
Data Mining
Algorithms
in C++

Data Patterns and Algorithms for Modern
Applications
—
Timothy Masters

Data Mining Algorithms
in C++

Data Patterns and Algorithms for
Modern Applications

Timothy Masters

Data Mining Algorithms in C++

ISBN-13 (pbk): 978-1-4842-3314-6				 ISBN-13 (electronic): 978-1-4842-3315-3
https://doi.org/10.1007/978-1-4842-3315-3

Library of Congress Control Number: 2017962127

Copyright © 2018 by Timothy Masters

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Massimo Nardone and Michael Thomas
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233146. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Timothy Masters
Ithaca, New York, USA

https://doi.org/10.1007/978-1-4842-3315-3

iii

About the Author��� vii

About the Technical Reviewers�� ix

Introduction�� xi

Table of Contents

Chapter 1: �Information and Entropy�� 1

Entropy��� 1

Entropy of a Continuous Random Variable��� 5

Partitioning a Continuous Variable for Entropy��� 5

An Example of Improving Entropy�� 10

Joint and Conditional Entropy�� 12

Code for Conditional Entropy�� 16

Mutual Information�� 17

Fano’s Bound and Selection of Predictor Variables�� 19

Confusion Matrices and Mutual Information�� 21

Extending Fano’s Bound for Upper Limits�� 23

Simple Algorithms for Mutual Information��� 27

The TEST_DIS Program��� 34

Continuous Mutual Information�� 36

The Parzen Window Method��� 37

Adaptive Partitioning�� 45

The TEST_CON Program��� 60

Asymmetric Information Measures�� 61

Uncertainty Reduction�� 61

Transfer Entropy: Schreiber’s Information Transfer�� 65

iv

Chapter 2: �Screening for Relationships��� 75

Simple Screening Methods�� 75

Univariate Screening�� 76

Bivariate Screening�� 76

Forward Stepwise Selection��� 76

Forward Selection Preserving Subsets�� 77

Backward Stepwise Selection�� 77

Criteria for a Relationship�� 77

Ordinary Correlation��� 78

Nonparametric Correlation��� 79

Accommodating Simple Nonlinearity��� 82

Chi-Square and Cramer’s V�� 85

Mutual Information and Uncertainty Reduction�� 88

Multivariate Extensions�� 88

Permutation Tests�� 89

A Modestly Rigorous Statement of the Procedure�� 89

A More Intuitive Approach�� 91

Serial Correlation Can Be Deadly�� 93

Permutation Algorithms�� 93

Outline of the Permutation Test Algorithm�� 94

Permutation Testing for Selection Bias��� 95

Combinatorially Symmetric Cross Validation��� 97

The CSCV Algorithm�� 102

An Example of CSCV OOS Testing��� 109

Univariate Screening for Relationships�� 110

Three Simple Examples�� 114

Bivariate Screening for Relationships�� 116

Stepwise Predictor Selection Using Mutual Information��� 124

Maximizing Relevance While Minimizing Redundancy��� 125

Code for the Relevance Minus Redundancy Algorithm��� 128

Table of Contents

v

An Example of Relevance Minus Redundancy�� 132

A Superior Selection Algorithm for Binary Variables�� 136

FREL for High-Dimensionality, Small Size Datasets��� 141

Regularization�� 145

Interpreting Weights��� 146

Bootstrapping FREL�� 146

Monte Carlo Permutation Tests of FREL��� 147

General Statement of the FREL Algorithm�� 149

Multithreaded Code for FREL�� 153

Some FREL Examples��� 164

Chapter 3: �Displaying Relationship Anomalies�� 167

Marginal Density Product��� 171

Actual Density�� 171

Marginal Inconsistency�� 171

Mutual Information Contribution�� 172

Code for Computing These Plots�� 173

Comments on Showing the Display��� 183

Chapter 4: �Fun with Eigenvectors�� 185

Eigenvalues and Eigenvectors��� 186

Principal Components (If You Really Must)��� 188

The Factor Structure Is More Interesting��� 189

A Simple Example��� 190

Rotation Can Make Naming Easier��� 192

Code for Eigenvectors and Rotation��� 194

Eigenvectors of a Real Symmetric Matrix�� 194

Factor Structure of a Dataset��� 196

Varimax Rotation�� 199

Horn’s Algorithm for Determining Dimensionality�� 202

Code for the Modified Horn Algorithm�� 203

Table of Contents

https://doi.org/10.1007/978-1-4842-3315-3_10
https://doi.org/10.1007/978-1-4842-3315-3_10
https://doi.org/10.1007/978-1-4842-3315-3_10#Sec1
https://doi.org/10.1007/978-1-4842-3315-3_10#Sec2
https://doi.org/10.1007/978-1-4842-3315-3_10#Sec3
https://doi.org/10.1007/978-1-4842-3315-3_10#Sec4
https://doi.org/10.1007/978-1-4842-3315-3_10#Sec5
https://doi.org/10.1007/978-1-4842-3315-3_10#Sec6

vi

Clustering Variables in a Subspace�� 213

Code for Clustering Variables��� 217

Separating Individual from Common Variance��� 221

Log Likelihood the Slow, Definitional Way�� 228

Log Likelihood the Fast, Intelligent Way��� 230

The Basic Expectation Maximization Algorithm�� 232

Code for Basic Expectation Maximization�� 234

Accelerating the EM Algorithm��� 237

Code for Quadratic Acceleration with DECME-2s��� 241

Putting It All Together��� 246

Thoughts on My Version of the Algorithm��� 257

Measuring Coherence�� 257

Code for Tracking Coherence��� 260

Coherence in the Stock Market�� 264

Chapter 5: �Using the DATAMINE Program�� 267

File/Read Data File��� 267

File/Exit�� 268

Screen/Univariate Screen�� 268

Screen/Bivariate Screen�� 269

Screen/Relevance Minus Redundancy��� 271

Screen/FREL�� 272

Analyze/Eigen Analysis�� 274

Analyze/Factor Analysis��� 274

Analyze/Rotate��� 275

Analyze/Cluster Variables�� 276

Analyze/Coherence�� 276

Plot/Series�� 277

Plot/Histogram��� 277

Plot/Density�� 277

�Index�� 281

Table of Contents

vii

About the Author

Timothy Masters has a PhD in mathematical statistics with a specialization in numerical

computing. He has worked predominantly as an independent consultant for government

and industry. His early research involved automated feature detection in high-altitude

photographs while he developed applications for flood and drought prediction,

detection of hidden missile silos, and identification of threatening military vehicles.

Later he worked with medical researchers in the development of computer algorithms

for distinguishing between benign and malignant cells in needle biopsies. For the past

20 years he has focused primarily on methods for evaluating automated financial market

trading systems. He has authored eight books on practical applications of predictive

modeling.

•	 Deep Belief Nets in C++ and CUDA C: Volume III: Convolutional Nets

(CreateSpace, 2016)

•	 Deep Belief Nets in C++ and CUDA C: Volume II: Autoencoding in the

Complex Domain (CreateSpace, 2015)

•	 Deep Belief Nets in C++ and CUDA C: Volume I: Restricted Boltzmann

Machines and Supervised Feedforward Networks (CreateSpace, 2015)

•	 Assessing and Improving Prediction and Classification (CreateSpace,

2013)

•	 Neural, Novel, and Hybrid Algorithms for Time Series Prediction

(Wiley, 1995)

•	 Advanced Algorithms for Neural Networks (Wiley, 1995)

•	 Signal and Image Processing with Neural Networks (Wiley, 1994)

•	 Practical Neural Network Recipes in C++ (Academic Press, 1993)

ix

About the Technical Reviewers

Massimo Nardone has more than 23 years of experience in

security, web/mobile development, cloud computing, and IT

architecture. His true IT passions are security and Android. 

He currently works as the chief information security

officer (CISO) for Cargotec Oyj and is a member of the

ISACA Finland Chapter board. Over his long career, he has

held many positions including project manager, software

engineer, research engineer, chief security architect,

information security manager, PCI/SCADA auditor, and

senior lead IT security/cloud/SCADA architect. In addition,

he has been a visiting lecturer and supervisor for exercises at the Networking Laboratory

of the Helsinki University of Technology (Aalto University).

Massimo has a master of science degree in computing science from the University of

Salerno in Italy, and he holds four international patents (related to PKI, SIP, SAML, and

proxies). Besides working on this book, Massimo has reviewed more than 40 IT books for

different publishing companies and is the coauthor of Pro Android Games (Apress, 2015).

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team

lead, program manager, and vice president of engineering.

Michael has more than ten years of experience working with

mobile devices. His current focus is in the medical sector,

using mobile devices to accelerate information transfer

between patients and healthcare providers.  

xi

Introduction

Data mining is a broad, deep, and frequently ambiguous field. Authorities don’t even

agree on a definition for the term. What I will do is tell you how I interpret the term,

especially as it applies to this book. But first, some personal history that sets the

background for this book…

I’ve been blessed to work as a consultant in a wide variety of fields, enjoying rare

diversity in my work. Early in my career, I developed computer algorithms that examined

high-altitude photographs in an attempt to discover useful things. How many bushels

of wheat can be expected from Midwestern farm fields this year? Are any of those fields

showing signs of disease? How much water is stored in mountain ice packs? Is that

anomaly a disguised missile silo? Is it a nuclear test site?

Eventually I moved on to the medical field and then finance: Does this

photomicrograph of a tissue slice show signs of malignancy? Do these recent price

movements presage a market collapse?

All of these endeavors have something in common: they all require that we find

variables that are meaningful in the context of the application. These variables might

address specific tasks, such as finding effective predictors for a prediction model. Or

the variables might address more general tasks such as unguided exploration, seeking

unexpected relationships among variables—relationships that might lead to novel

approaches to solving the problem.

That, then, is the motivation for this book. I have taken some of my most-used

techniques, those that I have found to be especially valuable in the study of relationships

among variables, and documented them with basic theoretical foundations and well-

commented C++ source code. Naturally, this collection is far from complete. Maybe

Volume 2 will appear someday. But this volume should keep you busy for a while.

You may wonder why I have included a few techniques that are widely available in

standard statistical packages, namely, very old techniques such as maximum likelihood

factor analysis and varimax rotation. In these cases, I included them because they are

useful, and yet reliable source code for these techniques is difficult to obtain. There are

times when it’s more convenient to have your own versions of old workhorses, integrated

xii

into your own personal or proprietary programs, than to be forced to coexist with canned

packages that may not fetch data or present results in the way that you want.

You may want to incorporate the routines in this book into your own data mining

tools. And that, in a nutshell, is the purpose of this book. I hope that you incorporate

these techniques into your own data mining toolbox and find them as useful as I have in

my own work.

There is no sense in my listing here the main topics covered in this text; that’s what

a table of contents is for. But I would like to point out a few special topics not frequently

covered in other sources.

•	 Information theory is a foundation of some of the most important

techniques for discovering relationships between variables,

yet it is voodoo mathematics to many people. For this reason, I

devote the entire first chapter to a systematic exploration of this

topic. I do apologize to those who purchased my Assessing and

Improving Prediction and Classification book as well as this one,

because Chapter 1 is a nearly exact copy of a chapter in that book.

Nonetheless, this material is critical to understanding much later

material in this book, and I felt that it would be unfair to almost force

you to purchase that earlier book in order to understand some of the

most important topics in this book.

•	 Uncertainty reduction is one of the most useful ways to employ

information theory to understand how knowledge of one variable lets

us gain measurable insight into the behavior of another variable.

•	 Schreiber’s information transfer is a fairly recent development that

lets us explore causality, the directional transfer of information from

one time series to another.

•	 Forward stepwise selection is a venerable technique for building up

a set of predictor variables for a model. But a generalization of this

method in which ranked sets of predictor candidates allow testing of

large numbers of combinations of variables is orders of magnitude

more effective at finding meaningful and exploitable relationships

between variables.

Introduction

xiii

•	 Simple modifications to relationship criteria let us detect profoundly

nonlinear relationships using otherwise linear techniques.

•	 Now that extremely fast computers are readily available, Monte Carlo

permutation tests are practical and broadly applicable methods for

performing rigorous statistical relationship tests that until recently

were intractable.

•	 Combinatorially symmetric cross validation as a means of detecting

overfitting in models is a recently developed technique, which, while

computationally intensive, can provide valuable information not

available as little as five years ago.

•	 Automated selection of variables suited for predicting a given target

has been routine for decades. But in many applications you have

a choice of possible targets, any of which will solve your problem.

Embedding target selection in the search algorithm adds a useful

dimension to the development process.

•	 Feature weighting as regularized energy-based learning (FREL) is a

recently developed method for ranking the predictive efficacy of a

collection of candidate variables when you are in the situation of

having too few cases to employ traditional algorithms.

•	 Everyone is familiar with scatterplots as a means of visualizing the

relationship between pairs of variables. But they can be generalized

in ways that highlight relationship anomalies far more clearly than

scatterplots. Examining discrepancies between joint and marginal

distributions, as well as the contribution to mutual information, in

regions of the variable space can show exactly where interesting

interactions are happening.

•	 Researchers, especially in the field of psychology, have been using

factor analysis for decades to identify hidden dimensions in data.

But few developers are aware that a frequently ignored byproduct of

maximum likelihood factor analysis can be enormously useful to data

miners by revealing which variables are in redundant relationships

with other variables and which provide unique information.

Introduction

xiv

•	 Everyone is familiar with using correlation statistics to measure

the degree of relationship between pairs of variables, and perhaps

even to extend this to the task of clustering variables that have

similar behavior. But it is often the case that variables are strongly

contaminated by noise, or perhaps by external factors that are

not noise but that are of no interest to us. Hence, it can be useful

to cluster variables within the confines of a particular subspace of

interest, ignoring aspects of the relationships that lie outside this

desired subspace.

•	 It is sometimes the case that a collection of time-series variables are

coherent; they are impacted as a group by one or more underlying

drivers, and so they change in predictable ways as time passes.

Conversely, this set of variables may be mostly independent,

changing on their own as time passes, regardless of what the other

variables are doing. Detecting when your variables move from one of

these states to the other allows you, among other things, to develop

separate models, each optimized for the particular condition.

I have incorporated most of these techniques into a program, DATAMINE, that is

available for free download, along with its user’s manual. This program is not terribly

elegant, as it is intended as a demonstration of the techniques presented in this book

rather than as a full-blown research tool. However, the source code for its core routines

that is also available for download should allow you to implement your own versions of

these techniques. Please do so, and enjoy!

Introduction

1
© Timothy Masters 2018
T. Masters, Data Mining Algorithms in C++, https://doi.org/10.1007/978-1-4842-3315-3_1

CHAPTER 1

Information and Entropy
Much of the material in this chapter is extracted from my prior book,
Assessing and Improving Prediction and Classification. My apologies to
those readers who may feel cheated by this. However, this material is criti-
cal to the current text, and I felt that it would be unfair to force readers to
buy my prior book in order to procure required background.

The essence of data mining is the discovery of relationships among variables that we

have measured. Throughout this book we will explore many ways to find, present, and

capitalize on such relationships. In this chapter, we focus primarily on a specific aspect

of this task: evaluating and perhaps improving the information content of a measured

variable. What is information? This term has a rigorously defined meaning, which we

will now pursue.

�Entropy
Suppose you have to send a message to someone, giving this person the answer to a

multiple-choice question. The catch is, you are only allowed to send the message by

means of a string of ones and zeros, called bits. What is the minimum number of bits

that you need to communicate the answer? Well, if it is a true/false question, one bit will

obviously do. If four answers are possible, you will need two bits, which provide four

possible patterns: 00, 01, 10, and 11. Eight answers will require three bits, and so forth.

In general, to identify one of K possibilities, you will need log2(K) bits, where log2(.) is the

logarithm base two.

Working with base-two logarithms is unconventional. Mathematicians and

computer programs almost always use natural logarithms, in which the base is e≈2.718.

The material in this chapter does not require base two; any base will do. By tradition,

when natural logarithms are used in information theory, the unit of information is called

2

the nat as opposed to the bit. This need not concern us. For much of the remainder of

this chapter, no base will be written or assumed. Any base can be used, as long as it is

used consistently. Since whenever units are mentioned they will be bits, the implication

is that logarithms are in base two. On the other hand, all computer programs will use

natural logarithms. The difference is only one of naming conventions for the unit.

Different messages can have different worth. If you live in the midst of the Sahara

Desert, a message from the weather service that today will be hot and sunny is of little

value. On the other hand, a message that a foot of snow is on the way will be enormously

interesting and hence valuable. A good way to quantify the value or information of a

message is to measure the amount by which receipt of the message reduces uncertainty.

If the message simply tells you something that was expected already, the message

gives you little information. But if you receive a message saying that you have just won

a million-dollar lottery, the message is valuable indeed and not only in the monetary

sense. The fact that its information is highly unlikely gives it value.

Suppose you are a military commander. Your troops are poised to launch an invasion

as soon as the order to invade arrives. All you know is that it will be one of the next 64

days, which you assume to be equally likely. You have been told that tomorrow morning

you will receive a single binary message: yes the invasion is today or no the invasion

is not today. Early the next morning, as you sit in your office awaiting the message,

you are totally uncertain as to the day of invasion. It could be any of the upcoming 64

days, so you have six bits of uncertainty (log2(64)=6). If the message turns out to be yes,

all uncertainty is removed. You know the day of invasion. Therefore, the information

content of a yes message is six bits. Looked at another way, the probability of yes today

is 1/64, so its information is –log2(1/64)=6. It should be apparent that the value of a

message is inversely related to its probability.

What about a no message? It is certainly less valuable than yes, because your

uncertainty about the day of invasion is only slightly reduced. You know that the invasion

will not be today, which is somewhat useful, but it still could be any of the remaining 63

days. The value of no is –log2((64–1)/64), which is about 0.023 bits. And yes, information

in bits or nats or any other unit can be fractional.

The expected value of a discrete random variable on a finite set (that is, a random

variable that can take on one of a finite number of different values) is equal to the sum

of the product of each possible value times its probability. For example, if you have a

market trading system that has a probability of winning $1,000 and a 0.6 probability of

losing $500, the expected value of a trade is 0.4 * 1000 – 0.6 * 500 = $100. In the same way,

Chapter 1 Information and Entropy

3

we can talk about the expected value of the information content of a message. In the

invasion example, the value of a yes message is 6 bits, and it has probability 1/64. The

value of a no message is 0.023 bits, and its probability is 63/64. Thus, the expected value

of the information in the message is (1/64) * 6 + (63/64) * 0.023 = 0.12 bits.

The invasion example had just two possible messages, yes and no. In practical

applications, we will need to deal with messages that have more than two values.

Consistent, rigorous notation will make it easier to describe methods for doing so. Let

χ be a set that enumerates every possible message. Thus, χ may be {yes, no} or it may be

{1, 2, 3, 4} or it may be {benign, abnormal, malignant} or it may be {big loss, small loss,

neutral, small win, big win}. We will use X to generically represent a random variable that

can take on values from this set, and when we observe an actual value of this random

variable, we will call it x. Naturally, x will always be a member of χ. This is written as xεχ.

Let p(x) be the probability that x is observed. Sometimes it will be clearer to write this

probability as P(X=x). These two notations for the probability of observing x will be used

interchangeably, depending on which is more appropriate in the context. Naturally, the

sum of p(x) for all xεχ is one since χ includes every possible value of X.

Recall from the military example that the information content of a particular

message x is −log(p(x)), and the expected value of a random variable is the sum, across

all possibilities, of its probability times its value. The information content of a message

is itself a random variable. So, we can write the expected value of the information

contained in X as shown in Equation (1.1). This quantity is called the entropy of X, and

it is universally expressed as H(X). In this equation, 0*log(0) is understood to be zero, so

messages with zero probability do not contribute to entropy.

	
H X p x p x()= () log(())-å

xec 	
(1.1)

Returning once more to the military example, suppose that a second message also

arrives every morning: mail call. On average, mail arrives for distribution to the troops

about once every three days. The actual day of arrival is random; sometimes mail will

arrive several days in a row, and other times a week or more may pass with no mail. You

never know when it will arrive, other than that you will be told in the morning whether

mail will be delivered that day. The entropy of the mail today random variable is −(1/3)

log2 (1/3) – (2/3) log2 (2/3) ≈0.92 bits.

Chapter 1 Information and Entropy

4

In view of the fact that the entropy of the invasion today random variable was about

0.12 bits, this seems to be an unexpected result. How can a message that resolves an

event that happens about every third day convey so much more information than one

about an event that has only a 1/64 chance of happening? The answer lies in the fact

that entropy is an average. Entropy does not measure the value of a single message. It

measures the expectation of the value of the message. Even though a yes answer to the

invasion question conveys considerable information, the fact that the nearly useless no

message will arrive with probability 63/64 drags the average information content down

to a small value.

Let K be the number of messages that are possible. In other words, the set χ contains

K members. Then it can be shown (though we will not do so here) that X has maximum

entropy when p(x)=1/K for all xεχ. In other words, a random variable X conveys the most

information obtainable when all of its possible values are equally likely. It is easy to see

that this maximum value is log(K). Simply look at Equation (1.1) and note that all terms

are equal to (1/K) log(1/K), and there are K of them. For this reason, it is often useful to

observe a random variable and use Equation (1.1) to estimate its entropy and then divide

this quantity by log(K) to compute its proportional entropy. This is a measure of how

close X comes to achieving its theoretical maximum information content.

It must be noted that although the entropy of a variable is a good theoretical indicator

of how much information the variable conveys, whether this information is useful is

another matter entirely. Knowing whether the local post office will deliver mail today

probably has little bearing on whether the home command has decided to launch an

invasion today. There are ways to assess the degree to which the information content of

a message is useful for making a specified decision, and these techniques will be covered

later in this chapter. For now, understand that significant information content of a variable

is a necessary but not sufficient condition for making effective use of that variable.

To summarize:

•	 Entropy is the expected value of the information contained in a

variable and hence is a good measure of its potential importance.

•	 Entropy is given by Equation (1.1) on page 3.

•	 The entropy of a discrete variable is maximized when all of its

possible values have equal probability.

•	 In many or most applications, large entropy is a necessary but not a

sufficient condition for a variable to have excellent utility.

Chapter 1 Information and Entropy

5

�Entropy of a Continuous Random Variable
Entropy was originally defined for finite discrete random variables, and this remains its

primary application. However, it can be generalized to continuous random variables.

In this case, the summation of Equation (1.1) must be replaced by an integral, and the

probability p(x) must be replaced by the probability density function f(x). The definition

of entropy in the continuous case is given by Equation (1.2).

	
H X = f x f x dx() - () ()()

-¥

¥

ò log
	

(1.2)

There are several problems with continuous entropy, most of which arise from

the fact that Equation (1.2) is not the limiting case of Equation (1.1) when the bin size

shrinks to zero and the number of bins blows up to infinity. In practical terms, the most

serious problem is that continuous entropy is not immune to rescaling. One would

hope that performing the seemingly innocuous act of multiplying a random variable

by a constant would leave its entropy unchanged. Intuition clearly says that it should

be so because certainly the information content of a variable should be the same as the

information content of ten times that variable. Alas, it is not so. Moreover, estimating

a probability density function f(x) from an observed sample is far more difficult than

simply counting the number of observations in each of several bins for a sample. Thus,

Equation (1.2) can be difficult to evaluate in applications. For these reasons, continuous

entropy is avoided whenever possible. We will deal with the problem by discretizing

a continuous variable in as intelligent a fashion as possible and treating the resulting

random variable as discrete. The disadvantages of this approach are few, and the

advantages are many.

�Partitioning a Continuous Variable for Entropy
Entropy is a simple concept for discrete variables and a vile beast for continuous

variables. Give me a sample of a continuous variable, and chances are I can give you a

reasonable algorithm that will compute its entropy as nearly zero, an equally reasonable

algorithm that will find the entropy to be huge, and any number of intermediate

estimators. The bottom line is that we first need to understand our intended use for the

entropy estimate and then choose an estimation algorithm accordingly.

Chapter 1 Information and Entropy

6

A major use for entropy is as a screening tool for predictor variables. Entropy has

theoretical value as a measure of how much information is conveyed by a variable. But

it has a practical value that goes beyond this theoretical measure. There tends to be a

correlation between how well many models are able to learn predictive patterns and the

entropy of the predictor variables. This is not universally true, but it is true often enough

that a prudent researcher will pay attention to entropy.

The mechanism by which this happens is straightforward. Many models focus

their attention roughly equally across the entire range of variables, both predictor and

predicted. Even models that have the theoretical capability of zooming in on important

areas will have this tendency because their traditional training algorithms can require an

inordinate amount of time to refocus attention onto interesting areas. The implication

is that it is usually best if observed values of the variables are spread at least fairly

uniformly across their range.

For example, suppose a variable has a strong right skew. Perhaps in a sample of

1,000 cases, about 900 lie in the interval 0 to 1, another 90 cases lie in 1 to 10, and the

remaining 10 cases are up around 1,000. Many learning algorithms will see these few

extremely large cases as providing one type of information and lump the mass of cases

around zero to one into a single entity providing another type of information. The

algorithm will find it difficult to identify and act on cases whose values on this variable

differ by 0.1. It will be overwhelmed by the fact that some cases differ by a thousand.

Some other models may do a great job of handling the mass of low-valued cases but find

that the cases out in the tail are so bizarre that they essentially give up on them.

The susceptibility of models to this situation varies widely. Trees have little or

no problem with skewness and heavy tails for predictors, although they have other

problems that are beyond the scope of this text. Feedforward neural nets, especially

those that initialize weights based on scale factors, are extremely sensitive to this

condition unless trained by sophisticated algorithms. General regression neural nets and

other kernel methods that use kernel widths that are relative to scale can be rendered

helpless by such data. It would be a pity to come close to producing an outstanding

application and be stymied by careless data preparation.

The relationship between entropy and learning is not limited to skewness and

tail weight. Any unnatural clumping of data, which would usually be caught by a

good entropy test, can inhibit learning by limiting the ability of the model to access

information in the variable. Consider a variable whose range is zero to one. One-third

of its cases lie in {0, 0.1}, one-third lie in {0.4, 0.5}, and one-third lie in {0.9, 1.0}, with

Chapter 1 Information and Entropy

7

output values (classes or predictions) uniformly scattered among these three clumps.

This variable has no real skewness and extremely light tails. A basic test of skewness

and kurtosis would show it to be ideal. Its range-to-interquartile-range ratio would

be wonderful. But an entropy test would reveal that this variable is problematic. The

crucial information that is crowded inside each of three tight clusters will be lost, unable

to compete with the obvious difference among the three clusters. The intra-cluster

variation, crucial to solving the problem, is so much less than the worthless inter-cluster

variation that most models would be hobbled.

When detecting this sort of problem is our goal, the best way to partition a continuous

variable is also the simplest: split the range into bins that span equal distances. Note that

a technique we will explore later, splitting the range into bins containing equal numbers

of cases, is worthless here. All this will do is give us an entropy of log(K), where K is the

number of bins. To see why, look back at Equation (1.1) on page 3. Rather, we need to

confirm that the variable in question is distributed as uniformly as possible across its

range. To do this, we must split the range equally and count how many cases fall into

each bin.

The code for performing this partitioning is simple; here are a few illustrative

snippets. The first step is to find the range of the variable (in work here) and the factor for

distributing cases into bins. Then the cases are categorized into bins. Note that two tricks

are used in computing the factor. We subtract a tiny constant from the number of bins to

ensure that the largest case does not overflow into a bin beyond what we have. We also

add a tiny constant to the denominator to prevent division by zero in the pathological

condition of all cases being identical.

low = high = work[0]; // Will be the variable's range

for (i=1; i<ncases; i++) { // Check all cases to find the range

 if (work[i] > high)

 high = work[i];

 if (work[i] < low)

 low = work[i];

 }

Chapter 1 Information and Entropy

8

for (i=0; i<nb; i++) // Initialize all bin counts to zero

 counts[i] = 0;

factor = (nb - 0.00000000001) / (high - low + 1.e-60);

for (i=0; i<ncases; i++) { // Place the cases into bins

 k = (int) (factor * (work[i] - low));

 ++counts[k];

 }

Once the bin counts have been found, computing the entropy is a trivial application

of Equation (1.1).

entropy = 0.0;

for (i=0; i<nb; i++) { // For all bins

 if (counts[i] > 0) { // Bin might be empty

 p = (double) counts[i] / (double) ncases; // p(x)

 entropy -= p * log(p); // Equation (1.1)

 }

 }

entropy /= log(nb); // Divide by max for proportional

Having a heavy tail is the most common cause of low entropy. However, clumping in

the interior also appears in applications. We do need to distinguish between clumping

of continuous variables due to poor design versus unavoidable grouping into discrete

categories. It is the former that concerns us here. Truly discrete groups cannot be

separated, while unfortunate clustering of a continuous variable can and should be dealt

with. Since a heavy tail (or tails) is such a common and easily treatable occurrence and

interior clumping is rarer but nearly as dangerous, it can be handy to have an algorithm

that can detect undesirable interior clumping in the presence of heavy tails. Naturally,

we could simply apply a transformation to lighten the tail and then perform the test

shown earlier. But for quick prescreening of predictor candidates, a single test is nice to

have around.

The easiest way to separate tail problems from interior problems is to dedicate one

bin at each extreme to the corresponding tail. Specifically, assume that you want K bins.

Find the shortest interval in the distribution that contains (K–2)/K of the cases. Divide

this interval into K–2 bins of equal width and count the number of cases in each of these

Chapter 1 Information and Entropy

9

interior bins. All cases below the interval go into the lowest bin. All cases above this

interval go into the upper bin. If the distribution has a very long tail on one end and a

very short tail on the other end, the bin on the short end may be empty. This is good

because it slightly punishes the skewness. If the distribution is exactly symmetric, each

of the two end bins will contain 1/K of the cases, which implies no penalty. This test

focuses mainly on the interior of the distribution, computing the entropy primarily from

the K–2 interior bins, with an additional small penalty for extreme skewness and no

penalty for symmetric heavy tails.

Keep in mind that passing this test does not mean that we are home free. This test

deliberately ignores heavy tails, so a full test must follow an interior test. Conversely,

failing this interior test is bad news. Serious investigation is required.

Below, we see a code snippet that does the interior partitioning. We would follow this

with the entropy calculation shown on the prior page.

ilow = (ncases + 1) / nb - 1; // Unbiased lower quantile

if (ilow < 0)

 ilow = 0;

ihigh = ncases - 1 - ilow; // Symmetric upper quantile

// Find the shortest interval containing 1-2/nbins of the distribution

qsortd (0, ncases-1, work); // Sort cases ascending

istart = 0; // Beginning of interior interval

istop = istart + ihigh - ilow - 2; // And end, inclusive

best_dist = 1.e60; // Will be shortest distance

while (istop < ncases) { // �Try bounds containing the same n of cases

 dist = work[istop] - work[istart]; // Width of this interval

 if (dist < best_dist) { // We're looking for the shortest

 best_dist = dist; // Keep track of shortest

 ibest = istart; // And its starting index

 }

 ++istart; // Advance to the next interval

 ++istop; // Keep n of cases in interval constant

 }

Chapter 1 Information and Entropy

10

istart = ibest; // This is the shortest interval

istop = istart + ihigh - ilow - 2;

counts[0] = istart; // The count of the leftmost bin

counts[nb-1] = ncases - istop - 1; // and rightmost are implicit

for (i=1; i<nb-1; i++) // Inner bins

 counts[i] = 0;

low = work[istart]; // Lower bound of inner interval

high = work[istop]; // And upper bound

factor = (nb - 2.00000000001) / (high - low + 1.e-60);

for (i=istart; i<=istop; i++) { // Place cases in bins

 k = (int) (factor * (work[i] - low));

 ++counts[k+1];

 }

�An Example of Improving Entropy
John decides that he wants to do intra-day trading of the U.S. bond futures market.

One variable that he believes will be useful is an indication of how much the market is

moving away from its very recent range. As a start, he subtracts from the current price a

moving average of the close of the most recent 20 bars. Realizing that the importance of

this deviation is relative to recent volatility, he decides to divide the price difference by

the price range over those prior 20 bars. Being a prudent fellow, he does not want

to divide by zero in those rare instances in which the price is flat for 20 contiguous

bars, so he adds one tick (1/32 point) to the denominator. His final indicator is given by

Equation (1.3).

	
X =

CLOSE MA

HIGH LOW

- ()
()- ()+

20

20 20 0.03125 	
(1.3)

Being not only prudent but informed as well, he computes this indicator from a

historical sample covering many years, divides the range into 20 bins, and calculates its

proportional entropy as discussed on page 4. Imagine John’s shock when he finds this

quantity to be just 0.0027, about one-quarter of 1 percent of what should be possible!

Clearly, more work is needed before this variable is presented to any prediction model.

Chapter 1 Information and Entropy

11

Basic detective work reveals some fascinating numbers. The interquartile range

covers −0.2 to 0.22, but the complete range is −48 to 92. There’s no point in plotting a

histogram; virtually the entire dataset would show up as one tall spike in the midst of a

barren desert.

He now has two choices: truncate or squash. The common squashing functions,

arctangent, hyperbolic tangent, and logistic, are all comfortable with the native domain

of this variable, which happens to be about −1 to 1. Figure 1-1 shows the result of

truncating this variable at +/−1. This truncated variable has a proportional entropy of

0.83, which is decent by any standard. Figure 1-2 is a histogram of the raw variable after

applying the hyperbolic tangent squashing function. Its proportional entropy is 0.81.

Neither approach is obviously superior, but one thing is perfectly clear: one of them,

or something substantially equivalent, must be used instead of the raw variable of

Equation (1.3)!

Figure 1-1.  Distribution of truncated variable

Chapter 1 Information and Entropy

12

�Joint and Conditional Entropy
Suppose we have an indicator variable X that can take on three values. These values

might be {unusually low, about average, unusually high} or any other labels. The nature

or implied ordering of the labels is not important; we will call them 1, 2, and 3 for

convenience. We also have an outcome variable Y that can take on two values: win and

lose. After evaluating these variables on a large batch of historical data, we tabulate the

relationship between X and Y as shown in Table 1-1.

Figure 1-2.  Distribution of htan transformed variable

Chapter 1 Information and Entropy

13

This table shows that 80 cases fell into Category 1 of X and also the win category of Y,

while 20 cases fell into Category 1 of X and also the lose category of Y, and so forth. The

second number in each table cell is the fraction of all cases that fell into that cell. Thus,

the (1, win) cell contained 0.16 of the 500 cases in the historical sample.

The third number in each cell is the fraction of cases that would, on average, fall into

that cell if there were no relationship between X and Y. If two events are independent,

meaning that the occurrence of one of them has no impact on the probability of occurrence

of the other, the probability that they will both occur is the product of the probabilities that

each will occur. In symbols, let P(A) be the probability that some event A will occur, let P(B)

be the probability that some other event B will occur, and let P(A,B) be the probability that

they both will occur. Then P(A,B)=P(A)*P(B) if and only if A and B are independent.

We can compute the probability of each X and Y event by summing the counts across

rows and columns to get the marginal counts and dividing each by the total number of

cases. For example, in the Y=win category, the total is 80+100+120=300 cases. Dividing

this by 500 gives P(Y=win)=0.6. For X we find that P(X=1)=(80+20)/500=0.2. Hence, the

probability of (X=1, Y=win), if X and Y were independent, is 0.6*0.2=0.12.

Table 1-1.  Observed Counts and Probabilities, Theoretical Probabilities

Y Marginal

win lose

| 80 20 100

| 1 0.16 0.04

|

|

0.12 0.08

| 100 100 200

X | 2 0.20 0.20

|

|

0.24 0.16

| 120 80 200

| 3 0.24 0.16

| 0.24 0.16

Marginal 300 200 500

Chapter 1 Information and Entropy

14

The observed probabilities for four of the six cells differ from the probabilities

expected under independence, so we conclude that there might be a relationship

between X and Y, though the difference is so small that random chance might just as

well be responsible. An ordinary chi-square test would quantify the probability that the

observed differences could have arisen from chance. But we are interested in a different

approach right now.

Equation (1.1) on page 3 defined the entropy for a single random variable. We can

just as well define the entropy for two random variables simultaneously. This joint

entropy indicates how much information we obtain on average when the two variables

are both known. Joint entropy is a straightforward extension of univariate entropy. Let χ,

X, and x be as defined for Equation (1.1). In addition, let ¥, Y, and y be the corresponding

items for the other variable. The joint entropy H(X, Y) is based on the individual cell

probabilities, as shown in Equation (1.4). In this example, summing the six terms gives

H(X, Y)≈1.70.

	
H X Y = p x,y p x,y() () (()), log- åå

yx eec ¥ 	
(1.4)

It often happens that the entropy of a variable is different for different values of

another variable. Look back at Table 1-1. There are 100 cases for which X=1. Of these,

80 have Y=win and 20 have Y=lose. The probability that Y=win, given that X=1, which is

written P(Y=win|X=1), is 80/100=0.8. Similarly, P(Y=lose|X=1)=0.2. By Equation (1.1), the

entropy of Y, given that X=1, which is written H(Y|X=1), is −0.8*log(0.8) – 0.2*log(0.2) ≈

0.50 nats. (The switch from base 2 to base e is convenient now.) In the same way, we can

compute H(Y|X=2) ≈0.69, and H(Y|X=3) ≈0.67.

Hold that thought. Before continuing, we need to reinforce the idea that entropy,

which is a measure of disorganization, is also a measure of average information content.

On the surface, this seems counterintuitive. How can it be that the more disorganized

a variable is, the more information it carries? The issue is resolved if you think about

what is gained by going from not knowing the value of the variable to knowing it. If the

variable is highly disorganized, you gain a lot by knowing it. If you live in an area where

the weather changes every hour, an accurate weather forecast (if there is such a thing)

is very valuable. Conversely, if you live in the middle of a desert, a weather forecast is

nearly always boring.

Chapter 1 Information and Entropy

15

We just saw that we can compute the entropy of Y when X equals any specified

value. This leads us to consider the entropy of Y under the general condition that we

know X. In other words, we do not specify any particular X. We simply want to know,

on average, what the entropy of Y will be if we happen to know X. This quantity, called

the conditional entropy of Y given X, is an expectation once more. To compute it, we

sum the product of every possibility times the probability of the possibility. In the

example several paragraphs ago, we saw that H(Y|X=1) ≈0.50. Looking at the marginal

probabilities, we know that P(X=1) = 100/500 = 0.20. Following the same procedure

for X=2 and 3, we find that the entropy of Y given that we know X, written P(Y|X), is

0.2*0.50 + 0.4*0.69 + 0.4*0.67 = 0.64.

Compare this to the entropy of Y taken alone. This is −0.6*log(0.6) – 0.4*log(0.4) ≈0.67.

Notice that the conditional entropy of Y given X is slightly less than that of Y without

knowledge of X. In fact, it can be shown that H(Y|X) ≤ H(Y) universally. This makes

sense. Knowing X certainly cannot make Y any more disorganized! If X and Y are related

in any way, knowing X will reduce the disorganization of Y. Looked at another way, X

may supply some of the information that would have otherwise been provided by Y.

Once we know X, we have less to gain from knowing Y. A weather forecast as you roll out

of bed in the morning gives you more information than the same forecast does after you

have looked out the window and seen that the sky is black and rain is pouring down.

There are several standard ways of computing conditional entropy. The most

straightforward way is direct application of the definition, as we did earlier. Equation (1.5)

is the conditional probability of Y given X. The entropy of Y for any specified X is shown

in Equation (1.6). Finally, Equation (1.7) is the entropy of Y given that we know X.

	
P Y = y X = x =

P Y = y X = x

P X = x
() ()

()
,

	
(1.5)

	
H Y X =x = P Y =y X =x P Y =y X = x() (()) ((()))log

ye ¥
å

	
(1.6)

	
H Y X P X x H Y X x() () ()= = =å

xec 	
(1.7)

An easier method for computing the conditional entropy of Y given X is to use the

identity shown in Equation (1.8). Although the proof of this identity is simple, we will not

show it here. The intuition is clear, though. The entropy of (information contained in) Y

given that we already know X is the total entropy (information) minus that due strictly to X.

Chapter 1 Information and Entropy

16

Rearranging the terms and treating entropy as uncertainty may make the intuition even

clearer. The total uncertainty that we have about X and Y together is equal to the uncertainty

we have about X plus whatever uncertainty we have about Y, given that we know X.

	
H Y X H X Y H X() = ()- (), 	 (1.8)

We close this section with a small exercise for you. Refer back to Table 1-1 on page 13

and look at the third line in each cell. Recall that we computed this line by multiplying the

marginal probabilities. For example, P(X=1)=100/500=0.2, and P(Y=win)=300/500=0.6,

which gives 0.2*0.6=0.12 for the (1,win) cell. These are the theoretical cell probabilities if

X and Y were independent. Using the Y marginals, compute to decent accuracy H(Y). You

should get 0.673012. Using whichever formula you prefer, Equation (1.7) or (1.8), compute

H(Y|X) accurately. You should get the same number, 0.673012. When theoretical (not

observed) cell probabilities are used, the entropy of Y alone is the same as the entropy of

Y when X is known. Ponder why this is so.

No solid motivation for computing or examining conditional entropy is yet apparent.

This will change soon. For now, let’s study its computation in more detail.

�Code for Conditional Entropy
The source file MUTINF_D.CPP on the Apress.com site contains a function for computing

conditional entropy using the definition formula, Equation (1.7). Here are two code

snippets extracted from this file. The first snippet zeros out the array where the marginal

of X will be computed, and it also zeros the grid of bins that will count every combination

of X and Y. It then passes through the entire dataset, filling the bins.

for (ix=0; ix<nbins_x; ix++) {

 marginal_x[ix] = 0;

 for (iy=0; iy<nbins_y; iy++)

 grid[ix*nbins_y+iy] = 0;

 }

for (i=0; i<ncases; i++) {

 ix = bins_x[i];

 ++marginal_x[ix];

 ++grid[ix*nbins_y+bins_y[i]];

 }

Chapter 1 Information and Entropy

17

After the bins have been filled, the following code implements Equations (1.5)

through (1.7) to compute the conditional entropy:

CI = 0.0;

for (ix=0; ix<nbins_x; ix++) { // Sum Equation (1.7) for all x in X

 if (marginal_x[ix] > 0) { // �Term only makes sense if positive marginal

 cix = 0.0; // �Will cumulate H(Y|X=x) of Equation (1.6)

 for (iy=0; iy<nbins_y; iy++) { // Sum Equation (1.6)

 �pyx = (double) grid[ix*nbins_y+i�y] / (double) marginal_x[ix]; // Equation (1.5)

 if (pyx > 0.0) // 0 log(0) = 0

 cix += pyx * log (pyx); // Equation (1.6)

 }

 }

 CI += cix * marginal_x[ix] / ncases; // Equation (1.7)

 }

�Mutual Information
John has four areas of expertise: football, beer, bourbon, and poker. Mary has three areas

of expertise: cooking, sewing, and poker. One night they meet at a hot game, decide that

they make the perfect couple, and get married. Here are some statements about their

expertise as a couple:

•	 John and Mary jointly have six areas of expertise: four from John, plus

two from Mary (cooking, sewing) that are beyond any supplied by

John. Equivalently, they have three from Mary, plus three from John

(football, beer, bourbon) that are beyond any supplied by Mary. See

Equation (1.9).

•	 John and Mary jointly have six areas of expertise: four from John, plus

three from Mary, minus one (poker) that they have in common and

thus was counted twice. See Equation (1.10).

Chapter 1 Information and Entropy

18

•	 John has three areas of expertise to offer (football, beer, and bourbon)

if we already have access to whatever expertise Mary offers. These

three are his four, minus the one that they share. See Equation (1.11).

•	 Similarly, Mary has two areas of expertise above and beyond

whatever is supplied by John. See Equation (1.12).

Information that is shared by two random variables X and Y is called their mutual

information, and this quantity is written I(X; Y). The following equations summarize

the relationships among joint, single, and conditional entropy, and mutual information.

Examination of Figure 1-3 on the next page may make the intuition behind these

equations clearer.

	
H X Y H X H Y X H Y H X Y,() = ()+ () = ()+ () 	 (1.9)

	 H X Y =H X H Y I X Y,() ()+ ()- (); 	 (1.10)

	
H X Y H X I X Y() = ()- (); 	 (1.11)

	
H Y X H Y I X Y() = ()- (); 	 (1.12)

	
I X Y H X H X Y H Y H Y X;() = ()- () = ()- () 	 (1.13)

	 I X Y H X H Y H X Y; ,() = ()+ ()- () 	 (1.14)

	 I X X H X;() = () 	 (1.15)

Equation (1.13) or (1.14) may be used to compute the mutual information of a

pair of variables. But it is often more convenient to use the official definition of mutual

information. We will not prove that the definition given by Equation (1.16) concurs with

the preceding equations, as it is tedious.

	
I X Y p x y

p x y

p x p y
((

(

((
;) ,) log

,)

))
= åå

y ¥x eec 	
(1.16)

Chapter 1 Information and Entropy

19

There is simple intuition behind Equation (1.16). Recall that events X and Y are

independent if and only if the probability of them both happening equals the product

of each of them happening: P(X, Y)=P(X)*P(Y). Thus, if X and Y in Equation (1.16) are

independent, the numerator will equal the denominator in the log expression. The log

of one is zero, so every term in the sum will be zero. The mutual information of a pair of

independent variables will evaluate to zero, as expected.

On the other hand, if X and Y have a relationship, sometimes the numerator will

exceed the denominator, and sometimes it will be less. When the numerator is larger

than the denominator, the log will be positive, and when the converse is true, the log

will be negative. Each log term is multiplied by the numerator, with the result that

positive logs will be multiplied by relatively large weights, while the negative logs will

be multiplied by smaller weights. The more imbalance there is between p(x,y) and

p(x)*p(y), the larger will be the sum.

�Fano’s Bound and Selection of Predictor Variables
Mutual information can be useful as a screening tool for effective predictors. It is not

perfect. For one thing, mutual information picks up any sort of relationship, even

unusual nonlinear dependencies. This is fine as long as the variable will be fed to a

model that can take advantage of such a relationship. But naive models may be helpless,

missing the information entirely. Predictive information is a necessary but not sufficient

condition.

Figure 1-3.  Relationships between X and Y

Chapter 1 Information and Entropy

20

Also, it can sometimes be the case that a single predictor alone is largely useless,

while pairing it with a second predictor can work miracles. Neither weight nor height

alone is a good indicator of physical fitness, but the two together provide valuable

information. Therefore, any criterion that is based on a single predictor variable is

potentially flawed. Algorithms given later will address this issue to some degree, though

not perfectly.

