.00662 - 0.37412 - 0.23292.) The three sum variables 

(SUM12, SUM34, SUM1234) in this top table have small inferred unexplained variance, 

as expected since they have much in common with other observed variables. The 

four variables that go into these sums, RAND1 through RAND4, also have smallish 

unexplained variance, while the other variables are larger.

But compare this to the bottom table, which is the result of the factor analysis 

procedures to be described in this section. Now the distinction between observed 

variables that have common ancestry and those that do not is abundantly clear. The 

seven variables that share underlying driving forces have an independent-variance 

measure (Psi) of zero, while the variables that have nothing in common are shown to be 

nearly 100 percent independent. The difference in interpretability is profound.
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Initial evals, cumulative pct, Psi, and loadings

           Eigenvalue    2.983    2.019    1.068    1.044

           Cumulative    22.945  38.474   46.688   54.718

              Initial Psi

         RAND0  0.8056  −0.0122   0.0066   0.3741   0.2329

         RAND1  0.2052   0.4851   0.4980  −0.5263  −0.1858

         RAND2  0.2050   0.4664   0.5247   0.5167   0.1873

         RAND3  0.3942   0.5149  −0.4958   0.1883  −0.2437

         RAND4  0.4028   0.5222  −0.4822  −0.1692   0.2518

         RAND5  0.6796   0.0086   0.0043  −0.5326   0.1917

         RAND6  0.7785   0.0082   0.0479   0.0341   0.4669

         RAND7  0.8039  −0.0287   0.0109  −0.0742   0.4355

         RAND8  0.7791   0.0019   0.0045  −0.0287   0.4691

         RAND9  0.8299   0.0093   0.0943   0.1684  −0.3643

         SUM12  0.0017   0.6805   0.7315  −0.0065   0.0013

       SUM1234  0.0010   0.9997   0.0205   0.0054   0.0045

         SUM34  0.0011   0.7270  −0.6856   0.0138   0.0051

Final factor variances,  Psi, and factor loadings

        Squared length    2.982    2.010    0.844   0.736

               Final Psi

         RAND0  0.9991 −0.0080   0.0039   0.0255  0.0012

         RAND1  0.0000  0.4861   0.4965  −0.6099 −0.2400

         RAND2  0.0000  0.4654   0.5262   0.6003  0.2415

         RAND3  0.0000  0.5174  −0.4915   0.2427 −0.5519

         RAND4  0.0000  0.5196  −0.4866  −0.2238  0.5611

         RAND5  0.9985  0.0058   0.0022  −0.0346 −0.0009

         RAND6  0.9988  0.0055   0.0251   0.0191  0.0106

         RAND7  0.9989 −0.0193   0.0044  −0.0083  0.0219

         RAND8  0.9998  0.0014   0.0029  −0.0035  0.0122

         RAND9  0.9975  0.0064   0.0483   0.0096 −0.0049

         SUM12  0.0000  0.6805   0.7315  −0.0065  0.0012

       SUM1234  0.0000  0.9997   0.0205   0.0054  0.0045

         SUM34  0.0000  0.7270  −0.6857   0.0138  0.0051
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Astute readers familiar with factor analysis will notice a peculiarity about the second 

table: in traditional factor analysis, the sum of squares of the loadings in each row, plus 

the Psi for that row, add up to the variance of the observed variable of that row.  

(This identity may become clearer in a moment when we discuss the upcoming 

Equation (4.11).) Because our observed variables have been standardized, this sum 

should be 1.0, but for several rows the sum doesn’t quite make it. This is because there 

is some perfect colinearity in the dataset; the SUM variables are exact functions of some 

of the RAND variables. In traditional factor analysis, such colinearity is forbidden. But 

in the algorithm that I use, colinearity usually does not cause numerical difficulties, 

so I allow it, especially since the results of this loose algorithm can make colinearities 

obvious, as happened in that contrived example. If you have no idea what this paragraph 

just said, don’t worry about it; just be aware that if your data does contain any perfect 

colinearity, results may be somewhat compromised, but the colinearity will likely be 

revealed and thereby made easy to eliminate before further study is made!

Now that we’re nicely motivated, let’s proceed with an overview of the mathematics 

of maximum likelihood factor analysis. As is my usual practice, I keep the mathematical 

detail limited to the bare minimum needed to gain an intuitive understanding of what’s 

going on and to understand the computer code that will follow. If you feel cheated of 

rigor, you will have no trouble finding what you desire on the Internet and any of the 

numerous textbooks on the subject. Later, when the code is presented, I’ll mention two 

particularly useful publications.

Equation (4.8) on page 222 shows how, in the principal components model, the 

observed variables are produced by the unobserved factors. This led to Equation (4.9) 

showing how the correlation matrix of the observed variables relates to the loadings. 

Now we extend this idea to include the unexplained-variance term. In this more general 

model, we can’t call the covariance matrix of the observed variables a correlation 

matrix, although the analogy is strong. Thus, instead of referring to it as R, we’ll follow 

the tradition of using the Greek letter sigma (Σ) to designate the covariance matrix of 

the observed variables, x. As mentioned earlier, the covariance matrix Ψ of the ε term is 

diagonal, with the individual variances on the diagonal. Then, when our model is given 

by Equation (4.10) on page 223, the analog of Equation (4.9) on page 222 is given by 

Equation (4.11).

	 S Y= +¢AA 	 (4.11)
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This equation should satisfy our intuition, because it says that the covariance of a 

model that includes unique variance for each measured variable is just the covariance 

created by the common-factor loadings plus the unique variances.

In the simple principal components model (no unique variances), estimating the 

A matrix is trivial; it’s just the eigenvectors, each multiplied by the square root of its 

corresponding eigenvalue. But when we include unique variance terms, things become a 

lot messier. No direct solution is possible. The most common (and likely best) approach 

is to find A and Ψ, which maximize the normal-distribution likelihood function 

associated with this model.

If there are n cases, the log likelihood function is given by Equation (4.12), in which |.| 

means the determinant of the matrix, tr(.) means the trace (sum of diagonal elements), 

and S is the sample covariance matrix (which in our context is also the sample 

correlation matrix, because the observed variables are standardized). Also, Σ is defined 

by Equation (4.11).

	
l

n
trA

2
S,Y SS( ) = - + ( )éë ùû

-ln 1

	 (4.12)

For the remainder of this discussion of maximum likelihood factor analysis, 

including the code presented later, we’ll often be mentioning two constants in the 

application, so we’ll give them names now. There are npred measured variables. (This 

name comes from the fact that the variables are most likely predictor candidates in the 

application.) And we are assuming that there are n_dim unobserved common factors. The 

developer is responsible for coming up with a reasonable guess for n_dim, although later 

we’ll discuss how this guess can be made somewhat intelligently. Naturally, n_dim <= 

npred, and n_dim will be much less than npred in nearly any practical application.

This dimensionality difference inspires an important observation about the 

log likelihood function, Equation (4.12). The Σ matrix is npred square, and in many 

applications npred will be quite large. In some of my applications, npred might be on the 

order of 100 variables, or even 1000, while n_dim might be 5 to 10 or so. Equation (4.12) 

involves inverting and finding the determinant of a potentially gigantic matrix, not a 

trivial undertaking.

Luckily, the definition of Σ given by Equation (4.11) lets us write its determinant 

and inverse in a way that is a lot faster to compute. Don’t even think about using the 
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naive version of Equation (4.12). The required quantities are given in Equations (4.13) 

and (4.14), respectively. The derivation of these fierce identities can be found in several 

sources, the most detailed (I believe) being Chapter 4 of Factor Analysis as a Statistical 

Method, 2nd Ed by Lawley and Maxwell.

	
S Y Y= + ¢ -I A A1 	 (4.13)

	
S Y Y Y Y- - - - - -= - +( )¢ ¢1 1 1 1 1 1A I A A A 	 (4.14)

Because Ψ is a diagonal matrix, its inverse is also a diagonal matrix containing 

the reciprocals of the diagonal elements of Ψ. That’s a trivial operation. And the key is 

that the only general matrix that must be inverted is n_dim square, which in nearly all 

practical operations will be a whole lot faster than inverting an npred square matrix. 

As for the determinant, Equation (4.13), both terms are easy. The determinant of Ψ is 

just the product of its diagonal elements, and the general matrix whose determinant 

is needed is the same matrix that has to be inverted for Equation (4.14). For those who 

were sleeping that day in linear algebra class, know that the determinant of a matrix is 

trivial to compute as part of the inversion process.

�Log Likelihood the Slow, Definitional Way
In this short section I’ll present code for directly using Equation (4.12) to compute the 

log likelihood function (except for the factor of n/2, which is constant and would be just 

a waste of computer time). No sane programmer would use this method, as it involves 

inversion of a potentially gigantic matrix. However, it is instructive and simple and 

therefore worthy of a quick treatment.

In this code, we concatenate the Ψ diagonal matrix containing npred parameters with the 

npred by n_dim matrix of factor loadings, A, into a single vector that we will call theta (θ). This 

greatly simplifies some optimization code that we’ll see later. So the first step here is to split 

them apart into PSI and A. Then we use Equation (4.11) to compute Σ in TEMPmat1.

double AnalyzeFactorChild::log_lik (double *theta)

{

   int i, j, k;

   double sum, det, *PSI, *A;
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   PSI = theta;

   A = theta + npred;

/*

   Sigma inverse = (Psi + A A') inverse

   Determinant of  Sigma

*/

   for (i=0; i<npred; i++) {

      for (j=0; j<npred; j++) {

         sum = 0.0;

         for (k=0; k<n_dim; k++)

            sum += A[i*n_dim+k] * A[j*n_dim+k];

         TEMPmat1[i*npred+j] = sum;       // A A'

         }

      TEMPmat1[i*npred+i] += PSI[i];      // This completes Equation (4.11)

      }

Given the safety precautions in the implementation, it would be highly unusual for Σ 

to be singular, but if our inversion routine reports this unfortunate event, we return such 

a horrendous log likelihood that this problematic search region will be abandoned by the 

optimization algorithm. Our inversion routine (the source code is in INVERT.CPP) computes 

the determinant of the matrix as an efficient byproduct of inversion. Then we trivially 

complete Equation (4.12). Because we need only the trace of the matrix product, we avoid 

computing off-diagonal elements. Recall that covar is symmetric, so we can access elements 

in either direction. The direction used here is somewhat faster on some compilers.

�   k = invert (npred, TEMPmat1, TEMPmat2, &det, invert_rwork, invert_iwork);

   if  (k)

      return -1.e60;

/*

   Trace of  above times covar

*/
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   sum = 0.0;

   for (i=0; i<npred; i++) {

      for (k=0; k<npred; k++)

         sum += TEMPmat2[i*npred+k] * covar[i*npred+k];

      }

   return -log(det) - sum;

}

�Log Likelihood the Fast, Intelligent Way
This method, which is mathematically identical to the direct method just shown, can 

be orders of magnitude faster than the direct method because of one reason only: the 

matrix that we must invert will almost always be much smaller than that in the direct 

method. We still use the same definition of log likelihood, Equation (4.12), but we 

compute Σ−1 and the determinant more efficiently, using Equations (4.13) and (4.14). 