Nonetheless, mutual information is widely applicable as a screening tool. In general,

predictor variables that have high mutual information with the predicted variable will be

good candidates for use with a model, while those with little or no mutual information

will make poor candidates. Mutual information must not be used to create a final set

of predictors. Rather, it is best used to narrow a large field of candidates into a smaller

manageable set.

In addition to the obvious intuitive value of mutual information, it has a fascinating

theoretical property that can quantify its utility. [Fano, 1961, “Transmission of

Information, a Statistical Theory of Communications”, MIT Press.] shows that in a

classification problem, the mutual information between a predictor variable and a

decision variable sets a lower bound on the classification error that can be obtained.

Note that there is guarantee that this accuracy can actually be realized in practice.

Performance is dependent on the quality of the model being employed. Still, knowing

the best that can possibly be obtained with an ideal model is useful.

Let Y be a random variable that defines a decision class from ¥={1, 2, …, K}. In

other words, there are K classes. Let X be a finite discrete random variable whose value

hopefully provides information that is useful for predicting Y. Note that we are not in

general asking that the value of X be the predicted value of Y. X need not even have K

values. In the example of Table 1-1 on page 13, K=2 (win, loss), and X has three values.

We have a model that examines the value of X and predicts Y. Either this prediction

is correct or it is incorrect. Let Pe be the probability that the model’s prediction is in error.

The binary entropy function is defined by Equation (1.17), and Equation (1.18) is Fano’s

bound on the attainable error of the classification model.

	 h p p p 1 p p() = - ()- -() -()log log 1 	 (1.17)

	
P

H Y I X Y h P

Ke
e³

()- ()- ()
-()()

;

log max 1,2 	
(1.18)

Chapter 1 Information and Entropy

21

Officially, the denominator of Fano’s bound is just log(K−1) applies only to situations

in which K>2. To accommodate two classes, the denominator has been modified as

shown earlier. Details can be found in [Erdogmus and Principe, 2003 “Insights on the

Relationship Between Probability of Misclassification and Information transfer Through

Classifiers.” IJCSS 3:1.].

One obvious problem with Equation (1.18) is that the probability of error appears on

both sides of the equation. There are two approaches to dealing with this. Sometimes we

will be able to come up with a reasonable estimate of the error rate, perhaps by means of

an out-of-sample test set and a good model. Then we can just blithely plug it into h()

in the numerator, rationalizing that the entropy and mutual information are also

sample-based estimates. I’ve done it. In fact, I do it in one of the programs that will

be presented later in this chapter. A more conservative approach is to realize that the

maximum value of this term is h(0.5)=log(2). This substitution will ensure that the

inequality holds, even though it will be looser than it would be if the exact value of Pe

were known. Of course, if we already knew Pe, we wouldn’t need the bound!

This, of course, is a valid reason for not putting much store in computed values of

Fano’s bound. If we already have a model in mind, any dataset that we use to compute

Fano’s bound gives us everything we need to compute other, probably superior,

estimates of the prediction error and assorted bounds. And if we don’t have a model and

hence resort to using log(2) in the numerator, the bound can be overly conservative.

The real purpose of Equation (1.18) is that it alerts us to the value of the mutual

information between X and Y. Mutual information is not just an obscure theoretical

quantity. It plays a major role in setting a floor under the prediction accuracy that can

be obtained. If we are comparing a number of candidate predictors, the denominator of

Equation (1.18) will be the same for all competitors, and H(Y), the entropy of the class

variable, will also be constant. The error term, h(Pe), may change a little, but I(X, Y) is

the dominant force. The minimum attainable error rate is inversely related to the mutual

information. Therefore, candidates that have high mutual information with the class

variable will probably be more useful than candidates with low mutual information.

�Confusion Matrices and Mutual Information
Suppose we already have a set of predictor variables and a model that we use to predict a

class. As before, Y is the true class of a case, and there are K classes. This time, we let X be

the output of our model for a case. That is, X is the predicted value of Y.

Chapter 1 Information and Entropy

22

Let’s explore how mutual information relates to some three-by-three confusion

matrices. Table 1-2 shows four examples. In each case, the row is the true class, and

the column is the model’s decided class. Thus, row i and column j contain the number

of cases that truly belong to class i and were placed by the model in class j. Obviously,

we want the diagonal to contain most cases because the diagonal represents correct

classifications.

Mutual information quantifies a different aspect of performance than error rate. The

top three confusion matrices in Table 1-2 all have an error rate of 13 percent. The first,

naive, has very unbalanced prior probabilities. Class Three makes up 80 percent of the

cases. The model takes advantage of this fact by strongly favoring this class. The result

is that the other two classes are mostly misclassified. But these errors do not contribute

much to the total error rate because these other two classes make up only 20 percent of

cases. Mutual information easily picks up the fact that the model has not truly solved the

problem. The value of 0.173 is the lowest of the set, by far.

The sure and spread confusions have identical priors (34 percent, 33 percent, 33 percent)

and equal error rates, 13 percent. Yet sure has considerably greater mutual information than

spread. The reason for this difference is the pattern of errors. The spread confusion has its

Table 1-2.  Assorted Confusion Matrices

 4 0 6

naive 0 3 7

MI=0.173 0 0 80

28 0 6

sure 0 26 7

MI=0.735 0 0 33

29 2 3

spread 2 29 2

MI=0.624 2 2 29

29 2 3

swap 2 2 29

MI=0.624 2 29 2

Chapter 1 Information and Entropy

23

errors evenly distributed among the classes, while the sure confusion has a consistent

pattern of misclassification. Even though both models make errors at the same total

rate, with the sure model you know in advance what sorts of errors can be expected. In

particular, if the model decides that a case is in Class One or Class Two, we can be sure

that the decision is correct. This knowledge of error patterns is additional information

above and beyond what the error rate alone provides, and the increased mutual

information reflects this fact.

Finally, look at the swap confusion matrix. It is identical to the spread confusion

matrix, except that for Class Two and Class Three the model has reversed its decisions.

The error rate blows up to 67 percent, while the mutual information remains at 0.624,

the same as spread. This highlights an important property of mutual information. It

is not really measuring classification performance directly. Rather, it is measuring

transfer of useful information through the model. In other words, we are measuring

one or more predictor variables and then processing these variables by a model. The

variables contain some information that will be useful for making a correct decision, as

well as a great deal of irrelevant information. The model acts as a filter, screening out

the noise while concentrating the predictive information. The output of the model is the

information that has been distilled from the predictors. The effectiveness of the model

at making correct decisions is measured by its error rate. But its ability to extract useful

information from a cacophony of noise is measured by its mutual information. The fact

that the swap model has high mutual information along with a high error rate reflects

the fact that the model has done a good job of finding the needles in the haystack. Its

decisions really do contain useful information. The requirement that a sentient observer

may be needed to process this information in a way that helps us to achieve our ultimate

goal of correct classification is something that is ignored by mutual information.

�Extending Fano’s Bound for Upper Limits
As in the prior section, assume that we have a confusion matrix. In other words, we have a

model whose output X is a prediction of the true class Y. Fano’s lower bound on the error

rate, shown in Equation (1.18) on page 20, can be slightly tightened if we wish. Also in this

special case, we can compute an approximate upper bound on the classification error.

As was the case for the lower bound, there is little direct practical value in computing

an upper bound using information theory. The data needed to compute the bound

is sufficient to compute better error estimates and bounds using other methods.

Chapter 1 Information and Entropy

24

However, careful study of the upper bound not only confirms the importance of mutual

information as an indicator of predictive power but also yields valuable insights into

effective classifier design. We will see that if we can control the way in which the classifier

makes errors, we may be able to improve the theoretical limits on its true error rate.

Both the tighter lower bound and the new upper bound depend on the entropy of

the error given the decision. We saw in Equation (1.18) for the lower bound that the

numerator contained the binary entropy function defined in Equation (1.17). If we

are willing to assume even more detailed knowledge of the pattern of errors, we can

compute the conditional error entropy using Equation (1.19). In this equation, h(.) is the

binary entropy function of Equation (1.17), and the quantity on which it operates is the

probability of error given that the model has chosen class x. Because H(e|X) is less than

or equal to the binary entropy of the error, the lower bound given by Equation (1.20) is

tighter than that of Equation (1.18).

	
H e X P X x h P X xe() () ()= = =å

xec 	
(1.19)

	
P

H Y I X Y H e X

Ke ³
()- ()- ()

-()()
;

log max 1,2 	
(1.20)

The file MUTINF_D.CPP on the Apress.com site contains a function for computing

the conditional error entropy of Equation (1.19). Here is a code snippet from this file to

demonstrate the computation:

for (ix=0; ix<nbins_x; ix++) { // For all decision classes

 marginal_x[ix] = 0; // Will sum marginal distribution of X

 �error_count[ix] = 0; // �Will count errors associated with each decision

 }

for (i=0; i<ncases; i++) {   // Pass through all cases

 ix = bins_x[i];  // The model's decision for this case

 ++marginal_x[ix]; // Cumulate marginal distribution

 if (bins_y[i] != ix) // If the true class is not the decision

 ++error_count[ix]; // Then this is an error, so count it

 }

Chapter 1 Information and Entropy

25

CI = 0.0; // �Will cumulate conditional error entropy here

for (ix=0; ix<nbins_x; ix++) { // For all decision classes

 �if (error_count[ix] > 0 && err�or_count[ix] < marginal_x[ix]) { // Avoid degenerate math

 �pyx = (double) error_count[ix] / (double) marginal_x[ix]; // P(e|X=x)

 �CI += (pyx * log(pyx) + (1.0-pyx) * log(1.0-pyx)) * marginal_x[ix] / ncases; // Eq 1.19

 }

 }

To compute an upper bound for the error rate, we need to define the conditional

entropy of Y given that the model chose class x and this choice was an error. This

unwieldy quantity is written as H(Y|e, X=x), and it is defined by Equation (1.21). The

upper bound on the error rate is then given by Equation (1.22).

	

H Y e X =x
P Y y X x

P e X x

P Y y X x

P e X xy ¥ y

(,)
()

()
log

()

(),

=-
= =

=
= =

=

é

ë
ê

ù

û
ú

¹e xx
å

	
(1.21)

	

P
H Y I X Y H e X

H Y e X = x
e

x

£
()- ()- ()

()éë ùû

;

min , 	
(1.22)

The key fact to observe from Equation (1.22) is that the denominator is the

minimum of erroneous entropy over all values of x, the predicted class. If the errors are

concentrated in one or a few predicted classes, this minimum will be small, leading to

a large upper bound on the theoretical error rate. This tells us that we should strive to

develop a model that maximizes the entropy over all erroneous decisions, as long as we

can do so without compromising the mutual information that is crucial to the numerator

of the equation. In fact, the denominator of this equation is maximized (thus giving a

minimum upper bound) when all errors are equiprobable.

Chapter 1 Information and Entropy

26

As was stated earlier, there is little or no practical need to compute this upper

bound. It is of mainly theoretical interest. But if you want to do so, code to compute the

denominator of Equation (1.22), drawn from the file MUTINF_D.CPP, is as follows:

/*

 Compute the marginal of x and the counts in the nbins_x by nbins_y grid

*/

 for (ix=0; ix<nbins_x; ix++) {

 marginal_x[ix] = 0;

 for (iy=0; iy<nbins_y; iy++)

 grid[ix*nbins_y+iy] = 0;

 }

 for (i=0; i<ncases; i++) {

 ix = bins_x[i];

 ++marginal_x[ix];

 ++grid[ix*nbins_y+bins_y[i]];

 }

/*

 �Compute the minimum entropy, conditional on error and each X Note that the computation

in the inner loop is almost the same as in the conditional entropy. The only difference is that

since we are also conditioning on the classification being in error, we must remove from the

X marginal the diagonal element, which is the correct decision.

 The outer loop looks for the minimum, rather than summing.

*/

 minCI = 1.e60;

 for (ix=0; ix<nbins_x; ix++) {

 �nerr = marginal_x[ix] - grid[ix*nbins_y+ix]; // Marginal that is in error

 if (nerr > 0) {

 cix = 0.0;

Chapter 1 Information and Entropy

27

 for (iy=0; iy<nbins_y; iy++) {

 if (iy == ix) // This is the correct decision

 continue; // So we exclude it; we are summing over errors

 pyx = (double) grid[ix*nbins_y+iy] / (double) nerr; // Term in Eq 1.21

 if (pyx > 0.0)

 cix -= pyx * log (pyx); // Sum Eq 1.21

 }

 if (cix < minCI)

 minCI = cix;

 }

 }

Equation (1.22) will often give an upper bound that is ridiculously excessive,

sometimes much greater than one. This is especially true if H(e|X) is replaced by

zero in the conservative analog to how we may replace this quantity by log(2) for the

lower bound. As will be vividly demonstrated in Table 1-3 on page 35, this problem

is particularly severe when the denominator of Equation (1.22) is tiny because of a

grossly nonuniform error distribution. In this case, we can be somewhat (though only

a little) aided by the fact that a naive classifier, one that always chooses the class whose

prior probability is greatest, will achieve an error rate of 1–maxxp(x), where p(x) is the

prior probability of class x. If there are K classes and they are all equally likely, a naive

classifier will have an expected error rate of 1–1/K. If for some reason you do choose to

use Equation (1.22) to compute an upper bound for the error rate, you should check it

against the naive bound to be safe.

�Simple Algorithms for Mutual Information
In this section we explore several of the fundamental algorithms used to compute

mutual information. Later we will see how these can be modified and incorporated into

sophisticated practical algorithms.

Chapter 1 Information and Entropy

28

Equation (1.16) on page 18 is the standard definition of mutual information, although

it is perfectly legitimate, and occasionally more efficient, to use any of the identities that

preceded this equation. The file MUTINF_D.CPP contains a function that implements this

definition. Here is a code snippet from this file, slightly modified for clarity:

/*

 Compute the marginals and the counts in the nbins_x by nbins_y grid

*/

 for (i=0; i<nbins_y; i++)

 marginal_y[i] = 0;

 for (i=0; i<nbins_x; i++) {

 marginal_x[i] = 0;

 for (j=0; j<nbins_y; j++)

 grid[i*nbins_y+j] = 0;

 }

 for (i=0; i<ncases; i++) {

 ix = bins_x[i];

 iy = bins_y[i];

 ++marginal_x[ix];

 ++marginal_y[iy];

 ++grid[ix*nbins_y+iy];

 }

/*

 Compute the mutual information

*/

 MI = 0.0; // Will sum Eq 1.16 here

 for (i=0; i<nbins_x; i++) {

 px = (double) marginal_x[i] / (double) ncases;

Chapter 1 Information and Entropy

29

 for (j=0; j<nbins_y; j++) {

 py = (double) marginal_y[j] / (double) ncases;

 pxy = (double) grid[i*nbins_y+j] / (double) ncases;

 if (pxy > 0.0)

 MI += pxy * log (pxy / (px * py)); // Eq 1.16

 }

 }

This algorithm assumes that the data is discrete. What if one or both of the variables

are continuous? We saw on page 7 that the best way to partition a continuous variable

to compute its entropy is to divide its range into bins based on equal spacing. This type

of partitioning can produce unusually dense as well as unusually sparse bins, which

is exactly what we want when we are estimating entropy. But for estimating mutual

information, we would like the bin counts to reflect the relationship between the

variables, rather than the marginal distributions. In the ideal situation, the marginal

distribution of both variables would be uniform (all marginal bins would have equal

counts) so that the counts in the grid represent the relationship between the variables to

the maximum degree possible. This leads to a simple yet reasonably effective algorithm

for computing the mutual information of a pair of continuous variables, or a continuous

variable and a discrete variable. Later, on page 45, we will see a superior method for

the case of two continuous variables. But for quick-and-dirty use or for the case of one

variable being continuous and one being discrete, equal-marginal partitioning is useful.

To this end, I have an automated partitioning algorithm (source in PART.CPP) that I

use in my own work. I do not guarantee that it is optimal in any particular sense, largely

because there are numerous competing definitions of optimality for partitions. On the

other hand, it has always behaved well for me. In particular, if you specify a desired

number of bins that is at least as large as the number of different values of the variable,

it will return the actual number of bins and create a single bin for each different value.

Also, if the variable has few or no ties and you specify a bin count that is small relative

Chapter 1 Information and Entropy

30

to the number of cases, it will compute bins whose counts are approximately or exactly

equal. Finally, if the variable is continuous but has numerous ties, it will group cases into

bins in a way that makes sense and seems to work well. The function is called as follows:

void partition (

 int n, // Input: Number of cases in the data array

 double *data, // Input: The data array

 int *npart, // Input/Output: Number of partitions to find; Returned as

 �// �actual number of partitions, which happens if massive ties

 double *bnds, // Output: Upper bound (inclusive) of each partition

 short int *bins // Output: Bin id (0 through npart-1) for eac h case

)

The first step is to copy the data and sort it into ascending order. We need to preserve

the indices of the original points, as we will need this information to assign cases to bins

as the last step. Also, compute an integer array of ranks to identify ties. This is not strictly

necessary, as we could simply use the floating-point data. But integer comparisons can

be much faster than real comparisons on some hardware, which could make a difference

for huge arrays.

 for (i=0; i<n; i++) {

 x[i] = data[i]; // Copy the data for sorting

 indices[i] = i; // Indices will be preserved here

 }

 qsortdsi (0, n-1, x, indices); �// Sort ascending, also moving indices

 ix[0] = k = 0; // Compute ranks, including ties

 for (i=1; i<n; i++) {

 �if (x[i] - x[i-1] >= 1.e-12 * (1.0 + fabs(x[i]) + fabs(x[i-1]))) // Check for effective tie

 ++k; // If not a tie, advance the counter of unique values

 ix[i] = k;

 }

Chapter 1 Information and Entropy

31

Compute an initial set of equal-size bins, ignoring ties for now. If there are no ties,

this is all we need to do.

 k = 0; // Will be start of next bin up

 for (i=0; i<np; i++) { // For all partitions

 j = (n-k)/(np-i); // Number of cases in this partition

 k += j; // Advance the index of next one up

 bin_end[i] = k-1; // Store upper bound of this bin

 }

Iteratively refine the bin boundaries until no boundary splits a tied value into

different bins. Note that the upper bound of the last partition is always the last case in the

sorted array, so we don’t need to worry about it splitting a tie, as there are no cases above

it. All we care about are the np–1 internal boundaries. Each iteration does two things.

First, it removes the first splitting bound that it finds. Then it attempts to replace this lost

bound by inserting a new bound in a sensible way.

 for (;;) { // Iterate until no ties are split across a boundary

 tie_found = 0; // Flags if we found a split tie

 for (ibound=0; ibound<np-1; ibound++) { �// Check all boundaries

 if (ix[bin_end[ibound]] == ix[bin_end[ibound]+1]) { �// Splits a tie?

 // This bound splits a tie. Remove this bound.

 for (i=ibound+1; i<np; i++)

 bin_end[i-1] = bin_end[i];

 --np; // We just lost a bound

 tie_found = 1; // Flag that we found a split tie and fixed it

 break; // Just remove one bad bound at a time

 }

 } // For all bounds, looking for a split across a tie

 if (! tie_found) // If we got all the way through the loop

 break; // without finding a bad bound, we are done

Chapter 1 Information and Entropy

32

 // The offending bound is now gone. Try splitting each remaining

 // bin. For each split, check the size of the smaller resulting bin.

 // Choose the split that gives the largest of the smaller.

 // Note that np has been decremented, so now np < *npart.

 istart = 0;

 nbest = -1;

 for (ibound=0; ibound<np; ibound++) { // Check all bounds

 istop = bin_end[ibound]; // End of this bin

 // Now processing a bin from istart through istop, inclusive

 for (i=istart; i<istop; i++) { // Try all possible splits of this bin

 if (ix[i] == ix[i+1]) // If this splits a tie

 continue; // Don't check it

 nleft = i - istart + 1; // Number of cases in left half

 nright = istop - i; // And right half

 if (nleft < nright) { // If the left half is smaller

 if (nleft > nbest) { // Keep track of the max

 nbest = nleft; // This is the best so far

 ibound_best = ibound; // And its base bound

 isplit_best = i; // Its location in the base bin

 }

 }

 else { // Ditto when right half is smaller

 if (nright > nbest) {

 nbest = nright;

 ibound_best = ibound;

 isplit_best = i;

 }

 }

 }

 istart = istop + 1; // Move on to the next bin

 } // For all bounds, looking for the best bin to split

Chapter 1 Information and Entropy

33

 // The search is done. It may (rarely) be the case that no further

 // splits are possible. This will happen if the user requests more

 // partitions than there are unique values in the dataset.

 // We know that this has happened if nbest is still -1. In this case

 // we (obviously) cannot do a split to make up for the one lost above.

 if (nbest < 0) // If no further splits are possible

 continue; // Then don't do it!

 // We get here when the best split of an existing partition has been

 // found. Save it. The bin that we are splitting is ibound_best,

 // and the split for a new bound is at isplit_best.

 for (ibound=np-1; ibound>=ibound_bes t; ibound--) // Move up old bounds

 bin_end[ibound+1] = bin_end[ibound]; // To make room for new one

 bin_end[ibound_best] = isplit_best; // The new split

 ++np; // Count it

 } // Endless search loop

At this point the partitioning is complete. Return the bounds to the user. Also return

the bin membership of each case.

 *npart = np; // Return the final number of partitions

 for (ibound=0; ibound<np; ibound++)

 bnds[ibound] = x[bin_end[ibound]];

 istart = 0; // The current bin starts here

 for (ibound=0; ibound<np; ibound++) { // Process all bins

 istop = bin_end[ibound]; // Inclusive end of this bin

 for (i=istart; i<=istop; i++)

 bins[indices[i]] = (short int) ibound;

 istart = istop + 1;

 }

Chapter 1 Information and Entropy

34

�The TEST_DIS Program
The file TEST_DIS.CPP is a program that illustrates the techniques discussed so far. It

allows the user to specify properties for a pair of variables, and then it generates random

datasets having the specified properties and computes mutual information and some

related measures. This program is for demonstration and exploration only. Later in this

chapter we will present a program that reads actual datasets and processes them. The

TEST_DIS program is invoked by typing its name followed by five parameters:

TEST_DIS nsamples ntries type parameter ptie

•	 nsamples: Number of cases in the dataset

•	 ntries: Number of Monte Carlo replications

•	 type: Type of test

•	 0=bivariate normal with specified correlation

•	 1=discrete bins with uniform error distribution

•	 2=discrete bins with triangular error distribution

•	 3=discrete bins with cyclic error distribution

•	 4=discrete bins with attractive class error distribution

•	 parameter: Depends on type of test

•	 0: Correlation

•	 >0: Error probability

•	 ptie: If type=0, probability of a tied case, else ignored

The bivariate normal test generates two normally distributed random variables

having the specified correlation. These continuous variables are partitioned into bins

using the partition() subroutine presented in the prior section. All other tests generate

a confusion matrix having the specified error probability. The uniform error test

distributes the misclassifications to all erroneous bins with equal probability. The

triangular test places most of the errors in the upper triangle. The cyclic test places

the errors in a nearby class. The attractive test favors one or two unnaturally attractive

classes. These all represent different types of model failure. Full details of the error

distributions can be found in the source code.

Chapter 1 Information and Entropy

35

A variety of numbers of bins are tested, depending on the number of cases that the

user wants for each sample. The tests are repeated ntries times. For each test, it is possible

to compute the theoretically correct mutual information. This enables the program to

keep track of the bias and standard error of the mutual information estimates. It also

computes loose and tight lower and upper bounds for misclassification error. The tight

lower bounds are based on Equation (1.20) and the tight upper bounds on Equation

(1.22). The loose lower bound is obtained by subtracting h(0.5)=log(2) in the numerator,

as described on page 21, and the loose upper bound is obtained by not subtracting

anything. The means of these bounds are computed across replications of the test. The

program also counts how often the true value of the error rate falls outside the computed

bounds. This demonstrates how the nature of the model’s error distribution affects the

width and quality of the bounds.

Table 1-3 shows the results from four runs of the TEST_DIS program. In all cases,

10,000 cases were in each sample. The test was replicated 1,000 times, the error rate was

set at 0.1, and 32 bins were used. Observe that in all four scenarios, the estimated mutual

information was very close to the true value, and the standard error of the estimate was

only slightly greater than the bias, indicating that the estimates were very stable.

The loose error bounds, supposedly bounding the true value of 0.1, were universally

worthless. The tight bounds were very good for the well-behaved model that had

uniformly distributed errors. They deteriorated badly, though in different directions, for

the triangular and cyclic error distributions. For a model with an attractive class, both the

lower and the upper bounds were totally worthless. Not shown in this table is that the

computed bounds never failed to enclose the true error rate.

Table 1-3.  Some Tesults from the TEST_DIS Program

True Est Bias StdE | Loose | | Tight |

1 2.85 2.80 0.05 0.06 −0.02 0.24 0.08 0.11

2 2.88 2.84 0.04 0.04 −0.03 0.51 0.08 0.25

3 3.07 3.07 0.00 0.01 −0.09 0.66 0.02 0.11

4 3.04 3.04 0.00 0.01 −0.10 0.97 0.01 0.97

Chapter 1 Information and Entropy

36

The discussion of the TEST_DIS program is necessarily brief here. Careful study of the

source code will show how the theoretical mutual information is computed, along with

error bounds. Also, calling methods for the functions discussed earlier in the chapter are

demonstrated.

�Continuous Mutual Information
Near the beginning of this chapter we saw that entropy is fundamentally a property

of finite discrete random variables, those that can take on only a finite number of

fixed values. Entropy can be extended to continuous random variables by replacing

summation with integration, but the continuous analog of entropy is of dubious worth

in practical applications. Luckily, the situation is considerably better when it comes to

mutual information. In prior sections we saw how the partition() function or something

similar could be used to discretize a continuous variable into bins, and then the discrete

mutual information could be computed from the bin counts. If both random variables

are continuous, there are much better ways of estimating their mutual information,

which is defined in Equation (1.23). (Note that if one variable is continuous and one is

discrete, as would be the case when predicting a class based on a continuous predictor,

the recommended procedure is to discretize the continuous variable into equal-sized

bins and compute discrete mutual information.)

	
I X Y f x y

f x y

f x f y
dx dyX Y

X,Y

X Y

() ()
()

() ()
; , log

,
,=òò 	

(1.23)

One beautiful aspect of Equation (1.23) is that it is immune to transformations of the

variables. Suppose g(.) and h(.) are one-to-one continuous differentiable functions over

the domain of x and y, respectively. Let x′ =g(x) and y′=h(y). Then I(x;y)=I(x′;y′). This is in

sharp contrast to continuous entropy, which is not even immune to linear rescaling, let

alone nonlinear transformation.

An immensely useful corollary of this property is that observed values of the

variables can be transformed to ranks or to any predefined distribution prior to

computing their mutual information. This simplifies and stabilizes numerical

algorithms.

Chapter 1 Information and Entropy

37

�The Parzen Window Method
To use Equation (1.23), we need to know the joint and marginal density functions, fX,Y(.),

fX(.), and fY(.). Naturally, we almost never have any knowledge of these functions other

than what our data sample provides. In most cases we aren’t even willing to assume

a functional form such as normality. The most common way of handling this difficult

situation is to use a Parzen window approximation.

The intuition behind a Parzen window is that areas of the domain in which the

probability density is large will manifest this in the data sample by the appearance of

many cases in this area. Similarly, if the probability density is small in some area of

the domain, few or no cases from this area will appear in the sample. This leads to a

generalized binning of the samples. Instead of defining strict boundaries for bins and

counting how many cases fall into each bin, we define a weighting function, a movable

window that spans the sample. When we want to compute the probability density at

some point in the domain, we center the window at that point and compute a weighted

sum of the cases nearby. Cases that are close to the domain point receive a large weight,

while further cases receive a small weight. Very distant cases receive no weight at all.

This technique is called the method of Parzen windows, after its inventor.

The density approximation is simple for the one-dimensional case, which covers

the marginal distributions. Let the sample values be x1, x2, …, xn. Assume that we have

a weighting function W(d), which should be large when d is near zero and become

smaller as d moves away from zero. Let s be a scale factor. Then the Parzen density

approximation is given by Equation (1.24).

	
f x =

n
W

x xi

i

n

()
1

1s s
-æ

è
ç

ö
ø
÷

=
å

	
(1.24)

It should be clear that if the argument x has numerous cases nearby, the sum will be

relatively large, because W will have many arguments near zero. Conversely, if there are

no cases near x, the sum will be small, because the argument for W will be large (and

hence W small) for all cases.

This is exactly what we want. The scale factor, sigma, determines the width of the

window. If it is small, implying a narrow window, only cases in the immediate vicinity

of x will impact the sum. If sigma is large, even distant cases will have an effect on the

estimated density.

Chapter 1 Information and Entropy

38

Parzen (1962) and Specht (1990a) provide a rigorous description of the properties

that W() must have in order for the Parzen method to be an effective density estimator.

Here, we say only that these properties are reasonable: W() must be bounded, go to

zero rapidly as the argument goes away from zero, and integrate to unity (which is a

fundamental property of a density function). The weight function favored by many is the

ordinary Gaussian function of Equation (1.25).

	
W d e d()= -1

2

2/2

p 	
(1.25)

The Parzen density estimator is easily generalized to more than one dimension, as

shown in Equations (1.26) and (1.27).

	

f x x
n

W
x x x x

p
p i

n
i p p i

p

()1
1 1

1 1,

1

,, ,
1

, ,¼ =
¼

-
¼

-æ

è
çç

ö

ø
÷÷

=
ås s s s 	

(1.26)

	
W d d = ep p

di

p

()
()1 /2

1

2,
1

2

2

1¼
å-

p 	
(1.27)

The file PARZDENS.CPP contains complete source code for computing Parzen density

estimators in one, two, and three dimensions. Here we examine only a few snippets,

modified for clarity when necessary, that illustrate the ideas just presented.

One aspect of the supplied code must be emphasized. Mutual information via the

Parzen window method tends to be most stable when the variables have at least roughly

normal distributions. For this reason, the Parzen window code applies a universal

normalization transform before computing the density. (Recall that mutual information

is immune to this nonlinear transformation.) The implication is that these routines

cannot be used for general density computation. They are intended to be used only

when integrating Equation (1.23), the definition of continuous mutual information. If

you want to use them for other applications, you must remove the normalization code

and compute the scale factor appropriately.

Chapter 1 Information and Entropy

39

To estimate a normalized Parzen density in one dimension, create a ParsDens_1

object. The constructor header looks like this:

ParzDens_1::ParzDens_1 (

 int nd, // Number of data points

 double *tset, // The data array

 int div) // Resolution divisor

The constructor first transforms the input data to a normal distribution. This is

a standard statistical algorithm. To transform a dataset to a given distribution, first

compute the cumulative distribution function (CDF) of the data and then map each

point to the inverse CDF of the desired distribution. The sorting algorithm qsortdsi()

swaps the indices along with the data.

for (i=0; i<nd; i++) {

 indices[i] = i;

 d[i] = tset[i];

 }

 qsortdsi (0, nd-1, d, indices);

 for (i=0; i<nd; i++)

 d[indices[i]] = inverse_normal_cdf ((i + 1.0) / (nd + 1));

The sigma scale factor in Equation (1.24) is represented by std in the code. It is equal

to 2.0 divided by the user’s specified resolution, div. The private variable var will be used

in the density computation later. The integration routine will need to know the complete

practical range of the variable. Since we know that the data now follows a standard

normal distribution, it is trivial to compute these limits. Finally, we compute the

normalizing factor of Equations (1.24) and (1.25) so that the function integrates to unity,

an essential property of a density. The code to do all this is as follows:

 std = 2.0 / div;

 var = std * std;

 high = 3.0 + 3.0 * std;

 low = -high;

 factor = 1.0 / (nd * sqrt (2.0 * PI * var));

Chapter 1 Information and Entropy

40

If there are numerous data points, which is the rule in practice, the summation in

Equation (1.24) is slow. For this reason, the code only uses Equation (1.24) when nd

is small. For large values, the constructor evaluates the density using Equation (1.24)

for a reasonable number of points, and then it constructs a cubic spline interpolating

function. This spline is used in future calls to the density evaluation function. Since

integration involves a huge number of function calls, the savings is enormous. The spline

code is tedious and uninteresting, so it will not be discussed here. See PARZDENS.CPP

and SPLINE.CPP for details.

After the constructor has been called, the density (in the normalized domain, not the

original domain) is estimated by calling the density() member function. Either it uses the

spline approximation or it implements Equation (1.24) directly.

 sum = 0.0;

 for (i=0; i<nd; i++) {

 diff = x - d[i];

 sum += exp (-0.5 * diff * diff / var);

 }

 return sum * factor;

The two-dimensional Parzen density code is a straightforward extension of the

one-dimensional code, so it will not be shown here. It, too, uses interpolation to save

time with large datasets. In this case, bilinear interpolation with quadratic extension is

used. See PARZDENS.CPP and BILINEAR.CPP for details.

To compute the mutual information of a pair of variables using the Parzen window

method, first create a MutualInformationParzen object. The constructor header and the most

important line of code look like this:

MutualInformationParzen::MutualInformationParzen (

 int n, // Number of cases

 double *depvals, // They are here

 int div) // Number of divisions, typically 5-10

{

dens_dep = new ParzDens_1 (n, depvals, div);

}

Chapter 1 Information and Entropy

41

One of the two variables is supplied to the constructor. It is called depvals in the

code, even though the inherent symmetry of mutual information means that there is no

distinction between dependent and independent variables. The reason for this naming

and for supplying one variable to the constructor is that this routine will often be used

for evaluating the mutual information between a dependent variable and each of a set

of candidates for independent variable. By doing as much processing as possible in the

constructor, we avoid redundant computation later.

When we want to compute the mutual information between the dependent variable

and a candidate predictor, the member function mutinf() is called. Its essential code,

modified for clarity, is as follows:

 this_dens_dep = dens_dep;

 this_dens_trial = new ParzDens_1 (n, x, n_div);

 this_dens_bivar = new ParzDens_2 (n, depvals, x, n_div);

 criterion = integrate (this_dens_trial->low, this_dens_trial->high,..., outercrit);

The variables that start with this are statics local to the module, used to pass their

data to local functions that the generic integration routine integrate() calls. This code does

very little. It creates a univariate Parzen density for the candidate variable, and it creates

a bivariate Parzen density for both variables. It then integrates outercrit() over the range of

the candidate variable.

The real work of the algorithm is in the integration criterion routines outercrit() and

innercrit(). These make up the integrand of Equation (1.23) and demonstrate a standard

technique for double integration. The outer criterion, which is integrated over the range

of the trial variable as shown in the prior code, itself integrates the inner criterion over

the range of the dependent variable. The inner criterion needs both variables, as well as

the density of the trial variable, so the two statics make it easy to pass this information

from the outer criterion to the inner.

static double this_x, this_px; // Needed for two-dimensional integration

double outer_crit (double t)

{

 double val, high, low;

Chapter 1 Information and Entropy

42

 high = this_dens_dep->high;

 low = this_dens_dep->low;

 this_x = t;

 this_px = this_dens_trial->density (this_x);

 val = integrate (low, high,..., inner_c rit);

 return val;

}

double inner_crit (double t) // Integrand of Equation (1.23)

{

 double py, pxy, term;

 py = this_dens_dep->density (t);

 pxy = this_dens_bivar->density (t, this_x);

 term = this_px * py; // Denominator

 if (term < 1.e-30) // Prevent dividing by zero

 term = 1.e-30;

 term = pxy / term; // Will take log of this

 if (term < 1.e-30) // Prevent taking log of zero

 term = 1.e-30;

 return pxy * log (term);

}

The code shown here is slightly different from the code on the Apress.com site. In

addition to a few changes that clarify operation, there is a difference related to the fact

that the Parzen code supplied with this text converts the data to a normal distribution.

Since this is the case, it is both inefficient and slightly (though not seriously) inaccurate

for the inner and outer criteria to use a one-dimensional Parzen window for the

marginal distributions. We already know that they are normal, so the code on the

accompanying disc replaces the Parzen window with direct evaluation of the standard

normal density. Comments to this effect appear in the code. This is so that the user who

wants to experiment can easily switch back and forth between the two methods.

Thus far, we have conveniently pushed aside the issue of the scaling factor, sigma

in Equations (1.24) and (1.26), and std in the code for the Parzen density. This is not

a trivial issue. In fact, it is such a serious issue that many people avoid using Parzen

windows to approximate mutual information. There are other algorithms, such as the

excellent adaptive partitioning method shown in the next section. However, Parzen

windows have a place in a complete toolbox. When the dataset contains just a few cases,

Chapter 1 Information and Entropy

43

perhaps several dozen, other methods are severely compromised. In this situation,

a wide window will capture most of the important information in the distribution

without running an inordinate risk of confusing random variation with true mutual

information. Also, despite that an excessively wide window will bias the computed

mutual information downward, while an excessively narrow window will bias it upward,

this bias will be reflected nearly equally in all candidate predictors. So if the purpose of

computing mutual information is to evaluate the relative quality of predictor candidates,

the ranking of the candidates will be only minimally impacted by the window width,

especially if the width is on the large side of optimal.

How do we choose a good window width? Ideally, we have software that plots a

histogram with the Parzen density overlaid. By trying several different window widths,

we can easily find the value that best captures the essence of the distribution. See, for

example, Figures 1-4 through 1-7. In the absence of such a tool, a decent rule of thumb

for the Parzen window software supplied with this text is to use a division factor of about

five for very small samples, ten if the sample contains several hundred cases, and 15 if

there are more than a thousand cases.

Figure 1-4.  Sigma is much too small

Chapter 1 Information and Entropy

44

Figure 1-6.  Sigma is on the large side of optimal

Figure 1-5.  Sigma is on the small side of optimal

Chapter 1 Information and Entropy

45

�Adaptive Partitioning
This section describes what is probably the best general-purpose algorithm for

estimating the mutual information of two continuous variables. It is considerably

more complex than the Parzen-window method just described, but the complexity is

worthwhile. The algorithm is conceptually elegant and widely effective in practice. It also

avoids the need to tweak a fussy parameter, which we must do for the Parzen window. It

does involve two tunable parameters, but the algorithm is remarkably insensitive to their

values, so in practice having to set two parameters is almost never a problem.

Recall that the naive way to compute the mutual information of a pair of continuous

variables is to partition the bivariate space into a checkerboard of bins by defining

boundaries for each marginal distribution and then plugging the bin counts into the

discrete formula for mutual information. This was discussed on page 29. The problem

with the naive method is that it pays too much attention to areas of the bivariate domain

that have few or no cases, while perhaps paying too little attention to dense areas where

most of the information lies. The algorithm on page 29 partially solves this problem by

Figure 1-7.  Sigma is much too large

Chapter 1 Information and Entropy

46

at least ensuring that the marginals have equal-sized bins. But it is nice to extend this

property to two dimensions.

Figure 1-8 on page 47 is a contour plot of the bivariate density of a pair of variables.

Most cases lie in a J-shaped cluster, with fewer cases around the perimeter of the main

pattern. No cases lie in the white areas. It should be obvious that if we were to divide this

bivariate space into, say, 20 divisions for each variable, most of the 20*20=400 bins would

be empty. This leads to serious problems with bias and error variance in the mutual

information estimate.

[Darbellay and Vajda, 1999. “Estimation of the Information by an Adaptive

Partitioning of the Observation Space.” IEEE Transaction on Information Theory 45:4.]

present a beautiful algorithm that adaptively partitions the bivariate space in such a

way that attention is focused on areas of high density. They also demonstrate that for a

variety of distributions, their algorithm has much less error than naive algorithms.

Look at Figure 1-9. It shows the distribution of Figure 1-8 partitioned into a

two-by-two grid. The upper-left block is empty, so it can be ignored. Each of the

remaining three blocks is partitioned into a two-by-two grid as shown in Figure 1-10.

Two more blocks can be eliminated, one because it is empty and one because it is

nearly empty. Partitioning again gives us Figure 1-11, in which several more blocks are

eliminated. It should be apparent that eventually the entire focus will be on areas of

support for the density.

How far do we take the partitioning? If we stop too soon, relationships between the

two variables will be obscured because details will be lost by tossing cases into overly

large bins. This will downwardly bias the mutual information estimate. Conversely, if

we stop too late, random variation will masquerade as actual information, inflating the

estimate of the mutual information. This problem, of course, is not unique to adaptive

partitioning. Anyone who experiments with the TEST_DIS program, discussed on page 34,

will see it vividly displayed with naive partitioning of a bivariate normal distribution. The

big difference is that since adaptive partitioning operates in two dimensions, intelligent

stopping criteria are easier to implement than with naive algorithms.

Chapter 1 Information and Entropy

47

Figure 1-8.  A bivariate distribution

Figure 1-9.  First partitioning

Chapter 1 Information and Entropy

48

Figure 1-10.  Second partitioning

Figure 1-11.  Third partitioning

Chapter 1 Information and Entropy

49

The stopping decision is based on several tests. The first and most important is a

simple chi-square test of the upcoming partition. The block whose candidacy for two-by-

two subdivision is being tested is subjected to the subdivision on a trial basis. Let n1, n2,

n3, and n4 be the bin counts of the four subdivisions, respectively. Let e1, e2, e3, and e4 be

the expected bin counts under the null hypothesis that there is no relationship between

the horizontal and vertical variables. These four expected counts will be exactly or

almost exactly equal depending on whether the numbers of rows and columns are even

(and hence exactly splitable in half) or odd (an exact split in half cannot be done). If the

two variables are unrelated, the observed bin counts will equal the expected bin counts

except for random variation. But if there is a relationship between the two variables, the

counts will be skewed away from their expected values, with some bin being favored at

the expense of another. The standard two-by-two chi-square test statistic is shown in

Equation (1.28).

	
X

n e

ei

i i

i

2

1

4
2

0.5
=

- -()
=
å

	
(1.28)

If this test statistic fails to exceed the threshold for a small significance level, we

conclude that the trial subdivision is probably pointless. However, it is possible that

there really is a deterministic skewing of the data in the enclosing block, but a simple

two-by-two subdivision fails to pick it up. This does not happen often, but it is still

worth considering. For this reason, if the two-by-two chi-square test fails to detect a

nonrandom distribution and if the enclosing block is relatively large, we subdivide into

a four-by-four set of blocks and perform a chi-square test. If this test also fails to detect a

nonrandom data distribution, we conclude that nothing is to be gained by subdividing

the enclosing block, compute its contribution to the total mutual information, and

henceforth ignore it.

But if either the original two-by-two chi-square test or the subsequent four-by-four

test determines that the enclosing block is not uniform, we partition it into four smaller

blocks. We check the size of each of these smaller blocks. If it is tiny, we compute its

contribution to the total mutual information and declare that block finished. If it is still

large enough for possible future splitting, we push it onto a stack of blocks to be explored

and continue processing.

Chapter 1 Information and Entropy

50

When a block is determined to be finished, whether because it is small or because

it is uniform, its contribution to the total mutual information is computed by using a

discrete approximation to Equation (1.23) on page 36. This is shown in Equation (1.29),

in which px is the fraction of the X marginal distribution encompassed by the X

dimension of the block, py is the fraction of the Y marginal distribution encompassed

by the Y dimension of the block, and pxy is the fraction of the bivariate distribution

encompassed by the area of the block.

	
MI Contribution p

p

p pxy
xy

x y

= log
	

(1.29)

We will soon present a detailed discussion of the code that implements adaptive

partitioning. But since it is quite complex, we begin with a simplified statement of the

algorithm. Note that the code includes an optional provision to prevent splitting across

tied data. It is senseless to define a subdivision in which some cases land on one side of

the trial partition while other cases whose value on the variable are equal lie on the other

side. It makes more sense to place all equal values on the same side of the boundary.

However, truly continuous data will never have any ties, and this provision adds to the

already severe complexity of the algorithm. For these reasons, the simplified statement

here will ignore ties. The topic will be covered in the discussion of the code. The

algorithm is as follows:

Convert the data (n cases) to ranks.

Initialize nstack=1. This is the number of rectangles on the to-do stack. Also initialize this one stack

entry to be the entire dataset. Nstack will be decremented when a rectangle is popped from the stack,

and incremented when a rectangle is pushed onto the stack.

While nstack > 0 {

 Pop a rectangle from the stack

 Compute the X and Y boundaries for splitting the rectangle 2-by-2

 �Compute the expected and actual bin counts in each of the four sub-rectangles

Chapter 1 Information and Entropy

51

 �Perform a 2-by-2 chi-square test. Set the flag splitable to true if the test found a significant

disparity in bins counts, else false.

 �If splitable = false and the rectangle is big {

 Perform a 4-by-4 chi-square test.

 If the test finds a significant disparity, set splitable true.

 }

 �If splitable = true {

 For each of the four sub-rectangles {

 If this rectangle is not tiny {

 Push it onto the stack

 � Rearrange rectangle indices to reflect this partitioning

 }

 Else {

 �Use Equation (1.29) to evaluate this sub-rectangle's contribution

 }

 }

 }

 �Else {

  � Use Equation (1.29) to evaluate this current rectangle's contribution

 }

 }

Complete code to implement the adaptive partitioning algorithm can be found in the file

MUTINF_C.CPP in the accompanying code set. This code is quite complex, especially since

keeping track of the nested rectangles in an efficient manner is tricky. Therefore, we will

break it down into sections, slightly simplifying as needed, and discuss it one part at a time.

One of the two core components of the program is an array called indices. It is

initialized to the integers 1 through n. As the algorithm progresses and rectangles are

subdivided, this array will be shuffled. At any time, we can define a rectangular block by

Chapter 1 Information and Entropy

52

pointing to its starting and ending elements in this array. This lets us efficiently handle

nesting of rectangles. For example, we may have an enclosing block that starts at element

50 of indices and ends at element 89. It may consist of four smaller blocks, defined by

elements 50-59, 60-69, 70-79, and 80-89, respectively.

The other core component is a stack of rectangles to be processed. Each stack entry

has the following six members:

•	 Xstart, Xstop: Starting and ending (inclusive) ranks of X in the

rectangle

•	 Ystart, Ystop: Starting and ending (inclusive) ranks of Y in the rectangle

•	 DataStart, DataStop: Rectangle’s starting and ending elements of indices

The program begins by converting each of the two variables to integer ranks. It also

keeps track of tied values so that later we can avoid splitting tied cases into different

partitions. Note that rather than testing for exact equality, we test for values that are

nearly equal in terms of double precision. This is a good habit in most programming

environments, although the reader is free to be strict if desired. Here is the code for the x

variable. The other variable, y, is treated similarly.

 for (i=0; i<n; i++) {

 work[i] = xraw[i]; // Copy the data, as we will sort it

 indices[i] = i; // Preserve the original locations

 }

 qsortdsi (0, n-1, work, indices); // Sort ascending, also moving indices

 for (i=0; i<n; i++) {

 x[indices[i]] = i; // We now have ranks

 �if �(i < n-1 && work[i+1] - work[i] < 1.e-12 * (1.0 + fabs(work[i]) + fabs(work[i+1])))

 �x_tied[i] = 1; // This case is tied with one above

 else

 x_tied[i] = 0;

 }

Chapter 1 Information and Entropy

53

To initialize, the indices array is set equal to the entire dataset, and one rectangle, the

entire dataset, is placed on the to-do stack. The stack entries are inclusive, so the last

index is n–1.

 for (i=0; i<n; i++) // For the entire dataset

 indices[i] = i; // These are the case indices

 stack[0].Xstart = 0; // Lowest X rank in this rectangle

 stack[0].Xstop = n-1; // And highest

 stack[0].Ystart = 0; // Ditto for Y

 stack[0].Ystop = n-1;

 stack[0].DataStart = 0; // �Index into indices of the first case in the rectangle

 stack[0].DataStop = n-1; // And the last case

 nstack = 1; // �This is the top-of-stack pointer: One item in stack

The mutual information will be cumulated in MI. The program loops over the same

code, processing one rectangle at a time, as long as there is at least one rectangle on the

stack. The first step in the loop is to pop the rectangle off the stack.

 MI = 0.0; // Will cumulate mutual information here

 while (nstack > 0) { // As long as there is a rectangle to do

 // Get the rectangle pushed onto the stack most recently

 �--nstack; // �Pop the rectangle off the stack

 fullXstart = stack[nstack].Xstart; // Starting X rank

 fullXstop = stack[nstack].Xstop; // And ending

 fullYstart = stack[nstack].Ystart; // Ditto for Y

 fullYstop = stack[nstack].Ystop;

 currentDataStart = stack[nstack].DataStart; // The cases start here

 currentDataStop = stack[nstack].DataStop; // And end here

Compute the center of this rectangle in preparation for the two-by-two trial split.

This center will be the rightmost (largest) index in the left (smaller rank) subrectangle. If

this case happens to be tied with the next one up, we don’t want to split here, as such a

split would put tied cases on opposite sides of the partition. So, we set a flag to indicate

Chapter 1 Information and Entropy

54

whether we have this problem. If not, we are done. But if this exact center is tied, we

attempt to move it off-center as little as possible, stopping as soon as we find a split that

is not tied. In the pathological case that we never succeed, the tie flag remains set. We

will check it later. This code is repeated for the y variable. Here we show only the x code.

 centerX = (fullXstart + fullXstop) / 2; // �Exact center, the ideal boundary

 X_AllTied = (x_tied[centerX] != 0); // �Does it happen to be tied here?

 if (X_AllTied) { // If so, try to move it

 for (ioff=1; centerX-ioff >= fullXstart; ioff++) { // �Try to keep the offset small

 if (! x_tied[centerX-ioff]) { // �If this is not tied

 X_AllTied = 0; // We succeeded, so reset flag

 centerX -= ioff; // The new boundary is here

 break; // �Done searching

 }

 if (centerX + ioff == fullXstop) // �Quit if we hit the edge

 break;

 if (! x_tied[centerX+ioff]) { // Try the other direction

 X_AllTied = 0;

 centerX += ioff;

 break;

 }

 }

 }

If either variable happens to be entirely tied, ideally a rare condition, the rectangle is

declared to be nonsplitable. Otherwise, we trivially compute the starting and stopping

indices of the four subrectangles defined by the split. The expected bin count in each

partition is the total bin count times the fraction of the total x side and times the fraction

of the total y side. The actual count in each partition is computed by tallying the number

of cases that lie on each side of each center bound.

 if (X_AllTied || Y_AllTied) // If either variable is entirely tied

 splitable = 0; // No sense trying to split

 else {

Chapter 1 Information and Entropy

55

 trialXstart[0] = trialXstart[1] = fullXstart; // The four sub-rectangles

 trialXstop[0] = trialXstop[1] = centerX;

 trialXstart[2] = trialXstart[3] = centerX+1;

 trialXstop[2] = trialXstop[3] = fullXstop;

 trialYstart[0] = trialYstart[2] = fullYstart;

 trialYstop[0] = trialYstop[2] = centerY;

 trialYstart[1] = trialYstart[3] = centerY+1;

 trialYstop[1] = trialYstop[3] = fullYstop;

 // Compute the expected count in each of the four sub-rectangles

 for (i=0; i<4; i++)

 �expected[i] = (currentDataStop - currentDataStart + 1) * // Total count

 �(trialXstop[i]-trialXstart[i]+1.0) / (fullXstop-fullXstart+1.0) * // X fraction

 �(trialYstop[i]-trialYstart[i]+1.0) / (fullYstop-fullYstart+1.0); // Y fraction

 // Compute the actual count in each of the four sub-rectangles

 actual[0] = actual[1] = actual[2] = actual[3] = 0;

� for (i=currentDataStart; i<=currentDataStop; i++) { // �All cases in this rectangle

 k = indices[i]; // Index of this case

 if (x[k] <= centerX) { // Is it on the left side?

 if (y[k] <= centerY) // Is it in the top half

 ++actual[0];

 else

 ++actual[1];

 }

 else {

 if (y[k] <= centerY)

 ++actual[2];

 else

 ++actual[3];

 }

 }

Chapter 1 Information and Entropy

56

Compute the two-by-two chi-square test. If the actual counts are sufficiently different

from the expected counts, declare the rectangle worth splitting.

 testval = 0.0; // Will cumulate test statistic here

 for (i=0; i<4; i++) { // The four sub-rectangles

 diff = fabs (actual[i] - expected[i]) - 0.5; // Equation (1.28)

 testval += diff * diff / expected[i];

 }

 splitable = (testval > chi_crit)? 1 : 0; // Does it exceed the criterion?

It may sometimes be the case that the rectangle really does have a nonuniform data

distribution, but the cases happen to be roughly equally distributed among the four

subrectangles. We can usually avoid this trap by splitting it into a four-by-four set of

16 partitions. Of course, this makes sense only if the rectangle contains more than just

a few cases. I don’t bother checking for ties in this finer split because it would greatly

complicate the code, and this is a fairly rare occurrence anyway. The decision from the

two-by-two split is the final decision the vast majority of the time. Moreover, ties will

never occur in truly continuous data, so handling ties is a moot point in many or most

situations.

 if (! splitable && fullXstop-fullXstart > 30 && fullYstop-fullYstart > 30) {

  ipx = fullXstart - 1; // Will be last index of prior sub-rectangle

   ipy = fullYstart - 1; // Used for computing X and Y fractions

  for (i=0; i<4; i++) { // �Find the four x and y boundaries in this loop

  xcut[i] = (fullXstop - fullXstart + 1) * (i+1) / 4 + fullXstart - 1; // Rightmost limit

  xfrac[i] = (xcut[i] - ipx) / (fullXstop - fullXstart + 1.0); // Fraction in X direction

  ipx = xcut[i]; // For next pass

  ycut[i] = (fullYstop - fullYstart + 1) * (i+1) / 4 + fullYstart - 1; // Ditto for Y

  yfrac[i] = (ycut[i] - ipy) / (fullYstop - fullYstart + 1.0);

  ipy = ycut[i];

  }

Chapter 1 Information and Entropy

57

   // Compute expected counts

   for (ix=0; ix<4; ix++) {

   for (iy=0; iy<4; iy++) {

   expected[ix*4+iy] = xfrac[ix] * yfrac[iy] *

   (currentDataStop-currentDataStart+1);

   actual44[ix*4+iy] = 0;

   }

   }

   // Compute actual counts

   for (i=currentDataStart; i<=currentDataStop; i++) { // �All cases in rectangle

   k = indices[i]; // Index of this case

   for (ix=0; ix<3; ix++) { // Compare x to all three inner boundaries

   if (x[k] <= xcut[ix]) // Stop before we cross incorrect boundary

 break;

   }

   for (iy=0; iy<3; iy++) { // Ditto for Y

   if (y[k] <= ycut[iy])

 break;

   }

  ++actual44[ix*4+iy]; // Tally the count

   }

   // Compute the chi-square test

   testval = 0.0;

   for (ix=0; ix<4; ix++) {

   for (iy=0; iy<4; iy++) {

   diff = fabs (actual44[ix*4+iy] - expected[ix*4+iy]) - 0.5;

   testval += diff * diff / expected[ix*4+iy];

   }

   }

   �splitable = (testval > 22.0) ? 1 : 0; // �Discrepancy on four-by-four test?

   } // If trying 4x4 split

 } // Else not all tied

Chapter 1 Information and Entropy

58

If the rectangle is to be split, we now process the four subrectangles. If they are

not tiny, push them onto the stack for processing later. Also preserve the indices of the

enclosing rectangle, because we will need them for rearranging the indices to reflect the

partition.

 if (splitable) { // If we are to split it

 for (i=currentDataStart; i<=currentDataStop; i++) // Preserve its indices

  current_indices[i] = indices[i]; // for rearrangement soon

 ipos = currentDataStart; // �Will rearrange indices starting here

 for (iSubRec=0; iSubRec<4; iSubRec++) { // Check all 4 sub-rectangles

 if (actual[iSubRec] >= 3) { // Big enough to push onto stack for further splitting?

 stack[nstack].Xstart = trialXstart[iSubRec];

 stack[nstack].Xstop = trialXstop[iSubRec];

 stack[nstack].Ystart = trialYstart[iSubRec];

 stack[nstack].Ystop = trialYstop[iSubRec];

 stack[nstack].DataStart = ipos;

 stack[nstack].DataStop = ipos + actual[iSubRec] - 1;

 ++nstack;

The current, enclosing rectangle runs from currentDataStart through currentDataStop in

indices. Rearrange these indices so that the subrectangle that we just pushed has all of its

cases together in a contiguous string. If we don’t push any of the four, we don’t need to

worry about them because we will not be processing them in the future.

 if (iSubRec == 0) { // Upper-left sub-rectangle

  for (i=currentDataStart; i<=currentDataStop; i++) { // �All cases in rectangle

  k = current_indices[i]; // �Index of this case

  if (x[k] <= centerX && y[k] <= centerY)   // �Is it in upper-left?

  indices[ipos++] = current_indices[i]; // If so, move it

   }

  }

Chapter 1 Information and Entropy

59

 else if (iSubRec == 1) {

 for (i=currentDataStart; i<=currentDataStop; i++) {

 k = current_indices[i];

 if (x[k] <= centerX && y[k] > centerY)

  indices[ipos++] = current_indices[i];

 }

 }

 else if (iSubRec == 2) {

 for (i=currentDataStart; i<=currentDataStop; i++) {

 k = current_indices[i];

 if (x[k] > centerX && y[k] <= centerY)

 indices[ipos++] = current_indices[i];

 }

 }

 else { // iSubRec == 3

 for (i=currentDataStart; i<=currentDataStop; i++) {

 k = current_indices[i];

 if (x[k] > centerX && y[k] > centerY)

 indices[ipos++] = current_indices[i];

 }

 }

 } // If this sub-rectangle is large enough to be worth pushing

If this subrectangle is tiny, there is no reason to push it for an attempt at splitting

further. Just compute its contribution to the mutual information using Equation (1.29).

 else { // This sub-rectangle is small, so get its contribution now

  if (actual[iSubRec] > 0) { // It only contributes if it has cases

 px = (trialXstop[iSubRec] - trialXstart[iSubRec] + 1.0) / n;

 py = (trialYstop[iSubRec] - trialYstart[iSubRec] + 1.0) / n;

 pxy = (double) actual[iSubRec] / n;

Chapter 1 Information and Entropy

60

 MI += pxy * log (pxy / (px * py)); Equation (1.29)

 }

 } // Else this sub-rectangle is too small to push, so process it

 } // For all 4 sub-rectangles

 } // If splitting

The only other possibility is that the enclosing rectangle failed both the two-by-two

and the four-by-four chi-square tests, meaning that it was so uniform that it was not

worth splitting. In this case, process it using Equation (1.29).

 else { // Else the chi-square tests failed, so we do not split

 px = (fullXstop - fullXstart + 1.0) / n;

 py = (fullYstop - fullYstart + 1.0) / n;

 pxy = (currentDataStop - currentDataStart + 1.0) / n;

 MI += pxy * log (pxy / (px * py)); // Equation (1.29)

 }

 } // While rectangles in the stack

This algorithm requires the user to specify only two parameters: the threshold for the

two-by-two chi-square test and that for the four-by-four. The latter is so uncritical that

the value 22.0 is hard-coded into the routine. The former is only slightly critical. Values

between about four and eight suffice in a wide variety of circumstances. I use a value of

six in all of my work, and I find this value to be universally applicable.

�The TEST_CON Program
The file TEST_CON.CPP contains a complete program that demonstrates how to call

the routines for using Parzen windows and adaptive partitioning to estimate mutual

information for continuous variables. It also lets the user compare the performance of

the two methods. The program repeatedly generates a bivariate normal dataset with

specified correlation and uses both methods to estimate their mutual information. The

bias and standard error of the estimates is displayed. Later in this chapter we will present

Chapter 1 Information and Entropy

61

a practical program for reading datasets and analyzing mutual information. The TEST_

CON program is for demonstration and experimentation only. The program is invoked as

follows:

TEST_CON nsamps ntries correl ptie nosplit ndiv chi

•	 nsamps: Number of cases in the dataset

•	 ntries: Number of Monte Carlo replications

•	 correl: Correlation, 0-1

•	 ptie: Probability of a tie, 0-1 (0 is generally recommended)

•	 nosplit: If nonzero, adaptive partitioning prevents splits across ties

•	 ndiv: Number of divisions for the Parzen window width

•	 chi: Two-by-two chi-square threshold for adaptive partitioning

�Asymmetric Information Measures
Mutual information is symmetric in the sense that I(X;Y) = I(Y;X). In other words,

mutual information shows how much information two variables carry in common.

This may be troubling when our goal is to use one variable, say X, to predict another,

say Y. Their mutual information is based as much on the ability of Y to predict X as the

ability of X to predict Y. This becomes an especially serious problem when one wants to

speak of causality, a changing value of one variable causing a change in the probability

distribution of another variable. This section will discuss two common approaches to

investigating asymmetric information.

�Uncertainty Reduction
Please turn back to page 19 and look at Figure 1-3, a depiction of the relationship

between two variables. The two overlapping circles represent the uncertainty inherent

in each variable before its value is known. Their region of overlap represents the

information that is in common between them. Now suppose we have a predictor X that

can take on three values, and a predicted variable Y that can take on two values. Table 1-4

shows an extreme example of asymmetric information.

Chapter 1 Information and Entropy

62

We see that there are 41 cases for which X=1 and Y=1, but no cases for which X=1 and

Y=2. Examination of the other entries shows that X is a perfect predictor of Y; if we know

X, then we know Y with absolute certainty. This is likely a useful thing to know about our

data. But the converse is not true. When Y=1, our knowledge of whether X is one or two

is essentially a coin toss. If our goal is to use X to predict Y, inclusion of this asymmetry in

our test statistic may be counterproductive.

This can be visualized in Figure 1-3 on page 19. Call one of the entropy circles Y.

Now consider how much of that circle is encompassed by the overlapping region. If the

overlap encompasses most of the Y circle, then the mutual information between X and Y

eliminates most of the uncertainty in Y. Conversely, if the overlap is only a small portion

of the Y circle, the mutual information does little to reduce the uncertainty in Y. Note

that the relationship between the overlap and the X circle (its entropy or uncertainty)

plays no direct role in this computation.

This concept can be quantified by comparing the entropy of Y, which is written as

H(Y), with the conditional entropy of Y given that we know X, which is written as H(Y|X).

If these two quantities are equal, then X contributes nothing to our knowledge of Y; it has

no predictive power. Conversely, if H(Y|X) is zero, meaning that knowledge of X removes

all uncertainty of Y, then X is a perfect predictor of Y.

The relative amount by which uncertainty in Y is reduced by knowledge of X can

be expressed as shown in Equation (1.30). We have already seen the identity shown in

Equation (1.31). Employing this identity in the definition gives the usual computation

formula shown in Equation (1.32).

	
Uncertainty reduction

H Y H Y X

H Y
=

()- ()
() 	

(1.30)

	
H Y X H X Y H X() = ()- (), 	 (1.31)

Table 1-4.  Asymmetric Predictive Information

Y=1 Y=2

X=1 41 0

X=2 38 0

X=3 0 92

Chapter 1 Information and Entropy

63

	
Uncertainty reduction

H X H Y H X Y

H Y
=

()+ ()- ()
()

,

	
(1.32)

The file STATS.CPP provided on my web site contains a small subroutine for

computing uncertainty reduction. It is listed here. Little explanation is needed because

this subroutine is a direct implementation of the basic information formulas. A brief

summary of its operation follows the code listing.

void uncert_reduc (

 int nrows, // Number of rows in data

 int ncols, // And columns

 int *data, // �Nrows by ncols (changes fastest) matrix of cell counts

 double *row_dep, // Returns asymmetric UR when row is dependent

 double *col_dep, // Returns asymmetric UR when column is dependent

 double *sym, // Returns symmetric UR

 int *rmarg, // Work vector nrows long

 int *cmarg // Work vector ncols long

)

{

 int irow, icol, total;

 double p, numer, Urow, Ucol, Ujoint;

 if (nrows < 2 || ncols < 2) { // Careless user!

 *row_dep = *col_dep = *sym = 0.0;

 return;

 }

 total = 0;

 for (irow=0; irow<nrows; irow++) {

 rmarg[irow] = 0;

 for (icol=0; icol<ncols; icol++)

 rmarg[irow] += data[irow*ncols+icol];

 total += rmarg[irow];

 }

Chapter 1 Information and Entropy

64

 for (icol=0; icol<ncols; icol++) {

 cmarg[icol] = 0;

 for (irow=0; irow<nrows; irow++)

 cmarg[icol] += data[irow*ncols+icol];

 }

 Urow = 0.0;

 for (irow=0; irow<nrows; irow++) {

 if (rmarg[irow]) {

 p = (double) rmarg[irow] / (double) total;

 Urow -= p * log (p);

 }

 }

 Ucol = 0.0;

 for (icol=0; icol<ncols; icol++) {

 if (cmarg[icol]) {

 p = (double) cmarg[icol] / (double) total;

 Ucol -= p * log (p);

 }

 }

 Ujoint = 0.0;

 for (irow=0; irow<nrows; irow++) {

 for (icol=0; icol<ncols; icol++) {

 if (data[irow*ncols+icol]) {

 p = (double) data[irow*ncols+icol] / (double) total;

 Ujoint -= p * log (p);

 }

 }

 }

 numer = Urow + Ucol - Ujoint;

 if (Urow > 0)

 *row_dep = numer / Urow;

 else

 *row_dep = 0.0;

Chapter 1 Information and Entropy

65

 if (Ucol > 0)

 *col_dep = numer / Ucol;

 else

 *col_dep = 0.0;

 if (Urow + Ucol > 0)

 *sym = 2.0 * numer / (Urow + Ucol);

 else

 *sym = 0.0;

}

The first block of code cumulates the row marginals as well as the total case count. The

second block cumulates column marginals. The next three blocks compute the row, column,

and joint entropies, respectively. Finally, Equation (1.32) is used to compute the uncertainty

reduction in each direction. The pooled symmetric measure computed last is not often used.

�Transfer Entropy: Schreiber’s Information Transfer
In 2000, Thomas Schreiber published a seminal paper on modern information theory:

Measuring Information Transfer. His paper, [Schreiber, 2000. “Measuring Information

transfer”, Physical Review Letters, 85:2.], showed how we could measure a form of causality,

the transfer of information from one time series to another. Later, [Vicente et al, 2011.

“Transfer Entropy: A Model-Free Measure of Effective Connectivity for the Neurosciences”

Journal of Computational Neuroscience 30:1.] provided some additional practical

applications of Schreiber’s information transfer. We now present the basic algorithm, along

with code for computing information transfer (often also called transfer entropy).

Both of these papers discuss methods for dealing with the curse of dimensionality that

plagues this computation when data is limited. These specialized algorithms come with

problems of their own, and the ideal algorithm to choose is strongly application-dependent.

For this reason, here we will stick with the original and most straightforward algorithm. If

you are dealing with limited data and want to experiment with alternative algorithms, you

should see these two papers for suggestions.

By the way, it is worth mentioning up front that the long-popular Grainger Causality

is a special case of transfer entropy in which one assumes that the underlying model

is linear autoregressive with Gaussian noise. If you are willing to accept these often

restrictive assumptions, then Grainger Causality might be preferable to transfer entropy

due to its more efficient use of data. However, in many applications these assumptions

are too onerous to be applicable.

Chapter 1 Information and Entropy

66

What is causality? Rather than digging into a deep theoretical discussion, we’ll

simply restate Granger’s two rules:

	 1)	 The cause precedes the effect.

	 2)	 The cause contains unique information, not available in any other

variable.

Note that the second rule is generally impossible to verify in practice because we

cannot know for sure whether there are other variables related to the causative that we

are not aware of. Still, it’s nice to consider this rule in the context of an application.

To quote [Vicente et al, 2011], who in turn quotes an earlier source, “A signal X is

said to cause a signal Y if the future of Y is better predicted by adding knowledge from

the past and present of signal X than by using the past and present of Y alone.” The

code presented later shifts this back in time by one measurement period, developing

the measure of causality in terms of the present value of Y being impacted by past

values of X and Y. This alternate approach is more amenable to data analysis. But the

traditional mathematical development that predicts future values of Y will be used

in the explanations here to remain consistent with tradition. The two approaches are

equivalent and differ only in starting and ending subscripts.

What we are discussing here is not the mutual information between Y and prior

values of X. We might believe that this mutual information, which involves only values of

X prior to the current value of Y, is a good way to quantify information transfer from X to Y.

However, [Schreiber, 2000] shows that this approach has limited value and numerous

problems.

An algorithm for estimating information transfer would ideally have at least the

following four properties. Transfer entropy satisfies them all to a reasonable degree.

•	 It should not require the investigator to describe the nature of the

expected interaction in advance of analysis. This property allows the

algorithm to be useful for investigation.

•	 It should respond to common nonlinear causality modes, including

purely nonlinear effects. Methods that respond only to linear

components of causality, such as Granger’s, are seriously limited in

applicability.

•	 It should not be limited to just one delay for the causality. Different

delays should be detectable.

Chapter 1 Information and Entropy

67

•	 It should be reasonably robust against crosstalk, the phenomenon

of a signal or noise component that appears simultaneously in X

and Y. Many sources of data suffer this effect. For example, EEG

measurements have common-mode noise, and equities share

market-wide swings.

To rigorously present the algorithm, we need a compact notation for signifying

the current and recent historical values of a time series. In particular, at time t we will

represent the k most recent values of X (including the current value) as Xt
(K) = (Xt, Xt-1, …,

Xt-k+1), and similarly for Y.

We also need a brief detour to discuss the Kullback-Liebler distance between two

discrete probability distributions. Suppose P and Q are discrete probability distributions

over some domain indicated by i. Then the Kullback-Liebler distance between P and Q is

given by Equation (1.33).

	

D P ||Q = p i
p i

q ii

() () ()
()

æ

è
çç

ö

ø
÷÷å log

	
(1.33)

A little intuition about this definition is in order. Suppose, for example, that the

two distributions are identical. In other words, the probability of every possible event

is the same in both distributions. In this case, the ratio will be one for every i, and the

log of one is zero. So the K-L distance will be zero. Now suppose that for some event the

probability under P of that event is much larger than under Q. The ratio is greater than

one, so the log will be positive, and the weight will be unusually large, resulting in a large

contribution to the sum. Conversely, suppose for some event its probability under Q is

much larger than its probability under P. Now the ratio will be less than one, the log will

be negative, but the weight will be small, so only a small value will be subtracted from

the sum. The more the two distributions diverge, the greater will be the sum.

We state without proof that this sum can never be negative, which is a nice property

for a distance! But it is not symmetric: D(P || Q) does not necessarily equal D(Q || P).

Rather, the K-L distance measures the amount of information lost when the distribution

Q is used to approximate P. In most applications, P is the (assumed) true distribution

of the data, while Q is some experimental approximation of P, perhaps based on a

proposed model or other tentative explanation of P.

Chapter 1 Information and Entropy

68

We are now ready to proceed. Recall that we know current and historical values

of Y, and this knowledge gives us some ability to predict the next value of Y. Our goal

in computing information transfer is to measure the degree to which the additional

knowledge of current and historical values of X adds to our ability to predict the next

Y. Equivalently, we will measure the amount of predictive information that is lost by

denying ourselves knowledge of X.

Suppose we are at observation time t. If we have knowledge of the historical values of

both X and Y, then we can write the probability of the next (t+1) value of Y as p(yt+1|yt (n),

xt (m)), where n and m may be different (we may know different lengths of X and Y

history). But if we do not know X, then the probability of the next value of Y is p(yt+1|yt (n)).

If X has no causative effect on Y, then these two probabilities are equal for all possible

outcomes. But if X does have causative effect, then they will differ.

We are now in a position to define transfer entropy. Recall that the Kullback-Liebler

distance D(P || Q) measures the amount of information lost when the distribution Q is

used to approximate P. The actually observed data provides p(yt+1|yt
(n), xt

(m)). What if we

were to approximate this with the probability distribution that lacks access to X, namely,

p(yt+1|yt
(n))? The former plays the role of P, and the latter plays the role of Q. Because of

the conditional probabilities, we must sum across the conditions. The information lost

by denying knowledge of X is the transfer entropy from X to Y, and it is defined as shown

in Equation (1.34).

	

Transfer entropy p y y x
p y y x

p
t t

n
t
m t t

n
t
m

= () ()å +
() () +

() ()

1

1
, , log

,

yy yt
n

t+
()()

æ

è

ç
çç

ö

ø

÷
÷÷1 	

(1.34)

We can define the required conditional probabilities in terms of primitive

probabilities, shown here using our current notation:

	

p y y x
p y y x

p y ,x
t t

n
t
m t t

n
t
m

t
n

t
m+

() () +
() ()

() ()() = ()
()1

1
,

, ,

	
(1.35)

	

p y y
p y y

p y
t t

n t t
n

t
n+

() +
()

()() = ()
()1

1 ,

	
(1.36)

Chapter 1 Information and Entropy

69

The file TRANS_ENT.CPP on my web site computes transfer entropy. It differs from

the presentation just shown in one small way. The mathematical presentation uses the

current and prior values of X and Y to predict the next value of Y to conform to already

published work. But in programming terms, it is easier to use strictly historical values of

X and Y to predict the current value of Y. These two approaches are equivalent, differing

only in subscripts.

There is one feature in the program that adds versatility but is not represented in the

mathematical presentation given earlier. So to make sure everything is clear, here is a

rigorous statement of the problem addressed by the program:

•	 y: The series being predicted

•	 x: The series whose causative nature is being evaluated

•	 n: The length of each series

•	 nbins_y: The number of values that y can take on

•	 nbins_x: The number of values that x can take on

•	 yhist: The number of historic y observations used for prediction

•	 xhist: The number of historic x observations used for prediction

•	 xlag: See the problem statement and the comment that follows

We are given two series, x and y, each having n cases. It is assumed that p(y[i]) is a

function of y[i-1], y[i-2], …, y[i-yhist]. But does x[i-xlag], x[i-xlag-1], …, x[i-xlag-xhist+1]

influence the conditional state probabilities of y? This function measures the extent to

which this occurs.

The traditional version of transfer entropy computation has xlag=1, meaning that the

value of x concurrent with y is not allowed to participate in influencing y. However, many

applications employ a dataset in which the X series is already implicitly lagged with

respect to Y. For example, most model-based market-trading datasets compute X based

strictly on the current and prior values of the market, and they compute Y based strictly

on future values of the market. Rather than requiring the user to shift the data series

or adjust addressing, this routine lets the user set xlag=0 to account for X already being

lagged.

Chapter 1 Information and Entropy

70

Note that we have nbins_x ^ xhist * nbins_y ^ (yhist+1) cells in the probability

matrix corresponding to (yt+1, yt
(yhist), xt

(xhist)). (The symbol ^ means “raised to the power.”)

This blows up very, very quickly. For this reason, the majority of applications will use

xhist=yhist=1 and have both nbins_x and nibins_y at most three, and often just two.

To clarify the program code, we use three single letters to represent the otherwise

complex terms in the algorithm.

•	 a: The current value of y, which is being predicted

•	 b: The yhist historic values of y

•	 c: The xhist historic values of x

Using this compact notation, the transfer entropy of Equation (1.34) is expressed in

the much less fierce Equation (1.37). Corresponding to Equations (1.35) and (1.36) we

have p(a|b,c) = p(a,b,c) / p(b,c) and p(a|b) = p(a,b) / p(b).

	

Transfer entropy p a b c
p a b c

p a b
= () ()

()
æ

è
çç

ö

ø
÷÷å , , log

,

	
(1.37)

Now that this simpler notation is in place, we can present the routine in segments. It

is called as shown here. Note that the values in x and y range from zero through nbins_x-1

and nbins_y-1, respectively.

double trans_ent (

 int n, // Length of x and y

 int nbins_x, // Number of x bins.

 int nbins_y, // Ditto y

 short int *x, // Independent variable, which impacts y transitions

 short int *y, // Dependent variable

 int xlag, // �Lag of most recent predictive x: 1 for traditional, 0 for concurrent

 int xhist, // Length of x history. At least 1

 int yhist, // Ditto y

 int *counts, // Work vector (see comments in code for length)

 double *ab, // Ditto

 double *bc, // Ditto

 double *b // Ditto

)

Chapter 1 Information and Entropy

71

The first step is to compute several frequently used constants: nx=nbins_x^xhist and

ny=nbins_y^yhist. This is done as follows:

 nx = nbins_x;

 for (i=1; i<xhist; i++) // Number of bins for X history

 nx *= nbins_x;

 ny = nbins_y;

 for (i=1; i<yhist; i++) // Number of bins for Y history

 ny *= nbins_y;

 nxy = nx * ny; // Total number of history bins

Count the number of cases that lie in each of the possible bins determined by the X

history, the Y history, and the current value of Y. The counts are kept in an array with X

history changing fastest, then Y history, and current Y changing last. We make sure not to

start so early in the array that a negative subscript would be used.

 memset (counts, 0, nxy * nbins_y * sizeof(int));

 istart = xhist + xlag - 1;

 if (yhist > istart)

 istart = yhist;

 for (i=istart; i<n; i++) {

 // Which of the nbins_x ^ xhist X history bins does this case lie in?

 ix = x[i-xlag];

 for (j=1; j<xhist; j++)

 ix = nbins_x * ix + x[i-j-xlag];

 // Which of the nbins_y ^ yhist Y history bins does this case lie in?

 iy = y[i-1];

 for (j=2; j<=yhist; j++)

 iy = nbins_y * iy + y[i-j];

 ++counts [y[i] * nxy + iy * nx + ix]; // Increment the correct bin

 }

 total = n - istart;

Chapter 1 Information and Entropy

72

The next step is to compute the marginal probabilities, which will be used in later

computation. This is just basic summation.

 for (i=0; i<nbins_y*ny; i++)

 ab[i] = 0.0;

 for (i=0; i<nx*ny; i++)

 bc[i] = 0.0;

 for (i=0; i<ny; i++)

 b[i] = 0.0;

 for (ia=0; ia<nbins_y; ia++) {

 for (iy=0; iy<ny; iy++) {

 for (ix=0; ix<nx; ix++) {

 p = (double) counts [ia * nxy + iy * nx + ix] / (double) total;

 ab[ia*ny+iy] += p;

 bc[iy*nx+ix] += p;

 b[iy] += p;

 }

 }

 }

Finally, we compute the transfer entropy. This is just a straightforward

implementation of the defining equations.

 trans = 0.0;

 for (ia=0; ia<nbins_y; ia++) {

 for (iy=0; iy<ny; iy++) {

 for (ix=0; ix<nx; ix++) {

 p = (double) counts [ia * nxy + iy * nx + ix] / (double) total; // p(a,b,c)

 if (p <= 0.0)

 continue;

 numer = p / bc[iy*nx+ix]; // p(a | b,c)

 denom = ab[ia*ny+iy] / b[iy]; // p(a | b)

 trans += p * log (numer / denom); // Equation (1.37)

 }

 }

 }

Chapter 1 Information and Entropy

73

We close this section by noting that my web site contains a program called

TRANSFER.CPP (in the code set for my Assessing… book) that uses transfer entropy to

sort a list of predictor candidates. This is similar to the SCREEN_UNIVAR.CPP program,

so we will not bother listing it here. However, we will note one crucial difference

between the two programs. SCREEN_UNIVAR.CPP shuffles the dependent variable to

do the Monte Carlo permutations. This is the efficient way to do it, as there is only one

dependent variable, while there are many independent candidates. But when data for

transfer entropy is shuffled, we cannot take this approach. The reason is that shuffling

the dependent variable would destroy any predictive power associated with its own

historical values, when all we want to destroy is the relationship with the independent

variable. Therefore, we must shuffle each candidate. Examination of the code will make

clear how this is done.

Chapter 1 Information and Entropy

75
© Timothy Masters 2018
T. Masters, Data Mining Algorithms in C++, https://doi.org/10.1007/978-1-4842-3315-3_2

CHAPTER 2

Screening for
Relationships
Data miners are usually confronted with a daunting array of variables from which they

hope to discover useful relationships. One could always just test them individually, in

groups, or in a stepwise procedure, using a sophisticated model similar or identical to

that which the developer wants to ultimately deploy. This direct approach would usually

be the best in the sense that it would discover the relationships that will ultimately be

most useful.

Unfortunately, in most situations, this direct approach is much too costly in terms

of computational resources. Training sophisticated models can be horrendously slow

and hence must be done with as little exploratory work as possible. Data miners need

relatively fast screening procedures that can reduce a mountain of contenders to a much

smaller subset of variables that are most likely to be useful in the application. This is the

subject of this chapter.

�Simple Screening Methods
Naturally, there are infinite methods for quickly screening candidate variables for

relationships with one or more other variables (called the target variable or set of

variables). However, a few are especially popular, and for good reasons. Thus, we will

focus our in-depth presentation on those that are most commonly used, while lightly

covering a few more that are uncommon but appropriate in special circumstances. Also

note that relationships other than with regard to a target are possible. Some of these will

be presented in the next chapter.

76

�Univariate Screening
The most basic screening technique is to examine each candidate individually, looking

at its relationship with the target without regard to any possible fortuitous interaction

with other candidates. This method has the great advantage that it is fast, almost

certainly the fastest of any of the common methods. This makes it mandatory whenever

the developer has to deal with an unusually large number of candidates. But it does

suffer from failing to make use of potentially vital interaction information. The classic

example is predicting health risks from height and weight; the two together provide

vastly more information than either alone.

�Bivariate Screening
We can significantly alleviate the weakness of univariate screening by examining

all possible pairs of candidates. This still does not allow us to capitalize on valuable

interactions with a third variable, but in practice the information gain from taking

candidates two at a time can be huge. Unfortunately, the cost can be prohibitive. For

example, with 100 candidates there will be 100*99/2=4950 pairs to check. With 1,000

there will be almost half a million pairs. Unless the relationship criterion being evaluated

is very fast to compute (such as with massive parallel processing), bivariate screening

will be impractical when there are a large number of candidates.

�Forward Stepwise Selection
This venerable algorithm has been in use for centuries (or at least it seems so). The idea

is almost trivial. We find the single candidate variable that has the greatest relationship

with the target. Then we find the variable that, if considered in conjunction with the

one chosen first, adds the most to the relationship. Then we find a third variable from

among the remaining candidates, which when considered in conjunction with the first

two produces the greatest relationship with the target. This continues for as long as the

developer desires.

The advantage of this method is that at each stage the number of candidate variables

being tested for a relationship with the target is the minimum possible, thus delaying the

devastation of a combinatoric explosion. The disadvantage is that it can easily produce

a suboptimal set of predictors. For example, suppose X1 and X2 alone have little or no

relationship with the target but together have a great relationship. And suppose X3 is

Chapter 2 Screening for Relationships

77

modestly related to the target. If the user requests that two candidates be selected, X3

will be chosen first, and the wonderful X1, X2 pair will be missed. Never underestimate

this issue; it can be devastating.

�Forward Selection Preserving Subsets
There is a straightforward extension of forward stepwise selection that can often produce

a significant improvement in performance at little cost. We simply preserve the best few

candidates at each step, rather than preserving just the single best. For example, we may

find that X4, X7, and X9 are the three best single variables. (Three is an arbitrary choice

made by the developer, considering the trade-off between quality and compute time.)

We then test X4 paired with each remaining candidate, X7 paired with each, and finally

X9 paired with each. Of these many pairs tested, we identify the best three pairs. These

pairs will each be tested with the remaining candidates as trios, and so forth. The beauty

of this algorithm is that we gain a lot with relatively little cost. The chance of missing

an important combination is greatly reduced, while compute time goes up linearly, not

exponentially. I highly recommend this approach.

�Backward Stepwise Selection
In the rare instance that computational resources allow, backward stepwise selection is

optimal or close to it. The idea is that we throw all competitors into the pot and evaluate

this group’s relationship with the target. Then we find the single competitor whose

elimination produces the least reduction in the relationship criterion. Keep eliminating

this way until the remaining candidate set is the size desired by the developer.

Obviously, this method is only rarely practical. If the number of candidates is even

moderately large, computation of the relationship criterion will almost certainly be

impossible because of time constraints, accuracy (numerical stability) issues, memory

requirements, or all of the above. Still, if you can pull it off, it usually doesn’t get any better.

�Criteria for a Relationship
Later in this chapter we will explore detailed algorithms that screen variables for

relationships. But first, I present some of the most common and effective criteria for

measuring the degree of a relationship between two variables. This will be extended to

relationships between groups of variables in later sections.

Chapter 2 Screening for Relationships

78

�Ordinary Correlation
Perhaps the oldest and most venerable measure of the relationship between two

variables is Pearson r, often called just correlation (despite the fact that numerous

alternative measures of correlation exist). It is sensitive to a linear relationship between

them. Any curvature in their relationship will reduce their correlation, even if the actual

relationship is strong. And if while one variable steadily increases but the other increases

for a while and then decreases, we may find that their correlation is tiny, regardless

of how strong their true relationship is. This can be a serious disadvantage. Another

problem is that ordinary correlation is terribly sensitive to outliers (data values far

outside the majority of values). Outliers will dominate the calculation, likely obscuring

any legitimate relationship that exists within the mass of cases. Still, correlation is fast to

compute, and it does capture many of the most common types of relationship. Thus, it is

a vital member of our tool set.

Correlation ranges from -1, for a perfect inverse linear relationship, to +1 for

a perfect positive linear relationship. A correlation of zero means that no linear

relationship exists. If we have n pairs of values, xi and yi for i from 1 to n, then we

compute the mean of x using Equation (2.1), and the mean of y similarly, and then

compute their correlation with Equation (2.2).

	 x
n

x
i

n

i=
=
å1

1

	 (2.1)

	
r

x x y y

x x y y

i

n

i i

i=

n

i
i=

n

i

=
-() -()

-() -()
=
å

å å
1

1

2

1

2
	 (2.2)

Here is code for ordinary correlation, extracted from the file SCREEN_UNIVAR.CPP. It

is a straightforward implementation of the prior equations.

static double compute_r (

 int ncases, // Number of cases (rows) in data matrix

 int varnum, // Column of predictor in database

 int n_vars, // Number of columns in database

 double *data, // The data is here; ncases rows by n_vars columns

 double *target // The target (ncases long)

)

Chapter 2 Screening for Relationships

79

{

 int icase;

 double xdiff, ydiff, xmean, ymean, xvar, yvar, xy;

 xmean = ymean = 0.0;

 for (icase=0; icase<ncases; icase++) { // Equation (2.1)

 xmean += data[icase*n_vars+varnum] ; // Get predictor candidate ‘varnum’

 ymean += target[icase]; // The target is separate from candidates

 }

 xmean /= ncases;

 ymean /= ncases;

 xvar = yvar = xy = 1.e-30; // Prevent division by zero later

 for (icase=0; icase<ncases; icase++) { // Equation (2.2)

 xdiff = data[icase*n_vars+varnum] - xmean;

 ydiff = target[icase] - ymean;

 xvar += xdiff * xdiff;

 yvar += ydiff * ydiff;

 xy += xdiff * ydiff;

 }

 return xy / sqrt (xvar * yvar);

}

�Nonparametric Correlation
A serious problem with ordinary correlation (Pearson r) is its sensitivity to outlying data

values. Even one wild data point can render ordinary correlation worthless. This can be

remedied by ranking each of the two variables from smallest to largest and determining

the degree to which their ranks correspond (small ranks of one variable correspond to

small ranks of the other, and similarly for large ranks). A common and highly effective

rank-based measure of correlation is Spearman rho. Suppose we recompute the two

variables, assigning to each a value of 1 for the smallest value of that variable, 2 for the

second-smallest, and so forth. Subsequent calculations are based on these ranks rather

than the raw data.

Chapter 2 Screening for Relationships

80

If either variable has tied values, we must compensate for these ties. For each tied

value, assign to all members of the tied set the mean rank that they would have if they

were not tied. Let tk,X be the number of tied values at a given rank for the X variable.

Let TieCorrectionk,X be given by Equation (2.3). Let SumTieCorrectionX be the sum of

TieCorrectionk,X for the X variable, as expressed in Equation (2.4). Define SSX as shown

in Equation (2.5). These quantities are defined similarly for the Y variable. For each

case, compute the difference in ranks, and sum these squared differences, as shown in

Equation (2.6). Remember that in this equation, the x and y values refer to ranks, not

the original data. Finally, compute the Spearman rho with Equation (2.7). The code for

computing Spearman rho, extracted from SCREEN_UNIVAR.CPP, follows these equations.

	 TieCorrection t tk X k X k X,
3
, ,= - 	 (2.3)

	
SumTieCorrection TieCorrectionX

k
k X=å , 	 (2.4)

	 SS n n SumTieCorrectionX X= - -()1

12
3 	 (2.5)

	
D x y

i

n

i i= -()
=
å

1

2

	 (2.6)

	
r =

SS SS D

SS SS
X Y

X Y

+ -
2

	 (2.7)

static double compute_rho (// Returns Spearman rho in range -1 to 1

 int ncases, // Number of cases (rows) in data matrix

 int varnum, // Column of predictor in database

 int n_vars, // Number of columns in database

 double *data,  // The data is here; ncases rows by n_vars columns

 double *target, // The target (ncases long)

 double *x, // Work vector ncases long

 double *y // Work vector ncases long

)

{

 int icase, j, k, ntied;

 double val, x_tie_correc, y_tie_correc, dn, ssx, ssy, rank, diff, rankerr, rho;

Chapter 2 Screening for Relationships

81

 // We need to rearrange input vectors, so copy them to work vectors

 for (icase=0; icase<ncases; icase++) {

 x[icase]= data[icase*n_vars+varnum]; // Fetch predictor ‘varnum’ from database

 y[icase] = target[icase]; // The target is kept separate

 }

 // Compute ties in x, compute correction as SUM (ties**3 - ties)

 // The following routine sorts x ascending and simultaneously moves y

 qsortds (0, ncases-1, x, y);

 x_tie_correc = 0.0;

 for (j=0; j<ncases;) { // Convert x to ranks, cumulate tie corec

 val = x[j]; // X for this case

 for (k=j+1; k<ncases; k++) { // Find all ties

 if (x[k] > val)

 break;

 }

 ntied = k - j; // tk,X

 x_tie_correc += (double) ntied * ntied * ntied - ntied; // Equations (2.3) and (2.4)

 rank = 0.5 * ((double) j + (double) k + 1.0); // Tied rank is mean rank across ties

 while (j < k) // Assign this value to all ties here

 x[j++] = rank;

 } // For each case in sorted x array

 // Now do same for y

 qsortds (0, ncases-1, y, x);

 y_tie_correc = 0.0;

 for (j=0; j<ncases;) { // Convert y to ranks, cumulate tie corec

 val = y[j];

 for (k=j+1; k<ncases; k++) { // Find all ties

 if (y[k] > val)

 break;

 }

 ntied = k - j;

 y_tie_correc += (double) ntied * ntied * ntied - ntied; // Equations (2.3) and (2.4)

 rank = 0.5 * ((double) j + (double) k + 1.0); // Tied rank is mean rank across ties

Chapter 2 Screening for Relationships

82

 while (j < k) // Assign this value to all ties here

 y[j++] = rank;

 } // For each case in sorted y array

 // Final computations

 dn = ncases;

 ssx = (dn * dn * dn - dn - x_tie_correc) / 12.0; // Equation (2.5)

 ssy = (dn * dn * dn - dn - y_tie_correc) / 12.0;

 rankerr = 0.0;

 for (j=0; j<ncases; j++) { // Cumulate squared rank differences

 diff = x[j] - y[j];

 rankerr += diff * diff; // Equation (2.6)

 }

 rho = 0.5 * (ssx + ssy - rankerr) / sqrt (ssx * ssy + 1.e-20); // Equation (2.7)

 return rho;

}

�Accommodating Simple Nonlinearity
Ordinary correlation and Spearman rho respond to linear relationships between

variables, while many real-life variables have nonlinear relationships that are difficult

to quantify with these measures. Later in this chapter we will explore powerful general-

purpose information-based algorithms for discovering any relationship between

variables, even if the relationship is profoundly nonlinear. But those methods can have

drawbacks of their own, such as excessive runtime, troublesome sensitivity to user-

specified parameters, and suboptimal exploitation of observed values of variables. There

is a middle ground that can be useful in many applications.

The concept is simple: designate one variable as a “target” to be predicted and the

other variable as a predictor. Compute a least-squares quadratic equation for predicting

the target from the predictor. Then the measure of relationship is the R-squared of this

prediction.

The advantages of this method are similar to those of ordinary correlation: it is

relatively fast to compute, it does not require that the user specify any parameters, and

it makes excellent use of all information contained in the variables. Nonetheless, it

responds not only to a linear relationship but also to the sort of curvature often found

Chapter 2 Screening for Relationships

83

in real-life variables, going so far as to even handle complete reversal of the relationship

across the range. This is a powerful property.

It is worth noting (though usually of little practical consequence) that unlike most

other criteria described in this section, this method is not symmetric. Reversing the

roles of the predictor and the target variable will produce different results. But in most

applications, directionality is inherent, so the labeling is natural.