Here is the code:

double AnalyzeFactorChild::log_lik_fast (double *theta)

{

   int i, j, k;

   double sum, det, *PSI, *A;

   PSI = theta;

   A = theta + npred;

/*

   We compute the inverse and determinant of  sigma using the fast method

*/

   // �Compute F = PsiInverse A, a component of  Equations 4.13 and 4.14 on Page 228

   for (i=0; i<npred; i++) {

      for (j=0; j<n_dim; j++)

         Fmat[i*n_dim+j] = Amat[i*n_dim+j] / PSIvec[i];

      }
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   // (A'F + I) completes the n_dim by n_dim matrix which we must invert

   for (i=0; i<n_dim; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<npred; k++)

            sum += Amat[k*n_dim+i] * Fmat[k*n_dim+j];

         TEMPmat1[i*n_dim+j] = sum;         // This is A' F

         }

      TEMPmat1[i*n_dim+i] += 1.0;            // Add in the identity matrix

      }

   // �Invert the matrix; in extremely rare case that it is singular, return horrid log likelihood

   // This also gives us the determinant we will need later

   �k = invert (n_dim, TEMPmat1, TEMPmat2, &det, invert_rwork, invert_iwork);

   if  (k)

      return -1.e60;

   // Premultiply that by F = PsiInverse A to continue Equation 4.14

   for (i=0; i<npred; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<n_dim; k++)

            sum += Fmat[i*n_dim+k] * TEMPmat2[k*n_dim+j];

         TEMPmat1[i*n_dim+j] = sum;

         }

      }

   // Postmultiply that by F Transpose and simultaneously subtract it from Psi Inverse

   // This completes Equation 4.14, giving us the inverse of  Sigma

   for (i=0; i<npred; i++) {

      for (j=0; j<npred; j++) {

         if  (i == j)

            sum = 1.0 / PSIvec[i];    // Psi Inverse; we subtract from this
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         else

            sum = 0.0;

         for (k=0; k<n_dim; k++)

            sum -= TEMPmat1[i*n_dim+k] * Fmat[j*n_dim+k];

         TEMPmat2[i*npred+j] = sum;

         }

      }

   // The rest of  this code is identical to the slow method, just Equation 4.12 without n/2

   // Compute the trace of  sigma-inverse times covar

   sum = 0.0;

   for (i=0; i<npred; i++) {

      for (k=0; k<npred; k++)

         sum += TEMPmat2[i*npred+k] * covar[i*npred+k];

      }

   // Finish computation of  the determinant of  Sigma

   for (i=0; i<npred; i++)

      det *= PSIvec[i];

   return -log(det) - sum;

}

�The Basic Expectation Maximization Algorithm
Even with the simplifications just presented, direct numerical maximization of  

Equation (4.12) is much too slow to be practical. With the discovery some years ago  

of a wide family of optimization algorithms called expectation maximization,  

we suddenly had a method of maximizing the log likelihood with an iterative algorithm 

that, under very reasonable conditions, is guaranteed to converge to a global maximum 

(there are an infinite number of them). Full theoretical derivation of this algorithm is  

far beyond the scope of this text. However, we will present the key equations for an 

efficient implementation of this algorithm, which is a core component of the faster 

method shown in the next section. The clever sequence of operations given here is taken 

from the very helpful paper “ML Estimation for Factor Analysis: EM or Non-EM?” by  

J. H. Zhao, Philip L. H. Yu, and Qibao Jiang. This paper can be downloaded for free from 
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several sites on the Internet; a quick search will find it. If you have no luck, contact me at 

my website email address and I’ll send you a PDF.

The algorithm begins by using ordinary principal components to find starting 

estimates for A and Ψ:

	 1.	 Compute S, the covariance matrix of the observed variables. 

Because we standardize these variables, this is also their 

correlation matrix, although standardization is not required for 

the general form of the algorithm. However, standardization aids 

numerical stability, so I always do it.

	 2.	 Compute the starting estimate of A by keeping the n_dim dominant 

eigenvectors of the covariance matrix and multiplying each 

eigenvector by the square root of its corresponding eigenvalue. 

Thus, we have A0 as an npred by the n_dim matrix.

	 3.	 Compute the starting estimate of Ψ by subtracting the variance of 

each variable implied by AA′ from the actual covariance. Look back at 

Equation (4.11) on page 226. Assume for this starting approximation 

that Σ=S and solve for Ψ, as shown in Equation (4.15).

	 Y0 S AA= - ¢( )diag 	 (4.15)

The basic expectation-maximization (EM) algorithm then iterates as shown next. 

Each iteration increases the log likelihood function, although in practice convergence 

can sometimes be excruciatingly slow.

	 F A= -Yt t
1

	 (4.16)

	 G SF= 	 (4.17)

	
H G I A F= + ¢( )t

-1
	 (4.18)

	 A G FI H1t+
-= +( )¢ 1

	 (4.19)

	
YYt tdiag+ += - ¢éë ùû1 1S HA 	 (4.20)
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There are several issues to consider when programming the basic EM algorithm:

•	 Equation (4.16) implies that the independent variances (the diagonal 

of Psi) must be positive, lest we divide by zero. This can be imposed 

by checking the new values computed by Equation (4.20) and 

resetting them slightly above zero if necessary.

•	 This diddling with Psi ruins the guaranty of convergence, although 

in practice, as long as you let them get very close to zero, this should 

not be a problem. Nevertheless, a responsible programmer takes 

into account that the algorithm could fall into an endless loop of EM 

driving Psi below the limit and then the program pushing it back up 

again. Users hate endless loops.

•	 Equations (4.18) and (4.19) involve inversion of a matrix that 

could, in rare pathological cases, be singular. Make sure you use an 

inversion routine that reports singularity and gracefully abort if it 

happens. It is extremely rare, but we do care, do we not?

�Code for Basic Expectation Maximization
The class function that implements the algorithm shown in the prior section can be 

found in the file AN_FACTOR.TXT. Here we present it, along with a discussion of salient 

points as needed. The full context of this routine will appear later, but because it is 

straightforward and all variables are clearly named to correspond to the equations, I’ll 

present it here, immediately after the algorithm. Memory allocations for the many arrays 

can be found on page 248.

int AnalyzeFactorChild::EMstep ()

{

   int i, j, k;

   double sum;

/*

   Compute F = PsiInverse A which is Equation (4.16)

   We trust that we have never let PSIvec drop to a computational zero.

*/
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   for (i=0; i<npred; i++) {

      for (j=0; j<n_dim; j++)

         Fmat[i*n_dim+j] = Amat[i*n_dim+j] / PSIvec[i];

      }

/*

   Compute G = covar F which is Equation (4.17)

   �Recall that S in the equation is the covariance (correlation) matrix ‘covar’

*/

   for (i=0; i<npred; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<npred; k++)

            sum += covar[i*npred+k] * Fmat[k*n_dim+j];

         Gmat[i*n_dim+j] = sum;

         }

      }

/*

   Compute H in multiple steps for Equation (4.18)

*/

   // (A'F + I) Inverse

   for (i=0; i<n_dim; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<npred; k++)

            sum += Amat[k*n_dim+i] * Fmat[k*n_dim+j];

         TEMPmat1[i*n_dim+j] = sum;  // A’ F

         }

      �TEMPmat1[i*n_dim+i] += 1.0; // This is where we add in the identity matrix

      }

   k = invert (n_dim, TEMPmat1, TEMPmat2, &sum, invert_rwork, invert_iwork);

   if  (k)  // �This would be an extremely rare pathological event that requires abort

      return 1;
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   // G times above finishes Equation (4.18)

   for (i=0; i<npred; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<n_dim; k++)

            sum += Gmat[i*n_dim+k] * TEMPmat2[k*n_dim+j];

         Hmat[i*n_dim+j] = sum;

         }

      }

/*

   Update A in several steps for Equation (4.19)

*/

   // (H'F + I) Inverse

   for (i=0; i<n_dim; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<npred; k++)

            sum += Hmat[k*n_dim+i] * Fmat[k*n_dim+j];

         TEMPmat1[i*n_dim+j] = sum; // H’ F

         }

      �TEMPmat1[i*n_dim+i] += 1.0; // This is where we add in the identity matrix

      }

   �k = invert (n_dim, TEMPmat1, TEMPmat2, &sum, invert_rwork, invert_iwork);

   �if  (k)  // This would be an extremely rare pathological event that requires abort

      return 1;

   // G times above completes Equation (4.19)

   for (i=0; i<npred; i++) {

      for (j=0; j<n_dim; j++) {

         sum = 0.0;

         for (k=0; k<n_dim; k++)

            sum += Gmat[i*n_dim+k] * TEMPmat2[k*n_dim+j];

         Amat[i*n_dim+j] = sum;

         }

      }
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/*

   Update Psi = diag (covar - H A') which is Equation (4.20)

   �We limit it away from zero, because inversion of  matrices becomes unstable as Psi gets small.

   �The consequence of  this limiting is that, theoretically at least, increase of  log likelihood is no longer 

guaranteed. In practice, I think decrease would be nearly impossible.

   �Nonetheless, you must prepare for this possibility when this routine is invoked.

*/

   for (i=0; i<npred; i++) {

      sum = covar[i*npred+i];

      for (k=0; k<n_dim; k++)

         sum -= Hmat[i*n_dim+k] * Amat[i*n_dim+k];

      if  (sum < 1.e-6)          // �We must keep Psi away from zero to avoid fpt issues

         sum = 1.e-6;

      if  (sum > 1.0 - 1.e-6)  // �Not usual; my own restriction due to standardization

         sum = 1.0 - 1.e-6;

      PSIvec[i] = sum;

      }

   return 0;       // Tells caller that all is good in the world

}

�Accelerating the EM Algorithm
Because the EM algorithm just presented can often suffer from slow convergence  

(a tendency to zigzag back and forth across the parameter domain), great effort has 

gone into finding ways to speed convergence. An Internet search will reveal a vast array 

of methods. I’ve studied most of them and done considerable experimentation. In my 

opinion, the best (fastest and most reliable convergence) has been named DECME-2s 

by its authors. Theoretical details can be found in the manuscript The Dynamic ECME 

Algorithm by Yunxiao He (Yale University) and Chuanhai Liu (Purdue University).  

It should be easy to find on the Internet. If you have no luck, send me an e-mail at my 

web site and I’ll email you a PDF.

Here is an overview of how this acceleration algorithm works. We iterate two 

very different optimization steps; this iteration will be discussed later, when the code 

is presented. One step is the EM algorithm just shown. The other step is quadratic 
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optimization, which is the subject of this section. We alternate them in a loop until 

convergence is obtained. Note that the loading matrix is unique only up to orthogonal 

rotation, so there is an infinite number of equivalent global maxima.

As was mentioned in the log likelihood code, this presentation is easier if we 

concatenate the Ψ diagonal matrix containing npred parameters with the npred by n_dim 

matrix of factor loadings, A, into a single vector that we will call theta (θ). We will roughly 

follow the presentation in the He and Liu paper but change a few bits of notation in a 

way that improves readability, at the minor cost of some rigorous notational correctness. 

Any such compromises are purely notational and in the spirit of specializing in the 

current application, and they do not damage mathematical correctness.

Suppose we have been iterating long enough to have evaluated the log likelihood  

at three different points. The most current point (parameter set) is theta_t (θt)  

with computed log likelihood LL_t. The immediately prior point is theta_tm1 (θt-1) with  

computed log likelihood LL_tm1, and the point before that is theta_tm2 (θt-2) with 

computed log likelihood LL_tm2. Also suppose we have just completed an EM step as 

described in the prior two sections. We now embark on what is called a QUAD step.