I will not go into the mathematical derivation of this least-squares fit. It is tedious

and well covered in numerous other sources. However, I will present the source code

and point out that the fit is done with singular value decomposition. See the file

SVDCMP.CPP for more details on this excellent fitting method. The criterion computation

code, extracted from SCREEN_UNIVAR.CPP, is shown here:

static double compute_quad (

 SingularValueDecomp *sptr, // Used for finding optimal coefficients

 int ncases, // Number of cases (rows) in data matrix

 int varnum, // Column of predictor in database

 int n_vars, // Number of columns in database

 double *data, // The data is here; ncases rows by n_vars columns

 double *target // The target (ncases long)

)

{

 int icase;

 double xdiff, ydiff, xmean, ymean, xstd, ystd;

 double *aptr, *bptr, coefs[3], sum, mse;

/*

 Standardize the data for stability and simplified calculation.

 Making the target have unit variance means that the mse is the unpredictable fraction.

 Making the predictors have smallish mean and similar variance helps stability.

*/

 xmean = ymean = 0.0;

 for (icase=0; icase<ncases; icase++) {

 xmean += data[icase*n_vars+varnum]; // Get this predictor variable

 ymean += target[icase]; // The target is kept separate

 }

Chapter 2 Screening for Relationships

84

 xmean /= ncases;

 ymean /= ncases;

 xstd = ystd = 1.e-30;

 for (icase=0; icase<ncases; icase++) {

 xdiff = data[icase*n_vars+varnum] - xmean;

 ydiff = target[icase] - ymean;

 xstd += xdiff * xdiff;

 ystd += ydiff * ydiff;

 }

 xstd = sqrt (xstd / ncases);

 ystd = sqrt (ystd / ncases);

/*

 Fill in SingularValueDecomp object and compute optimal coefficients

*/

 aptr = sptr->a;

 bptr = sptr->b;

 for (icase=0; icase<ncases; icase++) {

 xdiff = (data[icase*n_vars+varnum] - xmean) / xstd;

 ydiff = (target[icase] - ymean) / ystd;

 *aptr++ = xdiff * xdiff; // Quadratic term

 *aptr++ = xdiff; // Linear term

 *aptr++ = 1.0; // Constant term

 *bptr++ = ydiff; // Predicted value

 }

 sptr->svdcmp ();

 sptr->backsub (1.e-7, coefs);

/*

 �Compute the error. We pass through the data. For each case, predict the target and sum the mean

squared error of the prediction.

*/

 mse = 0.0;

Chapter 2 Screening for Relationships

85

 for (icase=0; icase<ncases; icase++) {

 xdiff = (data[icase*n_vars+varnum] - xmean) / xstd; // Standardized predictor

 ydiff = (target[icase] - ymean) / ystd; // Standardized target

 sum = coefs[0] * xdiff * xdiff + coefs[1] * xdiff + coefs[2]; // Prediction

 ydiff -= sum; // True minus predicted is error of this prediction

 mse += ydiff * ydiff; // Cumulate mean squared error

 }

 return 1.0 - mse /ncases; // Target is standardized, so this is R-squared

}

It should be noted that when the SingularValueDecomp object is created, we could

specify that the a matrix be preserved for reuse in the error computation. This avoids

repeating the standardization, at the cost of more memory. The choice is yours.

�Chi-Square and Cramer’s V
When two variables are categorical (gender, college major, political affiliation, etc.), the

standard way to assess their degree of relationship is the chi-square test. We create a

matrix in which the categories of one variable form the rows, and those of the other form

the columns. The occurrences of each possible pairing of categories are counted within

the dataset being analyzed. The expected count for each pairing under the assumption

that the variables are unrelated is computed and then compared to the actually observed

counts. The more the observed counts depart from their expected values, the more the

variables are related.

But the chi-square test need not be restricted to categorical variables. It is legitimate

to partition the range of numeric variables into bins and treat these bins as if they were

categories. Of course, this results in some loss of information because variation within

each bin is ignored. But if the data is noisy or if one wants to detect relationship patterns

of any form without preconceptions, a chi-square formulation may be appropriate.

Suppose variable X is partitioned into KX bins, and variable Y is partitioned into KY

bins. Let NX,i be the number of cases whose variable X falls in bin i. Similarly, let NY,j be

the number of cases whose variable Y falls in bin j. The total number of cases is N. Then

the marginal distribution of X is given by Equation (2.8), and similarly for Y.

	
F i

N

NX
X i() = ,

	 (2.8)

Chapter 2 Screening for Relationships

86

Suppose X and Y are unrelated. The probability that a case will be in bin i for X and

bin j for Y is the product of the marginals, as shown in Equation (2.9). The expected

number of cases in this conjunction of bins is this probability times the total number of

cases, as shown in Equation (2.10).

	
F i j F i F jX Y X Y, ,() = () () 	 (2.9)

	
E NF i ji j X Y, , ,= () 	 (2.10)

Let Oi,j be the observed number of cases in bin i for X and bin j for Y. If X and Y are

unrelated, this quantity will tend to be close to Ei,j, the expected cell count under the

assumption of independence. But if the variables are related, then some combinations of

bins will be favored, while others will be less common. This departure from expectation

is computed with Equation (2.11).

	 ChiSquared
O E

Ei j

i j i j

i j

=
-()

åå , ,

2

,

	 (2.11)

Chi-squared itself has little intuitive meaning in terms of its values. It is highly

dependent on the number of cases and the number of bins for each variable, so any

numeric value of chi-squared is essentially uninterpretable. This can be remedied by

a simple monotonic transformation to produce a quantity called Cramer’s V shown in

Equation (2.12). This ranges from zero (no relationship between X and Y) to one (perfect

relationship).

	 V

ChiSquare
N

K KX Y

=
- -()min 1, 1

	 (2.12)

Here is code for computing Cramer’s V. This is extracted from the file SCREEN_

UNIVAR.CPP. The calling parameter list is as shown here. The routine follows. The

marginals, shown in Equation (2.8), are already computed prior to calling this routine to

save redundant effort.

static double compute_V (

 int ncases, // Number of cases

 int nbins_pred, // Number of predictor bins

 int *pred_bin, // Ncases vector of predictor bin indices

Chapter 2 Screening for Relationships

87

 int nbins_target, // Number of target bins

 int *target_bin, // Ncases vector of target bin indices

 double *pred_marginal, // Predictor marginal

 double *target_marginal, // Target marginal

 int *bin_counts // Work area nbins_pred*nbins_target long

)

{

 int i, j;

 double diff, expected, chisq, V;

 for (i=0; i<nbins_pred; i++) { // Zero bin counts

 for (j=0; j<nbins_target; j++)

 bin_counts[i*nbins_target+j] = 0;

 }

 for (i=0; i<ncases; i++) // Cumulate bin counts Oi,j

 ++bin_counts[pred_bin[i]*nbins_target+target_bin[i]];

 chisq = 0.0;

 for (i=0; i<nbins_pred; i++) {

 for (j=0; j<nbins_target; j++) {

 expected = pred_marginal[i] * target_marginal[j] * ncases; //Equation (2.9), (2.10)

 diff = bin_counts[i*nbins_target+j] - expected;

 chisq += diff * diff / (expected + 1.e-20); // Equation (2.11)

 }

 }

 V = chisq / ncases; // This and remaining lines are Equation (2.12)

 if (nbins_pred < nbins_target)

 V /= nbins_pred - 1;

 else

 V /= nbins_target - 1;

 V = sqrt (V);

 return V;

}

Chapter 2 Screening for Relationships

88

�Mutual Information and Uncertainty Reduction
Mutual information and uncertainty reduction were thoroughly discussed in the prior

chapter, so I will gloss over them quickly here, reviewing them only in the context of

univariate screening.

These two measures of association are similar to the chi-square/Cramer’s V

measures of the prior section in that they rely on partitioning the range of the variables

into discrete bins (although we did see a way of computing mutual information from

continuous data). In fact, in many applications, the chi-square method and the mutual

information method will give similar results. The actual numbers will be different, of

course, but the ordering of a set of candidate predictors will often be almost identical.

Nonetheless, they do measure slightly different quantities, so it is in our best interest to

include both in our toolbox.

I should also remind you that uncertainty reduction is asymmetric; one variable

must be designated as a predictor, and the other as a target (predicted). Reversing this

labeling will produce different results. This is usually a good property because most

applications have this same asymmetry.

�Multivariate Extensions
The chi-square and information-based measures have been presented in the context of

quantifying the relationship between two variables. However, it is easy to extend them to

multiple variables. There are two completely different approaches to this.

The first and most common approach assumes we want to measure the degree to

which one or more variables, taken as a set, are related to one or more other variables,

also taken as a set. There is just one relationship we are interested in, although one or

both sides of this relationship may be a set of variables rather than just a single variable.

I’ll present a useful application of this on page 116.

The method is simple: just unwrap the bins in each set, producing a new set of bins

on each side whose dimension is the product of the number of bins in the unwrapped

side. For example, suppose we are assessing the relationship between X and Y,

considered together, with Z. Suppose we have divided X into 2 bins, Y into 3, and Z into 4.

We unwrap X and Y into 6 bins, one for each of the 2*3 possible combinations of X

and Y. This gives us a 6-by-4 matrix on which we can perform our usual chi-square or

information-based calculations.

Chapter 2 Screening for Relationships

89

Another multivariate extension, not often used, allows the user to test for a group

relationship, an association among more than two variables. In this case, we create a

three-dimensional (or however many variables are tested) grid. Equation (2.8) is used

to compute the marginal across each dimension; Equation (2.9) gives the individual

cell probabilities, extended to higher dimensions as needed; Equation (2.10) gives

the expected cell counts; and Equation (2.11), extended to the requisite number of

dimensions, gives the chi-square value. However, traditional probability calculations

and a conversion to Cramer’s V no longer apply in this case. We must use Monte Carlo

permutation tests (described in the next chapter) to evaluate the significance of results.

�Permutation Tests
Many of the measures of association described in prior sections have sufficient

theoretical understanding among experts that we could use traditional exact statistical

tests to compute the probability that an observed strong relationship could have arisen

from luck alone, with the variables in fact being unrelated. However, not all of these

measures have this property. Also, some of the tests (such as for chi-square with small

cell counts) are far from accurate. But most importantly, when we are data mining,

luck plays a disturbingly large role if we search for relationships among a large number

of candidate variables. Thus, traditional statistical tests usually take a back seat to

specialized tests aimed at dealing with the various ways that random luck can invalidate

apparently correct results. In this section, we will examine a family of such tests that is

extremely powerful and useful in data mining.

�A Modestly Rigorous Statement of the Procedure
We begin with some potentially intimidating mathematics behind the tests to be soon

described. Be assured that you can safely skip this section. But for those who care…

Suppose we have a scalar-valued function of a vector. We’ll call this g(v). In our

current context, v would be the vector of cases for one variable (typically the target, if

one is using such a label) and g(.) would be a measure of association of this variable with

another variable (typically a predictor candidate). This might be any of the measures

described in the prior section.

Chapter 2 Screening for Relationships

90

Let Ф(.) be a permutation. In other words, Φ(v) is the vector v rearranged to a

different order. Suppose v has n elements. Then there are n! possible permutations. We

can index these as Φi where i ranges from 1 through n!. For the moment, assume that

the function value of every permutation is different: g(Φi(v)) ≠ g(Φj(v)) when i≠j. We’ll

discuss ties later.

Define Φ★ as the original permutation, the ordering of v that is observed in the

experiment and that corresponds to the order of the other variable. This is the arrangement

of pairings that the universe happened to provide in our real life. Now draw from the

population of possible orderings m more times and similarly define Φ1 through Φm. Again,

for the moment, assume that we force these m+1 draws to be unique, perhaps by doing the

draws without replacement. We’ll handle ties later.

Compute g(Φ★(v)) and g(Φi(v)) for i from 1 through m. Define the statistic Θ as

the fraction of these m+1 values that are less than or equal to g(Φ★(v)). Suppose the

distribution of g(Φ(v)) under sampling of v from the universe of possible values for this

variable does not depend on Φ. This is the null hypothesis. In the current context, this

means that among the population of possible values of the target, the distribution of

our relationship measure does not depend on the ordering of the observed values of the

target; the target and the predictor have no relationship Then the distribution of Θ does

not depend on the labeling of the permutations, or on g(.). In fact, Θ follows a uniform

distribution over the values 1/(m+1), 2/(m+1), …, 1. This is easy to see. Sort these m+1

values in increasing order. Because each of the draws that index the permutations has

equal probability and because we are (temporarily) assuming that there will be no ties,

the order is unique. Therefore, g(Φ★(v)) may occupy any of the m+1 ordered positions

with equal probability.

Let F(Θ) be the cumulative distribution function of Θ. As m increases, F(Θ)

converges to a continuous uniform distribution on (0,1). In other words, the probability

that Θ will be less than or equal to, say, 0.05 will equal 0.05, and the probability that Θ

will exceed, say, 0.99 will be 0.01, and so forth.

We can use this fact to define a statistical test of the null hypothesis that Φ★,

our original permutation, is indeed a random draw from among the n! possible

permutations, as opposed to being a special permutation that has an unusually large

(or small) value of g(Φ★(v)), the measure of relationship. To perform a left-tail test

(unusually small relationship), set a threshold equal to the desired p-value, and reject

the null hypothesis if the observed Θ is less than or equal to the threshold. To perform

a right-tail test (unusually large relationship), set a threshold equal to one minus the

Chapter 2 Screening for Relationships

91

desired p-value, and reject the null hypothesis if the observed Θ is greater than the

threshold.

We have conveniently assumed that every permutation gives rise to a unique

function value and that every randomly chosen permutation is unique. This precludes

ties. However, the experimental situation may prevent us from avoiding tied function

values, and selecting unique permutations is tedious. We are best off simply taking

possible ties into account. Note that when comparing g(Φ★(v)) to its m compatriots, tied

values that are strictly above or below g(Φ★(v)) are irrelevant. We only need to worry

about ties at g(Φ★(v). A left-tail test will be conservative in this case. Unfortunately, a

right-tail test will become anti-conservative. The solution is to shift the count boundary

to the conservative end of the set of ties. The code shown later actually computes

conservative p-values directly, and it slightly modifies the counting procedure

accordingly.

Remember that an utterly crucial assumption for this test is that when the null

hypothesis is true (the variables are unrelated), all of the n! possible permutations,

including of course the original one, have an equal chance of appearing, both in real

life and in the process of randomly selecting m of them to perform the test. Violations of

this assumption can creep into an application in subtle ways. The most common culprit,

serial correlation in both variables, will be addressed later in this section.

�A More Intuitive Approach
I suspect that most readers skipped over the theoretical discussion just shown. That’s

fine. Here is a more intuitive look at permutation tests.

The scenario under which this particular test might be employed is as follows:

We have two variables, which for the sake of clarity we will call the predictor and the

target, though they need not have this directional relationship. We choose a test statistic

that will measure the relationship between these two variables. This may be mutual

information, Cramer’s V, or any other statistic that we favor. We then compute our

measure of relationship.

A naive experimenter would look at the computed relationship figure and, if it is

impressive, capitalize on this relationship in some way. But there is an aspect of the

relationship measure that is every bit as important as its magnitude: the probability

that truly unrelated variables could have scored as well by virtue of good luck. If this

probability is anything but tiny, we must be skeptical.

Chapter 2 Screening for Relationships

92

Here is one way to handle this situation. Suppose we randomly permute one of

the variables, typically the target. This destroys any actual relationship between the

unpermuted predictor and the permuted target. They are now randomly paired up. We

recompute the relationship measure. If this value is less than that obtained from the raw,

unpermuted data, we are happy for this small bit of evidence that the two variables are

truly related. But it’s not very convincing evidence. If the variables were truly unrelated,

there would still be a 50-50 chance of observing this result. So we need to test more

random permutations.

If we test nine random permutations and the relationship measure for the original

data exceeds all of them, we have more convincing evidence. In particular, if the

variables were unrelated, there is a 1/10 chance that good luck would have placed it at

the top. After all, in this situation, any of these ten orderings of the changes (one of them

being the original order) has an equal shot at being the best.

What if the original relationship measure is the second best of the ten? There is a

2/10 probability that it will land in the best or second-best slot. So, suppose we had

decided in advance that if the original measure is at least the second best, we would

confidently conclude that our variables are related. If in truth they are unrelated, we

would have a 20 percent chance of being fooled by good luck.

Suppose we decide in advance to conclude that our variables are related if the

relationship measure on the original data has at least a specified rank among all

permutations. It should be apparent that there is a simple formula for computing the

probability of this event under the scenario that the variables are unrelated.

Let m be the number of random permutations tested (not counting the original),

and let k be the number of these random permutations (again, not counting the original)

whose relationship measure equals or exceeds that of the original. Then, the probability

that the original measure will achieve this exalted position or better by sheer luck is

(k+1) / (m+1). You can understand this formula if you visualize the m+1 statistics

(original plus m permuted) lined up in order. Note that the original statistic has equal

probability of occupying any of these m+1 slots if the variables are unrelated.

A traditional statistical test of the null hypothesis that the variables are unrelated,

versus the alternative that they are, would be performed as follows: Decide in advance

what level of error probability you are willing to accept. This error, often called the

alpha level, is an upper bound for the probability that you will erroneously reject the

null hypothesis. Here, this error is concluding that the variables are related when in

Chapter 2 Screening for Relationships

93

fact they are not. Choose a large value of m, and compute k from the previous formula.

Then perform the random replications and count how many of them have a relationship

statistic that equals or exceeds that of the original data. If k of them or fewer do so, we

can reject the null hypothesis. If the null hypothesis is true (the variables are unrelated),

we will make this error with probability at most our specified alpha.

�Serial Correlation Can Be Deadly
Recall that a fundamental assumption of a Monte Carlo permutation test is that every

possible permutation must be equally likely if the null hypothesis is true. If there is any

sort of dependence in the vector being permuted, with serial correlation being by far the

most common, then full permutation will destroy this serial correlation. This makes the

test anti-conservative, more likely to indicate that a relationship is present when it is not.

This is an extremely serious error.

But note that this is a problem only if both vectors contain dependencies. As long as

at most one of the two variables has dependencies, we can permute the other one. And if

we are using a symmetric measure of relationship, we can even permute the dependent

variable because this revised pairing is equivalent to permuting the “good” variable!

In the next section, we will see a permutation algorithm that does a good (though not

perfect) job of handling the situation of both variables having serial correlation.

It must be emphasized that this phenomenon is not an artifact of just the Monte

Carlo permutation test. This is a universal phenomenon, which is why Statistics 101

courses always emphasize the importance of independent observations. The simple

explanation of why this occurs is that any sort of dependence reduces the effective

degrees of freedom of the test. The testing procedure looks at the number of cases and

proceeds accordingly, but the dependence in the data increases the variance of the test

statistic beyond what would be expected from a sample of the given size. Thus, we are

more likely to falsely reject the null hypothesis.

�Permutation Algorithms
Surprising as it may seem, permutation can be a significant eater of time in a Monte

Carlo permutation test. It is not unusual for permuting a variable to require about as

much computer time as computing the relationship criterion. Therefore, we must

Chapter 2 Screening for Relationships

94

program it as efficiently as possible, paying special attention to the speed of the random

number generator. Here is the “standard” permutation algorithm:

 i = n_cases; // Number remaining to be shuffled

 while (i > 1) { // While at least 2 left to shuffle

 j = (int) (unifrand_fast () * i); // Random must range from 0 (inclusive) to 1 (exclusive)

 if (j >= i) // This should not be necessary, but safety is good

 j = i - 1;

 dtemp = target[--i]; // Swap i and j cases

 target[i] = target[j];

 target[j] = dtemp;

 }

If both variables have serial correlation, there is an alternative shuffling algorithm

that greatly reduces (though it does not completely eliminate) the deadly anti-

conservative behavior of ordinary shuffling. Still, any anti-conservative tendency is

scary, so we should exercise care in interpreting these results. But this algorithm is better

than nothing and is perfectly reasonable for rough results.

The idea is that instead of swapping cases randomly, we rotate the permuted series.

This keeps serial dependencies largely intact, but it still destroys the pairing of values

of the two series and hence destroys the relationship between the series, which is what

must do to generate the null hypothesis distribution. Here is this rotational permutation

algorithm. Note that we use a scratch vector, work_target.

 j = (int) (unifrand_fast () * n_cases); // Rand ranges from 0 (inclusive) to 1 (exclusive)

 if (j >= n_cases) // Should not be necessary, but play it safe

 j = n_cases - 1;

 for (i=0; i<n_cases; i++)  // Rotate into work vector

 work_target[i] = target[(i+j)%n_cases];

 for (i=0; i<n_cases; i++) // Copy rotated vector back into target vector

 target[i] = work_target[i];

�Outline of the Permutation Test Algorithm
Later, we will explore specific versions of the Monte Carlo permutation test, adapted

for specialized applications. However, before advancing further, I will summarize the

material shown so far by presenting a general outline of the most basic procedure.

This will serve as a foundation for more sophisticated applications. Here it is in words:

Chapter 2 Screening for Relationships

95

for permutation from 0 through n_permutes-1

 if permutation > 0

 shuffle one variable (typically the target)

 compute ‘criterion’, the measure of relationship

 if permutation = 0

 original criterion = criterion

 count = 1

 else

 if criterion >= original criterion

 count = count + 1

probability = count / n_permutes

The probability computed by this algorithm is the approximate probability that, if the

two variables are truly unrelated, a measure of their relationship at least as large as that

observed could be obtained by pure good luck. If you find a wonderfully nice relationship,

before trying to capitalize on it, you should run this test and confirm that the computed

probability is small. If it is not small, you should be highly suspicious of your results.

Undetected good luck has a way of coming back to bite you when you least expect it.

Just to dot all my i’s and cross all my t’s, I’ll note that rejecting a potential relationship based

on a nonsmall probability is perilously close to a sin that statisticians call accepting a null

hypothesis, a serious no-no. Thus, we must avoid saying that a relationship with a nonsmall

probability is worthless. We should just be suspicious, especially if the sample is large.

�Permutation Testing for Selection Bias
We come now to what I believe is the most important use of Monte Carlo permutation

tests: accounting for selection bias (the bias inherent in selecting the best of many

competitors). The problem with the probability computed with the algorithm just shown

is that if more than one predictor candidate is tested for a relationship with a target (the

usual situation!), then there is a large probability that some truly worthless candidate

will be lucky enough to achieve a high level of the relationship measure and hence

achieve a very small probability. In fact, if all candidates are worthless, the probabilities

of the candidates will follow a uniform distribution, frequently obtaining small values

by random chance. This situation can be remedied by conducting a more advanced test

Chapter 2 Screening for Relationships

96

that accounts for this selection bias. The unbiased probability for the best performer

in the candidate set is the probability that this best performer could have attained its

exalted level of performance by sheer luck if all candidates were truly worthless.

We can easily compute the unbiased probability for all candidates, not just the best.

For those other, lesser candidates, the computed unbiased probability is an upper bound

(a conservative measure) for the true unbiased probability of the candidate. Thus, a very

small unbiased probability for any candidate is a strong indication that the candidate

has true predictive power. Unfortunately, unlike the regular (often called the solo)

probability, large values of the unbiased probability are not necessarily evidence that

the candidate is worthless. Large values, especially near the bottom of the sorted list of

relationship measures, may be due to over-estimation of the true unbiased probability.

I am not aware of any algorithm for computing correct unbiased probabilities for any

candidate other than the best. However, because this measure is conservative, it does

have great utility in selecting promising predictors.

The algorithm, modified to handle selection bias, is shown here:

for permutation from 0 through n_permutes-1

   if permutation > 0

 shuffle the target

   for ‘variable’ covering all predictor candidates

   compute ‘criterion’, the measure of relationship between variable and target

   if permutation = 0

 original criterion[variable] = criterion

 solo_count[variable] = unbiased_count[variable] = 1

   else

 if criterion[variable] >= original criterion[variable]

 solo_count[variable] = solo_count[variable] + 1

   if permutation > 0

  best_criterion = MAX (criterion for all predictor candidates)

   for ‘variable’ covering all predictor candidates

 if best_criterion >= original_criterion[variable]

 unbiased_count[variable] = unbiased_count[variable] + 1

for ‘variable’ covering all predictor candidates

 solo_probability[variable] = solo_count[variable] / n_permutes

 unbiased_probability[variable] = unbiased_count[variable] / n_permutes

Chapter 2 Screening for Relationships

97

The first step to understanding this algorithm is to note that for the solo probabilities,

for each candidate predictor this is identical to the simple algorithm shown on page 94.

But this algorithm contains one additional step. For shuffled runs, it finds the

maximum of the relationship measures for all candidates. Then, for each candidate, it

compares this “best” measure to the original score for the candidate and increments

the unbiased counter accordingly. For whichever candidate has the greatest original

relationship, this is in perfect conformation: the greatest measure for permuted data

is compared to the greatest measure for the original data. Hence, this provides the

probability that, if all candidates were worthless, the obtained best relationship could

have been obtained by pure luck. But do note that for candidates other than the best, this

probability is conservative.

�Combinatorially Symmetric Cross Validation
The primary goal of most data mining operations is not just discovery of relationships

that exist within a dataset that is in our hands. Rather, what we really want is to

discover relationships that exist in the general population of interest. It does us little

good (and perhaps great harm!) if we collect a dataset, analyze the daylights out of it,

proudly proclaim a momentous discovery, and then learn that our discovery cannot be

reproduced in subsequent data collections. Such a situation is usually associated with

overfitting our relationship model.

We saw one approach to dealing with this issue in the prior section, when we used

a permutation test to estimate the probability that results as good as those observed

could have been obtained by pure luck. In this section, we take a completely different

approach. It is based on the fact that the data in our sample contains two components:

true values and random noise. For every variable measured in every case, the value in

our dataset is composed of an unobservable true value plus contamination by noise.

So when we measure the relationship between variables, we are not getting a measure

of the relationship between the true values. Instead, we are measuring the relationship

between our observed values, which for all we know may consist of more noise than

truth! Especially if many variables are under investigation, it may be that a randomly

fortuitous alignment of noise patterns may result in deceptive relationships that do not

exist in the general population.

Chapter 2 Screening for Relationships

98

This is particularly problematic if our measure of relationship is overly powerful. To

take an extreme example, a careless developer may postulate that a dependent variable

is related to an independent variable by a degree-ten polynomial and measure the

degree of relationship by the R-squared of the fit. In the vast majority of applications,

this would be called overfitting, because the measure is much too capable of capitalizing

on phantom relationships between the noise components. As a less extreme but still

serious example, if we were to compute a bin-based measure such as discrete mutual

information or Cramer’s V and use a bin resolution that is too fine, we could find

nonreproducible relationships between the noise components.

The CSCV algorithm presented in this section, which is loosely based on ideas

given in “The Probability of Backtest Overfitting” by David Bailey, Jonathan Borwein,

Marcos Lopez de Prado, and Jim Zhu, is much more context-sensitive than the Monte

Carlo permutation testing of the prior section. The theoretical (though not necessarily

practical) assumption is that, in some sense best left undefined, the set of variables

competing in a relation contest with some other variable is complete and representative.

Roughly speaking, this means that the tested competitors encompass all possible

competitors in the application and do not include any variables that do not naturally fit

in the application.

Okay, I know. Quit rolling your eyes. Not only is this description vague, but it is also

impossible to achieve in real life. The good news is that, in practice, violations of this

assumption, unless they are outrageously egregious, are almost always of little or no

consequence. The main thing we need to be concerned with is that we do not include

in the competition any variables that a reasonable person would know in advance have

nothing to do with the application. Accidental inclusion of worthless variables is not a

serious problem; in fact, this is usually impossible to avoid in practical data mining. Just

don’t deliberately include crazy things.

For example, suppose we are hoping to discover personal traits that predict the

efficacy of some new drug. We would certainly include the person’s age, weight, gender,

blood type, and so forth. We might even stretch a little by including the person’s hair

color, hobbies, pets in their home, and other traits that have no obvious relationship to

drug response. But we should not include the Dollar/Yen foreign exchange rate on the

day they were born. Inclusion of too many such variables will distort results.

Chapter 2 Screening for Relationships

99

Also, we should not cheat by deliberately omitting competitors that we know in

advance may have a reasonable chance of being useful. In the earlier drug example, we

must not say, “I know from experience that weight will be a powerful predictor, so there

is no sense even testing it.” Such an omission will seriously distort results. Of course,

if you accidentally omit a useful predictor, so be it. You can’t always know in advance

everything that is useful. Just don’t do it deliberately.

Let’s pause for a moment and digress into the fact that the CSCV algorithm is far

more general than its presentation here. In this text and subsequent code, we employ

it for one purpose, as an aid for evaluating relationships between individual competing

variables and a single other variable. On page 102 we will see the algorithm in its most

general version, and at that point it should be clear how to generalize it. Here are a few

examples of how CSCV can aid in the evaluation of competing multiple comparisons:

•	 One group of variables is jointly related to another group of variables.

Choose the variables that make up each set so as to maximize their

joint relationship.

•	 A model has numerous competing sets of parameters. In other words,

the competitors are parameter values rather than variables, and we

find the most effective parameter set.

•	 A financial market trading system has competing versions or

parameter sets. This is the application that [Bailey et al, 2015]

considers.

Now that the preliminaries are out of the way, let’s talk about exactly what we will

be doing in this test. We have collected a sample of data, our dataset, and computed

performance statistics for the competitors. Because our performance statistics are based

on a sample that is contaminated by noise, our computed values will not exactly equal

the (unmeasurable) true values in the population from which our sample was drawn.

We hope that they are close. In particular, when we determine the best competitor, that

having the maximum performance statistic, we hope that its true performance in the

population is also outstanding.

Chapter 2 Screening for Relationships

100

What is a good criterion to use in order to define “outstanding” performance

out-of-sample (not in our dataset)? The choice employed for this test is to compare

the out-of-sample (OOS) performance of the best competitor (or any competitor in

general) to the median OOS performance of all competitors. It’s a fairly low bar, but

we define outstanding performance as being above the median. If a competitor’s OOS

performance is above the median OOS performance of all competitors, we say that this

competitor is outstanding.

Now it should be clear why the field of competitors should be “complete” and

“representative” for the application. Suppose some competitors that are known a

priori to be useful are omitted. The median will be skewed downward from what it

would be in a fair fight. Similarly, suppose we include a bunch of competitors that a

reasonable person would know in advance to be useless. In this case we have again

deliberately skewed the median downward. In either case, the relative performance

of our competitors will be inflated from what it would be in a more ideal situation. Of

course, either error still leaves us with a valid test in the sense of results being relative to

the set of competitors. So we still have a useful test, even if the assumptions are seriously

violated. It’s just that we may not be able to interpret results as well as we would like.

We’ve been blithely tossing around “OOS performance” as if we have it in hand.

Unfortunately, it’s not measurable because it generally is defined in terms of an infinite

population. We could approximate OOS performance by splitting our data into two parts,

selecting promising competitors from one part, and estimating their OOS performance

with the other part. But that’s wasteful. There’s a better way: cross validation.

Ordinary cross validation has a problem in many applications, including the one

we are discussing. In each fold (unless we use just two folds), the in-sample (IS) set is

much larger than the OOS set. This can skew many important families of performance

statistics. Thus, we use a modified version of cross validation called combinatorially

symmetric cross validation (CSCV).

In CSCV, we split the dataset into an even number of subsets. Then we choose half

of the subsets to be the IS set, which leaves the remaining half (of equal or nearly equal

number of cases) to serve as the OOS set. Repeat to cover all combinations. For example,

suppose we split the data into four subsets, numbered 1, 2, 3, and 4. First we combine

subsets 1 and 2 to be an IS set, leaving 3 and 4 to be the OOS set. Then we let 1 and 3 be

IS, leaving 2 and 4 to be OOS. There are six such partitions possible.

For each partition, we use the IS set to find the best competitor. We also compute

the OOS performance of each competitor and find the median OOS performance of all

Chapter 2 Screening for Relationships

101

competitors. Note whether the OOS performance of the best IS performer is above the

median (good news) versus less than or equal to the median (bad news). If we count the

number of partitions in which the latter is true and divide this count by the total number

of partitions, we get a fraction 0-1 that is an approximation to the probability that the

best performer will underperform its competitors out of sample, which is a sad state of

affairs. As such, we can say that this probability is a (distant) relative to the ordinary p-

value that we all know and love.

Just to make this clear, suppose that the criterion we are using to judge performance

is effective at capturing authentic information. In the software is available for this book,

this criterion is a measure of the relationship between a single competing variable and

another single variable. In the case of finding optimal parameters for a model, this

criterion might be R-squared. Whatever we use, suppose for now that it is an effective

measure of performance quality.

Furthermore, suppose that at least one of our competitors is truly good. In the

context of this text, this means that at least one of the competing variables truly has a

significant relationship with the other variable. In the context of model training (not

covered here), this means that at least one of the competing finite number of parameter

sets defines an effective model.

Under these two assumptions, whichever competitor has the best value of this

criterion in-sample is likely truly the best, or at least nearly the best. Thus, we would

expect its performance out of sample to also be exemplary. As a result, few or no

partitions would find its OOS performance to be less than or equal to the median, and

the computed probability would be zero or tiny.

If either of these two suppositions is violated, the situation is very different. For

example, it may be that our carelessly designed criterion is a degree-ten polynomial

fit that focuses heavily on noise and hence is nearly powerless at identifying truly

outstanding competitors. Or it may be that all of the competitors are worthless. Maybe

none of the competing variables has any relationship with the other variable. Or maybe

a predictive model is fundamentally flawed, and no parameter set can make it truly

work. For either type of supposition violation, IS and OOS performance will be largely

unrelated and be pretty much random values. Thus, the OOS performance of the best IS

performer will be all over the map, sometimes above the median and sometimes below.

The IS performance has not captured anything that is indicative of OOS performance.

This discussion has focused on the best IS performer, as that is the most intuitive

presentation. But it’s legitimate to compute this probability for all ranks of competitors

Chapter 2 Screening for Relationships

102

(second best, third best, etc.). If the probability is small for many of the best IS

performers, then we can have considerable confidence that their performance will

continue out of sample.

It may be useful to compute, for a specified even number of subsets S, how many

partitions of the dataset will be involved. This is the number of combinations of S things

taken S/2 at a time. The standard computational formula can be implemented with

a simple loop, provided that the division is done in floating point rather than integer

arithmetic. Here is a good way, with n_sub being the number of subsets, S, and half_S

being half of that.

 dtemp = 1.0;

 for (i=0; i<half_S; i++)

 dtemp *= (double) (n_sub - i) / (double) (half_S - i);

 ncombo = (int) (dtemp + 0.5);

�The CSCV Algorithm
In this section we present the general CSCV algorithm, using C-like pseudocode.

We’ll use the specific application of a set of predictor variables competing for degree

of relationship with a single other variable, called the target variable. However, at the

appropriate points we will note how this algorithm could be easily modified for assessing

the quality of parameter sets in developing a model. Also, for the sake of clarity, intuitive

explanations will be liberally interspersed with the pseudocode.

First, we must be clear about how the single target variable and the set of competing

predictor candidates are stored. The target is simple; it’s just an array of ncases values.

The predictor candidates are a bit more complicated. We have a database matrix

with ncases rows and n_vars columns. However, we do not demand that all of these

variables compete. We may want to ignore some of them. In fact, we will have only

npreds competitors, and their column indices in the dataset are in the array preds, which

is npreds long. This generalization is not needed for the algorithm, but it is convenient

for the caller because it avoids the need to create a special database containing only

competitors.

Chapter 2 Screening for Relationships

103

For convenience, here are the variables that appear often in the code:

 double *dataset Complete dataset

 int ncases Number of cases (rows) in dataset

 int n_vars Number of variables (columns) in dataset

 double *all_target All target values, ncases of them

 int npreds   Number of predictors (competitors)

 int *preds Indices in database of predictors; npreds of them

 int n_sub Number of subsets, S = 2 * half_S

 int half_S Half of S

 double *crits Output

 int *indices  Work vector n_sub long

 int *lengths  Work vector n_sub long

 int *flags  Work vector n_sub long

 int *sorted_index Work vector nvars long

 double *IS_crits  Work vector nvars long

 double *OOS_crits Work vector nvars long

 double *work_pred Work vector ncases long

 double *work_targ Work vector ncases long

The first step is to partition the ncases cases in the predictor dataset and target array

into n_sub (S) subsets. The array indices (n_sub long) will contain the starting index of

each subset, and the corresponding array lengths will contain the number of cases in

each subset. If ncases is an exact multiple of n_sub, the lengths will of course all be equal.

If not, at least they should be close. Once we have these two arrays computed, it will be

easy to locate the cases that correspond to each subset.

 istart = 0;

 for (i=0; i<n_sub; i++) { // For all S subsets

 indices[i] = istart; // This subset starts here

 lengths[i] = (ncases - istart) / (n_sub-i); // It contains this many cases

 istart += lengths[i];

 }

We have two things to initialize. Throughout the algorithm, the ncases array flags

identifies whether each case is in the training set (the flag is 1) or the test set (the flag is 0).

The processing of partitions begins with the first half of the subsets being the training set,

Chapter 2 Screening for Relationships

104

and the second half the test set, so initialize accordingly. Also, the npreds array crits will

count the number of times each training-set rank competitor has OOS performance less

than or equal to the median. We initialize this to zero. It is a double instead of an integer

because we will later convert it to a probability.

 for (i=0; i<half_S; i++) // This is the first partition tested

 flags[i] = 1; // Training case

 for (; i<n_sub; i++)

 flags[i] = 0; // Test case

 for (ivar=0; ivar<npreds; ivar++)

 crits[ivar] = 0.0;

We now begin the main outer loop that processes every partition. We don’t need to

know in advance how many partitions (combinations) there will be because later we’ll

easily know when we’ve done them all.

 for (icombo=0;; icombo++) { // Main loop processes all combinations

The first step in this loop is to gather the in-sample targets. We count them with n.

For subset ic, the cases in this subset start at indices[ic], and there are lengths[ic] of them.

 n = 0; // Will count cases in the training set

 for (ic=0; ic<n_sub; ic++) { // For all S subsets of the complete dataset

 if (flags[ic]) { // If this subset is in the training set

 for (i=0; i<lengths[ic]; i++) { // Get the target for this subset

 k = indices[ic]+i; // Case index

 target[n++] = all_target[k];

 }

 }

 }

We similarly gather the competitors in the training set. Each competitor is done

individually, looping through all npreds of them. For each, ipred (supplied by the caller

via preds) identifies its column in the complete dataset. Once the values for a competitor

are gathered, we call compute_criterion() to compute the criterion and save the value in

IS_crits. We also initialize a sort index. The call to qsortdsi() will sort the npreds criteria,

simultaneously moving sorted_index so we know what’s where later when we need ranks.

Chapter 2 Screening for Relationships

105

 for (ivar=0; ivar<npreds; ivar++) { // For all competitors

 n = 0;  // Will count cases just as for target

 ipred = preds[ivar];  // Index in complete database

 for (ic=0; ic<n_sub; ic++) {  // For all S subsets of the complete dataset

 if (flags[ic]) {  // If this subset is in the training set

 for (i=0; i<lengths[ic]; i++) {  // Get predictor candidate for this subset

 k = indices[ic]+i;  // Case index

 competitor[n++] = dataset[k*n_vars+ipred];

 }

 }

 }

 IS_crits[ivar] = compute_criterion (n, competitor, target);

 sorted_index[ivar] = ivar;

 }

 qsortdsi (0, npreds-1, IS_crits, sorted_index);

We do exactly the same thing for the OOS cases, except that we do not sort them

quite yet. First, gather the OOS targets. Then, separately for each competitor, gather

those values, and compute and save the OOS criterion.

 n = 0; // Will count cases in the test set

 for (ic=0; ic<n_sub; ic++) { // For all S subsets of the complete dataset

 if (! flags[ic]) { // If this subset is in the test set

 for (i=0; i<lengths[ic]; i++) { // Get the target for these cases in this subset

 k = indices[ic]+i; // Case index

 target[n++] = all_target[k];

 }

 }

 }

Chapter 2 Screening for Relationships

106

 for (ivar=0; ivar<npreds; ivar++) { // For all competitors

 n = 0; // Will count cases, just as we did above

 ipred = preds[ivar]; // Index in complete database

 for (ic=0; ic<n_sub; ic++) { // For all S subsets of the complete dataset

 if (! flags[ic]) { // If this subset is in the test set

 for (i=0; i<lengths[ic]; i++) { // Get this competitor for this subset

 k = indices[ic]+i; // Case index

 competitor[n++] = dataset[k*n_vars+ipred];

 }

 }

 }

 OOS_crits[ivar] = compute_criterion (n, competitor, target);

 }

This is a good time for a brief aside on alternatives to competing for a relationship

to a target variable. The basic data structure and algorithm remain the same for other

alternatives. The data cases are in rows, and the competitors are in columns. For

example, if the competitors are parameter sets for a model, each column represents

a complete set of parameters, and each row represents the individual error for a case.

In other words, the data value in row i column j would be the error for case i when

parameter set j is used to define the model. Then the criterion for a collection of IS or

OOS subsets would be a pooled quality measure such as R-squared for those cases.

We need to compute the median OOS performance across all competitors. There are

algorithms for computing the median that are somewhat faster than sorting, but the speed

of this step is inconsequential, so I take the easy way of just sorting. We must not disturb

the order of the OOS criteria, so we cannot sort that array. But we no longer need the

IS_crits data, because we already have the ranks via sorted_index, so we just copy the OOS

criteria to the IS array and sort it to get the median.

 for (ivar=0; ivar<npreds; ivar++)

 IS_crits[ivar] = OOS_crits[ivar];

 qsortd (0, npreds-1, IS_crits);

 if (npreds % 2)

 median = IS_crits[npreds/2];

 else

 median = 0.5 * (IS_crits[npreds/2-1] + IS_crits[npreds/2]);

Chapter 2 Screening for Relationships

107

We just computed the median (across all competitors) of the OOS criterion.

See if the OOS performance of each IS rank is less than or equal to the OOS median.

Note that ivar in crits[ivar] refers to the rank, not the predictor index itself. For example,

crits[0] refers to the worst-performing predictor candidate in sample in this partition, and

crits[npreds-1] refers to the best IS performer, which is typically where our interest lies.

Larger values of crits imply worse OOS performance.

 for (ivar=0; ivar<npreds; ivar++) { // For all competitors

 if (OOS_crits[sorted_index[ivar]] <= median)

 ++crits[ivar];

 }

Now we come to the real brain-buster part of the code: advancing to the next

partition. Recall that we need to loop through every possible collection of S/2 subsets

taken from the total of S subsets. Each collection will serve as the training set for a trial,

with the remaining S/2 subsets serving as the test set. We initialized the first partition to

have all S/2 ones first and to have the zeros last.

If you search the Internet, you will find numerous algorithms to do this, many of

which are explicitly recursive. This algorithm happens to be mine, although it is possible,

even likely, that someone else came up with it first and published it. Like the other

algorithms that I’ve seen, it is recursive, but not explicitly so. I cannot offer a rigorous

proof that it is correct. However, I have tested it quite thoroughly and never found it to fail.

Understanding its operation is aided by working through the code for eight

partitions, writing on a sheet of paper the first dozen or two partitions. Here is the code;

an intuitive explanation follows:

 n = 0; // Will count 1s to we know how many to fill later

 for (iradix=0; iradix<n_sub-1; iradix++) { // Search left to right for 1-0 pattern

 if (flags[iradix] == 1) { // Maybe; here’s the 1. Count it in case we switch and fill

 ++n; // This many flags up to and including this one at iradix

 if (flags[iradix+1] == 0) { // We’ve got the 1-0 pattern

 flags[iradix] = 0; // Advance the 1 and replace it with a 0

 flags[iradix+1] = 1; // Which gives us a whole new pattern

 for (i=0; i<iradix; i++) { // Must reset everything below this change point

 if (--n > 0) // Fill in the required number of 1s first

 flags[i] = 1;

Chapter 2 Screening for Relationships

108

 else // Then fill the rest with 0s

 flags[i] = 0;

 } // Filling in below

 break; // We have our new partition, so done for now

 } // If next flag is 0

 } // If this flag is 1

 } // For iradix

 if (iradix == n_sub-1) { // True if we cannot advance to a new partition

 ++icombo; // Must count this last one for probability division

 break; // All partitions have been processed

 }

 } // Main loop processes all combinations

The initial partition has all ones at the beginning and all zeros at the end. Each time

a new partition is needed, the algorithm starts at the beginning of the flag array and

searches forward, looking for the first occurrence of a one followed by a zero. The first

time this pattern is encountered, the one will be shifted to the right and replaced by a

zero. Not only does this give a new partition, never seen before, but any permutation of

the flags prior to this pair is also unique. If this is not clear, consider that the changed

pair cannot change back to one-zero and then change again to zero-one without at least

one flag beyond it changing.

Once this shift has occurred, we reset all flags prior to this pair, putting the requisite

number of ones at the beginning and setting the remaining flags to zero. This is where

the implicit recursion enters the picture. The next time the algorithm is called upon to

advance to the next partition, it will do so on a smaller subset of the flags, those to the left

of the pair just switched.

Eventually the point is reached that no one-zero pairs occur inside the active area. When

this happens, the rightmost one in the flag array is pushed to the right one slot, and the mass

of ones has just irrevocably advanced. After the final partition (all ones on the right) appears,

the one-zero pattern will no longer be found in the flag array, and we are done.

The final step is trivial: divide all criterion counts by the number of partitions to get

an approximate probability that the OOS performance for each IS rank is less than or

equal to the median OOS performance.

 for (ivar=0; ivar<npreds; ivar++)

 crits[ivar] /= icombo;

Chapter 2 Screening for Relationships

109

Remember that the ivar positions in crits do not correspond to candidates but

candidate ranks. The rankings will in general be different for different partitions. Still,

it is legitimate to map these criteria to the candidates in the order of their final ranking.

After we have computed the performance criteria for all candidates and ranked them,

we assign the probability estimate crits[npreds-1] to whichever candidate had the best

performance, and so forth, down to assigning crits[0] to the worst performer.

�An Example of CSCV OOS Testing
Here is a simple example of using CSCV OOS median testing to evaluate the relationship

of a set of competing candidates with a single target variable. The synthetic variables in

the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each

other) random time series.

•	 SUM1234 = RAND1 + RAND2 + RAND3 + RAND4

We use five-bin uncertainty reduction as our performance criterion, testing RAND0

to RAND9 as competitors to predict SUM1234. Eight CSCV subsets are used. The

following results are obtained:

 Variable UncertReduc P(<=median)

 RAND4 0.0801 0.0000

 RAND3 0.0784 0.0000

 RAND1 0.0706 0.0000

 RAND2 0.0703 0.0000

 RAND5 0.0013 0.8571

 RAND8 0.0012 0.8286

 RAND7 0.0010 0.9000

 RAND0 0.0010 0.8000

 RAND6 0.0009 0.8857

 RAND9 0.0006 0.7286

Not surprisingly, RAND1 to RAND4 have the highest values of uncertainty reduction.

But note how extremely effective the CSCV probabilities are. The probabilities for the

four variables having a true relationship are a perfect zero, while the probabilities for the

unrelated variables are very high. Of course, this is a particularly easy test, but it does

demonstrate the efficacy of the technique.

Chapter 2 Screening for Relationships

110

In my own work, I have found great value in using this CSCV algorithm to detect

overfitting of the model. If you have a model that is so powerful that it is learning noise to

the detriment of authentic patterns, you will likely find that its performance criterion is

impressive, but none of the competitors has a wonderfully low CSCV probability. That’s

a major red flag, not to be dismissed!

�Univariate Screening for Relationships
This section presents the most basic, the fastest-to-compute, and easy-to-understand

technique for variable screening. In this algorithm, we have a single variable, which

we call the target, and a (usually large) collection of variables, which we call predictor

candidates. Usually, our application will embody this directionality, although it need

not. There is nothing inherent in this algorithm that requires one variable be used to

predict another. We are simply screening for a relationship.

The complete source code for this algorithm is in SCREEN_UNIVAR.CPP. It’s much too

long to list here in the text. At the most basic level, the algorithm is exactly as shown in

the pseudocode on page 97. But there are two complications.

First, this code provides the user with a variety of relationship criteria from which to

choose. Some of these require discretization into bins before processing is done, while

others operate directly on continuous data. Complicating things even more is an option

that is immensely valuable for extremely noisy data (such as financial market price

changes). This option lets the program focus on only extreme values of the predictor

candidates, those values most likely to carry predictive information, while ignoring cases

that do not have extreme values. And to pile yet another complication on top of this tails-

only option, every predictor candidate will have different extreme cases, so we cannot

do target bin assignments based on the entire dataset. We must compute target bin

thresholds separately for each candidate. This is a simple concept but very nasty coding.

I won’t bother discussing my code for this here; you may role your eyes at my code and

choose to do it in a way that you find more comfortable. If you do want to copy my code,

it’s in the source file.

Another complication with this algorithm is that modern processors have multiple

cores, and it would be foolish to fail to take advantage of this. My implementation is fully

multithreaded, making use of every available core. Because you may be unfamiliar with

methods for multithreading, I’ll deal with this subject in some detail here.

Chapter 2 Screening for Relationships

111

One concept critical to multithreading is that a Windows thread can launch only

a special function with a single parameter. Naturally, we’ll need to pass a boatload of

parameters to the criterion-computation routine. So, what we do is define a structure

that contains all necessary parameters, fill in the contents of this structure, and then pass

this structure as our solitary parameter. The structure may look something like this:

typedef struct {

 int varnum; // Index of predictor (in database, not preds)

 int ncases; // Number of cases

 int n_vars; // Number of columns in database

 ...

 double crit; // Criterion is returned here

} UNIVAR_CRIT_PARAMS;

In the calling routine, we define a variable and set as many members as possible

before beginning. As threads are launched, we set any remaining parameters that could

not be set until launch time, such as the ID of the variable being evaluated.

 UNIVAR_CRIT_PARAMS univar_params[MAX_THREADS];

 for (ithread=0; ithread<max_threads; ithread++) {

 univar_params[ithread].ncases = n_cases;

 univar_params[ithread].n_vars = n_vars;

 ...

 }

On the next page, we see a C-like pseudocode outline for the entire multithreaded

screening algorithm. Ideally, this will let you more easily comprehend the code in the

SCREEN_UNIVAR.CPP source file. It also serves as a useful template if you want to write

your own screening code from scratch.

Allocate working memory and any objects that are universally needed

Fetch all selected candidates and target from database

Perform any required initial calculations, such as finding bin boundaries and counts

Chapter 2 Screening for Relationships

112

For irep=0 to requested Monte-Carlo replications

 Shuffle the target if we are past the first (unshuffled) replication

 Allocate any objects that are dependent on the order of the targets

 Set thread parameters (thread_params) that are the same for all threads

 n_threads = 0 Counts the number of currently active threads

 ivar = 0 Indexes (through n_candidates-1) the variable being tested

 empty_slot = -1 Will be next available thread slot

 Start thread loop This is an ‘endless’ loop, exited only with a break

 if (ivar < n_candidates) More variables to test?

 if (empty_slot < 0) True while filling thread slots

 k = n_threads;

 else

 k = empty_slot; Start this new thread in the slot recently vacated

 thread_params[k].ivar = ivar We’ll need to know which variable this is

 thread_params[k].(other stuff) = whatever Other parms known only at launch

 threads[k] = newly created thread Launch this new thread

 ++n_threads And count it

 ++ivar On to the next candidate

 if (n_threads == 0) One of two exits from the thread loop

 Break out of thread loop

 �The next ‘if’ is true if all available threads are busy and we have not yet completed

launching all work

 if (n_threads == max_threads && ivar < n_candidates)

 finished_id = ID of the first thread to finish OS call to wait for a thread to finish

 Next line fetches and saves the criterion for the variable just processed

 criterion[thread_params[finished_id].ivar] = thread_params[finished_id].criterion

 empty_slot = finished_id This slot is now available

 close thread 'finished_id'

 --n_threads

Chapter 2 Screening for Relationships

113

 Next ‘if’ is true if no more candidates remain to be processed

 else if (ivar == n_candidates)

 Wait for all n_threads remaining threads to finish This is a system call

 for (i=0; i<n_threads; i++) We get here only when all threads are finished

 criterion[thread_params[i].ivar] = thread_params[i].criterion

 close thread 'i'

 Break out of thread loop We are completely done with computation

 End of thread loop Loop back up to top of thread loop

 Free any objects that are dependent on the order of the targets

 At this point, all criteria are computed and each is in crit[ivar]

 Preserve and sort these for printing, and handle solo permutation test

 For ivar=0 to n_candidates

 if (irep == 0) Unpermuted runis

 sorted_crits[ivar] = original_crits[ivar] = crit[ivar]

 index[ivar] = ivar This will let us print results sorted best to worst

 mcpt_bestof[ivar] = mcpt_solo[ivar] = 1

 else if (crit[ivar] >= original_crits[ivar])

 ++mcpt_solo[ivar]

 End of 'for all candidates' loop

 For the first (unpermuted) run, sort criteria, keeping ‘index’ synchronized

 if (irep == 0)

 Sort 'sorted_crits' ascending, simultaneously moving 'index'

 else This is a permuted run

 The next line and loop find the max criterion for this permuted run

 best_crit = criterion[0];

 For ivar=1 through n_candidates-1

 if (criterion[ivar] > best_crit)

 best_crit = criterion[ivar];

 End of 'for candidates' loop

Chapter 2 Screening for Relationships

114

 Handle the unbiased permutation test

 For ivar=0 through n_candidates-1

 if (best_crit >= original_crits[ivar])

 ++mcpt_bestof[ivar]

 End of 'for all candidates' loop

 End of MCPT replications loop

All computation is complete. Print results, sorted from max to min criterion

for (i=n_candidates-1; i>=0; i--)

 k = index[i];

 Print name, criterion, and mcpt probabilities for candidate k

 End of 'for n_candidates' counting down loop

Free all working memory and remaining objects

�Three Simple Examples
This section demonstrates three situations, all using synthetic data to clarify the issues.

The variables in the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each

other) random time series.

•	 DEP_RAND0 to DEP_RAND9 are derived from RAND0 to RAND9 by

introducing strong serial correlation up to a lag of nine observations.

They are independent of one another.

•	 SUM12 = RAND1 + RAND2

•	 SUM34 = RAND3 + RAND4

•	 SUM1234 = SUM12 + SUM34

The first test run attempts to predict SUM1234 from RAND0 to RAND9, SUM12, and

SUM34. The output looks like this:

Chapter 2 Screening for Relationships

115

--------> Mutual Information with SUM1234 <-------

 Variable MI Solo pval Unbiased pval

 SUM34 0.2877 0.0001 0.0000

 SUM12 0.2610 0.0001 0.0001

 RAND3 0.1307 0.0001 0.0001

 RAND4 0.1263 0.0001 0.0001

 RAND1 0.1129 0.0001 0.0001

 RAND2 0.1085 0.0001 0.0001

 RAND8 0.0015 0.2994 0.9828

 RAND5 0.0014 0.3673 0.9950

 RAND6 0.0012 0.5303 1.0000

 RAND7 0.0010 0.7384 1.0000

 RAND0 0.0008 0.8332 1.0000

 RAND9 0.0006 0.9605 1.0000

These results should be totally unsurprising. But do take note of the fact that the

unbiased probabilities (pval) are even more indicative of the worthlessness of the

worthless candidates.

The next example shows what happens when worthless and serially correlated

predictors are tested with a serially correlated target. We use DEP_RAND1 to DEP_

RAND9 to predict DEP_RAND0, a situation that should demonstrate no predictive power

whatsoever. The mutual information table is as follows:

--------> Mutual Information with DEP_RAND0 <--------

 Variable MI Solo pval Unbiased pval

 DEP_RAND2 0.0044 0.0001 0.0002

 DEP_RAND4 0.0030 0.0018 0.0175

 DEP_RAND3 0.0025 0.0110 0.0881

 DEP_RAND6 0.0023 0.0249 0.2004

 DEP_RAND9 0.0023 0.0242 0.2062

 DEP_RAND8 0.0023 0.0287 0.2284

 DEP_RAND1 0.0022 0.0317 0.2494

 DEP_RAND5 0.0019 0.0883 0.5509

 DEP_RAND7 0.0008 0.8682 1.0000

Chapter 2 Screening for Relationships

116

The mutual information figures are all tiny, yet the p-values show extreme

significance. The careless user would surely be fooled by this, because not only are the

solo p-values mostly small but even the unbiased p-value has been fooled for one or

two of the candidates. This is what happens when we perform a naive statistical test on

serially correlated data. Yikes.

The final example shows how the cyclic modification of the Monte Carlo

permutation test can at least partially remedy the situation. We repeat the same test

as that just shown, except that instead of using complete permutation, we use cyclic

permutation. The results are shown here:

---------> Mutual Information with DEP_RAND0 <-------

 Variable MI Solo pval Unbiased pval

 DEP_RAND2 0.0044 0.0513 0.3529

 DEP_RAND4 0.0030 0.2408 0.9316

 DEP_RAND3 0.0025 0.3976 0.9918

 DEP_RAND6 0.0023 0.5007 0.9976

 DEP_RAND9 0.0023 0.5237 0.9982

 DEP_RAND8 0.0023 0.4719 0.9988

 DEP_RAND1 0.0022 0.5344 0.9990

 DEP_RAND5 0.0019 0.6643 1.0000

 DEP_RAND7 0.0008 0.9920 1.0000

�Bivariate Screening for Relationships
Sometimes a single variable acting alone has little or no predictive power, but in

conjunction with another it becomes useful. The classic example is the height and

weight of an individual, predicting coronary health. Either predictor alone has relatively

little predictive power, but the two taken together can have great power.

Of course, in an ideal situation we could try every possible subset of predictor

candidates. But this is impossible in most practical applications. In fact, for binning-type

relationship criteria such as chi-square and mutual information, handling even three

predictors simultaneously is often impractical because of excessively small bin counts.

And the combinatoric explosion for the number of possible subsets is violent.

Chapter 2 Screening for Relationships

117

But two predictors at once is often a useful compromise between the simplistic

weakness of just one versus the impracticality of more than two. In this section, I’ll

present an efficient algorithm for exhaustively screening all possible pairs of candidates.

Two criteria are employed: mutual information and uncertainty reduction, although

other criteria could be substituted.

We alluded to the technique used here back on page 88. Now we will be specific,

showing how bin dimension unrolling can be performed efficiently. The idea is that the

matrix of predictor bins is unrolled into a single vector, which itself forms one dimension

of the predictor/target bin matrix. For example, suppose the two predictors are each split

into three bins, and the target is split into four. The unrolled predictor dimension would

consist of 3×3=9 bins, meaning that we perform the analysis with a 9 by 4 matrix.

The algorithm presented has an interesting bonus feature: it allows the user to

specify multiple target candidates. The algorithm will optionally find individual targets

that have maximum predictability from associated bivariate pairs of predictors. One

example of the utility of multiple target candidates is when the application is predicting

future movement of a financial market with the goal of taking a position and then ideally

closing the position with a profit. Should we employ a tight stop to discourage severe

losses? Or should we use a loose stop to avoid being closed out by random noise? We

might test multiple targets corresponding to various degrees of stop positioning and then

determine which of the competitors is most predictable.

The easiest way to present the complete algorithm is to break it into sections,

sometimes showing exact code and sometimes just an outline. We begin with an outline

of the overall process, with special emphasis on the Monte Carlo permutation tests. You

might want to review that prior section, especially the material on selection bias that

begins on page 95.

Compute n_combo as the total number of combinations of predictors and target candidates.

Allocate working memory and any objects that are universally needed

Fetch all selected predictor and target candidates from database

Perform any required initial calculations, such as finding bin boundaries, counts, and marginals

Chapter 2 Screening for Relationships

118

for (irep=0; irep<mcpt_reps; irep++) {

 Shuffle target if in permutation run (irep>0)

 Compute and save criterion for all combinations (done with bivar_threaded())

 for (icombo=0; icombo<n_combo; icombo++) { // Update the MCPT

 if (icombo == 0 || crit[icombo] > best_crit)

 best_crit = crit[icombo];

 if (irep == 0) { // Original, unpermuted data

 original_crits[icombo] = crit[icombo];

 mcpt_bestof[icombo] = mcpt_solo[icombo] = 1;

 }

 else if (crit[icombo] >= original_crits[icombo])

 ++mcpt_solo[icombo];

 } // For all combinations

 if (irep > 0) {

 for (icombo=0; icombo<n_combo; icombo++) {

 if (best_crit >= original_crits[icombo]) // Valid only for largest

 ++mcpt_bestof[icombo];

 }

 } // If irep>0

 } // For all MCPT replications

All computation is finished. Print.

Clean up and exit.

The algorithm shown here is similar to that presented on page 88. The nitty-gritty

computation is done in subroutine bivar_threaded(), which we’ll soon explore. The

complete source code can be found in the file SCREEN_BIVAR.CPP. But let’s begin with

the routine for computing mutual information. This is a bin-unrolled version of the most

basic definition of mutual information, shown in Equation (1.16) on page 18.

Chapter 2 Screening for Relationships

119

static double compute_mi (

 int ncases, // Number of cases

 int nbins_pred,   // Number of predictor bins

 int *pred1_bin, // Ncases vector of predictor 1 bin indices

 int *pred2_bin, // Ncases vector of predictor 2 bin indices

 int nbins_target,   // Number of target bins

 int *target_bin, // Ncases vector of target bin indices double

 *target_marginal, // Target marginal

 int *bin_counts  // Work area nbins_pred_squared*nbins_target long

)

{

 int i, j, k, nbins_pred_squared;

 double px, py, pxy, MI;

 // Zero all bin counts

 nbins_pred_squared = nbins_pred * nbins_pred; // Predictor bins unrolled

 for (i=0; i<nbins_pred_squared; i++) {

 for (j=0; j<nbins_target; j++)

 bin_counts[i*nbins_target+j] = 0;

 }

 // Compute bin counts for bivariate predictor and full table

 for (i=0; i<ncases; i++) {

 k = pred1_bin[i]*nbins_pred+pred2_bin[i]; // Index in unrolled predictor array

 ++bin_counts[k*nbins_target+target_bin[i]];  // Bin in predictor/target matrix

 }

 // Compute mutual information

 MI = 0.0;

 for (i=0; i<nbins_pred_squared; i++) {  // Unrolled predictor bins

 k = 0;

 for (j=0; j<nbins_target; j++) // Sum across target bins to get predictor marginal

 k += bin_counts[i*nbins_target+j];

 px = (double) k / (double) ncases;

Chapter 2 Screening for Relationships

120

 for (j=0; j<nbins_target; j++) {

 py = target_marginal[j];

 pxy = (double) bin_counts[i*nbins_target+j] / (double) ncases;

 if (pxy > 0.0)

 MI += pxy * log (pxy / (px * py));  // Equation (1.16) on Page 18

 }

 }

 if (nbins_pred_squared <= nbins_target)

 MI /= log ((double) nbins_pred_squared); // Normalize 0-1

 else

 MI /= log ((double) nbins_target);

 return MI;

}

This code assumes that both predictors are split into the same number of bins. This

restriction is not necessary in general; it’s just a programming convenience for this

demonstration. Thus, the number of unrolled predictor bins is the number of individual

bins squared. Also, for easier user interpretability, the mutual information is divided by

its maximum possible value, which normalizes the quantity to the range 0-1.

Last, we’ll explore the core of this algorithm, the subroutine that computes the

criteria for all possible pairs of predictors and individual target candidates. As we’ve seen

in prior multithreading examples, we need a data structure through which all parameters

are passed to the threaded routine. It’s straightforward, so we’ll dispense with listing it or

the trivial wrapper routine here; see SCREEN_BIVAR.CPP for a complete listing. Instead,

we focus only on bivar_threaded(). Shown next is the basic listing, with error handling and

other extraneous code omitted for clarity.

Pay attention to the fact that when we initialize the parameter-passing structure,

each thread gets its own private bin_counts and bivar_counts work areas.

The trickiest part of this code is the short section with the comment Advance to the next

combination on page 122. This counts up through all possible trios of two predictors and

one target, with the target changing fastest. Study it.

static int bivar_threaded (

 int max_threads, // Maximum number of threads to use

 int ncases, // Number of cases

 int npred, // Number of predictor candidates

Chapter 2 Screening for Relationships

121

 int ntarget, // Number of target candidates

 int nbins_pred, // Number of predictor bins

 int *pred_bin, // Ncases vector of predictor bin indices, npred of them

 int nbins_target, // Number of target bins

 int *target_bin, // Ncases vector of target bin indices, ntarget of them

 double *target_marginal, // Target marginal, ntarget of them

 int which, // 1=mutual information, 2=uncertainty reduction

 double *crit, // Output of all criteria, npred*(npred-1)/2*ntarget long

 int *bin_counts, // Work area

 // max_threads*nbins_pred*nbins_pred*nbins_target

 int *bivar_counts // Work area max_threads*nbins_pred_squared long

)

{

 int i, k, ret_val, ithread, n_threads, empty_slot;

 int ipred1, ipred2, itarget, icombo, n_combo;

 BIVAR_PARAMS bivar_params[MAX_THREADS];

 HANDLE threads[MAX_THREADS];

/*

 Initialize those thread parameters which are constant for all threads.

 �Each thread will have its own private bin_count and bivar_count matrices for working storage.

They must not share scratch storage!

*/

 for (ithread=0; ithread<max_threads; ithread++) {

 bivar_params[ithread].ncases = n_cases;

 bivar_params[ithread].nbins_pred = nbins_pred;

 bivar_params[ithread].nbins_target = nbins_target;

 bivar_params[ithread].bin_counts = bin_counts +

 ithread * nbins _pred * nbins_pred * nbins_target;

 bivar_params[ithread].bivar_counts = bivar_counts +

 ithread * nbins _pred * nbins_pred;

 bivar_params[ithread].which = which;

 } // For all threads, initializing constant stuff

Chapter 2 Screening for Relationships

122

/*

 Do it

 We use icombo to define a unique set of two predictors and one target.

 It ranges from 0 through npred * (npred-1) / 2 * ntarget.

*/

 n_threads = 0;    // Counts threads that are active

 for (i=0; i<max_threads; i++)

 threads[i] = NULL;   // Thread pointers

 // The first trio is the first predictor candidate, the second, and the first target

 ipred1 = itarget = icombo = 0 // icombo will encode the trio being processed

 ipred2 = 1;

 n_combo = npred * (npred-1) / 2 * ntarget; // This many combinations

 empty_slot = -1; // After full, will identify the thread that just completed

 for (;;) { // Main thread loop processes all predictors

/*

 Start a new thread if we still have work to do

*/

 if (icombo < n_combo) { // If there are still some trios to do

 if (empty_slot < 0) // Negative while we are initially filling the queue

 k = n_threads; // This is the next available slot

 else // The queue has been filled and running

 k = empty_slot; // The most recently completed slot, now available

 bivar_params[k].icombo = icombo; // Needed for placing final result

 bivar_params[k].pred1_bin = pred_bin+ipred1*ncases;

 bivar_params[k].pred2_bin = pred_bin+ipred2*ncases;

 bivar_params[k].target_bin = target_bin+itarget*ncases;

 bivar_params[k].target_marginal = target_marginal+itarget*nbins_target;

 threads[k] = (HANDLE) _beginthreadex (�NULL, 0, bivar_threaded_wrapper,

&biv ar_params[k], 0, NULL);

 ++n_threads;

Chapter 2 Screening for Relationships

123

 // Advance to the next combination; itarget changes fastest, ipred1 slowest

 ++icombo;

 if (itarget < ntarget-1)

 ++itarget;

 else {

 itarget = 0;

 if (ipred2 < npred-1)

 ++ipred2;

 else {

 ++ipred1;

 ipred2 = ipred1 + 1;

 }

 }

 } // if (icombo < n_combo), meaning that we have more work to do

 if (n_threads == 0) // Are we done?

 break;

/*

 Handle full suite of threads running and more threads to add as soon as some are done.

 Wait for just one thread to finish. Feel free to change the 500000 timeout.

*/

 if (n_threads == max_threads && icombo < n_combo) {

 ret_val = WaitForMultipleObjects (n_threads, threads, FALSE, 500000);

 crit[bivar_params[ret_val].icombo] = bivar_params[ret_val].crit;

 empty_slot = ret_val; // Index of thread that just finished

 CloseHandle (threads[empty_slot]);

 threads[empty_slot] = NULL;

 --n_threads;

 }

Chapter 2 Screening for Relationships

124

/*

 Handle all work has been started and now we are just waiting for threads to finish

*/

 else if (icombo == n_combo) {

 ret_val = WaitForMultipleObjects (n_threads, threads, TRUE, 500000);

 for (i=0; i<n_threads; i++) {

 crit[bivar_params[i].icombo] = bivar_params[i].crit;

 CloseHandle (threads[i]);

 }

 break;

 }

 } // Endless loop which threads computation of criterion for all predictors

 return 0;

}

In the routine just listed, work can be roughly divided into three blocks. The first

block (if (icombo < n_combo)) checks to see whether there is still work to do. If so, it

launches a new thread. The second block (if (n_threads == max_threads && icombo < n_

combo)) is executed if all threads are busy and there is still work to do. It just sits and waits

for a thread to finish. The third block (else if (icombo == n_combo)) is executed just once,

when all work has been launched. It sits and waits for all threads to finish.

�Stepwise Predictor Selection Using Mutual
Information
In the prior chapter, you learned what mutual information is, why it is important, and

how to compute it. In the prior section you saw how it (and other criteria) can be used to

screen for individual relationships between a collection of candidates and a single target

variable. Now you will learn how to use it intelligently to select a predictor variable set

that is likely to be effective. This can be enormously valuable when you have a massive

number of candidates and need to whittle this universe down to a manageable number

before embarking on expensive training of sophisticated models. In particular, we will

explore two specific algorithms that employ highly effective stepwise predictor selection.

Chapter 2 Screening for Relationships

125

�Maximizing Relevance While Minimizing Redundancy
Let X1, X2, …, XM be a set of predictor candidates for predicting Y. Given some m<M,

we want to find m members of this collection such that this subset, which we call S,

has maximum joint dependency with Y. Joint dependency is an extension of mutual

information in which one of the quantities is a collection of random variables rather

than a single random variable. We can think of the joint dependency as the mutual

information between S and Y, I(S;Y). For convenience, let S be the first m candidates.

Then this joint dependency is given by Equation (2.13), a straightforward extension of

Equation (1.23).

	

I S Y f x , ,x ,y

f x x y

f x x

...S Y m

S Y 1 m

S m

;

, , ,

, ,

...

...

,

,

() = ()
()
ò ò� 1

1

log
(() ()f y

dx dx dy
Y

m1 , ,...
	 (2.13)

Unfortunately, in practice this quantity is impossible to compute for m>2 and is often

difficult even for m=2. The reason is that the multiple integration involves implicitly or

explicitly partitioning the dataset in more than two dimensions, leading to excessive

thinning of the density approximations. Consider the simplest case of m=2. Suppose

there are 1,000 cases. We have a rectangular checkerboard for the two predictors, and we

have a stack of these checkerboards to accommodate Y. Each case will have a position

in this three-dimensional cube. If we were to partition each dimension into ten bins,

we would have 103=1000 bins, leading to an average of just one case per bin. If m=3,

there would be an average of one-tenth of a case per bin! Clearly, there is no hope of

implementing the direct approach to finding the optimal subset S if m>2, and there’s

probably no hope even for m=2 unless there are an enormous number of cases. The

density approximations that are critical to the integrand are simply too inaccurate.

There is another problem, too. Combinatoric explosion is a standard nemesis of

any predictor selection algorithm. If we are choosing m of M candidates, there are M!/

(m!(M–m)!) possible combinations. This is often so large that trying all of them is out of

the question. A shortcut is needed.

There are several shortcuts in use, the most important of which were discussed

earlier in this chapter. To briefly review, the simplest and most common is first-order

incremental search, more commonly called forward stepwise selection. We first choose

the single best predictor, where “best” is defined in terms of some ideally intelligent

criterion. Then we find the predictor that, when combined with the first, produces the

Chapter 2 Screening for Relationships

126

maximum increment in whatever performance criterion is being evaluated. A third is

added in the same way, and so forth.

It is theoretically possible for this method to fail, perhaps miserably. Suppose, for

example, that variables 21 and 35 together do a superb job of predicting Y, although

neither alone is any good. Maybe variable 17 is the best single predictor, while variable

19 provides the best incremental power. These two variables together may not come

even close to being as good as 21 and 35. This is sad but often unavoidable.

Other techniques do exist. Higher-order methods keep not just the best variable

at each step but several of the best, which increases the likelihood of finding the

optimal set. Backward selection starts by using all candidates and removing one at a

time. However, first-order incremental search is the most efficient, making it the only

practical choice in any application in which computational resources are limited. This

is the approach used here, not only because of its efficiency but because of a fortuitous

property of the algorithm when applied to joint dependency.

Peng, Long, and Ding (2005), in their paper “Feature Selection Based on Mutual

Information: Criteria of Max-Dependency, Max-Relevance, and Min Redundancy,”

provide a selection algorithm that is simple, elegant, and almost miraculously duplicates

first-order incremental optimization of Equation (2.13), without ever having to evaluate

the equation. I now present an intuitive development of this algorithm.

The relevance of a set of predictors S to a predicted variable Y is defined as the mean

mutual information between Y and each predictor in S. This is shown in Equation (2.14),

where |S| is the number of predictors in the set.

	
Relevance Y S

1

S
I Y X

X S
i

i

, ;() = ()
Î
å 	 (2.14)

It is tempting to simply maximize this quantity. We would begin by selecting the

single predictor that has maximum mutual information with Y. Then we add the

candidate that has second-max mutual information, and so forth, until we have m

predictors in S. This would obviously maximize the relevance of S.

The problem with this simplistic approach is that it ignores the fact that S chosen this

way will usually contain an enormous amount of redundancy. If two variables have high

mutual information with Y, chances are they also have high mutual information with

each other. It will probably be the case that if we simply choose a new variable that has

high mutual information with Y, appending it to S will not improve the joint dependency

between S and Y very much because it won’t be add much information that is new.

Chapter 2 Screening for Relationships

127

The algorithm of [Peng, Long, and Ding, 2005] solves this problem by choosing the

next variable as the one having maximum value of its mutual information with Y, minus

its redundancy with the existing set of predictors. The definition of redundancy is shown

in Equation (2.15). Note that the redundancy of a predictor candidate with S is the same

as the relevance of this candidate with S. The only difference is the name of the quantity.

The term relevance is used when referring to the predicted variable, while redundancy is

used when referring to another predictor candidate.

	
Redundancy X S

S
I X Xj

X S
j i

i

; ;() = ()
Î
å1

	 (2.15)

In summary, the algorithm begins by choosing the single predictor that has

maximum mutual information with Y. Let S be this one variable. From then on, we add

one new variable at a time by choosing the one that maximizes the criterion shown in

Equation (2.16), stopping when we have the desired number m of predictors in S.

	 Criterion X S I X Y
S

I X Xj j
X S

j i

i

; ; ;() = () - ()
Î
å1

	 (2.16)

This algorithm makes obvious intuitive sense. At each step we want to

simultaneously maximize the mutual information with Y while minimizing the average

mutual information with the predictors already in S. What is not at all obvious is that

this algorithm will choose exactly the same variables as would be chosen if we were

able to evaluate Equation (2.13), something that we have already seen to be practically

impossible. The proof can be found in the original paper. All we do here is marvel that

we can capitalize on this extraordinary result.

There are two Monte Carlo permutation tests that can be performed as this

algorithm executes. We can do a “solo” test by comparing the relevance of each

individual candidate to its permuted values. This provides straightforward individual

candidate significance tests. We can also, as each new variable is added to the “kept” set,

test the significance of the “so-far” collection of variables. This is done by cumulating the

sum of the individual relevances and comparing this sum to the corresponding values

under permutation. For each quantity of kept variables, this provides the estimated

probability that if the variables were all worthless, we could have achieved this much

total relevance by sheer good luck.

Chapter 2 Screening for Relationships

128

�Code for the Relevance Minus Redundancy Algorithm
The file SCREEN_RR.CPP contains a subroutine that implements the Peng-Long-Ding

algorithm for relevance-minus-redundancy predictor selection. Rather than list it all

in its complex glory, I’ll just provide a C-like outline of the algorithm stripped down

to the bare essentials. This should be sufficient for you to produce your own custom

implementation. The complete source file will fill in additional details, if needed. Here it

is, with comments interspersed:

 Allocate working memory and any objects that are universally needed

 Fetch all selected candidates and target from database

 Perform any required initial calculations, such as finding bin boundaries and marginals

This is the main outermost loop for the Monte Carlo permutation test:

 for (irep=0; irep<mcpt_reps; irep++) {

 Shuffle target if in permutation run (irep>0)

Here we call a subroutine that uses multithreading to compute the mutual

information between each individual candidate and the target.

 First step: Compute and save (in crit) MI criterion for all individual candidates

We save this set of mutual information measures in relevance because they will be

needed later, as we add new predictors to the kept set.

This will be the first term in Equation (2.16). Also, we find the maximum

mutual information criterion among competitors.

 for (ivar=0; ivar<npred; ivar++) {

 relevance[ivar] = crit[ivar]; // Will need this for Step 2, addition of more predictors

 if (ivar == 0 || crit[ivar] > best_crit) {

 best_crit = crit[ivar];

 best_ivar = ivar;

 }

 }

Chapter 2 Screening for Relationships

129

We keep in stepwise_crit and stepwise_ivar a record of the variables and associated

criterion as they are added. We just found the first, so its subscript is zero. Also, sum_

relevance will cumulate the total relevance of the kept set. This plays no role whatsoever

in the selection algorithm. Its sole purpose is to permit a Monte Carlo permutation test

of the “so-far” significance of the kept set.

 stepwise_crit[0] = best_crit; // Criterion for first var is largest MI

 stepwise_ivar[0] = best_ivar; // It's this candidate

 sum_relevance = best_crit;   // Will cumulate as more vars added

If this is the first (unpermuted) replication, then we preserve the “original” values

of these quantities. We also initialize the count for the so-far permutation test. Then

we preserve the original relevance and criterion (which are equal for step 1, the first

variable) and initialize the counts for each solo permutation test. Finally, this would be a

good place to print for the user a table of these first-step criteria, the mutual information

of each candidate with the target.

 if (irep == 0) { // Original, unpermuted data

 original_stepwise_crit[0] = best_crit; // Criterion for first var is largest MI

 original_stepwise_ivar[0] = best_ivar; // It's this candidate

 original_sum_relevance[0] = sum_relevance;

 stepwise_mcpt_count[0] = 1; // Initialize cumulative MCPT

 for (ivar=0; ivar<npred; ivar++) {

 original_relevance[ivar] = current_crits[ivar] = crit[ivar];

 solo_mcpt_count[ivar] = 1; // Initialize solo MCPT

 }

 Print sorted table of individual MIs

 } // If irep=0 (original, unpermuted run)

If we are no longer in the unpermuted replication, then we have to handle the two

permutation tests. The “stepwise” test is for the collection of variables so far, which of

course is just one, the single best, at this time. The “solo” test is done separately for each

candidate, individually.

Chapter 2 Screening for Relationships

130

 else { // Count for MCPT

 if (sum_relevance >= original_sum_relevance[0])

 ++stepwise_mcpt_count[0];

 for (ivar=0; ivar<npred; ivar++) {

 if (relevance[ivar] >= original_relevance[ivar])

 ++solo_mcpt_count[ivar];

 }

 } // Permuted replication

At this time, we have computed and saved in relevance the mutual information of

each candidate with the target, and we have selected the best for inclusion in the “kept”

set. Now we iteratively add more candidates. Note that the redundancy of a candidate

can change as predictors are added. This is because the kept set is increasing, so their

mean redundancy changes. We will keep in sum_redundancy[] the total redundancy of

each remaining candidate with the variables in the “kept” set. Initialize this to zero for all

npred candidates.

 for (i=0; i<npred; i++)

 sum_redundancy[i] = 0.0;

 for (nkept=1; nkept<max_pred; nkept++) { // Main 'adding' loop

 Print candidates kept so far (if in unpermuted rep)

Build in which_preds the k candidates not yet selected. This code is not shown here

because although it is simple, it is distracting. See SCREEN_RR.CPP for the details of how

I do it. Then call a routine (rr_threaded()) that uses multithreading to compute the mutual

information between the variable just added and each of the remaining candidates

(which_preds). These are placed in crit[] so we can soon update the redundancies.

A long time ago, we saved in relevance the first term in Equation (2.16). A moment ago

we computed one member of the summation in the right term of this equation. We now

update that sum and evaluate Equation (2.16) to get the criterion for each remaining

candidate variable. Find the candidate with the maximum criterion.

Chapter 2 Screening for Relationships

131

 for (i=0; i<npred-nkept; i++) { // Cumulate sum redundancy, then compute criteria

 k = which_preds[i]; // Index in preds of this candidate

 sum_redundancy[k] += crit[i];

 current_crits[i] = relevance[k] - sum_redundancy[k] / nkept; // Equation (2.16)

 if (i == 0 || current_crits[i] > best_crit) {

 best_crit = current_crits[i];

 best_ivar = k;

 }

 }

Preserve the best candidate and its criterion. Also sum the relevance for the “so-far”

permutation test.

 stepwise_crit[nkept] = best_crit;

 stepwise_ivar[nkept] = best_ivar;

 sum_relevance += relevance[best_ivar];

If we are in the unpermuted replication, save these quantities for later printing and

comparisons on which the permutation tests are based. Otherwise, do the counting for

the permutation test.

 if (irep == 0) { // Original, unpermuted

 original_stepwise_crit[nkept] = best_crit;

 original_stepwise_ivar[nkept] = best_ivar;

 original_sum_relevance[nkept] = sum_relevance;

 stepwise_mcpt_count[nkept] = 1;

 }

  else { // Count for MCPT

 if (sum_relevance >= original_sum_relevance[nkept])

 ++stepwise_mcpt_count[nkept];

 } // Permuted

  } // Second step (for nkept): Iterate to add predictors to kept set

 } // For all MCPT replications

That’s it. We can now print a table of final results and then free any objects and

memory that were allocated at the start of this routine.

Chapter 2 Screening for Relationships

132

�An Example of Relevance Minus Redundancy
This section demonstrates a revealing example of the algorithm using synthetic data to

clarify the presentation. The variables in the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each

other) random time series.

•	 SUM12 = RAND1 + RAND2

•	 SUM34 = RAND3 + RAND4

•	 SUM1234 = SUM12 + SUM34

The test run attempts to predict SUM1234 from RAND0 to RAND9, SUM12, and

SUM34. The output is shown here, with comments interspersed:

* *

* Relevance minus redundancy for optimal predictor subset *

* 12 predictor candidates *

* 12 best predictors will be printed *

* 5 predictor bins *

* 5 target bins *

* 100 replications of Monte-Carlo Permutation Test *

* *

Initial candidates, in order of decreasing mutual information with SUM1234

 Variable MI

 SUM34 0.2877

 SUM12 0.2610

 RAND3 0.1307

 RAND4 0.1263

 RAND1 0.1129

 RAND2 0.1085

 RAND8 0.0015

 RAND5 0.0014

 RAND6 0.0012

Chapter 2 Screening for Relationships

133

 RAND7 0.0010

 RAND0 0.0008

 RAND9 0.0006

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877

We see from the previous table that the first candidate chosen is the one that has

maximum mutual information with the target. Naturally this would be either SUM12 or

SUM34, and it happens to be the latter. Then, in the following table we see that SUM12

has the largest relevance (its mutual information with the target) and essentially no

redundancy with SUM34 (again, no surprise). This gives it the highest selection criterion,

and it is chosen.

Additional candidates, in order of decreasing relevance minus redundancy

 Variable Relevance Redundancy Criterion

 SUM12 0.2610 0.0014 0.2596

 RAND1 0.1129 0.0016 0.1112

 RAND2 0.1085 0.0009 0.1076

 RAND6 0.0012 0.0007 0.0005

 RAND0 0.0008 0.0009 −0.0000

 RAND8 0.0015 0.0017 −0.0002

 RAND5 0.0014 0.0016 −0.0002

 RAND9 0.0006 0.0008 −0.0002

 RAND7 0.0010 0.0012 −0.0003

 RAND3 0.1307 0.3154 −0.1847

 RAND4 0.1263 0.3158 −0.1895

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877

 SUM12 0.2610 0.0014 0.2596

Now we come to an important observation. One might think that the next candidate

selected would be either RAND1, RAND2, RAND3, or RAND4, which are the four

components of the SUM1234 target. However, the table on the next page shows that

these four candidates actually fall at the bottom of the list! This is because they have

Chapter 2 Screening for Relationships

134

so much redundancy with SUM12 and SUM34 (taken as a group) that they will not be

chosen next. In fact, RAND6, which has no relationship whatsoever with any of the other

variables, is chosen based only on its tiny random relevance and slightly smaller random

redundancy.

Additional candidates, in order of decreasing relevance minus redundancy

 Variable Relevance Redundancy Criterion

 RAND6 0.0012 0.0009 0.0003

 RAND0 0.0008 0.0008 0.0000

 RAND8 0.0015 0.0015 0.0000

 RAND9 0.0006 0.0008 −0.0002

 RAND5 0.0014 0.0017 −0.0003

 RAND7 0.0010 0.0013 −0.0004

 RAND3 0.1307 0.1581 −0.0274

 RAND4 0.1263 0.1585 −0.0322

 RAND1 0.1129 0.1527 −0.0398

 RAND2 0.1085 0.1485 −0.0399

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877

 SUM12 0.2610 0.0014 0.2596

 RAND6 0.0012 0.0009 0.0003

But now that the selected set’s redundancy with the remaining candidates has been

“diluted” by the inclusion of the unrelated RAND6, RAND1to RAND4 jump to the top of

the list because of their relatively large relevance but lessened redundancy.

Additional candidates, in order of decreasing relevance minus redundancy

 Variable Relevance Redundancy Criterion

 RAND3 0.1307 0.1058 0.0249

 RAND4 0.1263 0.1061 0.0202

 RAND1 0.1129 0.1021 0.0107

 RAND2 0.1085 0.0995 0.0090

 RAND0 0.0008 0.0010 −0.0002

 RAND9 0.0006 0.0009 −0.0003

Chapter 2 Screening for Relationships

135

 RAND5 0.0014 0.0017 −0.0003

 RAND8 0.0015 0.0018 −0.0004

 RAND7 0.0010 0.0015 −0.0006

Predictors so far Relevance Redundancy Criterion

 SUM34 0.2877 0.0000 0.2877

 SUM12 0.2610 0.0014 0.2596

 RAND6 0.0012 0.0009 0.0003

 RAND3 0.1307 0.1058 0.0249

There is little point in continuing to show the inclusion steps. We now jump to the

final table that lists all candidates in the order in which they were selected, along with

associated p-values.

----------> Final results predicting SUM1234 <----------

Preds Relevance Redundancy Criterion Solo pval Group pval

 SUM34 0.2877 0.0000 0.2877 0.010 0.010

 SUM12 0.2610 0.0014 0.2596 0.010 0.010

 RAND6 0.0012 0.0009 0.0003 0.570 0.010

 RAND3 0.1307 0.1058 0.0249 0.010 0.010

 RAND4 0.1263 0.0797 0.0465 0.010 0.010

 RAND1 0.1129 0.0617 0.0511 0.010 0.010

 RAND2 0.1085 0.0505 0.0581 0.010 0.010

 RAND8 0.0015 0.0014 0.0001 0.320 0.010

 RAND5 0.0014 0.0014 −0.0001 0.340 0.010

 RAND7 0.0010 0.0014 −0.0004 0.650 0.010

 RAND0 0.0008 0.0013 −0.0004 0.850 0.010

 RAND9 0.0006 0.0012 −0.0006 0.980 0.010

Two different p-values are printed for each predictor candidate. The Solo pval is

the same quantity printed in the univariate test (page 110). This is the probability that

if this predictor has no actual mutual information with the target, a mutual information

(relevance here) as large as that obtained could have occurred. Understand that this

quantity considers each candidate in isolation, not involving any other candidates. Note

how nicely this reveals the uselessness of the third candidate chosen, RAND6.

Chapter 2 Screening for Relationships

136

The Group pval considers the associated candidate along with every prior candidate.

It tests the null hypothesis that the group of candidates selected so far, on average, has no

mutual information with the target.

Regrettably, I am not aware of any way of computing what would be an especially

useful p-value—one that tests the null hypothesis that selecting the candidate provides

no additional (nonredundant) relevance. Such a p-value would be valuable for

determining when to stop including additional candidates in the selected subset. The

problem appears to be that the test statistic at any step is strongly dependent on the

relevance of those predictors already selected. If anyone knows of a way around this

problem, I would love to hear about it.

�A Superior Selection Algorithm for Binary Variables
If the predicted variable and all predictor candidates are binary, then we can use a stepwise

selection algorithm that seems to be superior to the PLD algorithm (presented by F. Fleuret

in the 2004 paper “Fast Binary Feature Selection with Conditional Mutual Information”).

Recall that the PLD algorithm has the fabulous property that its selections are identical

to those that would be obtained by forward stepwise selection based on the optimal but

impossible Equation (2.13). Nonetheless, also recall that forward stepwise selection is itself

suboptimal. The optimal method is to examine every possible combination of predictors,

a task that is usually impractical, even if we could evaluate the criterion of Equation (2.13),

which of course we cannot. So, there is room for improvement.

Actually, the Fleuret algorithm described in this section can theoretically be used for

any discrete variables, not just binary. It’s just that unless the number of cases is huge,

the algorithm fails because of sparse bins. For this reason, it is typically implemented

only for binary data.

We need to introduce the notion of conditional mutual information. Recall from

Equation (1.13) on page 18 that the mutual information shared by two variables is equal

to the entropy of one of them minus its entropy conditional on the other. This is shown

in Equation (2.17). Intuitively, this means that the information shared by X and Y is equal

to the information in Y minus the information content of Y that is above and beyond that

provided by X. Equivalently, the total information in Y is equal to that which is shared

with X plus that which is above and beyond X.

	 I X Y I Y X H Y H Y X; ;() = () = ()- () 	 (2.17)

Chapter 2 Screening for Relationships

137

Now suppose that we already possess some information in the form of the value of

some variable Z. We can then talk about the mutual information of X and Y given that we

know Z, written as I(X;Y|Z). If Z happens to be totally unrelated to X and Y, its knowledge

will have no impact on the mutual information of X and Y. At the other extreme, it may

be that X and Y share a lot of information, but Z happens to completely duplicate this

shared information. In this case, I(X;Y) will be large, but I(X;Y|Z) will be zero. Conditional

mutual information can be computed with Equation (2.18). Observe that this is a simple

extension of Equation (2.17), obtained by conditioning all terms on Z.

	
I X Y Z I Y X Z H Y Z H Y X Z; ; ,() = () = ()- () 	 (2.18)

Conditional mutual information allows us to approach the problem of redundancy

from a different direction. Recall from the PLD algorithm that our goal is to find a

variable from among the candidates that has high mutual information with Y and low

joint mutual information with the predictors already selected. We now have an excellent

tool. Suppose X is a candidate for inclusion and Z is a variable that is already in S, the

set of predictors chosen so far. The conditional mutual information of X and Y given

Z measures how much the candidate X contributes to predicting Y above and beyond

what we already get from Z. A good candidate will have a large value of I(X;Y|Z) for

every Z in S. If there is even one variable Z in S for which I(X;Y|Z) is small, there is little

point in including this candidate X, because it contributes little beyond what is already

contributed by that Z. This inspires us to choose the candidate X that has the maximum

value of the criterion shown in Equation (2.19).

	
Criterion X Y S I X Y Z

Z S
, ,() = ()

Î
min ; 	 (2.19)

Equation (2.18) is a good intuitive definition of conditional mutual information, but

it is not the easiest way to compute it. A better way is Equation (2.20).

	 I X Y Z H X Z H Y Z H Z H X Y Z; , , , ,() = ()+ ()- ()- () 	 (2.20)

The file MUTINF_B.CPP contains the complete source code to evaluate this equation

for X, Y, and Z arrays. This code is simple but very tedious, so I will not reproduce it in

its entirety here. The easiest approach, though not necessarily the most efficient, is to

Chapter 2 Screening for Relationships

138

use nested logical expressions to tally the two-by-two-by-two bin counts. This is done as

shown here:

 n000 = n001 = n010 = n011 = n100 = n101 = n110 = n111 = 0;

 for (i=0; i<n; i++) {

 if (x[i]) {

  if (y[i]) {

 if (z[i])

 ++n111;

 else

 ++n110;

 }

  else {

 if (z[i])

 ++n101;

 else

 ++n100;

 }

 }

 else {

 if (y[i]) {

 if (z[i])

 ++n011;

 else

 ++n010;

 }

  else {

 if (z[i])

 ++n001;

 else

 ++n000;

 }

  }

 }

Chapter 2 Screening for Relationships

139

Once the eight bins counts are tallied, computing the four terms in Equation (2.20) is

straightforward. For example, H(Z) can be computed with the following code:

 nz0 = n000 + n010 + n100 + n110;

 nz1 = n - nz0;

 if (nz0) {

 p = (double) nz0 / (double) n;

 HZ = p * log (p);

 }

 else

 HZ = 0.0;

 if (nz1) {

 p = (double) nz1 / (double) n;

 HZ += p * log (p);

 }

The other four terms are computed similarly. See the code for details. It should be

noted that [Fleuret, 2004] discusses faster ways of summing the bin counts. Since the

variables are all binary, values of X, Y, and Z can be encoded as bits in integers. By using

logical conjunctions of these integers, along with table lookups, the bin counts can be

found very quickly. I have not found speed to be a problem, so I have not implemented

this algorithm.