The idea behind a QUAD step is that, especially when in the vicinity of a global 

maximum, the log likelihood function tends to become approximately quadratic. There 

are any number of ways we could take advantage of this fact. We could pick any single 

parameter, or combination of parameters defining a direction, fit a parabola, and find 

the maximum of this parabola as an ideally better point. Or we could use two parameters 

or directions or three or however many we wish, fit a quadratic surface, and find the 

maximum of this surface. Of course, the more directions we employ, the more free 

parameters must be estimated for the quadratic surface fit and hence the more (very 

expensive!) evaluations of the log likelihood function nearby are needed. He and Liu 

compromise on using two directions.

Which two directions are best? The direction taken by the just-completed EM 

step, which is θt - θt-1, certainly is reasonable; perhaps the EM step was on the right 

track with the direction but stepped a little too far or not quite far enough. Much study 

indicates that a major weakness of EM is that it zigzags back and forth, closely retracing 

prior movements like a sailboat tacking into the wind, or a switchback path up a 

mountainside. This inspires us to use θt - θt-2 as the other direction for the quadratic fit. 

It is likely to be fairly orthogonal to the first direction yet lie on a good plane in regard 

to most parameters. Thus, it is reasonable to approximate the log likelihood function in 
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the vicinity of θt by Equation (4.21), which is the actual log likelihood function when it is 

restricted to the two directions just described.

	
f x, y l x yt t t t t( )= + -( ) -( )éë ùûqq qq qq ++ qq qq- -1 2 	 (4.21)

We then approximate this function with the quadratic function f * shown in  

Equation (4.22). H is the two-by-two symmetric matrix of the second-order coefficients, 

with constants c and d on the diagonal, and e off-diagonal.

	 f x y f x y a b x y x y* , , , , ,( ) = + ( )( )¢ + ( ) ( )¢0 H 	 (4.22)

This quadratic approximation has six free parameters (f0, a, b, c, d, e), so we need six 

independent points at which the log likelihood is evaluated. For maximum numerical 

accuracy, they should be well separated and in the vicinity of θt. As was stated at the 

beginning of this section, we already have three such points (θt, θt-1, and θt-2) that define 

the plane in which we are operating. The logical choice for one of these would be to shoot 

past θt in the θt - θt-1 direction, going the same distance, thus placing θt midway between 

θt-1 and the new point. We could do the same with θt-2, again having θt be midway between 

θt-2 and the new point. The sixth and final point does not have such nice symmetry, but 

the logical choice would be to move past θt in the direction and distance of θt-1 - θt-2. There 

is no guarantee that these six points are spaced well enough apart to ensure numerical 

accuracy, and we should check on this, but in most cases they will be fine.

There is a complication: the individual, unique variances on the diagonal of Ψ 

cannot fall to zero, lest Equation (4.16) on page 233 perform the unthinkable. In fact, 

they cannot even get very close to zero, as this would introduce numerical instability all 

over the place. Moreover, my own version of the maximum likelihood algorithm imposes 

the additional restriction that the unique variances cannot get excessively close to one. 

This is not standard practice. The general algorithm does not require that the observed 

variables be standardized. As a consequence, there is no upper bound on the unique 

variances. But my implementation standardizes the variables, so a variance in excess of 

one makes no sense. It still may happen that the A matrix of factor loadings can imply 

variance greater than one, but in practice this tends to not happen, and even if it were 

to happen, the practical implication for data exploration are inconsequential, so no 

restrictions are placed on A. But standardization and enforcement of a 0-1 range for the 

unique variance makes interpreting these very important parameters easy. This is the 

justification for my modification of the usual algorithm. If you don’t like it, refraining 
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from standardization and removing upper bounds in the few places they occur in the 

code is trivially easy.

This 0-1 restriction means that we can’t just automatically jump past θt as we find the 

three new points that complete the set of six. We have to make sure that we do not jump 

past a limit of zero or one. The easiest way to do this is to limit the jump size by letting 

the new point be θt plus a multiplier times the distance and direction defining the jump. 

Ideally, this multiplier will be one, which will leave θt centered as discussed earlier. But if 

this jump would take us outside a limit, we lower the multiplier as needed. In particular, 

we define the three new points as follows:

	
x1 1 1= + -( )qq aa qq qqt t t - 	 (4.23)

	
x2 2 2= + -( )qq aa qq qqt t t - 	 (4.24)

	
x3 3 2= + -( )qq aa qq qqt t t- -1 	 (4.25)

In each of these three cases, for the sake of good spacing we let á be 1.0 if possible, 

but less if needed to stay inside the limit. If it turns out that á needs to be tiny in order to 

stay inside the limit, there’s no point in continuing, because the points will be too close; 

computation of the quadratic fit coefficients will be ill-conditioned.

We already know the log likelihood of θt, θt-1, and θt-2. We compute the log likelihood 

of each of the three new points. The constant f0 in Equation (4.22) would clearly best be 

l(θt) so that the function is centered there. The remaining five coefficients are computed 

as shown here:

	
a=

l l l lt t txx qq aa qq qq

aa aa
--1 1

2
1

1 1
2

( )- ( )- ( )- ( )é
ë

ù
û

+ 	
(4.26)

	
b=

l l l lt t txx qq aa qq qq

aa aa
--1 2

2
2

2 2
2

( )- ( )- ( )- ( )é
ë

ù
û

+ 	
(4.27)

	 c l l at t= ( )- ( )+-qq qq1 	 (4.28)

	
d l l bt= ( )- ( )+-qq qq2 t 	 (4.29)

	
e

l l a b c dt= -
( )- ( )- -( ) - +( )xx qq aa aa

aa
3 3 3

2

3
22 	

(4.30)
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The quadratic function expressed in Equation (4.22) on page 239 has a zero gradient 

at the (x,y) point given by Equation (4.31). This will usually be its maximum, although it 

will often be a saddle point. Only under rare pathological conditions will it be a minimum. 

Note that in the He and Liu paper cited earlier, they accidentally omit the minus sign.

	
x y a b,( )=- ( )1

2
, H-1

	 (4.31)

Once we have computed the a-e coefficients and found the stationary point of the 

quadratic approximation by using Equation (4.31), we are almost ready to test that point 

to see if it is an improvement. (It’s not unusual for the improvement to be huge!)

But as when we found the three extra x points, we have to worry about remaining 

inside our 0-1 interval for the unique variances. We handle the problem in essentially the 

same way, by moving in the (x,y) direction from θt as far as we can if we cannot get all the 

way to (x,y). This is expressed in Equation (4.32).

	
xx qq aa qq qq qq qq-- --4 4 1 2= + -( )éë ùû + -( )t t t t tx y 	 (4.32)

As we did with the three extra points, we try to let 4=1, in which case x4 is exactly 

at the stationary point of the quadratic fit. But if this point lies outside the permissible 

range of 0-1 for any unique variance, we shrink 4 as needed to bring it into the fold.

To finish, we select whichever of these seven points has the greatest log likelihood.

�Code for Quadratic Acceleration with DECME-2s
Much of the code for the algorithm of the previous section is just tedious repetition. The 

complete code, minus most error checking that depends on the implementation, can 

be found in AN_FACTOR.TXT. The presentation here will skip over a few sections that are 

redundant to prior code blocks. Because some coding issues are tricky but important, 

explanatory text will be interspersed with the code. Memory allocations for the many 

arrays can be found on page 248.

We begin with some basic initialization. The number of parameters is the number 

of unique variances plus the number of factor loadings. When this routine is called, 

theta_t contains the most recent parameters, those just computed by EMstep(), and LL_t 

is their log likelihood. (The tm1 and tm2 earlier points and their log likelihoods are also 

available.) These may end up being the best we’ve got because of QUADstep() failing to 
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cause any improvement. So initialize the best and return value to handle this possibility. 

Finally, initialize a flag to indicate if any ill-condition situations arise.

void AnalyzeFactorChild::QUADstep (double *LLret)

{

   int i, nparams, ill_conditioned;

   double direc, alim, alim1, alim2, alim3, alim4;

   double x, y, det, aa, bb, cc, dd, ee, cci, ddi, eei;

   nparams = npred + npred * n_dim;          // Psi, A

   *LLret = LL_t;                                           // �We return log likelihood here

   �memcpy (best_theta, theta_t, nparams * sizeof(double)); // �Keep track of  best here

   ill_conditioned = 0;                                   // �Will be set if  trouble happens

We now have to compute the three new points, those based on θt–θt–1, θt–θt–2, and 

θt–1–θt–2. We’ll present only the first, as the second and third are nearly identical. The 

following code computes α1 (alim1 in the code) in Equation (4.23) on page 240.

   alim1 = 1.0;              // �This is the ideal value, as it creates symmetric spacing

   for (i=0; i<npred; i++) {

      direc = theta_t[i] - theta_tm1[i];

      if  (direc > 0.0)

         alim = (1.0 - 1.e-5 - theta_t[i]) / direc;

      else if  (direc < 0.0)

         alim = (1.e-5 - theta_t[i]) / direc;

      else

         alim = 1.0;

      if  (alim < alim1)     // Ensure that all parameters are within the bounds

         alim1 = alim;

      }

In the previous code, alim1 will be the intersection (minimum) of all possible 

0-1 limitations and hence guarantees that all unique variance parameters are legal. 

If the direction for one of these parameters is positive, the upper limit of 1.0 will be 

our concern, so we keep it away from one by 1.e-5. If the direction is negative, hitting 

the lower bound of zero is the concern. Otherwise, we have no limit problem for this 

parameter. By keeping track of the minimum multiplier across all parameters, we 

guarantee that no parameter will go outside its legal bound.
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The offset of 1.e-5 is not critical, except for one thing. The EMstep() code shown on 

page 236 forced the computed unique variances to be 1.e-6 away from the 0-1 bound. 

This QUADstep() code must keep it a bit further away. Otherwise, QUADstep() could set a 

point outside the EMstep() limit, and if this point happens to be the winner and hence be 

kept, then EMstep() might force a backtrack. This would complicate convergence tests. In 

fact, there is nothing wrong with QUADstep() forcing the point to be even further inside 

the limits, perhaps a lot further, because there is no danger in doing this. All we are doing 

here is defining the positions of the three new points that form the basis of the quadratic 

fit. There’s not much critical about that, as long as the points are spaced far enough apart 

to ensure good numerical accuracy in computing the fit.

Now that we have a multiplier that is as close to the optimal 1.0 as possible, yet 

without violating any bounds, we can use Equation (4.23) on page 240 to compute the 

first of these three new trial points. The following steps are taken:

•	 If the step distance out from θt is so small that computation of the 

quadratic fit would be ill conditioned, we flag this fact so that we do 

not try the fit later. It would be reasonable to quit right here, instead 

of going on to the second point as I do in my implementation. 

However, continuing sometimes pays off, as the second or third point 

can often have superior log likelihood. Besides, the situation of a tiny 

multiplier is uncommon, so the issue is largely moot anyway.

•	 Evaluate the log likelihood (LL_1) at this first of the three new points. 

If it sets a new record, update the record and save these superior 

parameters in best_theta.