The interesting part of the variable selection procedure is the stepwise algorithm.

We begin by selecting the candidate that has maximum mutual information with Y.

After that, for each step we evaluate the criterion of Equation (2.19) for each remaining

candidate and choose the candidate having the greatest criterion. However, there is

more to consider…

Fleuret describes a cute trick for avoiding having to check every candidate against

every Z, which can consume enormous amounts of time if there are a lot of variables in

the kept set S. When a new Z is tested in computing the minimum across all Zs in S, the

minimum obviously cannot increase. So if the minimum across Z so far is already less

than the best candidate criterion so far, there is no point in continuing to test more Zs for

the candidate. This candidate has already lost the competition for this round. Of course,

we need to keep track of, for each candidate, the place where we have stopped testing it

against Zs. This is because on a later round of adding a variable, the best so far may be

small, and a candidate whose testing was stopped early on a prior round may need to be

Chapter 2 Screening for Relationships

140

tested against more Zs to see whether it might be the best now. A tentative winner cannot

be confirmed until it has been checked for all Zs, but a loser can be eliminated early.

Stepwise selection of predictor variables using the Fleuret algorithm is quite similar

to routines already presented, so we will not examine it in detail here. Also, a complete

implementation is available in the file MI_BIN.CPP. However, examination of a simplified

snippet helps to understand proper implementation of the algorithm.

The loop shown in the following code is invoked after one variable, that having

maximum mutual information with Y, has been picked. At this time, scores[icand] has

been initialized to the mutual information between that candidate and Y, and last_

indices[icand] has been initialized to –1 for all candidates. This loop handles the stepwise

addition of as many subsequent predictors as desired.

 while (nkept < maxkept) { // While still adding predictors

 bestcrit = -1.e60; // Will be criterion of the best candidate

 for (icand=0; icand<n_indep_vars; icand++) { // Try all candidates

 for (i=0; i<nkept; i++) {  // Is this candidate already in kept set?

 if (kept[i] == icand) // If it's there

 break; // Quit searching for it

 }

 if (i < nkept) // If this candidate 'icand' is already kept

 continue; // Skip it

 // Compute I(Y;X|Z) for each Z in the kept set, and keep track of min

 // We've already done them through last_indices[icand], so start

 // with the next one up. Allow for early exit if icand already loses.

 for (iz=last_indices[icand]+1; iz<nkept; iz++) { // Continue checking all Zs

 if (scores[icand] <= bestcrit)  // Has this candidate already lost?

 break; // If so, no need to keep doing Zs

 j = kept[iz];  // Index of variable in the kept set

 temp = mutinf_b (ncases, bins_dep, bins_indep + icand * ncases,

 bins_indep + j * ncases); // I(Y;X|Z)

 if (temp < scores[icand])  // Keep track of min across all Zs

 scores[icand] = temp;

 last_indices[icand] = iz;  // Also remember how far we've checked

 } // For all kept variables, computing min conditional mutual information

Chapter 2 Screening for Relationships

141

 criterion = scores[icand];    // Equation (2.19), possibly abbreviated

 if (criterion > bestcrit) {     // Did we just set a new record?

 bestcrit = criterion;   // If so, update the record

 ibest = icand;   // Keep track of the winning candidate

 }

 } // For all candidates

 // We now have the best candidate

 kept[nkept] = ibest;

 crits[nkept] = bestcrit;

 ++nkept;

 } // While adding new variables

�FREL for High-Dimensionality, Small Size Datasets
The curse of data miners is the situation of having a large number of variables and a

small dataset. If, in addition, the data is noisy, most statistical analyses are hopeless.

Spurious results are virtually inevitable. Even if the data is clean, statistical analysis is

difficult. But if we are looking only for relationships between a single target variable

and any of a multitude of competitors, [Yun Li et al, “FREL: A Stable Feature Selection

Algorithm”, IEEE Transactions on Neural Networks and Learning Systems, July 2015.]

provide an interesting algorithm called Feature Weighting as Regularized Energy-Based

Learning, abbreviated FREL.

The FREL algorithm is a useful method for ranking, and even weighting, predictor

candidate variables in a classification application that is relatively low noise but is

plagued by high dimensionality (numerous predictor candidates) and small sample size.

The implementation presented here is strongly based on their innovative algorithm, but

with significant modifications that I believe improve on the original version by providing

more accurate and stable weights (at the cost of slower execution). My implementation

also includes an approximate Monte Carlo permutation test (MCPT) of the null

hypothesis that all predictors have equal value, as well as an MCPT of the null hypothesis

that the predictors, taken as a group, are worthless. Sadly, I am unable to devise a FREL-

based MCPT of any null hypothesis concerning individual predictors taken in isolation.

We’ll discuss these issues in more detail later.

The next three or four pages will present a fairly theoretical discussion of the FREL

algorithm in its most general form. Feel free to skim them. Understanding the theory is

not necessary to program and use FREL.

Chapter 2 Screening for Relationships

142

The model that inspires FREL is weighted nearest-neighbor classification. The

distance between a test case having predictors x = {x1,…, xK} and a training-set case

t = {t1, …, tK} is defined as the city-block distance between these cases, with each

dimension having its own weight. This is defined in Equation (2.21).

	
D x t w x t

k
k k k,() = -å 	 (2.21)

Then, if we want to classify an unknown test case x based on a training set, we would

compute the distance between the test case and each member of the training set. The

chosen class for the test case would be the class of the training case having minimum

distance from the test case.

Of course, performing this classification presupposes that we know appropriate

weights. The procedure can be inverted and used to find optimal weights, and we could

then interpret the weights as measures of importance of the predictors (assuming that

the predictors have commensurate scaling!). All we would do is define a measure of

classification quality and then find weights that maximize this quality measure.

An approach to machine learning that is becoming more and more popular is

energy-based modeling. We have a set of random variables, which in the current context

would be predictors, and a prediction target or class membership. The model defines

a scalar energy as a function of the values of these variables, sometimes called their

configuration. This energy is a measure of the compatibility of the configuration, with

small values of energy corresponding to compatible configurations. If we have a known

energy-based model and we want to make an inference (a prediction or classification)

based on specified values of the predictors, we fix the predictors and vary the target or

class variable to identify the configuration that minimizes the energy.

To find a good energy-based model, we tune the parameters of the model in such a

way that “correct” configurations (as indicated by the training set) have small energy and

“incorrect” configurations have large energy.

Once the structure of the model is specified, to find optimal parameters we

define a loss functional (a function of a function). The model is a function that maps

configurations of variables to energy values, and the loss functional maps models to

scalar loss values. To train the model, we find the version (parameters for the model

family) that minimizes the loss functional.

The most common version of this latter operation, which we will do here, is to define

a per-sample loss functional as a function of the model and a single case and then

average this per-sample measure across the entire training set.

Chapter 2 Screening for Relationships

143

This is a good time for a brief digression to make sure that two crucial issues are

clear. First, many models, such as nearest-neighbor classification and some types of

kernel regression, implicitly include the entire training set (or some other dataset) as

a key component of the model. Do not confuse this with discussions of the training

set related to training. It’s still just the model, and we need not explicitly mention the

presence of the training set as part of the model. Any “training set” that is an essential

component of the model and the training set that we are using for optimizing the model

are conceptually different entities, which may or may not actually be the same data. We

simply ignore any “training set” that happens to be part of the model. Just think about

the model.

Second, do not confuse energy with loss. Energy is a measure of the compatibility of

a given variable configuration with a model, and it is used to make a prediction. Loss is a

measure of the quality of a model in a way that generally is based on a training set, and it

is used to find an optimal model.

The energy that a model M assigns to a hypothetical variable configuration {x, y} can

be conveniently written as E(M, x, y). An extremely common and useful way to express

the per-sample loss for a single training case {xi, yi} is L(yi, E(M, xi, ϒ), in which the term

E(M, xi, ϒ) actually stands for multiple energy values, one for each possible value of y. In

other words, the per-sample loss for a single case is a function of the true value of y for

that case, and the energies given by the model for x associated with every possible y.

Note, by the way, that the distinction between function and functional become a bit

murky here, depending on whether we think in terms of E being an observed number or

a hypothetical function. In any case, the idea should be clear from context.

We are almost done presenting a general form of an effective loss function(al) for

training an optimal (in the sense of the loss) model. We have seen the form of a per-

sample loss and stated that averaging this quantity over every sample in the training

set is reasonable. The only remaining issue is that of regularization. This enables us to

embed prior knowledge about the model in the final solution. Typically, this involves

limiting the size of weights involved in the expression of the model, although other

approaches are possible. With these things in mind, we can express the loss of a given

model M for a given training set T (K cases) and regularization function R as shown in

Equation (2.22). This is a scalar quantity that we will minimize in order to develop a good

model.

	 L M T
K

L y E M x R M
k

k k, , , ,() = ()éë ùû + ()å1 ¡ 	 (2.22)

Chapter 2 Screening for Relationships

144

To review, a good model will fulfill two requirements: it will have low energy for

correct configurations and high energy for incorrect configurations. Looked at another

way, when a good model is presented with a set of predictors x, its energy will be low

when it is simultaneously presented with the correct y for that x, and its energy will be

high when it is simultaneously presented with any incorrect y.

It is tempting, and often appropriate, to consider only the first half of this two-part

requirement: the model will have low energy for correct configurations. This is especially

true for models in which fulfilling the first half automatically fulfills the second half.

As an example of this situation, suppose we have a regression equation as the model,

and we define the energy associated with the model and a training case as the squared

difference between the correct answer and the answer provided by the regression

function. If we define the loss as this energy, then averaged across the entire training set,

the loss is the mean squared error (MSE). The optimal model is produced by minimizing

the MSE, a venerable approach.

The regression model just used as an example is a simple, common situation. But for

many model architectures, this halfway method is not a good approach. It is much better,

if not mandatory, to explicitly take into account the second half of the requirement: the

energy of incorrect answers should be large. And intuitively, we don’t much care about

easy situations, which are those incorrect answers that have huge energy. Even a weak

model will do well with them. What we must worry about is those situations in which an

incorrect answer has dangerously low energy. We want our model to be able to raise the

energy of these problematic cases as much as possible above the energy of the correct

answer.

This intuition leads to the following definition: The most offending incorrect
answer for a case, which we will call ÿ, is the incorrect answer that has the lowest energy.

This is the answer most likely to cause an error because it is the incorrect answer that is

most difficult for the model to distinguish from the correct answer. The second half of

the training criterion discussed earlier, that incorrect answers should have large energy,

is more general than is necessary. All we really care about is that the most offending

incorrect answer has energy as large as possible, compared to the energy of the correct

answer. The other incorrect answers are of lesser importance because they are easier for

the model to avoid.

In particular, what we often want to maximize is the difference between the energy of

the most offending incorrect answer and the energy of the correct answer. This will give

us a model that is optimal in the sense of effectively handling the most difficult cases,

while letting the easy cases slide.

Chapter 2 Screening for Relationships

145

A popular per-sample loss criterion, and which is presented here, is the log loss

shown in Equation (2.23). Note how it is a monotonic function of the difference between

the two energies, so optimizing either is equivalent to optimizing the other (for a single

case i, not averaged across the training set!).

	 Loss M x y E M x y E M xi i i i i i, , log 1 exp , , , ,()= + ()- ()éë ùû()ÿ 	 (2.23)

Now that a theoretical foundation is laid, we can apply these ideas to the specific

model used in the FREL paper and this text. Recall from the beginning of this section

that we use weighted nearest-neighbor classification. Thus, in order to compute

E(M, xi, yi) for training case i, we check all other training cases in the correct class, yi. The

smallest distance is the energy for the correct class. Similarly, to compute E(M, xi, ÿ i), we

search all other training cases in an incorrect class and find the distance to the nearest.

Of course, although this is simple to describe and implement, it can be horrendously

slow to compute. The quantity being minimized is the average across the training set

of the per-sample losses shown in Equation (2.23). If there are n training cases and K

predictors, a single evaluation of the grand loss function requires on the order of Kn2

operations. Yikes! Luckily, FREL is most useful for situations in which the training set is

small relative to the number of predictor candidates, so that squared term will ideally not

be a serious problem.

�Regularization
All that remains to be settled is the regularization. In any reasonable application, the

energy of the incorrect answers will, on average, exceed that of the correct answers;

otherwise, the model would be worthless! For the loss function shown in Equation (2.23)

applied to weighted nearest-neighbor classification, increasing the weights together

will decrease the loss because the term being exponentiated will become increasingly

negative. Thus, naive minimization of the loss will result in the weights blowing up

without bound. Thus, we are inspired to penalize large weights. This is common practice,

even in situations in which this blowup is not natural. The reason is that in many models,

large weights are associated with overfitting and poor out-of-sample performance. Here

we use the common method of penalizing by the sum of the squares of the weights,

multiplied by a user-specified regularization factor. The sum of their absolute values is

also common and may be implemented easily if desired.

Chapter 2 Screening for Relationships

146

As we will see on page 151 when the FREL code is presented, I implement a separate

weight stabilization scheme that kicks in if weights grow unreasonably large. If the

user sets a positive regularization factor, this scheme will almost never play a role in

optimization. However, if the user does not call for regularization (factor is zero), this

scheme will prevent unrestrained runaway. For this reason, the regularization factor in

my algorithm is a fairly noncritical parameter.

In practical terms, the effect of the regularization factor is to control the relative

spread of weights. Suppose that predictability is concentrated in just one or a few

candidates. If the user specifies a small or zero value for this parameter, the computed

weights will strongly reflect this focus. However, if a large regularization factor is

specified, the focus will be less intense; some of the weight will be redistributed away

from the dominant predictors and given to predictors of lesser value. Intense focus on

one or a few dominant predictors can, in some cases, be seen as a form of overfitting,

but in other cases it is simply the “correct” response to the situation. I recommend that

the user try several degrees of regularization (in any modeling scheme!) and compare

results.

�Interpreting Weights
The optimal weights determined by minimizing (possibly regularized) loss can be

interpreted as measures of importance of the individual predictors. However, two issues

must be considered. First, the scaling of the predictors obviously impacts the weights, so

their scaling should be commensurate. In my code, I take care of this by automatically

scaling per their standard deviation, though some users may want to do it differently or

not at all. Second, interpretation by the user is aided by normalizing the weights in some

way for display. In this presentation, they are linearly normalized so as to sum to 100.

�Bootstrapping FREL
A frequently useful variation on the naive algorithm described so far is to take many

bootstrap samples from the dataset and compute the final weight estimate by averaging

the estimates produced from each bootstrap sample. The sampling must be done

without replacement, as nearest-neighbor algorithms are irreparably damaged when the

dataset contains exact replications of cases. Bootstrapping FREL has at least two major

advantages over doing one FREL analysis of the entire dataset.

Chapter 2 Screening for Relationships

147

•	 Stability is usually improved. A critical aspect of any weighting

scheme is that the computed optimal weights should be affected

as little as possible by small changes in the dataset. Such changes

might be inclusion or exclusion of a few training cases or the

addition of noise to the data. An average of bootstraps is much more

robust against data changes compared to a single complete FREL

processing.

•	 Because run time of the FREL algorithm is proportional to the square

of the number of cases, we can greatly decrease the run time by

performing many iterations of a small sample.

For these reasons, bootstrapping is generally recommended. The sample size must

be large enough that each sample is virtually guaranteed to have a significant number of

representatives from each target class. For the number of iterations, my own rough rule

of thumb is that the product of the number of iterations times the sample size should be

about twice the number of training cases.

�Monte Carlo Permutation Tests of FREL
A Monte Carlo permutation test is a useful, though time-consuming, way to test certain

null hypotheses about the predictor candidates subjected to the FREL algorithm. It is

vital to understand that these tests are significantly different from the permutation tests

described starting on page 89. For one thing, I am not aware of any way of performing

a perfect individual-candidate MCPT with FREL; the best I can do is come up with a

rough approximation that appears to work well in practice. In the univariate screening

tests described previously, the candidate predictors are handled individually, so the

p-values (at least the solo tests) are independent. But FREL considers all candidates

simultaneously. This dependence changes the nature of the MCPT. One effect is for

dominant candidates to “suck” weight out of lesser candidates, thus reducing their

apparent significance. But the most important effect is to radically change the nature of

the null and alternative hypotheses of the test.

In univariate screening tests, the null hypothesis for each solo p-value is that the

individual candidate is worthless, and the null hypothesis for the unbiased p-values

is that all candidates are worthless. The power of the test is in identifying individual

candidates that have predictive power. But for FREL, the individual MCPT tests have

no useful power in situations in which all candidates have equal predictive power,

Chapter 2 Screening for Relationships

148

regardless of whether that power is tiny or large. The null hypothesis is still generated

by making all candidates worthless, exactly as in other tests. But because of the joint

estimation of weights, it is more intuitive (though not strictly correct!) to think of the null

hypothesis as being that all candidates have equal predictive power, with the unbiased

p-values compensating for the fact that we are testing numerous candidates, and any

of them may be outstanding by random luck. In other words, these individual tests are

related to the predictive power of each candidate relative to their competitors. Their

individual predictive powers play no easily identifiable role in determining p-values.

With this in mind, we can look at the p-values of candidates at the top of the list,

those ranked highest in terms of predictive power and having the largest weights, and

consider the p-values as being the probability that if all candidates were truly equal in

predictive power, the top-ranked candidates would have outperformed the others to the

degree shown. Suppose we see a highly significant result for the single best candidate. It

may be that this best candidate is almost worthless, and its competitors are completely

worthless. Or it may be that this single candidate is excellent, while its competitors

are merely very, very good. In either case we may see the best candidate having a

highly significant p-value. We don’t know which situation is true; it’s all relative. Again,

I emphasize that this interpretation is not strictly correct, but I believe that it is close

enough, especially the unbiased p-values, to be effective indicators of the validity of the

obtained results.

The sucking of weight from relatively poor predictors to good predictors has a

peculiar and potentially confusing effect on the solo p-values. As we drop down the

sorted list to the low-ranked candidates, we can see the solo p-values cover a wide range,

jumping up and down between high and low significance randomly. This is illustrating

in an exaggerated manner the fact that the p-values for worthless candidates in any

statistical test have a uniform distribution, with all values being equally likely. This is

yet another reason why we should focus on the unbiased p-values, ignoring the solo

p-values except perhaps (and with great caution) for the few top-ranked candidates.

We can compute one additional p-value, which I call the Loss p-value. This is a

“grand” measure of the ability of all predictors taken together to be effective at correct

classification. The null hypothesis is that none of the candidates has any predictive

power, and the Loss p-value is the probability that if this were so, we would have

achieved a loss at least as low (good) as that obtained. This p-value being small is a

necessary condition for any of the individual p-values to be meaningful. If we cannot be

reasonably certain that at least one of the candidates has predictive power, then there is

no point in considering their relative power!

Chapter 2 Screening for Relationships

149

�General Statement of the FREL Algorithm
In the next section we’ll explore an efficient C++ implementation of the FREL algorithm.

However, if you want to program it in a different language and want just a general

outline, as well as to help C++ programmers understand the relative complex code that

follows, I’ll first present my implementation of the FREL algorithm in its most general

form, avoiding language-specific code as much as possible. In keeping with common

practice when stating algorithms, we’ll use origin-one subscripting, even though C++

uses origin zero.

We begin with the core routine that is given a set of cases (predictor competitor

matrix and target class vector) and a trial weight set. It computes the loss associated with

this dataset and weight set. Here is the algorithm, and comments follow:

Subroutine compute_loss (Ncases, PredictorVecs, ClassVec, Weights)

loss = 0

For outer_case from 1 to Ncases

 ebest = eworst = infinite

 For inner_case from 1 to Ncases

 If inner_case == outer_case

 continue

 Use Eq 2.21 on Pg 142 to compute distance between inner_case and outer_case

 If ClassVec[inner_case] == ClassVec[outer_case]

 If distance < ebest

 ebest = distance

 else

 If distance < eworst

 eworst = distance

 End of inner_case loop

 loss += log (1.0 + exp (ebest - eworst)) Equation (2.23) on Page 145

 End of outer_case loop

loss += regularization penalty Complete Equation (2.22) on Page 143

Return loss

Chapter 2 Screening for Relationships

150

The outer_case loop will cumulate the sum of Equation (2.22) on page 143. Look

back at Equation (2.23) on page 145. We’ll use an inner loop that checks every training

case except the one being tested. At the end of this checking, we’ll have the first term of

Equation (2.23), the energy of the correct answer, in ebest. Also, we’ll have the second

term, the energy of the most offending incorrect answer, in eworst. The loss computed

with Equation (2.23) is summed per Equation (2.22). After the sum is complete across

the entire training set, we add in any desired regularization penalty.

We now present the routine that estimates the weights by combining bootstrap

samples and calling an optimization routine. We’ll need a subroutine that, given a set

of predictors and the target class vector, finds the optimal weights, which are those

that minimize the loss as computed by compute_loss(). I find that Powell’s algorithm,

implemented in POWELL.CPP, does a respectable job. Feel free to use a different

optimizer if you want. Here is the bootstrapped weight estimator; a brief discussion

follows:

Subroutine compute_weights ()

total_loss = 0

For i from 1 to Npredictors

 TotalWeights[i] = 0

For iboot from 1 to Nbootstraps

 Select BootSize cases from complete training set without replacement

 Call optimizer with these cases to find weights which minimize compute_loss()

 total_loss += this minimized loss

 For ivar from 1 to Npredictors

 TotalWeights[ivar] += OptimalWeights[ivar]

 End of ivar loop

 End of iboot loop

For ivar from 1 to Npredictors

 TotalWeights[ivar] /= Nbootstraps

 End of ivar loop

Return total_loss

Chapter 2 Screening for Relationships

151

This routine cumulates the total loss for all bootstrap samples. This quantity has only

one use: computation of the MCPT Loss p-value discussed at the end of the section that

begins on page 147. This lets us test the null hypothesis that all predictor candidates are

worthless versus the alternative that at least one of the competitors has predictive power.

We estimate the weight for each candidate predictor by taking Nbootstraps samples

of size BootSize, without replacement, from the complete dataset. The optimal weights

for each bootstrap sample are summed, and then the sum is divided by the number of

bootstraps in order to get an average. This was discussed on page 146.

At last we can present the overall FREL procedure, including the Monte Carlo

permutation tests. Here is a general statement of the algorithm:

For irep from 1 to MCPTreps

 if irep > 1

 Shuffle target

 this_rep_loss = compute_weights()

 sum = 0

 For ivar from 1 to Npredictors

 weights[ivar] *= standard_deviation[ivar]

 sum += weights[ivar]

 End of ivar loop

 For ivar from 1 to Npredictors

 weights[ivar] *= 100 / sum

 End of ivar loop

 For ivar from 1 to Npredictors

 if (ivar == 1 || weights[ivar] > best_crit)

 best_crit = weights[ivar];

 if (irep == 1) { // Original, unpermuted data

 original_weights[ivar] = weights[ivar] // Save unpermuted weights

 mcpt_bestof[ivar] = mcpt_solo[ivar] = 1;

 }

Chapter 2 Screening for Relationships

152

 else if (weights[ivar] >= original_weights[ivar])

 ++mcpt_solo[ivar];

 End of ivar loop

 if (irep == 1) // Original, unpermuted data

 original_loss = this_rep_loss;

 mcpt_loss = 1;

 else

 if (this_reploss <= original_loss)

 ++mcpt_loss;

 For ivar from 1 to Npredictors

 if (best_crit >= original_weights[ivar])

 ++mcpt_bestof[ivar];

 End of ivar loop

 End of irep loop

For ivar from 1 to Npredictors

 mcpt_solo[ivar] /= MCPTreps

 mcpt_bestof[ivar] /= MCPTreps

mcpt_loss /= MCPTreps

The main loop performs the MCPT replications. Remember that in this outline, we

use origin-one to conform to common standards, with the first (unpermuted) replication

being irep=1. In the C++ code that you’ll see later, the origin is zero.

If we are past the first replication, shuffle the target class vector. Then compute the

optimal weights for the candidate predictors.

The next two blocks of code normalize the weights. Multiplying each weight by

the standard deviation of the corresponding predictor makes the resulting weights

independent of scaling, which is what we want in most applications. Keep in mind

that a prudent user will not rely on this operation and instead will make sure that the

predictors are commensurately scaled in advance. Significant differences in scaling

degrade performance of the optimizer. Then, each weight is divided by their sum and

multiplied by 100. This produces weights that sum to 100, an aid to interpretability.

Chapter 2 Screening for Relationships

153

The next loop, which covers each predictor, does three things. First, it keeps track

of the best performer’s criterion, best_crit, which will soon be needed. Second, if this is

the first (unpermuted) replication, it saves the “true” weights and initializes the weight

MCPT counters. Third, if this is a shuffled replication, it updates the solo MCPT counters.

After this loop is finished, we will have the best criterion in best_crit. We also have the

loss for this replication in this_rep_loss. If this is the first, unpermuted replication, save

this loss and initialize the MCPT loss counter. Otherwise, update this counter. Then, for

each predictor candidate, compare the best criterion to that predictor’s original criterion

in order to implement the unbiased test. Recall that strictly speaking, this test is not valid

for any predictor other than the best. But as discussed earlier, these p-values are of some

interest.

When all MCPT replications are complete, divide the counters by the number of

replications to get the estimated p-values. If these actions are not clear, please review

the MCPT section that begins on page 89, as well as the specialized FREL issues that are

discussed on page 147.

�Multithreaded Code for FREL
The prior section discussed the FREL algorithm in general terms. Now we will dig

into specifics, especially focusing on how the potentially slow FREL algorithm can be

multithreaded to take advantage of modern processors. This code is extracted from

FREL.TXT.

We begin with the core routine, which corresponds to the compute_loss() algorithm

shown on page 149. The overwhelming fraction of total FREL compute time is spent

in the innermost (ivar) loop of this routine, so every effort should be made to make it as

efficient as possible.

Here is the calling parameter list. Because the work will be split across threads, we

specify starting and stopping indices of cases being tested. The indices array identifies the

ncases cases in this bootstrap sample taken from the complete database. Each element

in this array is a row number in the database. The database can contain more variables

(columns) than the npred predictors being tested, so preds identifies the variables

(columns in database) we want to test. Note that if we were not multithreading, ncases

would equal istop minus istart.

Chapter 2 Screening for Relationships

154

static double block_loss (

 int istart, // Index of first case being tested

 int istop, // And one past last case

 int *indices, // Index of cases; facilitates bootstraps

 int npred, // Number of predictors

 int *preds, // Their column indices in ‘database’ are here

 int ncases, // N of cases in this bootstrap

 int n_vars, // Number of columns in database

 double *database, // Full database, ncases rows and n_vars columns

 int *target_bin, // Ncases vector of target bin indices

 double *weights // Input of weight vector being tried

)

{

 int k, ivar, icase, inner, iclass, inner_index, outer_index;

 double *cptr, *tptr, distance, ebest, eworst, loss;

There are three nested loops. The outermost determines the case being tested, and

this is the dimension that is split across threads. The middle loop passes across the entire

sample except for the case being tested, finding the two E terms in Equation (2.23) on

page 145. The innermost loop computes the city-block distance, Equation (2.21) on page

142. It may help to study the compute_loss() algorithm shown on page 149 in conjunction

with this listing.

 loss = 0.0;

 for (icase=istart; icase<istop; icase++) {

 outer_index = indices[icase]; // Index of this case in complete database

 iclass = target_bin[outer_index]; // Its class

 cptr = database + outer_index * n_vars; // Its predictors in database

 ebest = eworst = 1.e60;

 // Find the two E terms in Equation (2.23) on Page 145

 for (inner=0; inner<ncases; inner++) { // Test against all other cases

 inner_index = indices[inner]; // Index of this case in complete database

 if (inner_index == outer_index) // Don't test it against itself

 continue;

 tptr = database + inner_index * n_vars; // Predictors of inner case in database

Chapter 2 Screening for Relationships

155

 // Compute the distance of this inner case from the test case

 distance = 0.0;

 for (ivar=0; ivar<npred; ivar++) { // For all predictors

 k = preds[ivar]; // Index of this predictor in database

    distance += weights[ivar] * fabs (cptr[k] - tptr[k]); // Eq 2.21 on Page 142

 }

 // Find the closest neighbor in this class and in any other class

 if (target_bin[inner_index] == iclass) {

 if (distance < ebest)

 ebest = distance;

 }

 else {

 if (distance < eworst)

 eworst = distance;

 }

 } // For inner, the test cases

 distance = ebest - eworst;

 // Sum Equation (2.22) on Page 143

 if (distance > 30.0) // Prevent overflow. This is harmless.

   loss += distance;

 else

 loss += log (1.0 + exp (distance)); // Equation 2.23 on Page 145

 } // For icase

 return loss;

}

Note that the loss function, Equation (2.23) on page 145, must not be allowed to

overflow when exponentiating. So we test it against 30, and substitute an essentially

equal value if we are approaching overflow.

Chapter 2 Screening for Relationships

156

As is standard in my work, we define a data structure for passing parameters and use

a wrapper function that is executed in the threads.

typedef struct {

 int istart; // Index of first case being tested

 int istop; // And one past last case

 int *indices; // Index of cases; facilitates bootstraps

 int npred; // Number of predictors

 int *preds; // Their indices are here

 int ncases; // Number of cases in this bootstrap

 int n_vars; // Number of columns in database

 double *database; // Full database

 int *target_bin; // Bin index for targets

 double *weights; // Weight vector

 double *loss; // Computed loss function value is returned here

} FREL_PARAMS;

static unsigned int__stdcall block_loss_threaded (LPVOID dp)

{

 *(((FREL_PARAMS *) dp)->loss) = block_loss (((FREL_PARAMS *) dp)->istart,

 ((FREL_PARAMS *) dp)->istop,

 ((FREL_PARAMS *) dp)->indices,

 ((FREL_PARAMS *) dp)->npred,

 ((FREL_PARAMS *) dp)->preds,

 ((FREL_PARAMS *) dp)->ncases,

 ((FREL_PARAMS *) dp)->n_vars,

 ((FREL_PARAMS *) dp)->database,

 ((FREL_PARAMS *) dp)->target_bin,

 ((FREL_PARAMS *) dp)->weights);

 return 0;

}

The following routine splits the work across multiple threads. Blocks of code will be

interspersed with discussions. The calling parameter list contains many items already

discussed, so we dispense with redundant explanations.

Chapter 2 Screening for Relationships

157

static double loss (

 int npred, // Number of predictors

 int *preds, // Their indices (columns in database) are here

 int ncases, // Number of cases in this bootstrap

 int n_vars, // Number of columns in database

 int *indices, // Index of cases; facilitates bootstraps

 double *database, // Full database

 int *target_bin, // Ncases vector of target bin indices

 double *weights, // Input of weight vector being tried

 double regfac // Regularization factor

)

{

 int i, ivar, ithread, n_threads, n_in_batch, n_done, istart, istop, ret_val;

 double loss[MAX_THREADS], total_loss;

 FREL_PARAMS frel_params[MAX_THREADS];

 HANDLE threads[MAX_THREADS];

 n_threads = MAX_THREADS;

 if (n_threads > ncases) // No sense multithreading a tiny problem

 n_threads = 1;

/*

 Initialize those thread parameters which are constant for all threads.

*/

 for (ithread=0; ithread<n_threads; ithread++) {

 frel_params[ithread].npred = npred;

 frel_params[ithread].preds = preds;

 frel_params[ithread].ncases = ncases;

 frel_params[ithread].n_vars = n_vars;

 frel_params[ithread].indices = indices;

 frel_params[ithread].database = database;

 frel_params[ithread].target_bin = target_bin;

 frel_params[ithread].weights = weights;

 frel_params[ithread].loss = &loss[ithread];

 } // For all threads, initializing constant stuff

Chapter 2 Screening for Relationships

158

 istart = 0; // Batch start = training data start

 n_done = 0; // Number of training cases done so far

 for (ithread=0; ithread<n_threads; ithread++) { // Will launch all threads at once

 n_in_batch = (ncases - n_done) / (n_threads - ithread); // Cases left / batches left

 istop = istart + n_in_batch; // Stop just before this index

 // Set the pointers that vary with the batch: the starting and stopping cases

 frel_params[ithread].istart = istart;

 frel_params[ithread].istop = istop;

 threads[ithread] = (HANDLE) _beginthreadex (�NULL, 0, block_loss_threaded,

&frel_param s[ithread], 0, NULL);

 n_done += n_in_batch; // Count how many cases done so far

 istart = istop; // Start the next batch right after last case in this one

 } // For all threads / batches

At this point, all data has been launched, split across n_threads threads. Now we just

sit and wait for them to finish. Note that error handling is omitted here for clarity. You

can find it in FREL.TXT.

 WaitForMultipleObjects (n_threads, threads, TRUE, 1200000);

The summation across all training cases in this bootstrap sample, each being used as

a test case, was split across multiple threads. We sum the results for the threads to get the

total loss for this bootstrap sample. Also, close the threads so as to be a responsible and

thrifty Windows user. Last of all, add in the regularization penalty.

 total_loss = 0.0;

 for (ithread=0; ithread<n_threads; ithread++) {

 total_loss += loss[ithread];

 CloseHandle (threads[ithread]);

 }

 total_loss /= ncases; // Make it a per-case average

 // Add in the regularization penalty

 for (ivar=0; ivar<npred; ivar++)

 total_loss += regfac * weights[ivar] * weights[ivar];

 return total_loss;

}

Chapter 2 Screening for Relationships

159

We come now to the code that does the bootstrap sampling and repeatedly call the

loss() function just presented, pooling the bootstrapped weight estimates and loss. The

calling parameter list is shown on the next page. But we begin with a bunch of static

declarations. These are a sneaky but efficient way of passing parameters to the criterion

routine that will be called by the optimizer. By doing it this way, we can use a general-

purpose optimization routine, avoiding the need for a routine specialized for this

particular application.

static int criter (double *x, double *y);  // Computes the criterion being minimized

static int local_npred; // These are the same parameters that

static int *local_preds; // we’ve been seeing in prior routines

static int local_ncases; // As before, this is the bootstrap sample size

static int local_n_vars;

static int *local_indices;

static double *local_database; // The entire database, all trainng cases

static int *local_target_bin;

static double *local_critwork;

static double local_regfac;

static int compute_wt (

 int npred, // Number of predictors

 int *preds, // Their indices are here

 int ncases, // Number of cases in complete database

 int n_vars, // Number of columns in database

 int *indices, // Index of cases; facilitates bootstraps

 double *database, // Full database

 int nbins_target, // Number of target bins

 int *target_bin, // Ncases vector of target bin indices

 int nboot, // Number of bootstrap reps

 int bootsize, // Size of each bootstrap

 double *crits, // Predictor weights for each bootstrap computed here

 double *critwork, // Work vector npred long needed by criter()

 double *base, // Work vector npred long for powell()

 double *p0, // Work vector npred long for powell()

 double *direc, // Work vector npred*npred long for powell()

Chapter 2 Screening for Relationships

160

 double regfac, // Regularization factor

 double *loss_value, // Optimal loss (sum of bootstrap losses) is returned here

 double *weights // Weight vector returned here

)

{

 int i, j, k, m, iboot, ret_val, class_count[MAX_MUTINF_BINS];

 double loss;

 char msg[2014];

 // These are needed by criter()

 local_npred = npred;

 local_preds = preds;

 local_ncases = bootsize;

 local_n_vars = n_vars;

 local_indices = indices;

 local_database = database;

 local_target_bin = target_bin;

 local_critwork = critwork;

 local_regfac = regfac;

We do a few things to initialize for the bootstrapping. The final weights will be the

mean weight estimates across all bootstraps. We’ll also sum the loss across all bootstraps,

which will be used only for a particular MCPT described later. Finally, we initialize the

vector that will specify the case indices for each bootstrap replication.

 for (i=0; i<npred; i++)   // Results of bootstraps will be summed in 'weights'

 weights[i] = 0.0;

 *loss_value = 0.0; // Will be needed for global p-value

 for (i=0; i<ncases; i++)

 indices[i] = i;   // Identifies cases in each bootstrap sample

Here is the bootstrap loop. Because we use a nearest-neighbor algorithm as part

of the criterion calculation, no case can be replicated in the sample. The easiest way to

select without replacement is to shuffle in place and stop when we reach the bootstrap

size. The first bootsize cases in the shuffled array define the bootstrap sample. We’ll

discuss this code in a moment.

Chapter 2 Screening for Relationships

161

 for (iboot=0; iboot<nboot; iboot++) {

 for (i=0; i<nbins_target; i++)

 class_count[i] = 0; // This will be used in the next section of code

 i = ncases; // Number remaining to be shuffled

 while (i > 1) { // While at least 2 left to shuffle

 m = ncases - i; // Number shuffled so far

 if (m >= bootsize)

 break;

 j = (int) (unifrand_fast () * i);

 if (j >= i) // Should never happen, but be safe

 j = i - 1;

 k = indices[m];

 indices[m] = indices[m+j];

 indices[m+j] = k;

 --i;

 ++class_count[target_bin[indices[m]]]; // We’ll need this in a moment

 } // Shuffling for bootstrap sample without replication

The first action in the bootstrap loop is to initialize every element of class_count to

zero. These will count the number of occurrences of each class in the sample. You’ll

learn more about this soon.

The shuffling loop shown previously is similar to the standard algorithm but

changed so that shuffling moves from beginning to end instead of the more common

end to beginning. That would have worked as well, but it’s more intuitive to submit the

beginning of the array as the bootstrap rather than the end. That’s just my opinion.

To make sure this technique is clear, we’ll explore its actions. The counter i will always

be the number of elements in the indices array that are not yet shuffled. It is initialized to the

number of cases in the complete database. Then m = ncases - i is the number that have been

shuffled, all of which will be at the beginning of the array. If we have reached the required

number of cases (bootsize) for this sample, we are done. If not, we choose j randomly from

the number of as-yet unshuffled cases. Fetch this randomly selected case and put in the

next spot, swapping what was there into the slot from which we just fetched a case. This

way, every case in the bootstrap sample will have an equal chance of being any dataset case

except for any case that has already been selected for the sample. We also update the counter

of how many times each target class has appeared in this bootstrap sample.

Chapter 2 Screening for Relationships

162

The weight estimation algorithm will misbehave if we have no cases in some class.

I set an arbitrary limit of requiring at least two cases in each class. If this requirement is

not met, we reject this sample and try again.

 for (i=0; i<nbins_target; i++) { // Demand at least two of each class in this sample

 if (class_count[i] < 2)

 break;

 }

 if (i < nbins_target) {

 --iboot;

 continue;

 }

The rest of this routine is fairly simple. As we’ll see in the next module, rather

than optimizing the weights themselves, we optimize the log of the weights. This aids

numerical stability. So we initialize the starting point for optimization to zero, which

corresponds to weights of one. The powell() minimization routine requires that we provide

the function value (the loss here) at the starting point, so we call the criterion function

to get this quantity and then call the optimizer. Cumulate across bootstraps the loss and

the optimal weights. Finally, after all bootstraps are complete, divide the sum of weight

estimates by the number of bootstraps to get their average.

 for (i=0; i<npred; i++) // Starting point for this bootstrap

 crits[i] = 0.0;

 ret_val = criter (crits, &loss);

 ret_val = powell (0.1, 10, 0.0, 1.e-3, criter, npred,

 crits, &loss, base, p0, direc, 1);

 *loss_value += loss;

 for (i=0; i<npred; i++) // Cumulate for this bootstrap

 weights[i] += crits[i];

 } // For iboot

 for (i=0; i<npred; i++)

 weights[i] /= nboot;

}

Chapter 2 Screening for Relationships

163

We won’t bother discussing the Powell’s method optimizer here; it is well

documented in numerous references. The code for it is supplied in POWELL.CPP. You

should feel free to substitute your own optimizer if you have something you think is

better. Also feel free to tweak the convergence parameters in this function call. See

POWELL.CPP for details.

What about this criter() routine that, given a trial set of weights, computes the loss for

the current bootstrap sample? Here is the code, and a brief explanation follows:

static int criter (double *x, double *y)

{

 int i;

 double crit, penalty;

 penalty = 0.0; // This is not regularization. It just keeps the parameters reasonable.

 for (i=0; i<local_npred; i++) {

 if (x[i] > 4.0) {

 local_critwork[i] = exp (4.0) + x[i] - 4.0;

 penalty += (x[i] - 4.0) * (x[i] - 4.0);

 }

 else if (x[i] < -3.0) {

 local_critwork[i] = exp (-3.0) + x[i] + 3.0;

 penalty += (x[i] + 3.0) * (x[i] + 3.0);

 }

 else

 local_critwork[i] = exp (x[i]);

 }

 crit = loss (local_npred, local_preds, local_ncases, local_n_vars,

 local_indices, local_database, local_target_bin,

 local_critwork, local_regfac);

 *y = crit + penalty;

 return 0;

}

Chapter 2 Screening for Relationships

164

Regularization is done in the loss() function, not in this routine. But we do include

a penalty term to prevent weight runaway, which will almost never be invoked if even

slight regularization is done. Recall that we are optimizing the log of the weights. If this

log grows too large (> 4) or small (< -3), we modify the variable-to-weight mapping

function in a way that does not introduce discontinuity and penalize accordingly. This is

very benign and is really just cheap, innocuous insurance against bad behavior.

The hard work is done. All that remains is the main routine that calls compute_wt(),

optionally with shuffling for Monte Carlo permutation testing. However, it would be

wasteful to list the code in detail here, because the important concepts of this procedure

were described on page 151 already. Instead, I refer the reader to the FREL.TXT file and

mention a few items of interest in regard to the frel() routine and that do not appear in

that earlier outline:

•	 This code uses the partition() routine (page 30) to group the target

variable into classes. This allows maximum generality, since the

target can be continuous, but if it is already discrete, the existing

classes will be respected except in pathological situations.

•	 Full or cyclic permutation is supported.

•	 When the first (unpermuted) replication is performed, a copy of the

weights is kept, and these are then sorted, simultaneously moving a

vector of indices. This facilitates later printing of the weights in sorted

order.

�Some FREL Examples
Here are some simple examples of using FREL testing to evaluate the relationship of a

set of competing candidates with a single target variable. The first example shows the

effect of no regularization, the second demonstrates the impact of hugely excessive

regularization, and the third modestly large regularization.

The synthetic variables in the dataset are as follows:

•	 RAND0 to RAND9 are independent (within themselves and with each

other) random time series.

•	 SUM1234 = RAND1 + RAND2 + RAND3 + RAND4

Chapter 2 Screening for Relationships

165

We begin by specifying a regularization factor of zero and running 100 MCPT

replications. The following results are produced:

 Variable Weight Solo pval Unbiased pval

 RAND4 24.4017 0.0100 0.0100

 RAND1 23.9127 0.0100 0.0100

 RAND2 22.3636 0.0100 0.0100

 RAND3 19.8841 0.0100 0.0100

 RAND6 2.7574 1.0000 1.0000

 RAND8 1.5689 1.0000 1.0000

 RAND5 1.4971 1.0000 1.0000

 RAND9 1.3692 1.0000 1.0000

 RAND7 1.2613 1.0000 1.0000

 RAND0 0.9839 1.0000 1.0000

Loss p-value = 0.010

Observe that the algorithm does a fabulous job of identifying the four variables

that are related to the target. The weights for the good and worthless variables are very

different, and both the solo and unbiased p-values could not be better.

We now use an absurdly large regularization factor, 10. As pointed out earlier,

regularization tends to obscure differences between variables. We see it dramatically here,

when only three of the four “good” variables make the top of the sorted list. Interestingly

enough, the solo p-values still correctly identify the four good variables, while the

unbiased p-values are terribly distorted. The lesson is that regularization comes at a price.

 Variable Weight Solo pval Unbiased pval

 RAND1 10.1753 0.0100 0.0100

 RAND3 10.1326 0.0100 0.0900

 RAND4 10.0753 0.0100 1.0000

 RAND9 10.0517 1.0000 1.0000

 RAND0 10.0429 1.0000 1.0000

 RAND2 9.9708 0.0100 1.0000

 RAND8 9.9582 1.0000 1.0000

 RAND7 9.9575 1.0000 1.0000

 RAND6 9.8321 1.0000 1.0000

 RAND5 9.8036 1.0000 1.0000

Loss p-value = 0.010

Chapter 2 Screening for Relationships

166

Finally, we use a regularization factor of 0.1, which is fairly large but not ridiculous.

See how the weight difference between the “good” and the “bad” variables are

uncomfortably close. Nonetheless, the p-values do an excellent job of separation.

 Variable Weight Solo pval Unbiased pval

 RAND1 15.6745 0.0100 0.0100

 RAND2 15.1372 0.0100 0.0100

 RAND3 15.0183 0.0100 0.0100

 RAND4 14.7490 0.0100 0.0100

 RAND9 7.0528 1.0000 1.0000

 RAND0 6.9595 1.0000 1.0000

 RAND5 6.5893 1.0000 1.0000

 RAND8 6.3851 1.0000 1.0000

 RAND6 6.3514 1.0000 1.0000

 RAND7 6.0830 1.0000 1.0000

Loss p-value = 0.010

Chapter 2 Screening for Relationships

167
© Timothy Masters 2018
T. Masters, Data Mining Algorithms in C++, https://doi.org/10.1007/978-1-4842-3315-3_3

CHAPTER 3

Displaying Relationship
Anomalies
Naive measures of association between variables, such as linear correlation, are

primarily sensitive to gross relationships, those patterns that are easy to detect, see, and

describe. In prior chapters we examined measures that go beyond such naiveté and are

able to detect more subtle dependencies between variables, in other words, anomalies

in otherwise uncomplicated relationships. But what if we want a visual representation of

the pattern that connects them? In this chapter we present several ways of doing this.

The material in this chapter, as well as many (most?) techniques for measuring

relationships between variables, is based on a fundamental statistical principle: two

variables are unrelated if and only if their joint distribution equals the product of their

marginal distributions. To take a simple example from a discrete distribution, suppose

Variable 1 has probability 0.3 of having value A, and Variable 2 has 0.2 probability of

having value M. If these two variables are independent, the probability of simultaneously

observing these values (Variable 1 = A and Variable 2 = M) is 0.3 * 0.2 = 0.06. If in an

experiment we observe that for one or more pairs of outcomes, the observed joint

probability is not close to the product of the observed marginal probabilities, this is

evidence that the variables are not independent.

If the variables are continuous, the same rule applies, although the lack of categories

makes the intuition less straightforward. Let random variables X1 and X2 have density

functions f1(x1) and f2(x2), respectively. Let their joint density function be f (x1, x2).

Then X1 and X2 are independent if and only if f (x1, x2) = f1(x1) f2(x2).

168

We can make effective use of this defining property of independence by visually

displaying its components as well as deviations from equality. But a graphical display

should be continuous in order to be pleasing to the eye, so we need a way of computing

f1(x1) and f2(x2) for arbitrary values of x1 and x2 across their entire practical domain. We

will need this ability regardless of whether the variables are discrete or continuous, and

it must provide reasonable results for small samples, as well as be reasonably fast to

compute for large samples. The latter requirement can be troublesome, but we’ll do the

best we can.

An excellent way to compute the joint and marginal densities is to use the Parzen

window method described on page 37. You are encouraged to review that material. For

convenience, the four key equations are shown here, as they will be implemented in

the code that follows on page 173. Equation (3.1) is the univariate window, the ordinary

exponential function, and Equation (3.2) is the corresponding univariate density

estimator. Their multivariate extensions are shown in Equations (3.3) and (3.4). For our

purposes, p=2 in these latter two equations.

	
W d e d() = -1

2

2/2

p 	 (3.1)

	
f x =

n
W

x x

i=

n
i() -æ

è
ç

ö
ø
÷å1

1s s
	 (3.2)

	 W d d = ep1

1

21

2
, /¼()

()
- å

p p

di
p

2

2

1 	 (3.3)

	 f x x =
n

W
x x

, ,
x x

p
p i=

n
,i p p,i

p
1

1 1

1 1

1

, ,
1

¼()
¼

-
¼

-æ

è
çç

ö

ø
÷÷å

s s s s
	 (3.4)

There are four ways of displaying these quantities that I have found useful: the

marginal density product, the actual bivariate density, the marginal inconsistency, and

the contribution to mutual information. We’ll explore these one at a time.

To provide a simple yet revealing comparison between the four types of plot, I

generated a pair of random variables, INDEP and BLOB. The former is uniformly

distributed from -50 to 50. The latter is similar, except that when INDEP lies between 15

and 25, BLOB is changed to -30 plus a small uniform random variation ranging from -5 to 5.

The four plots appear on the next two pages in Figure 3-1, Figure 3-2, Figure 3-3, and

Figure 3-4, and explanations follow.

Chapter 3 Displaying Relationship Anomalies

169

Figure 3-1.  Marginal density product

Figure 3-2.  Actual density

Chapter 3 Displaying Relationship Anomalies

170

Figure 3-3.  Marginal inconsistency

Figure 3-4.  Mutual information contribution

Chapter 3 Displaying Relationship Anomalies

171

�Marginal Density Product
The marginal density plot shows the log of the product of the two marginal densities,

f1(x1) f2(x2). It is useful as a “baseline” display, as it shows the bivariate density as it would

exist if there were no relationship between the horizontal and vertical variables. Of the

four types of plot, this is certainly the least useful and is often worthy of being ignored.

Figure 10-1 depicts a dark horizontal band, centered in the vertical (BLOB)

dimension at -30. It extends across the entire horizontal (INDEP) range. The band exists

at -30 because BLOB cases are concentrated there. But it extends across the entire range

of INDEP because this plot ignores any relationship between the variables. Thus, the fact

that BLOB is shifted to -30 for only a subset of the domain of INDEP is of no consequence

to this plot. The plot is constructed based on only the separate distributions of each

variable.

�Actual Density
The actual density plot is, in a sense, the opposite of the marginal product plot because

it illustrates the full nature of the dependency between the horizontal and vertical

variables. It depicts the log of the joint distribution of these two variables, f (x1, x2). As

such, one can see where cases are concentrated and where they are thinly distributed.

Figure 10-2 clearly shows how, in the 15 to 25 range of INDEP, values of BLOB are

concentrated around -30. The light bands above and below this dark area show that the

-30 concentration has come at the expense of other values of BLOB when INDEP is in the

15 to 25 range.

�Marginal Inconsistency
Recall that two variables are independent if and only if f (x1, x2) = f1(x1) f2(x2) everywhere.

If there is even one location (x1, x2) where this defining property does not hold, then the

variables are not independent. It is often in our interest to find those locations where this

equality fails. Equation (3.5) is an effective way to measure the degree to which the joint

density fails to equal the product of the marginal densities.

	

Inconsistency ABS
f x x

f x f x
=

()
() ()

æ

è
çç

ö

ø
÷÷

é

ë
ê
ê

ù

û
ú
ú

log
,1 2

1 2 	
(3.5)

Chapter 3 Displaying Relationship Anomalies

172

When the joint equals the marginal product, Inconsistency will be zero. As the two

depart more and more, Inconsistency will increase. Sometimes it may be more useful to

avoid the absolute value so that relatively sparse joint density is indicated by a negative

inconsistency. However, in my own work I have found it more informative to focus on

only the degree of inconsistency, regardless of sign, and use other plots to determine

the nature of the inconsistency. I find that my eye responds more easily to departures

from normalcy when it has to look for only one feature (abnormally positive) rather than

being open to two features (abnormally positive or negative).

Figure 10-3 does an excellent job of revealing the fact that something unusual

happens when INDEP lies in the 15 to 25 range. Density above and below the vicinity

of BLOB=-30 gets sucked into the -30 area. Whether a region of BLOB is a sucker or a

suckee, this inconsistent behavior in the region is flagged by large values of Inconsistency.

Notice the less prominent horizontal dark band around BLOB=-30. This is because

based purely on the BLOB marginal, one would expect a few more cases here, but the

actual joint density is too small.

Lastly, the white (low inconsistency) bands around the border of the inconsistent regions

are because the Parzen window averages cases. The opposing nature of inconsistency on

opposite sides of the border average out to “consistent” behavior at the border.

�Mutual Information Contribution
Mutual information (page 17) is an effective measure of the degree to which two

variables are related. Recall that Equation (3.6) is the fundamental definition of mutual

information. The summation involves the product of two terms. One of them is the

inconsistency we discussed in the prior section, though without the absolute value.

The other is the probability of a potentially inconsistent location in the joint domain

occurring. The summation is over the entire domain, all possible values of the two

variables. It can be interesting to locate the areas of the joint domain that are the primary

contributors to the mutual information.

	
I X Y p x y

p x y

p x p y
; = , log

,() () ()
() ()Î Î

åå
x yc ¥

	 (3.6)

Any inconsistency between the joint density and the product of the marginals will

be given weight in proportion to the probability of that region; regions in which the joint

density is unusually high will be given especially large weighting of any inconsistency there.

Chapter 3 Displaying Relationship Anomalies

173

Figure 10-4 shows this in action. The area in which cases have an unusually high

concentration is prominent, a reflection of the magnitude of both terms in the product

within this region. This area simultaneously has a large joint density relative to the

product of the marginals (high inconsistency), and it also has an unusually high

concentration of cases in this neighborhood (high actual density), thus giving large

weight to the inconsistencies in this area of the domain.

The lighter vertical and horizontal bands illustrate the opposing effect: these regions

have unusually low density.

�Code for Computing These Plots
The file DENSITY_PLOTS.TXT contains the key computational code for generating the

displayable grid for the four plots just discussed. Error checking and other aspects of

the user interface have been omitted for clarity. In this section we will explore this code,

section by section, to make sure its operation is clear.

The following variables will play significant roles in the code:

 database �n_cases (rows) by n_vars (columns) dataset containing all data

 grid res by res displayable image which we compute

 val1 Horizontal variable, which we extract from the database

 val2 And vertical variable

 keys Work area, needed only for histogram equalization

The user-specified parameters are shown next. Their purposes will be explained in

more detail as relevant portions of the code are presented.

 varnum1 Column in the database of horizontal variable

 varnum2 And vertical variable

 use_lowlim1 Flag: limit the lower range of the horizontal variable?

 lowlim_val1 Lower limit if specified by user

 Similarly variables for upper limits and vertical variable

 res �Vertical and horizontal resolution of the square image generated

 width Fraction of standard deviation used for Parzen window width

 shift  Amount to shift displayed tone for better display

 spread Amount to expand displayed tone range for better display

Chapter 3 Displaying Relationship Anomalies

174

 type Type of display

 TYPE_DENSITY Actual density (similar to scatterplot)

 TYPE_MARGINAL � �Marginal density, shows 'no relationship' pattern

 TYPE_INCONSISTENCY Marginal inconsistency

 TYPE_MI Mutual information contribution

 hist   Apply histogram normalization?

 sharpen Sharpen display range to clarify boundary?

First, we allocate work areas. Note that if histogram normalization is not to be

performed, we do not need to allocate keys. We allocate grid to be twice the display size.

We’ll use the second half as a scratch work area later.

 grid = (double *) MALLOC (2 * res * res * sizeof(double));

 keys = (int *) MALLOC (res * res * sizeof(int));

 val1 = (double *) MALLOC (n_cases * sizeof(double));

 val2 = (double *) MALLOC (n_cases * sizeof(double));

It’s trivial to extract the data from the database. If you already have it in two arrays,

you don’t need to do this. From here on, we will reference val1 (the horizontal variable)

and val2 (vertical) only.

 for (i=0; i<n_cases; i++) {

 val1[i] = database[i*n_vars+varnum1]; // Horizontal variable

 val2[i] = database[i*n_vars+varnum2]; // Vertical variable

 }

We pass through the horizontal variable, finding the smallest and largest values,

which will be used to control display scaling. If the user requests different limits for

display, override the limits just found. Naturally, we could reorganize this code to avoid

the loop if user-specified limits are supplied. But the loop is fast, and the code is clearer

this way. Redo it if you’d like.

 smallest = largest = val1[0];

 for (i=1; i<n_cases; i++) {

 if (val1[i] < smallest)

 smallest = val1[i];

 if (val1[i] > largest)

 largest = val1[i];

 }

Chapter 3 Displaying Relationship Anomalies

175

 if (use_lowlim1)

 smallest = lowlim_val1;

 if (use_highlim1)

 largest = highlim_val1;

A careless user may have specified conflicting limits. The following check is cheap

insurance against disaster:

 if (largest <= smallest) { // �Should never happen, but user may be careless

 largest = smallest + 0.1;

 smallest = largest - 0.2;

 }

At this point, the programmer would use these limits to set up labels for the display

and maybe revise the display limits. Sometimes visual appearance is improved by

extending the actual display limits beyond the data or user-specified limits. We leave it

to you to implement this as desired. Just let (xmin, xmax) be the actual display range. Also,

we perform these same operations with the vertical variable. There’s no sense being

redundant in this presentation.

We now compute the scale factors (sigma in the denominator of Equations (3.2) and

(3.4)) for the horizontal and vertical variables. The user-specified width is the fraction of

each variable’s standard deviation to use for this scale factor, the width of the Parzen

window.

 scale1 = scale2 = mean1 = mean2 = 0.0;

 for (i=0; i<n_cases; i++) {

 x = val1[i];

 if (use_lowlim1 && x < lowlim_val1)

 x = lowlim_val1;

 if (use_highlim1 && x > highlim_val1)

 x = highlim_val1;

 mean1 += x;

 x = val2[i];

 if (use_lowlim2 && x < lowlim_val2)

 x = lowlim_val2;

Chapter 3 Displaying Relationship Anomalies

176

 if (use_highlim2 && x > highlim_val2)

 x = highlim_val2;

 mean2 += x;

 }

 mean1 /= n_cases;

 mean2 /= n_cases;

The previous code computes the mean of each variable, and the following code

computes the standard deviation. If the user specified a display limit, we bound the

variable accordingly. It can be argued that it would be better to avoid bounding when

computing the mean and standard deviation. This is a personal preference. You may

want to try it both ways and see which you prefer.

 for (i=0; i<n_cases; i++) {

 x = val1[i];

 if (use_lowlim1 && x < lowlim_val1)

 x = lowlim_val1;

 if (use_highlim1 && x > highlim_val1)

 x = highlim_val1;

 diff = x - mean1;

 scale1 += diff * diff;

 x = val2[i];

 if (use_lowlim2 && x < lowlim_val2)

 x = lowlim_val2;

 if (use_highlim2 && x > highlim_val2)

 x = highlim_val2;

 diff = x - mean2;

 scale2 += diff * diff;

 }

 scale1 = width * sqrt (scale1 / n_cases); // �User param times standard deviation

 scale2 = width * sqrt (scale2 / n_cases);

 if (scale1 < 1.e-30) // Should never happen, but user may be careless

 scale1 = 1.e-30;

 if (scale2 < 1.e-30)

 scale2 = 1.e-30;

Chapter 3 Displaying Relationship Anomalies

177

We do an initialization that, in a sense, may not always be required. Code that allows

a user to abort the later computation of grid (which can be slow for numerous cases and

high resolution) is not shown here. However, most programmers will want to include

an abort option to placate impatient users. Whatever fraction has been completed prior

to interruption should be displayed. Thus, we initialize the entire display grid to zero in

order to avoid nonsense numbers during display.

Also, we zero the total joint probability for scaling later. This is not used for display at

all. However, the scaling described later is useful if the programmer wants to print some

numeric values for the user.

 for (i=0; i<res*res; i++)

 grid[i] = 0.0; // Avoid nan in case user aborts

 total_joint = 0.0; // Used for printing numbers later, not display

The core computation is now performed. This computes the basic display grid,

using Equations (3.1) through (3.4). Later, we’ll do additional post-processing. But first,

we handle the basics. Actually, we display the log of some quantities, which results in a

much more interpretable image.

 for (horz=0; horz<res; horz++) { // �Left to right across display

 x = xmin + horz * (xmax - xmin) / (res - 1); // �Map display horizontal to x value

 for (vert=0; vert<res; vert++) { // �Bottom to top of display

 y = ymin + vert * (ymax - ymin) / (res - 1); // �Map display vertical to y value

 xmarg = ymarg = joint = 0.0; // �Will sum Equations 3.2 and 3.4

 for (i=0; i<n_cases; i++) { // �Sum these two equations

 xdiff = (val1[i] - x) / scale1; // �d in Equations 3.1 and 3.3

 ydiff = (val2[i] - y) / scale2;

 xmarg += exp (-0.5 * xdiff * xdiff); // Sum Equation 3.2

 ymarg += exp (-0.5 * ydiff * ydiff);

 joint += exp (-0.5 * (xdiff * xdiff + ydiff * ydiff)); // �Sum Equation 3.4

 }

 xmarg /= n_cases * scale1 * root_two_pi; // �Complete Equation 3.2

 ymarg /= n_cases * scale2 * root_two_pi;

 joint /= n_cases * scale1 * scale2 * two_pi; // �Complete Equation 3.4

Chapter 3 Displaying Relationship Anomalies

178

 if (xmarg < 1.e-50) // �Do not allow zero denominator later

 xmarg = 1.e-50;

 if (ymarg < 1.e-50)

 ymarg = 1.e-50;

 if (joint < 1.e-100)

 joint = 1.e-100;

 if (type == TYPE_DENSITY)

 grid[vert*res+horz] = log (joint);

 else if (type == TYPE_MARGINAL)

 grid[vert*res+horz] = log (xmarg) + log (ymarg);

 else { // INCONSISTENCY or MUTUAL INFORMATION

 numer = joint;

 if (numer < 1.e-100)

 numer = 1.e-100;

 denom = xmarg * ymarg;

 if (denom < 1.e-100)

 denom = 1.e-100;

 grid[vert*res+horz] = log (numer) - log (denom); // �Eq (3.5) without abs value

 // �We'll do Abs Val later

 if (type == TYPE_MI) { // If user wants mutual information

 total_joint += numer; // �Not used for display but useful for numbers

 grid[vert*res+horz] *= numer; // This term in Equation (3.6)

 }

 } // Inconsistency or mutual information

 } // For vert

 } // For horz

In the previous code, we actually compute the log of the density and marginal

product when these quantities are to be displayed. I have found that this helps

visual appeal. Feel free to experiment with displaying raw values or using other

transformations.

The hard work is done. However, we perform some post-processing to improve the

quality of the display as well as to optionally print a few numeric values that may be of

interest to the user.

Chapter 3 Displaying Relationship Anomalies

179

First, we handle displaying the contribution to mutual information. In the prior code

block we computed the total joint probability. It’s tempting to think this should sum to

one, but remember that we are not summing across discrete categories; we are summing

an approximate continuous density across a discrete grid, so the sum depends on the

resolution. The following code divides the contributions to mutual information by this

total as a form of normalization. This will not affect the display, but the sum of these

normalized values, totalMI, is a specialized measure of mutual information that may be of

interest to users for comparisons.

We also keep track of the point (maxMIx, maxMIy) in the domain at which the mutual

information contribution is greatest, as well as the value (maxMI) of this maximum. I

apply a special transformation to maxMI that accentuates sharply localized features.

Recall (on page 19) that totalMI cannot be negative, and it will be zero only if the sample

demonstrates perfect independence between the variables. In the extreme limiting case

that all of the contribution comes from a single grid entry, unnormalized maxMI=totalMI.

In this case, normalized maxMI=res*res.

 if (type == TYPE_MI) { // If user wants mutual information

 totalMI = 0.0;  // Not used for display, only optional printing

 maxMI = -1.e100;   // Ditto

 for (horz=0; horz<res; horz++) {

 x = xmin + horz * (xmax - xmin) / (res - 1); // �X value at this display position

 for (vert=0; vert<res; vert++) {

 y = ymin + vert * (ymax - ymin) / (res - 1); // And Y value

 grid[vert*res+horz] /= total_joint; // �Normalize (does not impact display)

 totalMI += grid[vert*res+horz]; // Guaranteed non-negative

 if (grid[vert*res+horz] > maxMI) {

 maxMI = grid[vert*res+horz];

 maxMIx = x;

 maxMIy = y;

 }

 }

 }

 if (totalMI > 0.0)

 maxMI *= res * res / totalMI;

 else

 maxMI = 0.0;

 }

Chapter 3 Displaying Relationship Anomalies

180

Now we consider displaying marginal inconsistency. The mutual information code in

the prior section has no impact whatsoever on the display; it is strictly for producing some

numerical values that may interest the user. This inconsistency code is the opposite; no

numeric values for the user are computed, and the nature of the display itself is changed.

A significant problem with displaying raw values of the inconsistency given by

Equation (3.5) on page 171 is that positive (concentration) and negative (sparsity) values

are generally nonsymmetric. This has different implications depending on whether we

take the absolute value shown in that equation and discussed in that section. For an

effective visual display…

•	 If we do not take absolute value, we would like for inconsistency

values of zero (the joint density equals the product of the marginals,

indicating “normal” concentration) to have a visual appearance in

the center of the display range.

•	 If we do take absolute values, we want “normal” regions displayed at

one extreme and “abnormal” regions at the opposite extreme.

To satisfy these goals, we scale positive and negative values separately. Also, in this

code we implement the absolute value shown in Equation (3.5) but not performed

earlier when grid was computed. Some developers might find it more informative to

refrain from taking the absolute value, for the reasons discussed earlier. I like it.

 if (type == TYPE_INCONSISTENCY) { // If user wants marginal inconsistency

 max_pos = max_neg = 1.e-20;

 for (i=0; i<res*res; i++) {

 if (grid[i] > 0.0 && grid[i] > max_pos)

 max_pos = grid[i];

 if (grid[i] < 0.0 && (-grid[i]) > max_neg)

 max_neg = -grid[i];

 }

 for (i=0; i<res*res; i++) {

 if (grid[i] > 0.0)

 grid[i] /= max_pos;

 if (grid[i] < 0.0)

 grid[i] /= -max_neg; // �Apply absolute value shown in Equation (3.5)

 }

 }

Chapter 3 Displaying Relationship Anomalies

181

A common technique for enhancing the visibility of differing tones or colors is

histogram equalization. This technique applies a nonlinear transform to the data in such

a way that every possible displayed tone or color occurs in the display in approximately

equal quantity. The effect of this transformation is usually that small changes in the data

are made more visible, while simultaneously reducing the prominence of large changes.

Recall that we allocated grid to be twice as long as needed. We’ll now use the

second half as scratch storage for sorting the grid values. The sorting routine qsortdsi()

simultaneously moves the index keys, so after sorting we know the rank of each value.

The result of this mapping code is that each entry in grid is from zero to one according to

the fractile of the original value.

We apply one last optional transform. If the user requests that the boundary between

large (anomalous) and not-so-large values be sharpened, we cube each entry. The result

is that only values near the upper limit keep their vaunted position; lower values are

pushed toward zero. This makes areas of unusually large concentration stand out from

the background.

 if (hist) {

 for (i=0; i<res*res; i++)

 keys[i] = i;

 sorted = grid + res * res; // Use last half for scratch

 memcpy (sorted, grid, res * res * sizeof(double));

 qsortdsi (0, res * res - 1, sorted, keys);

 for (i=0; i<res*res; i++)

 grid[keys[i]] = (double) i / (res * res - 1.0);

 if (sharpen) {

 for (i=0; i<res*res; i++)

 grid[i] = grid[i] * grid[i] * grid[i];

 }

 } // Histogram equalization

If the user does not request histogram equalization, all we do is linearly rescale the

values. This is more “authentic” in the sense that the display, whether in terms of tone or

color, linearly reflects the grid values. The potentially extreme nonlinearity of histogram

equalization can easily distort the visual perception of inconsistencies.

Chapter 3 Displaying Relationship Anomalies

182

Note that the rescaling to 0-1 done here is not based on the extremes in grid. It is not

unusual for there to be one or a few outliers, which would result in undue compression of

the mapping. Rather, we discard the 1 percent largest and smallest values in grid and rescale

so as to map those slightly narrower extremes to the display extremes of zero and one.

We also implement the optional sharpening discussed in conjunction with the prior

code block.

 else { // We scale by using ALMOST extremes

 sorted = grid + res * res; // Use last half for scratch

 for (i=0; i<res*res; i++)

 sorted[i] = grid[i];

 qsortd (0, res * res - 1, sorted);

 i = (int) (0.01 * res * res);

 smallest = sorted[i]; // Ignores smallest one percent

 largest = sorted[res*res-i-1]; // And largest

 mult = 1.0 / (largest - smallest + 1.e-20); // �Insure against largest=smallest

 for (i=0; i<res*res; i++) {

 grid[i] = mult * (grid[i] - smallest);

 if (grid[i] > 1.0) // Happens for largest one percent

 grid[i] = 1.0;

 if (grid[i] < 0.0) // Happens for smallest one percent

 grid[i] = 0.0;

 if (sharpen)

 grid[i] = grid[i] * grid[i] * grid[i];

 }

 } // No histogram equalization

We’re almost done. In most cases, the grid entries are now ready for display. However,

users who want to highlight certain features, possibly for a demonstration or publication,

may want to massage the display by shifting, compressing, or expanding the range of

tones or colors. We provide the user with two parameters to accomplish this:

•	 Shift moves the overall display range. A positive value shifts the tones

in the “high” direction, and negative shifts tones toward the “low”

direction. The default of zero produces no change.

Chapter 3 Displaying Relationship Anomalies

183

•	 Spread expands or compresses the range of the display. The default of

zero produces no change. Negative values are legal but rarely useful, as

this compresses variation into a narrow range, making discrimination

difficult. Positive values, rarely beyond five or so, expand the center

of the display range while squashing the extremes. This emphasizes

features in the interior of the grid range, at the expense of the extremes.

Recall that grid ranges from zero to one. Close examination of the expansion section of

the following code shows that if spread is zero, no change in grid will occur. If grid[i]=0.5, it will

remain unchanged, regardless of spread. As grid[i] moves away from 0.5, its transformed value

will do the same monotonically, with the rate determined by the multiplier.

 if (spread >= 0.0) // Usual situation

 mult = spread + 1.0;

 else // �Rarely useful, as it generally degrades the display

 mult = 1.0 / (1.0 - spread);

 for (i=0; i<res*res; i++) {

 grid[i] += 0.01 * shift;  // �This is where the display is shifted; 0.01 is arbitrary

 if (grid[i] < 1.e-12) // Needed for log below

 grid[i] = 1.e-12;

 if (grid[i] > 1.0 - 1.e-12) // Ditto

 grid[i] = 1.0 - 1.e-12;

 if (grid[i] <= 0.5)

 grid[i] = 0.5 * exp (mult * log (2.0 * grid[i]));

 else

 grid[i] = 1.0 - 0.5 * exp (mult * log (2.0 * (1.0 - grid[i])));

 }

�Comments on Showing the Display
I don’t present any code for displaying grid. This is because display code is highly

implementation-specific. My own code in the DATAMINE program uses numerous

Windows API calls that might be unacceptable to other programmers. I choose to do

this because it allows me to easily place scales and text on the display, at the expense of

Chapter 3 Displaying Relationship Anomalies

184

taking a relatively long time to display, as it’s done one pixel at a time. Nevertheless,

here are a few issues to keep in mind when writing your own code to display grid:

•	 Grayscale is good for publication in black-and-white formats, but

colors are more visually pleasing. Avoid red-versus-green, as this is

the most common form of color blindness. Red-versus-blue is good,

as is yellow (red+green) versus blue. You can compute levels as

follows:

red_level = (int) (val * 255.99);

blue_level = (int) ((1.0-val) * 255.99);

SetPixel (..., RGB (red_level, red_level, blue_level));

•	 Computing grid at full display resolution is impractical. Linearly

interpolate in both directions. Bivariate linear interpolation

algorithms are readily available and not shown here, as the exact

implementation depends on the display method. Windows provides

a routine (StretchDIBits) that rapidly does the interpolation, but

labeling the display becomes much more difficult.

•	 When printing the display (as opposed to displaying it on a monitor),

be aware that many printers have extremely high resolution, making

interpolation much too slow. In this case, print small rectangles

instead of individual pixels.

Chapter 3 Displaying Relationship Anomalies

185
© Timothy Masters 2018
T. Masters, Data Mining Algorithms in C++, https://doi.org/10.1007/978-1-4842-3315-3_4

CHAPTER 4

Fun with Eigenvectors
Suppose we measure the height and weight of a collection of people. We could make

a plot of the results, using an asterisk for each person. The horizontal position is

determined by the person’s height, and the vertical position is determined by the

person’s weight. The resulting plot might look something like that shown in Figure 4-1.

Figure 4-1.  Simple principal components

186

Not surprisingly, these two measurements are highly correlated; tall people tend to

weigh more than short people. Of course, the correlation is not perfect; some people are

built differently from others.

One thing that jumps out of a plot of highly correlated variables is that there exists a

principal axis, the direction in which most variation lies. In this example, the principal

axis can be labeled the size of the person. For each of these people, we can drop a line

perpendicular to the size axis and see where this line intersects the axis. The location of

this point, measured along this axis, is a good measurement of the “size” of the person.

But there is another dimension to consider. A parsimonious way to measure this

other dimension is to consider the axis perpendicular to the first. In this example, this

second axis depicts discrepancies between a person’s actual weight and the weight

expected from their height. Is a person unusually heavy or light for their height? This

is the question answered by the position on this axis, so we might label this axis Build.

Notice that it is the Build axis that identifies the single outlier.

It should be apparent that a person’s (height, weight) pair of numbers provides

exactly the same information as a person’s (size, build) pair. One measurement pair is a

simple linear transformation of the other. They are just different ways of looking at the

same information.

The preceding discussion motivates the concept of principal components. Given

multivariate measurements, we can find alternate measurement axes that capture

different aspects of the same information. Commonly, we will first find the axis that

accounts for the most variation (size here), then that which accounts for most of the

remaining variation (build here), and so forth. But as we will see, this just scratches the

surface. Things far more interesting than principal components await.

�Eigenvalues and Eigenvectors
We begin with the foundational mathematics that will be needed for this chapter. If you

are totally intimidated by the math, you may skip this section. However, this math is not

particularly advanced, despite how fierce some of the matrix equations may look, and at

least a basic understanding of this material would be of great benefit. Please try.

Chapter 4 Fun with Eigenvectors

187

Suppose A is a p by p matrix, x is a column vector p long, and  is a scalar.

Then x is said to be an eigenvector of A, and  its associated eigenvalue, if and only if

Equation (4.1) holds.

	 Ax x=ll 	 (4.1)

It should be apparent that any multiple of x is also an eigenvector; the concept of

eigenvector applies only to direction, not length. Therefore, a common convention when

computing eigenvectors is to normalize them to unit length. We will do so, and always

make this assumption.

Although not critical to the topic at hand, it is interesting to note a simple geometric

interpretation of eigenvectors. Multiplication of a vector by a matrix will, in general,

rotate the vector. But the eigenvectors of a matrix have the property that when multiplied

by the matrix, they do not change direction. They are a sort of “stationary” direction for

the matrix.

The relevance of eigenvectors to this chapter’s material comes from another

of their properties. Suppose we observe x, a p-vector drawn from a standardized

multivariate normal distribution. In other words, each of its components has a normal

distribution with mean zero and unit variance. The covariance matrix is also (due to the

standardization) the correlation matrix. Call it R. Let V be a p by m matrix, with m<=p.

Consider the new random vector, m long, defined by Equation (4.2).

	 y V x= ¢ 	 (4.2)

It can be shown (though we will not do so here, as the derivation is widely available

elsewhere) that the covariance matrix of y is given by Equation (4.3).

	 C V RV= ¢ 	 (4.3)

Let’s explore some desirable properties of V, properties that will provide useful

properties of y. Suppose for the moment that m=1; V has just a single column. Then

the “covariance matrix” C is a single number, the variance of y. A set of weights for the

members of x that results in y having the maximum possible variance has great intuitive

appeal because this is the transformation that, in a sense, captures the most information

about variation in x. See Figure 4-1 on page 185 and consider the size dimension.

Chapter 4 Fun with Eigenvectors

188

Obviously, multiplying the weights by a constant will multiply the variance of y

by the square of that constant, so we must impose some sort of normalization on V.

The most sensible restriction is that the square of the components of V sum to one.

Equivalently, the length of the column is one.

It turns out that this single column of V is the eigenvector of R that corresponds to

the largest eigenvalue. The proof of this fact is not difficult, but because it is tedious and

easily available elsewhere, we dispense with its presentation.

Now suppose that we let m=2, so V has two columns. We let the first column be the

eigenvector corresponding to the largest eigenvalue, as just described. How can we

define the second column so that the second component of y is orthogonal to the first

component (the two components of y are independent) and this second component of

y has the maximum possible remaining variance? Not surprisingly, this second column

is the eigenvector of R, which corresponds to the second-largest eigenvalue. This

pattern repeats for all p possible columns of V. Thus, the eigenvectors of R provide the

transformation matrix for mapping the standardized, likely correlated x variables to new

independent y variables with the property that they capture the most, second most, and

so forth, variance in x.

�Principal Components (If You Really Must)
Many developers take advantage of these orthogonal and descending variance

properties to compute and employ the principal components of a dataset. They may

have a collection of variables so large as to be unwieldy. By finding the eigenvalues and

vectors of the correlation matrix, the developer can compute a much smaller set of new

variables that capture the majority of the variation in the original set. For example, one

might begin with 100 variables. The first principal component may account for perhaps

20 percent of their total variance, the second another 10 percent, and so forth. It may

turn out that just 15 new variables can capture as much as 90 percent of the original set’s

variance. This would not be terribly unusual, and it is enticing.

Beware of that enticement. There is one important caveat about using principal

components to whittle down the number of variables in an application: we likely don’t

know in advance which components (if any!) convey the information in which we are

interested. It is the case that in many applications, early components convey most

of the useful information, while noise tends to be concentrated in the late principal

components. But this is far from universal. For example, turn back to page 185 and look

Chapter 4 Fun with Eigenvectors

189

at Figure 4-1. Suppose our goal is to predict how well a person would do in a football

game. Clearly, the size dimension would be far more valuable than the build dimension.

But the opposite would be true if we were trying to predict likelihood of developing

diabetes. So, the very real danger of variable reduction via principal components is that

we may discard the dimensions that are most important to our application!

If you do choose to be brave and compute the principal components of your

standardized variables by weighting them according to the eigenvectors, you would

generally do well to take one more step. The variance of each computed principal

component is the eigenvalue associated with that eigenvector. Thus, before doing the

weighting (Equation 4.2), it makes sense to divide each eigenvector by the square root

of its eigenvalue. By doing so, the variance of each component is standardized to one.

This equalization of variation is appreciated by most data mining and model training

algorithms.

�The Factor Structure Is More Interesting
The world is filled with textbooks (mostly in the field of psychology) that explore in

detail methods for using principal components and factor models (page 221) to discover

and label dimensions of interest. These techniques can be useful, and I certainly will

not scorn them. But such labeling techniques are not among my main reasons for

computing eigenvalues and vectors of a dataset and will receive only passing note in the

next section. If you desire a more complete discussion, you are encouraged to explore

this material elsewhere. “Modern Factor Analysis” by Harry Harmon, though not so

modern any more, is an exceptionally thorough and well written reference for the core

material.

What particularly interests me in regard to eigenstructure as related to data mining is

how each of our (potentially numerous) measured variables relates to the dominant axes

of variation, whatever these axes may represent. Of course, finding descriptive names

for axes of variation can often be interesting and useful; we’ll briefly explore a contrived

example in the next section. But what is usually of greatest importance is the correlation

between each variable and each principal component (or at least those corresponding

to the largest eigenvalues). The axes may possibly be unnamed or even unnameable

by mere mortals; psychologists love giving them names, while I, as a data miner, don’t

usually care as much. But once again, I emphasize that I do not disparage a quest for

Chapter 4 Fun with Eigenvectors

190

names; we’ll see an example in the next section in which naming can be interesting. It’s

just that one should never be discouraged if a descriptive name does not pop out of the

data; names are usually of secondary importance to data miners.

The matrix of variable/component correlations is called the factor structure matrix

and is computed by multiplying each normalized (unit length) eigenvector by the square

root of its corresponding eigenvalue. (For historical and theoretical reasons best omitted

here, this matrix is also called the factor loading matrix.) Now let’s explore a simple,

contrived example of how the factor structure can reveal interesting relationships

between variables.

�A Simple Example
Using many years of a common equity market index, I computed a set of ten trend

measurements as well as a set of ten corresponding volatility measurements with a

moving window. In other words, for a 50-day window I looked at the first 50 days in the

price history and computed a numeric measurement of the trend within that window. I

also computed a measure of price volatility within that same window. Then I advanced

the window forward in time by one day and did the same. These trend and volatility

measurements were done with window lengths of 50, 51, 52, …, 59 days, giving a total

of ten different window lengths. Obviously, there will be huge correlation between

variables for these different window sizes, because the lengths are so similar. This was

deliberate on my part so as to produce a clear demonstration of the technique.

The table shown next lists the four largest eigenvalues, along with their

corresponding factor structures. The Cumulative row shows the cumulative percent

of variation captured by each column and is computed as the cumulative sum of

eigenvalues divided by the total of all eigenvalues.

 Eigenvalue 12.939 6.900 0.090 0.052

 Cumulative 64.693 99.193 99.643 99.904

 TREND_50 0.7829 0.6040 0.1416 0.0356

 TREND_51 0.7893 0.6030 0.1115 0.0280

 TREND_52 0.7949 0.6010 0.0796 0.0201

 TREND_53 0.7999 0.5980 0.0466 0.0119

 TREND_54 0.8041 0.5939 0.0133 0.0035

 TREND_55 0.8076 0.5890 −0.0195 −0.0052

Chapter 4 Fun with Eigenvectors

191

 TREND_56 0.8105 0.5831 −0.0510 −0.0140

 TREND_57 0.8127 0.5765 −0.0805 −0.0229

 TREND_58 0.8144 0.5692 −0.1075 −0.0319

 TREND_59 0.8155 0.5613 −0.1319 −0.0409

 VOL_50 −0.8214 0.5570 0.0461 −0.1036

 VOL_51 −0.8188 0.5652 0.0385 −0.0863

 VOL_52 −0.8160 0.5727 0.0287 −0.0644

 VOL_53 −0.8127 0.5796 0.0172 −0.0391

 VOL_54 −0.8090 0.5861 0.0052 −0.0124

 VOL_55 −0.8047 0.5919 −0.0072 0.0140

 VOL_56 −0.8003 0.5969 −0.0198 0.0393

 VOL_57 −0.7954 0.6012 −0.0316 0.0626

 VOL_58 −0.7902 0.6051 −0.0415 0.0826

 VOL_59 −0.7845 0.6086 −0.0496 0.0983

Now let’s explore some properties of this table. Recall that these are correlations.

For example, the variable TREND_51 has a correlation of 0.1115 with the third principal

component. Here are some notable features of this table:

•	 The first principal component, a single new variable, captures almost

two-thirds (64.693 percent) of the entire variation inherent in the

complete set of 20 variables.

•	 If we throw in the second principal component, we’ve garnered more

than 99 percent of the variation.

•	 The dominant component, which accounts for almost two-thirds of

the total variation of all variables across the dataset, is fascinating,

as it is a contrast between trend and volatility. Large values of

this principal component correspond to conditions within the

window of strong upward trend (correlation with trend is about 0.8)

combined with low volatility (correlation with volatility of about -0.8).

Conversely, unusually small values of this first principal component

correspond to strong downward trend and high volatility. So we

might think of this new variable as telling us whether the market is

engaged in a peaceful rise versus a turbulent plunge.

Chapter 4 Fun with Eigenvectors

192

•	 The second component indicates the degree and direction of

departures from the dominant behavior embodied in the first

component, as it is moderately positively correlated with all variables.

Large values of this second principal component identify times when

the market is trending upward but with high volatility. Similarly, very

negative values signify a falling market with low volatility.

•	 The third, very minor, principal component distinguishes between

effects that are happening for short versus long windows, with one

type of interaction between trend and volatility.

•	 The fourth also distinguishes between short versus long, but with

the opposite trend/volatility relationship. By now we’ve left less than

one-tenth of 1 percent of the total 20-variable variation on the table!

�Rotation Can Make Naming Easier
I know I keep stating that naming axes is of secondary importance, and I hesitate to

dwell on the topic too much. But there is one issue that should be at least mentioned,

lest I be accused of negligence.

We saw in the prior section that just the two most dominant principal components

account for more than 99 percent of the total variation in all 20 variables. And in this

contrived example, the meanings of these two components were obvious. But this

was the case only because I deliberately employed two sets of variables that enjoyed

high within-set correlation. Usually we are not so fortunate, and we will encounter

factor structure members (correlations) along a continuum. This can make naming,

or at least guessing properties of the components, difficult. There is a technique called

varimax rotation (other, less popular methods also exist) that can make interpretation

easier. With no loss of information, this algorithm rotates the axes in such a way that

correlations are driven to extreme values: +/- 1 and 0. By reducing the number of

intermediate correlations, interpretability is often enhanced. The following table shows

the first two principal components after varimax rotation:

 Commun Pct

 TREND_50 97.78 0.1277 0.9805

 TREND_51 98.66 0.1329 0.9844

 TREND_52 99.31 0.1383 0.9869

 TREND_53 99.73 0.1439 0.9882

Chapter 4 Fun with Eigenvectors

193

 TREND_54 99.93 0.1498 0.9884

 TREND_55 99.91 0.1558 0.9873

 TREND_56 99.69 0.1619 0.9852

 TREND_57 99.29 0.1682 0.9821

 TREND_58 98.72 0.1745 0.9781

 TREND_59 98.01 0.1809 0.9733

 VOL_50 98.48 −0.9748 −0.1858

 VOL_51 98.99 −0.9789 −0.1782

 VOL_52 99.38 −0.9822 −0.1709

 VOL_53 99.65 −0.9847 −0.1637

 VOL_54 99.79 −0.9866 −0.1565

 VOL_55 99.79 −0.9877 −0.1493

 VOL_56 99.67 −0.9881 −0.1427

 VOL_57 99.41 −0.9877 −0.1362

 VOL_58 99.05 −0.9867 −0.1298

 VOL_59 98.59 −0.9853 −0.1232

We have three columns. Look at the last two columns. These correspond to the first

two principal components, after rotation. Note that one column assigns large magnitude

weights to the trend variables and small weights to the volatility. The other column does

the opposite. This has a benefit and a cost. The benefit is that naming these two axes

is suddenly a lot easier: one column can clearly be named Trend and the other named

Volatility. But the cost is that we have lost the ordering property. We can no longer say

that one of these components is dominant, and so forth.

The first column in this table is especially important. When we discard principal

components (in this case, we discarded 18 of the 20, keeping only the first two for

rotation), we inevitably lose some of the information in the original variables. The

communality of a variable, usually expressed in percent, is the fraction of the variance

of that variable that is encapsulated in the components that are kept. It is computed by

summing the squares of the factor correlations across that variable’s row. For example,

in this case we see that the first two principal components contain 97.78 percent of the

variance of the TREND_50 variable, and this is 0.1277 squared plus 0.9805 squared.

Knowing the communalities can help us identify variables that are under-represented in

the principal components that we kept.

Chapter 4 Fun with Eigenvectors

194

This discussion of factor structure interpretation, and especially rotation, has been

perhaps shamefully brief. If you are rolling your eyes in bafflement right now, I express

a somewhat hesitant apology. However, this was a deliberate choice. The general topic

of identifying axes by name or property is not a major activity in my own data mining

experience, and hence it is not a major topic in this chapter. Moreover, these topics

are covered in excruciating detail in numerous other texts, so expounding on them in

detail would be a waste of valuable trees. At least this limited presentation provides an

overview of what can be done, so that interested readers can look elsewhere for more

details. We will soon see much more important (in my opinion!) uses for eigenvectors.

�Code for Eigenvectors and Rotation
Three files relevant to the prior discussion can be downloaded from my web site. These

are the following:

•	 EVEC_RS.CPP: This is a ready-to-use C++ subroutine that computes

eigenvalues and (optionally) eigenvectors of a real symmetric matrix.

•	 AN_EIGEN.TXT: This is essential code fragments that fetch data from

a database and compute the factor structure information.

•	 AN_ROTATE.TXT : This is essential code fragments that perform

varimax rotation of a factor structure.

None of these routines will be examined in full detail in this text because the

algorithms are standard and widely available elsewhere; there is no point in being

redundant. But each will be presented in sufficient detail so you can understand how to

use them in your own code.

�Eigenvectors of a Real Symmetric Matrix
This subroutine, EVEC_RS.CPP, should be ready to compile with any C++ compiler.

It uses a reliable and efficient standard algorithm for eigenvalue and optional

eigenvector computation for a real symmetric matrix. First, the matrix is transformed to

tridiagonal form using the Householder method. Then the eigenvalues are computed

using the QL algorithm with implicit shifts. If eigenvectors are also desired, the rotations

are cumulated. This cumulation is an expensive process, so eigenvectors should be

computed only if they are needed.

Chapter 4 Fun with Eigenvectors

195

Note that several theoretically superior methods (divide-and-conquer, MRRR) are

now available. However, they are still n-cubed operations and differ in speed only by

a modest factor. They are tremendously more complex than the method given here,

and simple, thoroughly vetted and documented C++ source code for them is difficult to

obtain. FORTRAN versions are available in LAPACK.

This routine is called as follows:

int evec_rs (double *mat_in, int n, int find_vec,

 double *vect, double *eval, double *workv)

•	 mat_in: Square input matrix, with columns changing fastest. The upper-

right triangle (column greater than row) is ignored and may contain any

values. This input matrix is left unchanged. If you want to modify the

source code for more compact storage ((1,1), (2,1), (2,2), …),

you should find it easy to do so, as this input matrix is simply copied

into working storage and thereafter ignored.

•	 n: Size of the matrix.

•	 find_vec: If nonzero, the eigenvectors will also be computed. This

tremendously increases compute time.

•	 vect: Square matrix n by n. The eigenvectors are output here if

find_vec is nonzero. Even if find_vec is zero, this matrix must still be

supplied, because it is used for scratch storage. It is legal to use the

same matrix for mat_in and vect, in which case the input matrix is

replaced.

•	 eval: Output of eigenvalues, sorted descending

•	 workv: Scratch vector n long

This routine returns the number of eigenvalues that, due to convergence problems,

were not able to be computed. I’ve tested it with thousands of matrices, up to 5000 by

5000, many very ill conditioned, and I’ve never seen it fail; in my experience, it always

returns zero, indicating success. However, there is the theoretical possibility of failure, so

I account for this possibility in my code.