•	 In the extremely rare case (I’ve never seen it happen) that the log 

likelihood function has a catastrophic failure, set the ill_conditioned flag 

to prevent an attempt at a quadratic fit later.

   if  (alim1 < 0.01)  // �Points must be far enough apart to get a good quadratic curve

       ill_conditioned = 1;

   else {

      for (i=0; i<nparams; i++) {

         direc = theta_t[i] - theta_tm1[i];

         trial_theta[i] = theta_t[i] + alim 1 * direc;    // �Equation (4.23)

         }
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      LL1 = log_lik_fast (trial_theta);

      if  (LL1 > *LLret) {

         *LLret = LL1;

          �memcpy (best_theta, trial_theta, nparams * sizeof(double));

          }

      if  (LL1 < -1.e50)

          ill_conditioned = 1;

      }

The other two new points are similarly constructed; this redundant code is omitted 

here but can be found in AN_FACTOR.TXT. Before continuing to the quadratic fit, we 

make sure that the ill_conditioned flag has not been set. If all is good, we compute the five 

quadratic fit coefficients using Equations (4.26) through (4.30), which start on page 240.

   if  (ill_conditioned)  // We need all six points to be good to proceed

      goto QUAD_FINISH;

   aa = (LL1 - LL_t - alim1 * alim1 * (LL_tm1 - LL_t)) / (alim1 + alim1 * alim1);

   bb = (LL2 - LL_t - alim2 * alim2 * (LL_tm2 - LL_t)) / (alim2 + alim2 * alim2);

   cc = LL_tm1 - LL_t + aa;

   dd = LL_tm2 - LL_t + bb;

   ee = -0.5 * (LL3 - LL_t - (aa-bb) * alim3 - (cc + dd) * alim3 * alim3) / (alim3 * alim3);

Equation (4.31) on page 241 requires H−1, but we use the simple direct formula, 

because it is just two-by-two. We could even simplify the code a bit more by skipping the 

intermediate step of inverting the matrix, but it’s clearer this way. The determinant of 

the matrix is an important indicator of the situation. In the extremely unlikely event that 

the determinant is positive, we have a minimum instead of a maximum, so don’t bother 

continuing! If the determinant is tiny, the fit is too ill-conditioned to be worth pursuing.

   // Invert two-by-two H matrix

   det = cc * dd - ee * ee;

   if  (det > -1.e-12)

      goto QUAD_FINISH;

   cci = dd / det;       // Upper-left diagonal of  inverse

   ddi = cc / det;       // Lower-right

   eei = -ee / det;     // Off-diagonal
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   // Compute x and y, the max or saddle point of  this quadratic fit, using Equation (4.31)

   x = -0.5 * (aa * cci + bb * eei);

   y = -0.5 * (aa * eei + bb * ddi);

Now we have to use the same procedure that we used for the three new points, 

expressing this stationary (and ideally maximum) as θt plus a multiplier times the direction 

of the stationary point. With any luck, the multiplier can be 1.0 so that we can evaluate 

the log likelihood at exactly the stationary point (and ideally maximum versus just saddle 

point) of this quadratic fit. But we may have to shrink the multiplier below one in order to 

avoid violating the 0-1 constraint on one or more unique variances. We saw this expressed 

in Equation (4.32) on page 241. The code to do this is shown next. It is similar to what we 

saw earlier for the three new points. Then we just retrieve the best parameters. We’re done.

   alim4 = 1.0;

   for (i=0; i<npred; i++) {

      direc = x * (theta_t[i] - theta_tm1[i]) + y * (theta_t[i] - theta_tm2[i]);

      if  (direc > 0.0)

         alim = (1.0 - 1.e-5 - theta_t[i]) / direc;

      else if  (direc < 0.0)

         alim = (1.e-5 - theta_t[i]) / direc;

      else

         alim = 1.0;

      if  (alim < alim4) 

         alim4 = alim;

      }

   if  (alim4 < 0.01)      // �Not worth another expensive log likelihood eval if  this close

      goto QUAD_FINISH;

   else {

      for (i=0; i<nparams; i++) {

         direc = x * (theta_t[i] - theta_tm1[i]) + y * (theta_t[i] - theta_tm2[i]);

         trial_theta[i] = theta_t[i] + alim 4 * direc;    // Equation (4.32)

         }

      LL4 = log_lik_fast (trial_theta);

      if  (LL4 > *LLret) {

         *LLret = LL4;

         memcpy (best_theta, trial_theta, nparams * sizeof(double));

         }

      }
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QUAD_FINISH:

   memcpy (PSIvec, best_theta, npred * sizeof(double));

   memcpy (Amat, best_theta+npred, npred * n_dim * sizeof(double));

}

�Putting It All Together
In this section we’ll present an overview, along with numerous code fragments, about 

how to assemble the routines just seen into a complete routine for performing my 

modified version of maximum likelihood factor analysis. The full code, except for error 

handling, can be found in AN_FACTOR.TXT. We begin with the class declaration:

class AnalyzeFactorChild {

public:

   AnalyzeFactorChild (int npreds, int *preds, int n_dim, int nonpar);

   ~AnalyzeFactorChild ();

   int AnalyzeFactorChild::EMstep ();

   void AnalyzeFactorChild::QUADstep (double *LL);

   double AnalyzeFactorChild::log_lik (double *theta);

   double AnalyzeFactorChild::log_lik_fast (double *theta);

   int error;                          // Flags any error during constructor

   int npred;                        // Number of  predictors

   int n_dim;                       // User-specified number of  dimensions

   int preds[MAX_VARS];   // Database indices of  predictors

   int nonpar;                      // Use nonparametric correlation for tail control?

   // Work areas for optimization

   double *covar;                // Covariance (correlation) matrix

   double *Amat;

   double *Fmat;

   double *Gmat;

   double *Hmat;

   double *PSIvec;

   double *TEMPmat1;

   double *TEMPmat2;
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   double *invert_rwork;

   int *invert_iwork;

   // Work areas specifically for QUADstep

   double *theta_t;

   double *theta_tm1;

   double *theta_tm2;

   double *trial_theta;

   double *best_theta;

   double LL_t;

   double LL_tm1;

   double LL_tm2;

   double LL1;

   double LL2;

   double LL3;

   double LL4;

};

There are a few global variables that hold information about this process and its 

results. The purpose of these variables is to facilitate subsequent operations such as 

rotation or display. They are declared external here.

extern int eigen_npred;      // Number of  variables (generally predictors)

extern int eigen_preds[MAX_VARS]; // Their indices in database

extern int eigen_n_dim;     // User-specified number of  unobserved factors

extern double *eigen_evals;

extern double *eigen_structure;

extern double *eigen_phi;

We make local and global copies of the calling parameters. The error flag will be set to 

a nonzero quantity if there is an error during the constructor call.

   eigen_npred = npred = np;

   eigen_n_dim = n_dim = nd;

   nonpar = nonp;

   for (i=0; i<np; i++)

      eigen_preds[i] = preds[i] = p[i];

   error = 0;
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Back when the EMstep() and QUADstep() routines were presented, they referenced 

numerous arrays that we had to trust were properly allocated. We now see these 

allocations. The global variables need to be freed (or just reallocated, if that’s your 

preference) because their sizes may change now from what they were previously.

   if  (eigen_evals != NULL)

      FREE (eigen_evals);

   if  (eigen_structure != NULL)

      FREE (eigen_structure);

   if  (eigen_phi != NULL)

      FREE (eigen_phi);

   val = (double *) MALLOC (npred * sizeof(double));

   eigen_evals = (double *) MALLOC (npred * sizeof(double));

   eigen_structure = (double *) MALLOC (npred * npred * sizeof(double));

   eigen_phi = (double *) MALLOC (npred * sizeof(double));

   work1 = (double *) MALLOC (npred * sizeof(double)); // �For means and evec_rs()

   work2 = (double *) MALLOC (npred * sizeof(double)); // For stddev

   covar = (double *) MALLOC (npred * npred * sizeof(double));

   Amat = (double *) MALLOC (npred * n_dim * sizeof(double));

   Fmat = (double *) MALLOC (npred * n_dim * sizeof(double));

   Gmat = (double *) MALLOC (npred * n_dim * sizeof(double));

   Hmat = (double *) MALLOC (npred * n_dim * sizeof(double));

   PSIvec = (double *) MALLOC (npred * sizeof(double));

   TEMPmat1 = (double *) MALLOC (npred * npred * sizeof(double));

   TEMPmat2 = (double *) MALLOC (npred * npred * sizeof(double));

   invert_rwork = (double *) MALLOC ((npred * npred + 2 * npred) * sizeof(double));

   invert_iwork = (int *) MALLOC (npred * sizeof(int));

   k = npred * n_dim + npred; // Number of  parameters (Psi plus A)

   theta_t = (double *) MALLOC (5 * k * sizeof(double));

   theta_tm1 = theta_t + k;

   theta_tm2 = theta_tm1 + k;

   trial_theta = theta_tm2 + k;

   best_theta = trial_theta + k;
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   if  (nonpar)

      nonpar_work = (double *) MALLOC (2 * n_cases * sizeof(double));

   else

      nonpar_work = NULL;

If the user has requested that nonparametric correlation be used (to accommodate 

heavy-tailed data), we compute it here. See SPEARMAN.CPP for the computation routine.

   if  (nonpar) {

       k = 0;

       for (i=1; i<npred; i++) {

         for (j=0; j<i; j++) {

            for (icase=0; icase<n_cases; icase++) {

               nonpar_work[icase] = database[icase*n_vars+preds[i]];

               nonpar_work[n_cases+icase] = database[icase*n_vars+preds[j]];

               }

            �covar[i*npred+j] = spearman (n_cases, nonpar_work, nonpar_work+n_cases,

                                                            nonpar_work, nonpar_work+n_cases);

            ++k;

            }

         }

      }

Otherwise, we compute the mean and standard deviation and correlation matrix. 

It would be mathematically equivalent to directly compute the covariance matrix and 

then convert it to a correlation matrix, but that method has slightly less numerical 

stability. Note that although the correlation matrix is symmetric and evec_rs() ignores the 

redundant upper triangle, EMstep() is most efficient and clear when the entire matrix is 

filled in, so we copy the lower triangle to the upper.

   else {

      for (i=0; i<npred; i++)

         work1[i] = work2[i] = 1.e-60;

      for (i=0; i<n_cases; i++) {

         for (j=0; j<npred; j++)

            work1[j] += database[i*n_vars+preds[j]];

         }
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      for (j=0; j<npred; j++)

         work1[j] /= n_cases;    // Mean vector

      for (i=0; i<n_cases; i++) {

         for (j=0; j<npred; j++) {

            diff  = database[i*n_vars+preds[j]] - work1[j];

            work2[j] += diff  * diff;

            }

         }

      for (j=0; j<npred; j++)

         work2[j] = sqrt (work2[j] / n_cases);   // Standard deviation

//    Compute correlation matrix 'covar'

      for (i=1; i<npred; i++) {

         for (j=0; j<i; j++)

            covar[i*npred+j] = 0.0;

         }

      for (i=0; i<n_cases; i++) {

         for (j=1; j<npred; j++) {

            diff  = (database[i*n_vars+preds[j]] - work1[j]) / work2[j];

            for (k=0; k<j; k++) {

               diff2 = (database[i*n_vars+preds[k]] - work1[k]) / work2[k];

               covar[j*npred+k] += diff  * diff2;

               }

            }

         }

      for (j=0; j<npred; j++) {

         for (k=0; k<j; k++)

            covar[j*npred+k] /= n_cases;

         }

      } // Else not nonpar, so compute means, stddev, correl

//    The strict lower triangle has been computed. Fill in diagonal and upper triangle.
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   for (j=0; j<npred; j++) {

      covar[j*npred+j] = 1.0;

      for (k=j+1; k<npred; k++)

          covar[j*npred+k] = covar[k*npred+j]; // Needed for EMstep()

      }

We now compute the eigenvalues and vectors of the correlation matrix and then 

compute the initial factor structure matrix by multiplying each eigenvector by the square 

root of its corresponding eigenvalue. We place all of them in the global area, although 

the first n_dim columns will be replaced with the factors later. Of more immediate 

importance is that we place the first n_dim columns in Amat, which will be the current 

estimate of the factor loadings throughout the algorithm.

   evec_rs (covar, npred, 1, eigen_structure, eigen_evals, work1);

   for (i=0; i<npred; i++) {

      for (j=0; j<npred; j++) {

         eigen_structure[i*npred+j] *= sqrt(eigen_evals[j]);

         if  (eigen_structure[i*npred+j] < -1.0) // �In a perfect fpt world would never happen

            eigen_structure[i*npred+j] = -1.0;

         if  (eigen_structure[i*npred+j] > 1.0)

            eigen_structure[i*npred+j] = 1.0;

         if  (j < n_dim)

            Amat[i*n_dim+j] = eigen_structure[i*npred+j];

         }

      }

Compute the initial value of the Psi (Ψ) diagonal as was described on page 232. In 

particular, we implement Equation (4.15). Keep all of the unique variances away from 

zero, as many things become undefined or unstable at or near zero. We save these values 

in the global area, even though they will be overwritten later. It’s silly, perhaps, but clean 

and clear. More importantly, we save them in PSIvec, which will hold the current values 

during optimization.
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   for (i=0; i<npred; i++) {

      eigen_phi[i] = 1.0;

      for (j=0; j<n_dim; j++)

         eigen_phi[i] -= eigen_structure[i*npred+j] * eigen_structure[i*npred+j];

      if  (eigen_phi[i] < 1.e-3)

         eigen_phi[i] = 1.e-3;

      PSIvec[i] = eigen_phi[i]; // Initialize for optimization

      }

We come now to the heart of the matter, the iterative alternation of EMstep() and 

QUADstep(). When we get to QUADstep(), we’ll need the log likelihood at three points: 

current (t), lag 1 (tm1), and lag2 (tm2). These are as follows:

        theta_t         LL_t

        theta_tm1    LL_tm1

        theta_tm2    LL_tm2

So we initialize by letting the starting values just computed be the oldest point, 

and then we run one EMstep() to be the second oldest. When we get inside the loop, 

we’ll begin the loop with an EMstep(), which will give the current point. Here is the 

initialization code. Note that the values computed now will be shifted back one time slot 

inside the loop. Also recall that PSIvec and Amat are the current values of the parameters 

as optimization progresses, and they serve as both input to and output from EMstep().

   memcpy (theta_tm1, PSIvec, npred * sizeof(double));

   memcpy (theta_tm1+npred, Amat, npred * n_dim * sizeof(double));

   LL_tm1 = log_lik_fast (theta_tm1);

   if  (EMstep ()) {

      // Issue error message here; this error is extremely unlikely

      goto FACTOR_FINISH;

      }

   memcpy (theta_t, PSIvec, npred * sizeof(double));

   memcpy (theta_t+npred, Amat, npred * n_dim * sizeof(double));

   LL_t = log_lik_fast (theta_t);

   EMreverse = 0;  // �Will count rare pathological event that can cause endless looping
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Preparation for the iteration is complete. We have the log likelihood computed at two 

points and stored in the current (t) and lag 1 (tm1) slots. For cleanliness, we place a limit 

on looping. In practice, we will never come even close to this limit. The optimization 

loop now begins.

The first step in the loop is to perform an EMstep(), which modifies the current values of 

PSIvec and Amat to be an improvement. Then we shift the two most recent points (t and tm1) 

and their log likelihoods back one time slot into the past and update the current point.

   for (iter=0; iter<10000; iter++) {

      if  (EMstep ()) {  // �This takes and returns PSIvec and Amat without touching theta_t

         // Issue error message here

         break;

         }

      memcpy (theta_tm2, theta_tm1, npred * sizeof(double));

      memcpy (theta_tm2+npred, theta_tm1+npred, npred * n_dim * sizeof(double));

      LL_tm2 = LL_tm1;

      memcpy (theta_tm1, theta_t, npred * sizeof(double));

      memcpy (theta_tm1+npred, theta_t+npred, npred * n_dim * sizeof(double));

      LL_tm1 = LL_t;

      memcpy (theta_t, PSIvec, npred * sizeof(double)); // �EMstep() computed this

      memcpy (theta_t+npred, Amat, npred * n_dim * sizeof(double));

      LL_t = log_lik_fast (theta_t);

We check here for an unusual but possible pathological situation. If one or more of 

the unique variances (PSIvec) are extremely close to their 0-1 bound and EMstep() wants 

to drive them even closer, past the threshold built into the algorithm, then the value may 

bounce back and forth endlessly, pushed past the threshold by the EM algorithm and 

then snapped back by my modification that keeps them all away from the boundary. 

Count occurrences of this and abort if necessary.

      if  (LL_t < LL_tm1) {

         ++EMreverse;

         if  (EMreverse > 10) {

             // Issue error message here  

             break;

             }

         }
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At this point we have our three points, so we can call QUADstep(). Then we shift the former 

current value back one time slot and update the current value. There is no need to copy tm1 

to tm2 as we did after EMstep() because EMstep() does not need any lagged values.

      QUADstep (&LL); // Takes t, tm1, and tm2 as input and computes PSIvec, Amat

      memcpy (theta_tm1, theta_t, npred * sizeof(double));

      memcpy (theta_tm1+npred, theta_t+npred, npred * n_dim * sizeof(double));

      LL_tm1 = LL_t;  // This came from EM above

      memcpy (theta_t, PSIvec, npred * sizeof(double));

      memcpy (theta_t+npred, Amat, npred * n_dim * sizeof(double));

      LL_t = LL;   // This came from the QUADstep we just did

At this point, tm1 is after the most recent EMstep(), t is after this QUADstep(), and tm2 is 

still after the EMstep() before the most recent EMstep().

The final step in the loop is to check for convergence. It is dangerous to use changes 

in the log likelihood as a convergence test (though many do) because this function can 

become extremely flat near the optimum. So instead we base the test on the maximum 

change in any parameter after a set of three optimization steps, QUADstep(), EMstep(), 

and QUADstep(). (It really is three instead of what appears at first glance to be two; walk 

through the code if you don’t believe me.)

      max_change = 0.0;

      for (i=0; i<npred+npred*n_dim; i++) {

         diff  = fabs (theta_t[i] - theta_tm2[i]);

         if  (diff  > max_change)

            max_change = diff;

         }

      if  (max_change < 1.e-6)            // Fairly arbitrary choice

          ++convergence_counter;

      else

         convergence_counter = 0;

      if  (convergence_counter > 2)    // Fairly arbitrary choice  

          break;

      }
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After convergence is obtained, we copy the class variables containing the unique 

variances and factor loadings to the global area. Compute eigen_evals as the squared 

length of each column; it’s not really an eigenvalue, but the resemblance is there, and 

we’ll make some use of this in a moment.

   for (i=0; i<npred; i++) {

      eigen_phi[i] = PSIvec[i];

      for (j=0; j<n_dim; j++)

         eigen_structure[i*npred+j] = Amat[i*n_dim+j];

      }

   for (j=0; j<n_dim; j++) {

      sum = 0.0;

      for (i=0; i<npred; i++)

         sum += Amat[i*n_dim+j] * Amat[i*n_dim+j];

      eigen_evals[j] = sum;

      }

Sometimes it can be useful to see the factor loadings with the columns sorted from 

most to least prominent, as is the case for raw principal components. Note that this is 

not as useful as may seem, because unlike principal components, factor loadings are not 

unique and do not necessarily come out of the optimization algorithm in any particular 

order. Because we do initialize the loading to be principal components, there is usually a 

strong resemblance. But the factor loadings are unique only up to rotation; they define a 

unique subspace, but orthogonal rotations within that subspace give identical values for 

the log likelihood. So if you are interested in the loadings, it often pays to do a rotation 

such as varimax after computing them.

The code on the next page is a crude but simple algorithm for sorting the columns 

according to their squared length. Last but not least, we free all of the work areas.

   for (i=1; i<n_dim; i++) {

      im1 = i - 1;

      ibig = im1;

      big = eigen_evals[im1];

      /* Find largest eval beyond im1 */
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      for (j=i; j<n_dim; j++) {

         if  (eigen_evals[j] > big) {

            big = eigen_evals[j];

            ibig = j;

            }

         }

      if  (ibig != im1) {  // Do we need to swap ibig and im1?

         eigen_evals[ibig] = eigen_evals[im1];

         eigen_evals[im1] = big;

         for (j=0; j<npred; j++) {

            sum = eigen_structure[j*npred+im1];

            eigen_structure[j*npred+im1] = eigen_structure[j*npred+ibig];

            eigen_structure[j*npred+ibig] = sum;

            }

         }

      }

FACTOR_FINISH:

   FREE (covar);

   FREE (work1);

   FREE (work2);

   FREE (Amat);

   FREE (Fmat);

   FREE (Gmat);

   FREE (Hmat);

   FREE (PSIvec);

   FREE (TEMPmat1);

   FREE (TEMPmat2);

   FREE (invert_rwork);

   FREE (invert_iwork);

   FREE (theta_t);

   if  (nonpar_work != NULL)

       FREE (nonpar_work);

}
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�Thoughts on My Version of the Algorithm
I’ve mentioned several times during this development that my version of the maximum-

likelihood factor analysis algorithm is slightly different from the usual version, though 

not much, and easily revised to the standard version. The reason is that in my own 

work, I am not so much interested in the factor loadings as the unique variances. This 

lets me identify any variables that are members of highly redundant sets. Such variables 

can be removed or given special treatment. One particularly useful approach is to 

collect all variables with unique variance near zero and compute their most dominant 

principal components. This provides a few very nonredundant variables to replace many 

redundant variables, usually with negligible loss of information.

Since a measure of uniqueness versus redundancy is my primary goal, I am 

motivated to standardize the variables before beginning the factor analysis and then 

enforce a rigid 0−1 constraint on the unique variances. This makes the computed values 

easy to interpret. The more usual approach is to ensure that the variables are roughly 

commensurate before conducting the analysis, avoid standardization, and impose no 

upper limit on the unique variance.

If you want to implement the usual algorithm rather than mine, the changes in the 

code are almost trivial to implement. Skip standardization, computing the covariance 

matrix instead of the correlation matrix. In the code that computes the initial estimate 

of Psi, Equation (4.15) on page 233 will have to be evaluated with the actual diagonal 

of S, the variances, rather than 1.0, which is the diagonal of a correlation matrix. In the 

EMstep() code, remove the imposition of an upper bound of one. In the QUADstep() code 

do the same. That’s it. But please understand that in the absence of standardization, 

convergence can be significantly slower than with standardized variables.

�Measuring Coherence
It is often the case that a set of variables that are measured across time will have 

varying interrelationships. It may be that under “normal” circumstances they move in 

predictable patterns relative to one another. One example comes from the commodity 

futures markets. Long-range (several months ahead) weather predictions impact futures 

prices for grains, which in turn impact futures prices for meat products. If a time comes 

along in which their interrelationship falters, this is an indication that something funny is 

going on, and maybe we had better sit up and pay attention. In particular, if we are using 

a trained model to make predictions, we should consider whether this model is still valid.
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The opposite situation can happen as well: time-series variables that normally 

have a certain degree of independence may suddenly begin to track unnaturally. The 

classic example of this is in the stock market. Frightening world events, such as talk of 

immanent war, may cause the prices of all market sectors to trend lower simultaneously, 

when under normal circumstances they tend to move somewhat independently.

Of course, these phenomena are not limited to financial applications. Suppose an 

assembly line monitors various recent (across a lookback window of time) parameters 

such as flow rate of various ingredients, temperature of heating chambers, color of final 

product as it rolls off the line, and so forth. Normally, these variables should have a fairly 

constant interrelationship. If we suddenly see this relationship disappear, we had better 

run some diagnostics on the line and see what’s going on.

It should come as no surprise that there is an infinite number of ways to measure 

coherence, the degree to which a set of time-series variables are interrelated within a 

lookback window that moves forward as time progresses. One reasonable way is to 

determine how much of the standardized total variance is concentrated in the largest 

eigenvalue. (We should always standardize the variables so that individual offsets and 

scales do not impact our measurement.) The disadvantage of this approach is that it 

measures the degree to which coherent variation exists in a single dimension. Sometimes 

this is appropriate, so we should consider the largest eigenvalue as a possible measure 

of coherence. But in many or most applications, coherence may be represented by 

relationships in several dimensions. As a trivial example, we may have four variables, 

and their normal relationship may be that X1 and X2 are correlated, as are X3 and X4, 

while variables in the first pair have little or no relationship with those in the second 

pair. Examining just the largest eigenvalue will miss this dual relationship since a single 

eigenvector cannot represent both relationships.

This problem can be alleviated by considering the fraction of the total variance 

contained in the few largest eigenvalues. But this requires an assumption of how many 

relationships exist (the dimensionality of the relationship space). In many cases, one can 

do an eigenstructure analysis in advance, under normal conditions, and choose to use 

the number of dominant eigenvalues. This is a good approach when it is feasible.

I now present a more general approach that is appropriate when one does not have 

prior information concerning the number of valid relationships or when the number of 

relationships varies across time, a common occurrence when there is a large number of 

variables. This would be the case, for example, when we are studying the price changes 

of a large basket (a hundred or more) of equities. This method is superior under such 

conditions but inferior when the dimensionality is constant and we know what it is.  

Chapter 4  Fun with Eigenvectors



259

So if we happen to have a known fixed dimensionality, the best approach is to add that 

number of largest eigenvalues and divide by the sum of all eigenvalues (which will equal 

the number of variables if the variables are standardized).

A good way to approach the more general situation (no assumption of 

dimensionality) is to visualize the eigenvalues, sorted from largest to smallest, as sitting 

on a teeter-totter or balance-beam scale. Imagine that the largest eigenvalue is on the 

far left, the smallest on the far right, and the intermediates equally spaced in between. 

The coherence is the rotational force exerted on the beam caused by imbalance in the 

eigenvalues. We can compute this force as a weighted sum of the eigenvalues, with the 

weights defined by the equally spaced locations on the beam. The weights to the left of 

the center are positive, and the weights to the right of center are symmetrically negative.

Let’s consider the two most extreme possibilities. Suppose every variable is 

completely independent of every other variable within our lookback window. Their 

correlation matrix will be an identity matrix, and the eigenvalues will all be equal 

(1.0). Because the weights given to each eigenvalue are symmetric around the center 

(in accord with the balance beam analogy), the weighted sum will be zero. Thus, the 

coherence in this totally uncorrelated situation will be zero. Note that a coherence less 

than zero is not possible, because the eigenvalues are sorted, with the larger values on 

the left (positive weights) side.

For convenience, we scale the weights such that the leftmost weight (that for the 

largest eignvalue) is 1.0, and that for the rightmost (the smallest eigenvalue) is -1.0. Now 

suppose the measured variables are all perfectly correlated with one another; they are 

all (possibly different) linear transformations of some underlying variable. There will 

be only one nonzero eigenvalue in this one-dimensional situation, and it will equal 

the number of variables. Hence, the weighted sum will be the number of variables (the 

leftmost weight times this largest eigenvalue). If we normalize the weighted sum by 

dividing it by the number of variables, we see that the coherence in this situation of all 

variables being perfectly correlated with one another is 1.0.

Thus, we have a 0-1 measure of the degree to which a set of variables have 

correlations among themselves, as defined by the imbalance in their eigenvalue 

distribution. This measure makes no assumptions on the dimensionality of the 

underlying structure.

Note that in real life, random variation will cause variables that are truly uncorrelated 

to have some measured correlation, especially if the lookback window is short. Any 

correlation at all among the measured variables will cause some imbalance in the 

eigenvalues; the only way they can all be equal (and hence achieve perfect balance) is if 
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all off-diagonal correlations are exactly zero. So in practice, the computed coherence has 

an unavoidable upward bias. But usually we are not interested in the actual coherence. 

In a data mining situation we are most concerned with stability across time: is the 

coherence reasonably constant? It is a sudden unexplained change in the coherence that 

merits our attention. That’s the flag for employing multiple models or other remedial 

action.

�Code for Tracking Coherence
We show here the essential code for computing coherence across a moving window. As 

usual, mundane things like error checking are omitted for clarity. The complete code can 

be found in the file AN_COHERENCE.CPP.

We begin with allocation of memory. The array val will hold the computed coherence 

values. All other allocations are temporary work areas. There are n_cases in the database, 

each consisting of a row of n_vars variables, from which we will select npred of them, 

indexed in preds. The moving window consists of lookback observations.

   int icase, i, j, k;

   double *dptr, *means, *evals, *evects, *workv, minval, maxval, meanval;

   double sum, total, diff, diff2, *nonpar_work, factor;

   char msg[512], line[1024], coherence_log[1024];

   FILE *fp;

   val = (double *) MALLOC ((n_cases-lookback+1) * sizeof(double));

   means = (double *) MALLOC (npred * sizeof(double));

   covar = (double *) MALLOC (npred * npred * sizeof(double));

   evals = (double *) MALLOC (npred * sizeof(double));

   evects = (double *) MALLOC (npred * npred * sizeof(double));

   workv = (double *) MALLOC (npred * sizeof(double));

   if  (nonpar)  // Did the user request nonparametric correlation?

      nonpar_work = (double *) MALLOC (2 * lookback * sizeof(double));

   else

      nonpar_work = NULL;

/*

   Get ready to write coherence values to a file

*/
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   _fullpath (coherence_log, "COHERENCE.TXT", 1024); // �Will write coherences here

   if  (fopen_s (&fp, coherence_log, "wt")) {

       // Handle error messages here

      goto COHERENCE_FINISH;

      }

This is the main loop that processes all cases. We’ll keep track of the minimum, 

maximum, and mean coherences to report to the user.

/*

   Main outer loop does all cases

*/

   minval = 1.e30;

   maxval = -1.e30;

   meanval = 0.0;

   for (icase=lookback-1; icase<n_cases; icase++) {

If the user requested nonparametric correlation, compute it here. We need only the 

lower minor triangle of the symmetric correlation matrix.

      if  (nonpar) {

          covar[0] = 1.0;                             // First diagonal entry

          for (i=1; i<npred; i++) {

             for (j=0; j<i; j++) {                      // Just do lower minor triangle

                for (k=0; k<lookback; k++) {  // Traverse the moving window

                   dptr = database + n_vars * (icase - k);        // �Point to this case in database

                   nonpar_work[k] = dptr[preds[i]];                  // Get one variable

                   nonpar_work[lookback+k] = dptr[preds[j]];  // And the other

                   }

                �covar[i*npred+j] = spearman (lookback, nonpar_work, // In SPEARMAN.CPP

                                 nonpar_work+lookback, nonpar_work, nonpar_work+lookback);

                }

             covar[i*npred+i] = 1.0;           // Diagonal of  a correlation matrix is 1.0

             }

          }
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If the user did not request nonparametric correlation, compute the covariance 

matrix and then convert it to a correlation matrix. First we must compute the means to 

center the data.

      else {

         for (i=0; i<npred; i++)

            means[i] = 0.0;

         for (i=0; i<lookback; i++) {                             // �Compute means across window

            dptr = database + n_vars * (icase - i);       // �Point to this case in database

            for (j=0; j<npred; j++)

               means[j] += dptr[preds[j]];

            }

         for (j=0; j<npred; j++)

            means[j] /= lookback;

Now compute the covariance matrix and convert it to a correlation matrix.

         for (i=0; i<npred; i++) {

            for (j=0; j<=i; j++)

               covar[i*npred+j] = 0.0;

            }

         for (i=0; i<lookback; i++) {

            dptr = database + n_vars * (icase - i);         // �Point to this case in database

            for (j=0; j<npred; j++) {                                 // One variable

               diff  = dptr[preds[j]] - means[j];                   // Center it

               for (k=0; k<=j; k++) {                                 // �Lower triangle, including diagonal

                  diff2 = dptr[preds[k]] - means[k];           // �Center the other variable

                  covar[j*npred+k] += diff  * diff2;             // �Definition of  covariance

                  }

               }

            }

         for (j=0; j<npred; j++) {

            for (k=0; k<=j; k++)

               covar[j*npred+k] /= lookback;

            }
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         for (j=1; j<npred; j++) {            // �Convert lower minor triangle to correlations

            for (k=0; k<j; k++)

               covar[j*npred+k] /= sqrt (covar[j*npred+j] * covar[k*npred+k]);

            }

         for (j=0; j<npred; j++)              // Diagonal is unity

            covar[j*npred+j] = 1.0;

         } // Else not nonpar, so compute means and covar, correlation

Compute the eigenvalues of the correlation matrix. Compute the coherence and 

store it in val for display and writing to a file. The total is the sum of all eigenvalues, which 

theoretically equals npred, so this is a minor waste but helps with clarity and tiny floating-

point errors.

         evec_rs (covar, npred, 0, evects, evals, workv);    // In EVEC_RS.CPP

         factor = 0.5 * (npred - 1);                     // Center of  balance beam

         sum = total = 0.0;

         for (i=0; i<npred; i++) {

            total += evals[i];                                // Not really needed

            sum += (factor - i) * evals[i] / factor; // Coherence is weighted sum

            }

         // Compute and save the criterion

         sum /= total;

         val[icase-lookback+1] = sum;

         if  (val[icase-lookback+1] > maxval)

             maxval = val[icase-lookback+1];

         if  (val[icase-lookback+1] < minval)

             minval = val[icase-lookback+1];

         meanval += val[icase-lookback+1];

         } // For all cases
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�Coherence in the Stock Market
On the next page I show coherence plots for just three stocks, BAC, DOW, and IBM, 

which represent very different market sectors. Both use nonparametric correlation of 

daily market changes. The top plot has a lookback of 50 days, and the bottom 252 days 

(about one year of trading).

One thing that pops out is the tremendous range of coherence. With just 50 days, the 

coherence ranges from practically zero to almost 0.9, and even with a year of lookback it 

still varies tremendously. The sudden sharp spike just before case 1000 is Black Monday 

(October 19, 1987). Surely there is useful information to data mine here!

Figure 4-2.  Coherence with lookback=50
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Figure 4-3.  Coherence with lookback=252
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CHAPTER 5

Using the DATAMINE 
Program
This chapter serves as a user’s manual for the DATAMINE program, which demonstrates 

the algorithms presented in this book. Each menu selection is discussed in its own 

section.

�File/Read Data File
A text file in standard database format is read. In particular, standard-format Excel CSV 

files may be read, as well as databases produced by many common statistical and data 

analysis programs. The first line must specify the names of the variables in the database. 

The maximum length of each variable name is 15 characters. The name must start with a 

letter and may contain only letters, numbers, and the underscore (_) character.

Subsequent lines contain the data, one case per line. Missing data is not allowed.

Spaces, tabs, and commas may be used as delimiters for the first (variable names) 

and subsequent (data) lines.

Here are the first few lines from a typical data file. Six variables are present, and three 

cases are shown.

RAND0 RAND1 RAND2 RAND3 RAND4 RAND5

-0.82449359   0.25341070   0.30325535  -0.40908301  -0.10667177  0.73517430

-0.47731471  -0.13823473  -0.03947150   0.34984449   0.31303233  0.66533709

 0.12963752  -0.42903802   0.71724504   0.97796118  -0.23133837  0.81885117
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�File/Exit
The program is terminated.

�Screen/Univariate Screen
The algorithm described starting on page 110 is used to screen a set of predictor 

candidates for a relationship with a single target. The menu shown in Figure 5-1 will 

appear.

Figure 5-1.  Univariate screening

The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be tested for a 

relationship with a single target.

•	 Target: Select a single target.
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•	 Predictor bin definition: Specify the nature of the predictors (and by 

extension, the target). The choices are as follows:

•	 Predictors and target continuous: All variables are to be treated as 

continuous.

•	 Use all cases: All variables are treated as discrete. Continuous 

variables are converted to discrete bins. The user must specify the 

number of bins to use for the predictors.

•	 Use tails only: The predictors are split into two bins: the tails 

(extreme values). The user must specify the fraction of extreme 

values to keep in each tail.

•	 Target bins: If the user selected either of the discrete options (Use all 

cases or Use tails only), then this specifies the number of bins into 

which the target variable is categorized.

•	 Continuous subtypes: If the user selected Predictors and target 

continuous, you specify the relationship criterion to be used. See the 

section beginning on page 77.

•	 Discrete subtypes: If the user selected either of the discrete options 

above (Use all cases or Use tails only), then this specifies the 

relationship criterion to be used. See the section beginning on page 77.

•	 Monte Carlo Permutation Test: A Replications value greater than 1 

will cause a Monte Carlo permutation test to be performed, with this 

many tests run, one of which is unpermuted. The user also specifies 

the type of permutation, Complete or Cyclic. This topic is discussed 

starting on page 89.

•	 CSCV subsets: This controls performance of the CSCV test, discussed 

starting on page 97.

�Screen/Bivariate Screen
This section discusses bivariate screening, in which we search for relationships between 

one or more predictor candidates and one or more target candidates. The menu shown 

in Figure 5-2 will appear.
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The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be tested for 

pairwise relationships with one or more targets.

•	 Target: Select a set of targets to be tested for a relationship with pairs 

of predictors.

•	 Predictor bins: This specifies the number of bins into which the 

predictor variables are categorized.

•	 Target bins: This specifies the number of bins into which the target 

variables are categorized.

•	 Criterion: The user chooses whether the relationship criterion is 

mutual information (page 17) or uncertainty reduction (page 61).

•	 Monte Carlo Permutation Test: A Replications value greater than 1 

will cause a Monte Carlo permutation test to be performed, with this 

many tests run, one of which is unpermuted. The user also specifies 

the type of permutation, Complete or Cyclic. This topic is discussed 

starting on page 89.

Figure 5-2.  Bivariate screening
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•	 Max printed: If the user specifies numerous predictors and targets, 

the number of combinations of pairs of predictors with individual 

targets can be enormous. A line in the DATAMINE.LOG file is printed for 

each such combination, sorted from best to worst. This option lets the 

user limit the number of lines printed, beginning with the best.

�Screen/Relevance Minus Redundancy
This section discusses relevance-minus-redundancy screening, in which we use a 

forward stepwise search for relationships between a set of predictor candidates and a 

single target variable. This algorithm was discussed on page 124. The menu shown in 

Figure 5-3 will appear.

Figure 5-3.  Relevance-minus-redundancy screening

The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be stepwise tested 

for inclusion in the set of predictors having maximum relationship 

with the target.

•	 Target: Select a single target to be tested for a relationship with a set 

of predictors.

Chapter 5  Using the DATAMINE Program



272

•	 Predictor bin definition: Specify the nature of the predictors (and, by 

extension, the target). The choices are as follows:

•	 Predictors and target continuous: All variables are to be treated as 

continuous.

•	 Use all cases: All variables are treated as discrete. Continuous 

variables are converted to discrete bins. The user must specify the 

number of bins to use for the predictors.

•	 Use tails only: The predictors are split into two bins: the tails 

(extreme values). The user must specify the fraction of extreme 

values to keep in each tail.

•	 Target bins: If the user selected either of the discrete options (Use all 

cases or Use tails only), then this specifies the number of bins into 

which the target variable is categorized.

•	 Max kept: This is the maximum number of variables in the predictor set.

•	 Monte Carlo Permutation Test: A Replications value greater than 1 

will cause a Monte Carlo permutation test to be performed, with this 

many tests run, one of which is unpermuted. The user also specifies 

the type of permutation, Complete or Cyclic. This topic is discussed 

starting on page 89.

�Screen/FREL
The Feature Weighting as Regularized Energy-Based Learning (FREL) algorithm 

presented starting on page 141 is used to rank predictor candidates in terms of their 

relationship with a single target variable. This method is particularly useful when the 

data is fairly clean (noise-free) but has relatively few cases compared to the number of 

predictor candidates. The menu screen shown in Figure 5-4 appears.
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The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be ranked in terms 

of their relationship with the target.

•	 Target: Select a single target to be tested for a relationship with a set 

of predictors.

•	 Target bins: This specifies the number of bins into which the target 

variable is categorized.

•	 Regularization factor: This controls penalization for excessively 

large weights in the ranking scores. It is legal and computationally 

harmless to set this to zero. A general discussion of this parameter 

appears on page 145. Also see a more specific example of its use on 

page 151.

Figure 5-4.  FREL screening
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•	 Bootstrap iterations and Sample size: This is the number of bootstrap 

iterations to use, as well as the sample size for each. Bootstrapping is 

nearly always beneficial. See the discussion on page 146 for details.

•	 Monte Carlo Permutation Test: A Replications value greater than 1 

will cause a Monte Carlo permutation test to be performed, with this 

many tests run, one of which is unpermuted. The user also specifies 

the type of permutation, Complete or Cyclic. This topic is discussed 

starting on page 147.

�Analyze/Eigen Analysis
An eigenvalue/eigenvector analysis as described starting on page 189 is performed. The 

eigenvalues and their cumulative percent of total variance are printed, along with the 

factor structure. A graph of the cumulative percent is displayed on the screen.

The user specifies the variables that are to take part in the analysis. If the 

Nonparametric box is checked, Spearman rho (page 79) is used to compute the 

correlation matrix instead of ordinary correlation. This is useful when the data may have 

outliers.

�Analyze/Factor Analysis
A maximum-likelihood factor analysis as described starting on page 221 is performed. 

The eigenvalues and their cumulative percent of total variance are printed first, along 

with the factor structure and initial Psi estimates (basic communalities). A graph of the 

cumulative percent is displayed on the screen. Then, the final factor analysis information 

is printed. Note that the Squared length printed at the top of each column of factor 

loadings is roughly analogous to the eigenvalues for an ordinary principal components 

analysis, but only roughly. This is because these factors are unique only up to rotation, so 

the natural ordering seen with the eigenvalues is no longer guaranteed.

The user specifies the variables that are to take part in the analysis. If the 

Nonparametric box is checked, Spearman rho (page 79) is used to compute the 

correlation matrix instead of ordinary correlation. This is useful when the data may have 

outliers.
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�Analyze/Rotate
If the user has performed either an Eigen analysis or a Factor analysis, a varimax factor 

rotation (page 199) may be performed. The menu shown in Figure 5-5 appears.

Figure 5-5.  Rotate eigenvectors

The user must specify the number of factors to rotate. If the starting factors are from 

an Eigen analysis, we rotate the factor loadings corresponding to the specified number of 

largest eigenvalues. If they are from a Factor analysis, fully sensible results are obtained 

only if the user specifies the fixed number of factors that were computed in the factor 

analysis.

There are three ways to specify the number of factors to be rotated:

•	 A fixed number

•	 Those (starting from the largest eigenvalue) that make up the 

specified minimum percent of total variance.

•	 Horn’s algorithm, described on page 202, determines the number of 

factors to keep. In this case, the percentile and number of replications 

must be specified.

Chapter 5  Using the DATAMINE Program



276

�Analyze/Cluster Variables
The technique described starting on page 213 is used to cluster variables. This operation 

may be invoked only if an Eigen analysis (most sensible) or Factor analysis (less sensible) 

has been performed. The user makes three specifications.

•	 Centroid method (vs leader): If this box is checked, the centroid 

method is used for updating group identifiers. Otherwise, the leader 

method (keep the characteristics of one group) is used.

•	 Number of factors to keep: This is the number of factors on which to 

base the clustering. If an Eigen analysis is used for this clustering (the 

usually recommendation), these will be the factors corresponding to 

the largest eigenvalues.

•	 Start printing group membership when n reaches: The number of 

groups starts out at the number of variables. Each time a group is 

absorbed, the program can print group membership information. 

Obviously, this can result in a huge printout if the number of 

variables is large. This option lets the user specify that group 

membership printing does not begin until this many groups remain.

�Analyze/Coherence
A time-domain coherence analysis, as described on page 257, is performed. The user 

specifies the variables that are to take part (which must be aligned in time) as well as the 

following parameters:

•	 Connect: If this box is checked, the plotted coherence values are 

connected. Otherwise, they are discrete vertical bars.

•	 Nonparametric: If this box is checked, Spearman rho (page 79) is 

used to compute the correlation matrix. Otherwise, it is computed 

with ordinary correlation. This option is recommended if the data 

may have outliers.
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•	 Lookback window cases: This many of the most recent cases are used 

in the moving window for computation of coherence within the 

window. Longer windows result in more accurate measurements but 

poorer location in time.

�Plot/Series
This just plots a time series of a single variable selected by the user. If the Connected box 

is checked, the plotted points are connected. Otherwise, each point is represented by a 

discrete vertical line.

�Plot/Histogram
This plots a histogram of a single variable selected by the user. The user may optionally 

request that the lower and/or upper bounds of the plot be limited to specified values. 

If this is not done, the actual plot limits are at or slightly outside the full range of the 

variable. The user also specifies the number of bins to use.

�Plot/Density
A plot for revealing relationship anomalies, as discussed starting on page 167, is done. 

The menu shown in Figure 5-6 appears.
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The user specifies the following items:

•	 Horizontal variable: This is the variable that will be represented by 

the horizontal axis. The user may optionally check the Lower limit 

and/or the Upper limit box above this list and specify a numeric value 

(values) for display limits. If a box is not checked, the corresponding 

limit is at or slightly outside the actual range of the variable.

•	 Vertical variable: This specifies the variable for the vertical axis, as 

described.

•	 Plot in color: If this box is selected, the plot will be in color, with 

yellow indicating large values of the plotted quantity and blue 

indicating small values. Otherwise, it is black-and-white, with black 

indicating large values and white indicating small values.

•	 Sharpen: If this box is selected, areas of unusually large concentration 

are made to stand out from the background by accentuating them at 

the expense of contrast in other areas.

Figure 5-6.  Variable pair density
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•	 Histogram equalization: If this box is selected, the program applies 

a nonlinear transform to the data in such a way that every possible 

displayed tone or color occurs in the display in approximately equal 

quantity. The effect of this transformation is usually that small 

changes in the data are made more visible, while simultaneously 

reducing the prominence of large changes.

•	 Resolution: This is the number of horizontal and vertical divisions 

at which the plot is computed. Computation time is roughly 

proportional to the square of this value. Larger values can reveal 

more detail about the relationship between the variables.

•	 Relative width: This is the width of the Parzen smoothing window, 

relative to the standard deviation of each variable. Smaller values 

reveal more information but can also accentuate noise. If the data is 

noisy, large width values are appropriate to smooth out the noise.

•	 Tone shift: This moves the overall display range. A positive value shifts 

the tones in the “high” direction, and negative shifts tones toward the 

“low” direction. The default of zero produces no change.

•	 Tone spread: This expands or compresses the range of the display. 

The default of zero produces no change. Negative values are legal 

but rarely useful, as this compresses variation into a narrow range, 

making discrimination difficult. Positive values, rarely beyond five 

or so, expand the center of the display range while squashing the 

extremes. This emphasizes features in the interior of the grid range, at 

the expense of the extremes.

•	 Actual density: This plots the actual density, as discussed on page 171.

•	 Marginal density: This plots the marginal density product, as 

discussed on page 171.

•	 Inconsistency: This plots the marginal inconsistency, as discussed on 

page 171.

•	 Mutual information: This plots the contribution of each region to the 

total mutual information, as discussed on page 172.
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A
Adaptive partitioning

actual counts, compute, 57
algorithm coding, 50–51
bin counts, 49
bivariate density, 46
bivariate distribution, 47, 50
chi-square test, 49

statistic, 49
two-by-two, 49, 56, 60

continuous data, 56
continuous variables, 45
currentDataStart, 58
currentDataStop, 58
discrete formula, 45
four-by-four chi-square tests, 60
indices, 51
indices array, 53
method, 42
MUTINF_C.CPP, 51
naive algorithms, 46
nonrandom distribution, 49
nonuniform data distribution, 56
partitioning diagram, 47–48
random variation, 46
rearranging indices, 58
rectangle off the stack, 53
splitting across tied data, 50
splitting tied cases, 52
stack entries, 52, 53

starting and stopping indices, 54
subrectangle cases, 58–59
TEST_DIS program, 46
tunable parameters, 45
two-by-two grid, 46
two-by-two split, 53, 56
variety of distributions, 46

Alpha level, 92
Anomalies

actual density, 169, 171
database, 174
DATAMINE program, 183
density and marginal product, 178
histogram equalization, 181
histogram normalization, 174
implications, 180
marginal density product, 169, 171
marginal inconsistency, 170–172
maxMIx and maxMIy, 179
mean and standard deviation, 176–177
multivariate extensions, 168
mutual information  

contribution, 170, 172–173
numeric values, 177–178
optional sharpening, 182
parameters, 182
Parzen window method, 168
quantities, 177–178
scale factors, 175–176
scale positive and negative values, 180
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user-specified limits, 174–175
user-specified parameters, 173
variables, 167, 173

Asymmetric information measures
causality, 61
transfer entropy (see Transfer entropy)
uncertainty reduction

asymmetric predictive  
information, 62

coding, 63–65
computation formula, 62
entropy circles Y, 62
STATS.CPP file, 63

B
Bits, 1
Bivariate screening

binning-type relationship  
criteria, 116

bin-unrolled version, 118–119
bivar_threaded() method, 118
blocks, 124
Monte Carlo permutation tests, 117
parameter-passing structure, 120
predictors, 117
SCREEN_BIVAR.CPP file, 118
thread parameters, 121–122

C
Chi-square and Cramer’s V, 85–87
Combinatorially symmetric cross 

validation (CSCV)
algorithm, 102–109
best IS performers, 102
components, 97

dataset, 109
evaluation, 99
in-sample (IS), 100
Monte Carlo permutation testing, 98
OOS performance, 100
overfitting, 98
performance statistics, 99
predictive model, 101
R-square, 101
synthetic variables, 109

Conditional entropy, 15–17
Confusion matrices, 21
Continuous mutual information

adaptive partitioning (see Adaptive 
partitioning)

Parzen window method (see Parzen 
window method)

TEST_CON Program, 60–61
Correlation, 78
Cumulative distribution function, 39
Cyclic test, 34

D
DATAMINE program

analyze/cluster variables, 276
analyze/coherence  

analysis, 276–277
analyze/eigen analysis, 274
analyze/factor analysis, 274
analyze/rotate, 275
analyze/rotate eigenvectors, 275
file/exit, 268
file/read data file, 267
plot/density, 277–279
plot/histogram, 277
plot/series, 277
screen/bivariate screen, 269–271

Anomalies (cont.)
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screen/FREL, 272–274
screen/relevance minus  

redundancy, 271–272
screen/univariate screen, 268–269

E
Eigenvectors

clustering variables, subspace, 213–217
columns, 193
communality, 193, 224
correlation matrix, 221, 259, 263
cumulative row, 190
data analysis, 221
dataset, 196–199
eigenvalues, 186–188
factor loading matrix, 222
error handling,  

AN_FACTOR.TXT, 246–256
expectation maximization, 232–241
factor structure, 189–190
factor-to-observed equation, 223
Horn’s algorithm, 202–213
independent-variance  

measure, 224–225
least-squares approximations, 222
log likelihood function, 228–232
lookback observations, 260–262
maximum likelihood factor  

analysis, 224, 226–227, 257
measurements, 186
medical field, 221
observed-to-factor equation, 223
principal axis, 186
principal component, 186, 188–189, 

191–192, 226–227
quadratic acceleration,  

DECME-2s, 241–246

RAND variables, 226
real symmetric matrix, 194–195
and rotation, 194
set of variables, 257
single dimension, 258
stock market, 264–265
SUM variables, 226
time-series variables, 258
uniqueness vs. redundancy, 257
varimax rotation, 192, 199–201

Entropy
continuous random variable, 5
entropy of X, 3
mail today random variable, 3
expected value, 2
improvement, 10–12
information content, 4
joint and conditional, 12–16
natural logarithms, 1
partitioning, continuous variable, 5–10
proportional, 4
random variable X, 4

Expectation maximization, 232–241

F
Fano’s bound, 19–21
Feature weighting as regularized energy-

based learning (FREL)
algorithm, 149–153
bootstrap loop, 161
bootstrapping, 146–147
classification application, 141
compute_loss() algorithm, 153
energy, 143
energy-based model, 142
interpreting weights, 146
machine learning, 142

Index
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monotonic function, 145
Monte Carlo permutation test, 147–148
multithreaded code, 153–164
nearest-neighbor classification, 143
nested loops, 154
npred predictors, 153
null hypothesis, 141
optimal model, 143
optimizer, 159
parameters, 142
p-values, 166
regression model, 144
regularization, 145–146
regularization factor, 165
scalar quantity, 143
training set, 143
two-part requirement, 144
weighted nearest-neighbor 

classification, 145
weight estimation algorithm, 162
wrapper function, 156

Fleuret algorithm, 140
Forward stepwise selection, 125

G
Grainger causality, 65

H, I
Higher-order methods, 126
Horn’s algorithm, 202–213

J
Joint entropy, 14

K
Kullback-Liebler distance, 67

L
Left-tail test, 90

M
Mean squared error (MSE), 144
Monte Carlo permutation test  

(MCPT), 94, 141, 147–148
Multivariate extensions, 88–89
Mutual information

algorithms
automated partitioning, 29
bin boundaries, 31
bin membership, 33
discrete, 29
integer comparisons, 30
MUTINF_D.CPP, 28
splitting bound, 31–33

confusion matrices, 21–23
Fano’s bound

extending upper limits, 23–27
and predictor variables  

selection, 19, 21
random variables X and Y, 18
statements, 17–18
TEST_DIS.CPP program, 34–36
and uncertainty reduction, 88
X and Y relationships, 19

N
Nat, 1–2
Nonlinearity, 82–85

Feature weighting as regularized energy-
based learning (FREL) (cont.)
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Nonparametric correlation, 79–82
Null hypothesis, 90

O
One-dimensional Parzen window, 42
Online parallel formula, 207
Ordinary correlation, 78–79
Out-of-sample (OOS) performance, 100
Overfitting, 98

P, Q
Parzen window approximation, 37
Parzen window method

adaptive partitioning method, 42
arguments, 37
computing mutual information, 43
density() member function, 40
depvals, 41
effective density estimator, 38
Gaussian function of equation, 38
integrate() calls, 41
mutinf(), 41
MutualInformationParzen object, 40
normal distribution, 38, 42
normalized Parzen density, 39
outercrit(), 41
PARZDENS.CPP, 38
probability density, 37
sorting algorithm qsortdsi() swaps, 39
scaling factor, 42
sigma, 43–45
sigma scale factor, 39
window widths, 43

Permutation tests
intuitive approach, 91
left-tail test, 90

modestly rigorous statement 
procedure, 89

Monte Carlo, 94
permutation algorithms, 93
right-tail test, 90
selection bias, 95
serial correlation, 93

Principal components, 188–189
Proportional entropy, 4

R
Relationship

chi-square and Cramer’s V, 85–87
multivariate extensions, 88–89
nonlinearity, 82
nonparametric correlation, 79–82
ordinary correlation, 78

Right-tail test, 90

S
Schreiber’s information transfer, see 

Transfer entropy
Screening for relationships

backward stepwise selection, 77
bivariate screening, 76
forward selection preserving  

subsets, 77
forward stepwise selection, 76
univariate screening, 76

Scree plot, 202
Swap confusion matrix, 23
Spread confusion, 23
Standard statistical algorithm, 39
Stepwise predictor selection

binary variables, 136, 139, 140
dataset, 132
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Group pval, 136
maximizing relevance, 125–127
minimizing redundancy, 125–127
p-value, 135, 136
relevance minus redundancy 

algorithm, 128–131
Solo pval, 135
superior selection  

algorithm, 136, 139, 140
Sure confusion, 23

T
Target variable, 102
TEST_CON program, 60–61
TEST_DIS program, 34–36
Transfer entropy

causative effect, 68
computing information transfer, 65
conditional probabilities, 68
form of causality, 65
Gaussian noise, 65
Grainger causality, 65
Granger’s rules, 66
information transfer, properties, 66–67
Kullback-Liebler distance, 67–68
marginal probabilities, 72
model-based market-trading  

datasets, 69
nbins_x-1 and nbins_y-1, 70

negative subscript, 71
nx=nbins_x^xhist and ny=nbins_

y^yhist, 71
probability matrix, 70
program code, 70
rigorous statement, problem, 69
SCREEN_UNIVAR.CPP, 73
straightforward implementation, 

equations, 72
traditional version, 69
TRANS_ENT.CPP file, 69
TRANSFER.CPP, 73

Triangular test, 34
Two-dimensional Parzen density code, 40

U
Unbiased probability, 96
Uniform error test, 34
Univariate screening

dataset variables, 114
modern processors, 110
Monte Carlo permutation test, 116
multithreading, 111
p-values, 116
SCREEN_UNIVAR.CPP, 110, 111
variable and set, 111

V, W, X, Y, Z
Varimax rotation algorithm, 192, 199–201

Stepwise predictor selection (cont.)
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