Chapter 4 Fun with Eigenvectors

196

�Factor Structure of a Dataset
The file AN_EIGEN.TXT contains code fragments that illustrate the essential aspects of

computing the factor structure of a dataset. The following variables appear in this code:

•	 n_cases: Number of cases (rows) in database

•	 n_vars: Number of columns in database (not all of which may take

part)

•	 database: All data is here, an n_cases by n_vars matrix

•	 npred: Number of predictors (variables) taking part in this analysis

•	 preds[]: Array npred long that identifies the columns in the database

for the variables to be used in this analysis

The first step is to allocate memory. The two variables that begin eigen_ are global

because further user operations may be performed on them. The other allocations are

temporary for this routine.

 cumulative = (double *) MALLOC (npred * sizeof(double));

 covar = (double *) MALLOC (npred * npred * sizeof(double));

 evals = (double *) MALLOC (npred * sizeof(double));

 structure = (double *) MALLOC (npred * npred * sizeof(double));

 means = (double *) MALLOC (npred * sizeof(double));

 stddev = (double *) MALLOC (npred * sizeof(double));

Compute the means and standard deviations so we can standardize the data. Note

how we extract the required data from the database.

 for (i=0; i<npred; i++)

 means[i] = stddev[i] = 1.e-60; // Must not divide by zero later

 for (i=0; i<n_cases; i++) {

 for (j=0; j<npred; j++)

 means[j] += database[i*n_vars+preds[j]];

 }

 for (j=0; j<npred; j++)

 means[j] /= n_cases;

Chapter 4 Fun with Eigenvectors

197

 for (i=0; i<n_cases; i++) {

 for (j=0; j<npred; j++) {

 diff = database[i*n_vars+preds[j]] - means[j];

 stddev[j] += diff * diff;

 }

 }

 for (j=0; j<npred; j++)

 stddev[j] = sqrt (stddev[j] / n_cases);

Compute the covariance matrix, which is also a correlation matrix because the

variables have been standardized. We do not have to compute the upper triangle

because the matrix is symmetric, nor do we compute the diagonal, because it is

identically 1.0 due to standardization. Copying the triangle at the end is needed only if

required by a different eigen routine.

 for (i=1; i<npred; i++) {

 for (j=0; j<i; j++)

 covar[i*npred+j] = 0.0;

 }

 for (i=0; i<n_cases; i++) {

 for (j=0; j<npred; j++) {

 diff = (database[i*n_vars+preds[j]] - means[j]) / stddev[j];

 for (k=0; k<j; k++) {

 diff2 = (database[i*n_vars+preds[k]] - means[k]) / stddev[k];

 covar[j*npred+k] += diff * diff2;

 }

 }

 }

 for (j=0; j<npred; j++) {

 for (k=0; k<j; k++)

 covar[j*npred+k] /= n_cases;

 }

Chapter 4 Fun with Eigenvectors

198

 for (j=0; j<npred; j++) {

 covar[j*npred+j] = 1.0; // Definition, so not computed

 for (k=j+1; k<npred; k++) // �Copying the other triangle is not needed

 covar[j*npred+k] = covar[k*npred+j]; // �for evec_rs() and may be omitted

 }

Compute the eigenvalues and vectors using our evec_rs() routine. In the previous

code, we copied the computed lower-left triangle to the upper right. But our evec_rs()

ignores that upper triangle, so those two lines of copying code may be omitted. They are

shown here only because some other routines may require the entire matrix. Then we

compute the cumulative eigenvalues and divide by the sum to express the cumulative

values as percents. It may rarely happen that tiny floating-point errors result in slightly

negative eigenvalues, a theoretical impossibility here, so we enforce non-negativity.

 evec_rs (covar, npred, 1, structure, evals, means);

 sum = 0.0;

 for (i=0; i<npred; i++) { // We display cumulative eigenvalues

 if (evals[i] < 0.0) // Happens only from tiny fpt errors

 evals[i] = 0.0;

 sum += evals[i];

 cumulative[i] = sum;

 }

 for (i=0; i<npred; i++) // Make it percent

 cumulative[i] = 100.0 * cumulative[i] / sum;

The last step is to multiply each eigenvector by the square root of its eigenvalue in

order to get the factor structure (also called the factor loadings in some contexts). It may

rarely happen that tiny floating-point calculations result in correlations trivially beyond

+/-1. To prevent this nonsense, we enforce theory.

 for (i=0; i<eigen_npred; i++) {

 for (j=0; j<eigen_npred; j++) {

 structure[i*npred+j] *= sqrt(evals[j]);

 if (structure[i*npred+j] < -1.0) // �In a perfect fpt world this would never happen

 structure[i*npred+j] = -1.0;

Chapter 4 Fun with Eigenvectors

199

 if (structure[i*npred+j] > 1.0)

 structure[i*npred+j] = 1.0;

 }

 }

�Varimax Rotation
The varimax rotation algorithm is iterative, but it converges quickly in nearly all cases.

It sweeps through every pair of columns (correlations of a factor with all variables) and

explicitly computes the angle of rotation that maximizes a measure of optimality, where

optimality is (loosely) defined as the correlations being as near +/-1 and 0 as possible.

Of course, each time this pairwise rotation is done, optimality of a prior pair is impaired.

Thus, multiple sweeps must be done until an entire set of all pairs has negligible change.

The exact equations for computing the optimal rotation angle are fierce and widely

available in other references, so they will not be reproduced here. However, we will work

through the code provided in AN_ROTATE.TXT so that you understand how to use this

code in your own project. In this code, n_kept is the number of dominant (earliest) factors

that we will rotate. It must be at least two and at most npred.

The first step is to compute the square root of the communalities. Recall (page 193)

that the communality of a variable is the fraction of that variable’s variance that is

accounted for by the factors that are retained. After computing these, we temporarily

scale the factor structure. When rotation is complete, we will reverse this scaling to

restore the correct communalities; rotation does not change communality. The original

version of varimax rotation did not perform this scaling, but much experience indicates

that it improves interpretability.

 for (i=0; i<npred; i++) {

 sum = 0.0;

 for (j=0; j<n_kept; j++)

 sum += structure[i*npred+j] * structure[i*npred+j];

 comm[i] = sqrt (sum);

 }

Chapter 4 Fun with Eigenvectors

200

 for (i=0; i<npred; i++) {

 sum = comm[i];

 for (j=0; j<n_kept; j++)

 structure[i*npred+j] /= sum;

 }

Now we have the main outer loop that repeatedly sweeps through all pairs of

columns (factors) until a complete sweep results in no change. We impose an iteration

limit of 100 as cheap insurance against an endless loop. In practice, we never come even

close to this limit. We set the convergence flag to True (1) before we start the pairwise

sweeping. If even a single rotation is done during a sweep, this flag is reset to False. At the

end of the outer iteration loop, if the flag is still True, we break out of the loop.

 for (iter=0; iter<100; iter++) { // �limit is for safety and should never come even close

 converged = 1;  // �We'll reset this if an adjustment is made

 for (first_col=0; first_col<n_kept-1; first_col++) { // �Do all pairs of cols

 for (second_col=first_col+1; second_col<n_kept; second_col++) {

 �A = B = C = D = 0.0; // We will sum these down the row (all vars)

At this point we have a pair of columns (first_col and second_col) that will be rotated.

Now we have to figure out how much to rotate. Without delving into details that are

tedious and widely available elsewhere, the idea is that there is an optimality criterion

that we want to maximize. The derivative of this criterion with respect to the rotation

angle phi will be zero at the maximum, and the second derivative will be negative. The

angle that satisfies these two rules can be explicitly computed. To do so, sum down rows

the quantities we will need to compute the rotation angle.

 for (ivar=0; ivar<npred; ivar++) { // Sum down all rows

 row_ptr = structure + ivar * npred; // �This var's row in structure matrix

 load1 = row_ptr[first_col];

 load2 = row_ptr[second_col];

 Uterm = load1 * load1 - load2 * load2;

 Vterm = 2.0 * load1 * load2;

 A += Uterm;

 B += Vterm;

 C += Uterm * Uterm - Vterm * Vterm;

 D += 2.0 * Uterm * Vterm;

 } // For ivar

Chapter 4 Fun with Eigenvectors

201

 numer = D - 2.0 * A * B / npred;

 denom = C - (A * A - B * B) / npred;

 phi = 0.25 * atan2 (numer, denom); // This is the rotation angle

If the angle by which we are to rotate this pair of columns is tiny, there is no point

bothering. Otherwise, do the rotation and reset the convergence flag to False.

 if (fabs(phi) < 1.e-10) // �No point rotating this pair of columns if angle is tiny

 continue; // So go on to the next pair of columns

 sin_phi = sin (phi);

 cos_phi = cos (phi);

 for (ivar=0; ivar<npred; ivar++) { // Rotate this pair of columns

 row_ptr = structure + ivar * npred; // �This var's row in structure matrix

 load1 = row_ptr[first_col];

 load2 = row_ptr[second_col];

 row_ptr[first_col] = cos_phi * load1 + sin_phi * load2;

 row_ptr[second_col] = -sin_phi * load1 + cos_phi * load2;

 }

 converged = 0; // We just made an adjustment, so we are not converged

 } // For second column

  } // For first column

 if (converged)

 break;

 } // For iter (main outer loop)

The final step is to undo the communality scaling that we did at the start of this routine.

 for (i=0; i<npred; i++) {

 sum = comm[i];

 for (j=0; j<n_kept; j++)

 structure[i*npred+j] *= sum;

 }

Chapter 4 Fun with Eigenvectors

202

�Horn’s Algorithm for Determining Dimensionality
Whether one wants to compute principal components or name axes, discover axes of

variation without naming them, or employ the variable clustering technique described

in the next section, it is important to be able to decide how many dimensions of the

data are relevant. On page 190 we saw a simple contrived example in which twenty

variables could be reduced to just two while retaining nearly all variation inherent in

the set. For other datasets, it may be that little or no dimension reduction is possible. It

would be nice to have a theoretically supportable method for determining the number of

dimensions inherent in the data, with the assumption that discarded dimensions are just

noise, devoid of useful information.

Of course, before pursuing this line of thought, we must once more emphasize that

this is a potentially dangerous operation. We already saw in the height/weight example

that opened this chapter, the Size dimension would likely be useful for assessing football

performance, while the Build dimension would be applicable to diabetes screening.

And in the example on page 190, it is clear that components past the strongly dominant

first two also contain clearly identifiable information. So, dimension reduction is always

fraught with the danger of discarding precisely the information most valuable to your

application. With that caveat, we continue.

The traditional way to determine the appropriate number of dimensions is to plot

the eigenvalues, left to right on the plot, in descending order. This is called a scree plot.

Typically, the eigenvalues will drop off quickly at first and then form a knee and flatten.

The developer visually determines the location of the knee and sets a cutoff at that

number of components to retain. The problem with this approach is that it is inherently

subject to human interpretation and bias.

A fairly justifiable approach, commonly used, relies on the fact that if the variables

are completely independent (no dominant axes due to underlying components that

impact multiple variables), then their theoretical correlation matrix will be an identity

matrix, and hence all eigenvalues will equal 1.0. The degree to which the eigenvalues

separate above and below 1.0 indicates the degree to which the measured variables are

being driven by underlying common factors. This inspires a rule that says we should

keep all principal components whose eigenvalues exceed 1.0.

Chapter 4 Fun with Eigenvectors

203

The small but troubling problem with this rule is that for finite datasets, random

variation will cause significant spreading of the eigenvalues, even if the data has been

drawn from a population of truly independent variables. A better approach, especially

if the number of cases is not enormous compared to the number of variables, is to use

a Monte Carlo procedure to estimate the actual distribution of the ordered eigenvalues

under the hypothesis that all variables are independent.

The paper [Horn, J. (1965). “A rationale and test for the number of factors in factor

analysis.” Psychometrika, 30(2), 179–185.] suggested that a large number (hundreds at

least) of data matrices of the same size as that under study be generated, each being

sampled from a population of independent variables. For each sample, compute and

sort the eigenvalues of the correlation matrix. Then compute the average, across all

samples, of each ordered eigenvalue. We would almost surely find that the average of the

largest eigenvalue significantly exceeds 1.0, with subsequent ordered values similarly

departing from theory. Then we use these averages as the cutoff thresholds, instead of

the theoretical value of 1.0.

The actual algorithm is slightly different from what might be implied by the

description just given. The issue is that random variation in the Monte Carlo procedure

could result in gaps in the selection procedure. For example, if the ordered thresholds

were directly applied, we might find that factors 1, 2, 3, and 5 are kept, with factor 4

falling under its threshold and hence rejected. So what is done is to use the thresholds

as a stopping criterion: start at the largest eigenvalue and work downward, stopping the

first time a threshold is violated.

Recent experience indicates that limiting users to the mean across Monte Carlo

replications is overly restrictive. A more general approach is to let the user specify

in advance a percentile across replications. For each ordered position, the specified

percentile of that ordered eigenvalue is used as the threshold for rejection.

�Code for the Modified Horn Algorithm
The stopping algorithm just described is simple to implement. Assume for the moment

that we have used a Monte Carlo algorithm to compute the eigenvalue thresholds, and

they are in the array thresh. So, thresh[0] contains the threshold for the largest eigenvalue,

thresh[1] the threshold for the second-largest, and so forth. In the original Horn

Chapter 4 Fun with Eigenvectors

204

algorithm, thresh[0] would be the mean across all Monte Carlo replications of the largest

eigenvalue, and so forth. In the more modern method that will be presented later, these

would be a user-specified percentile of each ordered eigenvalue. To determine how

many factors to retain, we can use the following trivial code:

 for (n_kept=0; n_kept<npred; n_kept++) {

 if (evals[n_kept] <= thresh[n_kept])

 break;

 }

The trickier part is computing these thresholds. Conceptually, it’s not difficult. But

because we will be building correlation matrices and finding eigenvalues many times

(typically several hundred or so), it behooves us to use multithreading so as to take

advantage of modern multicore CPUs. This is the code that will now be presented. If you

want to keep it simple and use a single thread should find it easy to do so.

Recall that Windows allows passing only a single parameter to a threaded routine,

so we’d better make it a good one. In this case we will pass a pointer to a structure that

contains everything needed. Here is this structure:

typedef struct {

 int nc; // Number of cases

 int nv; // Number of variables

 double *covar;  // Scratch for covariance matrix

 double *evals; // Computed eigenvalues

 double *workv; // Scratch vector for evec_rs()

 int ieval;  // Needed for placing result in all_evals

} MC_EVALS_PARAMS;

This is the routine that performs a single Monte Carlo replication. Single-threaded

implementations will call it as many times as desired in a simple loop. Multithreaded

applications such as the one presented here will run multiple copies simultaneously.

The first step is to fetch the items passed in the structure. This is for clarity only;

a programmer could just as well directly reference the structure each time. I like my

approach better. Note that we assign the evals and workv members to two different

variables. Again, this is just for clarity. We will use these two vectors for different things at

different times, so using context-appropriate names helps reduce confusion.

Chapter 4 Fun with Eigenvectors

205

static unsigned int_stdcall evals_threaded (LPVOID dp)

{

 int i, j, icase, n_cases, n_vars;

 double *xvec, *means, *covar, xtemp, *evals, *workv;

 n_cases = ((MC_EVALS_PARAMS *) dp)->nc;

 n_vars = ((MC_EVALS_PARAMS *) dp)->nv;

 covar = ((MC_EVALS_PARAMS *) dp)->covar;

 xvec = evals = ((MC_EVALS_PARAMS *) dp)->evals; // �Borrow for computing covar

 sums = workv = ((MC_EVALS_PARAMS *) dp)->workv; // Ditto

We will compute the lower-left triangle of the covariance (and then correlation)

matrix of a standardized, uncorrelated normal random variable. The upper-right triangle

is ignored by the evec_rs() routine that computes eigenvalues. So, begin by zeroing the

areas where the mean and covariance will be cumulated.

 for (i=0; i<n_vars; i++) {

 sums[i] = 0.0;

 for (j=0; j<=i; j++)

 covar[i*n_vars+j] = 0.0;

 }

This loop generates the required number of cases. This should be the same as the

number of cases in the dataset being analyzed. The function normal_pair() computes

two standard (mean zero, unit variance) random numbers at a time, which is the most

efficient way to do it. This function is provided in the file RANDOM.CPP, which is available

for free download from my web site. The first loop within the icase loop constructs the

random vector xvec.

 for (icase=0; icase<n_cases; icase++) {

 // Generate the random vector

 for (i=0; i<n_vars; i++) {

 if (i % 2 == 0)

 normal_pair (&xvec[i], &xtemp);

 else

 xvec[i] = xtemp;

 }

Chapter 4 Fun with Eigenvectors

206

The second loop inside the icase loop cumulates the means and sum of squares. In a

more general setting, we would want to make two passes through the data. The first pass

cumulates the mean, and the second pass cumulates the sum of squared deviations from

the mean. But that method, though most accurate, requires storing the entire dataset. As

it may be huge, and we would need a separate dataset for each of the multiple threads, it

would be nice to avoid this storage. It happens that in this application, we can get away

with the otherwise dangerous “no-store” method. I’ll discuss this more on the next page.

For now, just examine this code to see what’s being done.

 // Cumulate for this random vector

 for (i=0; i<n_vars; i++) {

 sums[i] += xvec[i];

 for (j=0; j<=i; j++)

 covar[i*n_vars+j] += xvec[i] * xvec[j];

 }

 } // For all cases

Suppose we want to compute the covariance of a set of observed scalar random

variables x and y. Let mx be the computed mean of x, and let my be the computed mean

of y. Then the “traditional” and (usually) accurate formula for their covariance is given

by Equation (4.4).

	
Cov

n
x y

i

n

x y i x i y, = -() -()1

1==
å m m

	
(4.4)

Unfortunately, this equation requires storage of the entire data matrix so that we

can use it after computing the means. It doesn’t take much manipulation to derive the

mathematically equivalent Equation (4.5), which can be computed in a single pass

through the dataset and hence does not require storage of the data.

	
Cov

n
x y

n
x yx y

i

n

i i
i

n

i
i

n

i, = -
æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

= = =
å å å1 1

1 1 1 	
(4.5)

However, Equation (4.5) has a potentially deadly flaw when implemented on a

computer. If both random variables have means whose magnitudes are large compared

to their standard deviations, the subtraction in this equation will involve numbers

that are both very large compared to their difference. Because computers have limited

Chapter 4 Fun with Eigenvectors

207

precision, many (or even most!) significant digits can be lost. Thus, Equation (4.5) should

never be used in a general-purpose application. Either Equation (4.4) should be used, or

the quite complex online parallel formula used. This formula is available from the Sandia

National Laboratories site, among others.

But we are in luck here. The random variables are drawn from populations that

have zero mean. Thus, the subtraction in Equation (4.5) is innocuous. Here is this code,

without the division by n (yet).

 // Compute n_cases times covariance

 for (i=0; i<n_vars; i++) {

 for (j=0; j<=i; j++)

 covar[i*n_vars+j] -= sums[i] * sums[j] / n_cases;

 }

Now we convert this to a correlation matrix. The standard formula is given

by Equation (4.6). Our covar matrix computation skipped the division by n in

Equation (4.5), but this common factor cancels in Equation (4.6). We compute the

lower triangle off-diagonal elements and then just set the diagonal to 1.0. Finally,

compute the eigenvalues.

	

Corrx y
x y

x y

x y

x x y

Covar

Variance Variance

Covar

Covar Covar
,

, ,

, ,

= =
yy 	

(4.6)

 for (i=0; i<n_vars; i++) {

 covar[i*n_vars+i] = sqrt (covar[i*n_vars+i]);

 for (j=0; j<i; j++)

 covar[i*n_vars+j] /= covar[i*n_vars+i] * covar[j*n_vars+j];

 }

 for (i=0; i<n_vars; i++) // Definition of correlation matrix

 covar[i*n_vars+i] = 1.0;

 evec_rs (covar, n_vars, 0, covar, evals, workv);

 return 0;

}

Chapter 4 Fun with Eigenvectors

208

The preceding code handles the core computation. We now present the routine that

coordinates multithreading of the core code. Its calling parameters are as follows:

int mc_evals (

 int nc, // Number of cases

 int nv, // Number of variables

 int mc_reps, // Number of MC replications

 int max_threads, // Max number of threads to use

 double fractile,  // Desired fractile, 0-1

 double *threshold // Computed values of each eval for specified fractile

)

Here are the declarations and allocation of scratch memory. If the user has specified

more threads than replications, drop back the number of threads. Note that Windows

imposes an upper limit on the number of threads that can run simultaneously.

Specifying at most 64 should be safe for all modern versions of Windows.

{

 int i, j, k, ieval, ithread, n_threads, empty_slot, ret_val;

 double *covar, *evals, *workv, *all_evals;

 MC_EVALS_PARAMS mc_evals_params[MAX_THREADS];

 HANDLE threads[MAX_THREADS];

 if (mc_reps < 1) // Silly caller

 mc_reps = 1;

 if (max_threads > mc_reps)

 max_threads = mc_reps;

/*

 Allocate memory

*/

 covar = (double *) MALLOC (nv * nv * max_threads * sizeof(double));

 evals = (double *) MALLOC (nv * max_threads * sizeof(double));

 workv = (double *) MALLOC (nv * max_threads * sizeof(double));

 all_evals = (double *) MALLOC (nv * mc_reps * sizeof(double));

Chapter 4 Fun with Eigenvectors

209

Most parameters will be the same for all threads, so initialize them now. Notice that

each thread requires its own copy of the three work areas (covar, evals, workv) so that they

don’t mess around with one another’s private things.

 for (ithread=0; ithread<max_threads; ithread++) {

 mc_evals_params[ithread].nc = nc; mc_evals_params[ithread].nv = nv;

 mc_evals_params[ithread].covar = covar + ithread * nv * nv;

 mc_evals_params[ithread].evals = evals + ithread * nv;

 mc_evals_params[ithread].workv = workv + ithread * nv;

 } // For all threads, initializing constant stuff

Get ready for and then begin the “endless” loop that handles threading. We count in

n_threads the number of threads that are currently active, and ieval will count replications

done. Each replication is a single thread. Each thread’s handle will be stored in threads,

and a NULL entry indicates that the corresponding thread is inactive

(not started or closed).

 n_threads = 0; // Counts threads that are active

 for (i=0; i<max_threads; i++)

 threads[i] = NULL;

 ieval = 0;   // Index of this trial in all_evals

 empty_slot = -1; // �After full, will identify the thread that just completed

 for (;;) { // Main thread loop processes all replications

Compassionate programmers allow the user to interrupt potentially slow processing.

It may be that a thread has completed, but the others are still running. Thus, we must

crunch down the list of active threads, wait for the rest of them to finish, close them, and

exit with an error code.

 if (escape_key_pressed || user_pressed_escape ()) {

 for (i=0, k=0; i<max_threads; i++) {

 if (threads[i] != NULL)

 threads[k++] = threads[i];

 }

Chapter 4 Fun with Eigenvectors

210

 ret_val = WaitForMultipleObjects (k, threads, TRUE, 50000);

 for (i=0; i<k; i++)

 CloseHandle (threads[i]);

 ret_val = ERROR_ESCAPE;

 goto FINISH;

 }

Here is where we launch a thread if there is more work to be done. Recall that ieval

counts eigenvalue-computation replications, and mc_reps is the number requested by

the user. While we are initially filling the max_threads queue, empty_slot will remain at its

initialized value of -1. But after the queue is filled, whenever a thread finished its work,

empty_slot will be set to the position in the thread list of this now-free slot. So when we

now launch a new thread, we use that just-freed slot.

We need to save in the ieval member of the parameter structure the number of this

replication, as when the thread finishes, this will tell us where to put the result.

Under very rare pathological situations, Windows may not launch the thread. In this

case, we must close all open threads and return an error code. Otherwise, we increment

the number of active threads and the number of replications in progress or done. We

know we are completely done when n_threads drops to zero: no active threads anymore.

 if (ieval < mc_reps) { // If there are still some to do

  if (empty_slot < 0) // Negative while we are initially filling the queue

 k = n_threads;

   else

 k = empty_slot;

  mc_evals_params[k].ieval = ieval; // Needed for placing final result

   threads[k] = (HANDLE) _beginthreadex (NULL, 0, evals_threaded,

 &m c_evals_params[k], 0, NULL);

  if (threads[k] == NULL) { // �Very pathological event; should never happen

 for (i=0; i<n_threads; i++) {

 if (threads[i] != NULL)

 CloseHandle (threads[i]);

 }

Chapter 4 Fun with Eigenvectors

211

 ret_val = ERROR_INSUFFICIENT_MEMORY;

 goto FINISH;

 }

  ++n_threads;

  ++ieval;

  } // if (ieval < mc_reps)

 if (n_threads == 0) // Are we done?

   break;

It may be that the full quota of threads are running, but there are still more

replications to do. In this situation, we must pause here and wait for a thread to finish so

as to free up a slot to launch another thread. The large wait time in milliseconds is fairly

arbitrary; feel free to customize it. To be a conscientious programmer, we must prepare

for the possibility of an error. Handle it as you see fit.

The WaitForMultipleObjects() call will return as soon as a thread finishes. When this

happens, we must gather the nv array of eigenvalues computed by the thread and store

them in all_evals. Note that they are stored with the replication changing fastest, which

facilitates sorting later.

Finally, we preserve the index of this now free slot in the thread array, because this is

the slot where the next thread will go. We close this thread now that its work is done, and

we set its slot to NULL to indicate that the thread is closed. Decrement the number of

active threads.

 if (n_threads == max_threads && ieval < mc_reps) {

   ret_val = WaitForMultipleObjects (n_threads, threads, FALSE, 500000);

  if (ret_val == WAIT_TIMEOUT || ret_val == WAIT_FAILED ||

 ret_val < 0 || ret_val >= n_threads) {

 ret_val = ERROR_INSUFFICIENT_MEMORY;

 goto FINISH;

 }

   k = mc_evals_params[ret_val].ieval;

  for (i=0; i<nv; i++)

  all_evals[i*mc_reps+k] = mc_evals_params[ret_val].evals[i];

Chapter 4 Fun with Eigenvectors

212

   empty_slot = ret_val;

 CloseHandle (threads[empty_slot]);

   threads[empty_slot] = NULL;

   --n_threads;

  }

The last possibility is that we have no more work to start, as all replications have been

launched and are completed or still running. When this time comes, we just sit here and

wait until all threads have run to completion. As before, we are good little programmers

and handle the possibility of an error. Exactly as we did in the prior code block, we

collect the computed eigenvalues from each thread. But this time we must handle all

threads in a loop, not just a single completed thread. While we are doing this, close the

threads. At this point we are finished with all threaded eigenvalue computation and so

break out of the “endless” loop.

 else if (ieval == mc_reps) {

 ret_val = WaitForMultipleObjects (n_threads, threads, TRUE, 500000);

 if (ret_val == WAIT_TIMEOUT || ret_val == WAIT_FAILED ||

 ret_val < 0 || ret_val >= n_threads) { // �Rare pathological error condition

 ret_val = ERROR_INSUFFICIENT_MEMORY;

 goto FINISH;

 }

 for (i=0; i<n_threads; i++) { // For each thread that finished

 k = mc_evals_params[i].ieval;

 for (j=0; j<nv; j++) // Get its computed eigenvalues

 all_evals[j*mc_reps+k] = mc_evals_params[i].evals[j];

 CloseHandle (threads[i]);

 }

 break;

 }

 } // Endless loop which threads computation of evals for all reps

Chapter 4 Fun with Eigenvectors

213

All that’s left to do is to compute the user-specified fractile (across replications) for

each ordered eigenvalue. Compute k as the unbiased index and restrict it to legal values

in case we have a careless user. Then, for each ordered eigenvalue, sort the replications

and save the value as the threshold that will be used for choosing the number of factors

to retain.

 k = (int) (fractile * (mc_reps+1)) - 1;

 if (k < 0)

  k = 0;

 if (k >= mc_reps)

  k = mc_reps - 1;

 for (i=0; i<nv; i++) {

 qsortd (0, mc_reps-1, all_evals + i * mc_reps);

 threshold[i] = all_evals[i*mc_reps+k];

 }

 ret_val = 0;

FINISH:

 if (covar != NULL)

  FREE (covar);

 if (evals != NULL)

  FREE (evals);

 if (workv != NULL)

   FREE (workv);

 if (all_evals != NULL)

   FREE (all_evals);

 return ret_val;

}

�Clustering Variables in a Subspace
In any application involving a large number of variables, it’s nice to be able to identify

sets of variables that have significant redundancy. Of course, we may be unlucky and

have a situation in which the small differences between largely redundant variables

contain the useful information. However, this is the exception. In most applications,

Chapter 4 Fun with Eigenvectors

214

it is the redundant information that is most important; if some type of effect impacts

multiple variables, it’s probably important. Because dealing with fewer variables

is always better, if we can identify groups of variables that have great intra-group

redundancy, we may be able to eliminate many variables from consideration, focusing

on a weighted average of representatives from each group, or perhaps focusing on

a single factor that is highly correlated with a redundant group. Or we might just be

interested in the fact of redundancy, garnering useful insight from it.

One popular way to identify redundant variables is to display scatterplots of variables

on principal or rotated orthogonal axes. Variables that lie near one another in the plot

have a form of redundancy in the subspace defined by that pair of axes. This method

is especially popular in the field of psychology. But it has three drawbacks. First, it

relies on visual impressions, which are notoriously subjective and may be difficult

to see if variables crowd together. More seriously, such displays are possible in only

two dimensions at a time. It is possible, even likely, that some variables will exhibit

strong redundancy in some low-dimension subspace while being very independent in

another, unobserved dimension. It’s easy to be fooled, so arbitrary multiple-dimension

consideration is much better. Last but not least, innocently flipping the sign of a variable

flips its position in the plot to the opposite quadrant, destroying visual cues.

Let’s develop an intuitive method for detecting redundancy of variables when this

redundancy is restricted to a particular subspace. Suppose we have three unobservable,

uncorrelated underlying factors: V1, V2, and V3. These give rise to observed variables

according to the following formulas:

X1 = 1.5 V1 − 1.0 V2 + 0.7 V3
X2 = 3.0 V1 − 2.0 V2 − 3.0 V3
X3 = 2.0 V1 + 1.0 V2 + 1.0 V3

It should be apparent that these three observed variables do not have much

redundancy with one another. X3 has a response to V2 opposite the other two observed

variables, and X2 has a response to V3 opposite the others as well. Their correlation

matrix would not contain values of more than moderate magnitude.

But now suppose we know (by some sort of magic, in this example!) that the

unobserved third factor, V3, is of no concern to us. Perhaps it is just noise that

unjustifiably reduces correlations, and we’d rather remove its influence on our studies.

We then see that X2 is just twice X1! In other words, these two variables are completely

redundant when considered in the context of the two unobservable underlying factors

Chapter 4 Fun with Eigenvectors

215

that we believe most important. Of course, in our application, neither alone can

substitute for the knowledge gained from both of them, because the “noise” factor V3

impacts them quite differently. But the knowledge of this redundancy itself may give

us valuable insight into the process being studied. And if we know that, in terms of the

useful information, they are redundant, we may be able to replace these two variables

with just their average, or their first principal component. Knowledge is power.

Continuing this intuitive development, we now are at the point of knowing

that our observed variables are defined in terms of their important unobserved

components as follows:

X1 = 1.5 V1 − 1.0 V2
X2 = 3.0 V1 − 2.0 V2

How can we rigorously measure the redundancy of X1 and X2 , in this case coming

up with a measure of perfect redundancy? There are many ways, but my favorite is to

consider each observed variable as a vector in the space defined by the orthogonal

underlying factors. Here, these vectors would be (1.5, -1.0) and (3.0, -2.0). We just

compute the angle between these two vectors, agreeing that smaller angles equate to

greater redundancy. In this example, the angle is zero: perfect redundancy.

Recall that the angle  between two vectors x and y is given by Equation (4.7), in

which • means dot product, and ||.|| means Euclidean length.

	

cos(),qx y

x y

x y
=

i

	
(4.7)

This gives us an alternative but equivalent way to measure redundancy: the dot

product of the two vectors when their lengths have been normalized to equal one. This

dot product will range from a low of -1 when the vectors point in opposite directions to

a high of +1 when they are identical. This leads to another consideration: are X1 and X2

redundant when X1 = -X2? In most applications, we would say yes, because the sign of a

variable is just dependent on some aspect of how it is measured. Another way of looking

at this issue is that knowledge of X1 provides perfect knowledge of X2 when one is just the

negative of the other. This surely fits the definition of redundancy! So we should modify

our redundancy criterion in one small way: let it be the absolute value of the dot product

of the normalized vectors.

Chapter 4 Fun with Eigenvectors

216

But what are the vectors? The example just shown used values made up for this

demonstration. How can we find coefficients for computing observed variables in

terms of unobserved common factors? If you’ve been paying attention to this chapter,

you will instantly know that the dominant (or perhaps all) principal components fit the

bill nicely. As has been stated before, it is very often (though not always!) the case that

early (large eigenvalue) principal components contain most of the useful information

in a set of observed variables, while the late (small eigenvalue) components tend to be

mostly irrelevant noise. Thus, we are strongly inclined to let these dominant principal

components play the role of common factors.

We already saw how to compute the factor structure (correlations of factors with

variables) by multiplying each eigenvector by the square root of its corresponding

eigenvalue. We state without proof (available in many multivariate statistics textbooks)

a rather remarkable fact: the factor structure matrix is also the matrix of coefficients

for computing the standardized observed variables from the values of the principal

components (common factors).

Thus, to compute the redundancy of a pair of variables in what is often a sensible

manner, we decide how many of the dominant principal components are important.

Keep that many columns of the factor structure matrix, and normalize the length of each

row to unity so that we don’t have to worry about the denominator in Equation (4.7).

Then the redundancy of two variables in this context is the absolute value of the dot

product of the corresponding two rows in this re-normalized factor structure matrix.

Now that we know how to measure the redundancy of a pair of variables, we must

consider how to group variables into sets with high internal redundancy. As far as

clustering algorithms go, hierarchical clustering is considered by many (including

myself) to provide the highest quality groups. The major disadvantage of this algorithm

is that its compute time is proportional to the cube of the number of items being

clustered, a deadly flaw if the items number in the thousands or more. But not many

practical applications have this many variables, so this is my recommended method.

The algorithm begins by letting each variable (row in the normalized factor structure

matrix) define its own one-item group. Then it tests every possible pair of groups, finding

the pair that is closest (most redundant; maximum absolute value of dot product).

These two groups are merged into a single group, and a representative matrix row for

this new group is defined. This process repeats until we get down to a single group or the

redundancy measure drops to excessively small values.

When two groups are merged, there are two common methods for defining the

row vector for the combined group. The easier and often slightly superior method is to

Chapter 4 Fun with Eigenvectors

217

just arbitrarily choose the row vector of one of the two groups being merged. A more

complex and occasionally inferior method is to compute a combined centroid, a size-

weighted average of the row vectors of the two merged groups. This will be discussed in

more detail in the next section.

�Code for Clustering Variables
The file AN_CVARS.TXT contains the core C++ code for the algorithm just described.

Error checking, user escape, and other peripheral issues are omitted for clarity. The

calling parameters and local variables are declared as shown next. Initialize the number

of groups to be the number of variables, as we begin with each variable being its own

group. We rename the number of variables from the global npred to nvars purely for

clarity. The ngrp_to_print parameter lets the user control the size of the DATAMINE.LOG

file’s content from this operation; once the number of groups drops this low or lower, the

group membership (list of variables) for each group is printed at each step. This can be

very long if there are numerous variables.

int an_cvars (

 int n_dim,  // Number of initial dimensions to consider

 int ngrp_to_print, // Start printing when n of groups drops this low

 int type // Centroid versus leader method

)

{

 �int i, j, nvars, icand1, icand2, ibest1, ibest2, n_groups, *group_id, *n_in_group;

 double x, dotprod, length, best_dotprod, *centroids;

 char msg[256], msg2[256];

 �n_groups = npred; // �Number of groups; initially, every variable is its own group

 �nvars = npred;  // �This name just makes things more clear; no other reason

Allocate memory. These three items have the following uses:

•	 group_id: For each variable, this holds the ID of the group to which it

belongs

•	 n_in_group: For each group, this holds the number of variables in the

group

Chapter 4 Fun with Eigenvectors

218

•	 centroids: For each group, this holds the vector that defines its leader

or centroid

 group_id = (int *) MALLOC (nvars * sizeof(int));

 n_in_group = (int *) MALLOC (nvars * sizeof(int));

 centroids = (double *) MALLOC (nvars * n_dim * sizeof(double));

The following code initializes the algorithm. When we begin, each variable defines

its own group, so we set the group IDs and group sizes accordingly. By normalizing each

vector to unit length, we don’t have to worry about the denominator in Equation (4.7).

 for (i=0; i<nvars; i++) {

 group_id[i] = i; // �For each variable, this is the group to which it belongs

 n_in_group[i] = 1; // Size of each group

 length = 0.0; // �Will cumulate squared length of this variable's vector

 for (j=0; j<n_dim; j++)

 length += structure[i*nvars+j] * structure[i*nvars+j];

 length = 1.0 / sqrt (length);

 for (j=0; j<n_dim; j++) // �Normalize the length of this variable's vector

  centroids[i*n_dim+j] = length * structure[i*nvars+j];

 }

The hierarchical clustering algorithm now begins. Each pass through the outer loop

merges a single pair of groups, thus decreasing the number of groups by one. Recall that

our merging criterion (measure of redundancy) is the absolute value of the dot product

of the two candidate vectors. We’ll keep track of the score of the best candidate pair in

best_dotprod.

 while (n_groups > 1) {

 best_dotprod = -1.0;

 // Try every pair of groups (icand1 and icand2)

 for (icand1=0; icand1<n_groups-1; icand1++) {

 for (icand2=icand1+1; icand2<n_groups; icand2++) {

 dotprod = 0.0; // Will cumulate for this candidate pair

 for (i=0; i<n_dim; i++)

 dotprod += centroids[icand1*n_dim+i] * centroids[icand2*n_dim+i];

 dotprod = fabs (dotprod); // Handle symmetry

Chapter 4 Fun with Eigenvectors

219

 if (dotprod > best_dotprod) { // �Keep track of the pair with best criterion

 best_dotprod = dotprod;

 ibest1 = icand1;

 ibest2 = icand2;

 }

 } // For icand2

 } // For icand1

For the user’s information, print the results of this merger. Tiny floating-point errors

may cause the computed dot product to trivially exceed its theoretical limit. This would

be a problem for the acos() routine that is used to get the corresponding angle for the

user, so make sure it does not happen.

 if (best_dotprod > 1.0) // Should never happen, but handle tiny fpt errors

   best_dotprod = 1.0;

 sprintf_s (msg,

   "Merged groups %d and %d separated by %.2lf degrees; now have %d groups",

   ibest1+1, ibest2+1, acos(best_dotprod)*180.0/PI, n_groups-1);

 audit (msg); // This writes to the DATAMINE.LOG file

We will soon absorb the group having the larger index into the smaller. If the user

requests the leader method, we just leave the “centroid” of the absorbing group alone.

But if the centroid method is requested, we must compute the centroid of the merged

group as a size-weighted average of the two merging groups. A more theoretically

correct method would be to project the two vectors onto a plane and subdivide the angle

between them on this plane. But the approximation used here is very good. Besides, I see

no practical benefit to the projection method, so there is no point bothering. Remember

that we must keep the vector at unit length, so normalize it.

 if (type) { // Did the user request centroid method?

  // �Recompute the (approximate) centroid of the absorbing (smaller id) group

   length = 0.0;

   for (j=0; j<n_dim; j++) {

  x = (n_in_group[ibest1] * centroids[ibest1*n_dim+j] +

 n_in_group[ibest2] * centroids[ibest2*n_dim+j]) /

 (n_in_group[ibest1] + n_in_group[ibest2]);

  centroids[ibest1*n_dim+j] = x;

  length += x * x;

  }

Chapter 4 Fun with Eigenvectors

220

  length = 1.0 / sqrt (length);

   for (j=0; j<n_dim; j++)

   centroids[ibest1*n_dim+j] *= length; // The length must always be one

  } // If type is centroid (not leader)

Here is where we absorb the larger-index group into the smaller. The following

operations are involved in this merger:

•	 Increment the group size of the absorbing group by the size of the

absorbed group.

•	 Any group formerly marked as belonging to the absorbed group must

be remapped to belong to the absorbing group.

•	 The group ID of the absorbed group is now unused, so remap all

larger group IDs to be one smaller, thus filling in the gap.

•	 To match the “crunching down” of variable group IDs above the

absorbed group, similarly move down by one slot every group size

and centroid for groups above the absorbed group.

•	 Decrement the number of groups.

 n_in_group[ibest1] += n_in_group[ibest2]; //� Group 1 just absorbed group 2

 // Remap the largest and then pull down all groups above largest.

 for (i=0; i<nvars; i++) {

 if (group_id[i] == ibest2) // If this variable was in Group 2

 group_id[i] = ibest1;  // �Reclassify it as being in Group 1, the absorbing group

 if (group_id[i] > ibest2) // Groups above absorbed group

 --group_id[i]; // �Now have to fill in the hole below them

 }

 for (i=ibest2+1; i<n_groups; i++) { // �Crunch down stuff above absorbed group

 n_in_group[i-1] = n_in_group[i];

 for (j=0; j<n_dim; j++)

 centroids[(i-1)*n_dim+j] = centroids[i*n_dim+j];

 }

Chapter 4 Fun with Eigenvectors

221

 // Optionally print group membership here

 --n_groups; // �We just lost a group (ibest2 was absorbed into ibest1)

 } // while (n_groups > 1)

// Finished. Free group_id, n_in_group, and c entroids here.

�Separating Individual from Common Variance
We’ve seen how computing the principal components of a correlation matrix, trivially

derived from the eigenvectors, has many uses. We can identify the dominant directions

of variance, which is usually quite revealing of the underlying structures of a set of

measured variables. More importantly (in my own work, at least) is that we can then

cluster variables in a dominant subspace to identify groups of redundant or nearly

redundant measurements taken in the context of the subspace, ignoring contributions

from less dominant (more likely noise) subspaces. Finally, developers willing to believe

that small-eigenvalue directions have little or no relevance to their application can

discard these directions and thereby create a smaller subset of new variables for their

application, those based strictly on dominant components.

But when it comes to exploratory data analysis, a key first step in any research

endeavor, simple principal components study suffers from several weaknesses that can

seriously impede its utility. These weaknesses, discussed soon, arise from Equation (4.2)

on page 187. To understand why, remember that a major goal in this preliminary data

exploration is to determine if our observed variables (or some designated subset of

them) are arising from some other, usually much smaller, set of unobserved (or at least

unmeasured) common factors.

As an example from the medical field, we may be studying a large collection of

patients and measuring the degree, presence, or absence of specific health conditions

such as height, weight, various blood count statistics, frequency of headache, blood

pressure, depression, and so forth. What may be difficult or impossible to observe is their

unreported food consumption, illegal or unprescribed drug usage, sexual proclivities,

marital happiness, and a myriad of other touchy issues. If we can at least determine the

existence of underlying common factors driving the observed variables, we may be able

to benefit from nothing more than the knowledge of their existence in terms of how

they impact the observed variables. If we are lucky, we may perhaps even come up with

reasonable names for these common factors, though in my experience, assigning names

Chapter 4 Fun with Eigenvectors

222

is of secondary importance compared to understanding their impact on the observed

variables.

We can use ordinary multiple regression to invert Equation (4.2) on page 187 in order

to devise Equation (4.8), which computes our observed variables x if we are given values

for the unobserved common factors y.

	 X Ay= 	 (4.8)

To keep things simple in this presentation, we continue the assumption stated at

the start that the observed variables that make up the x vector have been standardized

to have zero mean and unit variance. This is not strictly required in the traditional

developments. However, this assumption imposes no practical limitations of any sort,

and it greatly simplifies the math that follows, as we can ignore means and scaling

constants. What is required in this and traditional presentations is that the y vector

components, the unobserved common factors, has zero mean and unit variance. If you

want more rigorous mathematics instead of the simplified versions in this text, you can

easily find detailed presentations all over the Internet and in statistics references.

Surprisingly to many, it turns out that the A matrix of Equation (4.8) is just the factor

structure matrix we discussed on page 189. In other words, the matrix of correlations

between the observed variables and the unobserved common factors is also the

regression matrix that lets us (if we were able!) compute the observed variables from

the unobserved common factors. (Wow!) If the correlation matrix of the observed data

is full rank (no perfect colinearity), and if we keep all eigenvectors, this computation

is exact. Otherwise, the computed values of x from Equation (4.8) are least- squares

approximations.

We have one last interesting tidbit to present before getting on with the main topics

of this section: a serious problem with principal components when used for initial

data exploration, and a solution for this problem. Recall that we are designating R as

the correlation matrix of the raw data x. Another fundamental equation from principal

components is that we can reproduce this correlation matrix from the factor structure

(often called the factor loading matrix when used in this regression context). This is

shown in Equation (4.9).

	 R AA= ¢ 	 (4.9)

Chapter 4 Fun with Eigenvectors

223

If A contains all factors (a square matrix), the reproduction is exact. If some columns

of A have been removed (some principal components discarded as unimportant), then

the reproduction is an approximation.

Pant, pant. At long last we are ready to discuss the data-exploration issues with

Equation (4.2) on page 187 and the two equations just shown. The heart of the problem

is that the observed-to-factor equation, (4.2), and the factor-to-observed equation, (4.8),

are nothing more than transformations. They map one set of variables to another set

of variables. And Equation (4.9) is almost trivial, showing how under the principal

components model, the correlation matrix of the data is explained by nothing more

than the product of the factor loading matrix with its own transpose. This formulation

does have a certain elegant simplicity, but we would much rather have a more general,

powerful model for expressing the impact of unobservable common factors on our

observed variables.

In particular, in addition to the variance that is attributable to the common factors,

we would like to be able to account for any degree of variance in each observed variable

that is unique to that variable. It is a severe limitation to require that all of the variation

we see in an observed variable be attributable to common factors. We want to assume

the existence of unique variance as well. This unique variance may be valid information

not related to the common factors, or it may just be random noise. Regardless, requiring

that the hypothetical common factors be able to account for all variance in all observed

variables is a significant impediment to easy interpretation of numerical results. It forces

the computed A matrix to conform to unreasonable expectations. Noise happens, and if

we pretend it doesn’t, we pay a price.

So let’s slightly modify the model. Equation (4.8) shows that our observed variables

are just linear combinations of the unobserved factors. We make one seemingly trivial

change, and in return we get enormously increased power. Just let the observed vector x

also include an error vector ε, as shown in Equation (4.10).

	 X Ay= + e 	 (4.10)

We make the innocuous assumption that the error vector follows a multivariate

normal distribution with mean zero, and the covariance matrix of this error vector is

diagonal. In other words, the errors for the observed variables are uncorrelated, and

their variances need not be equal. These variances are traditionally designated by the

Greek letter Psi (Ψ).

Chapter 4 Fun with Eigenvectors

224

Before venturing any further into the mathematics of what is traditionally called

maximum likelihood factor analysis, let’s take a look at a motivational example of what

the inclusion of this little error term can do for us. I created ten independent random

variables called RAND0 through RAND9. I then defined three new random variables in

terms of several of them, with the idea that RAND1 through RAND4 can serve as both

unobserved common factors and observed variables:

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

Look at the two tables on the next page, which arise from keeping the four most

dominant eigenvectors of this dataset’s correlation matrix. And you might want to review

the definition of communality given on page 193. Communality is the sum of the squares

of the factor structure for that variable, and it expresses the fraction of the variance of

each observed variable that is explained by the retained factors. The observed variables

have been standardized to unit variance, so one minus the communality of a variable

can be loosely interpreted as the unexplained variance, the variance of an observed

variable not attributable to the common factors that the user retained. This is loosely

analogous to Psi, the variance of the error term just discussed.

The topmost of these two tables is a principal components analysis, which disallows

explicit inclusion of unexplained variance. Psi can only be roughly inferred as one

minus the communality, a clumsy and often inaccurate approach. (For example, with

RAND0, 0.8056 = 1 - 0.01222 - 0.00662 - 0.37412 - 0.23292.) The three sum variables

(SUM12, SUM34, SUM1234) in this top table have small inferred unexplained variance,

as expected since they have much in common with other observed variables. The

four variables that go into these sums, RAND1 through RAND4, also have smallish

unexplained variance, while the other variables are larger.

But compare this to the bottom table, which is the result of the factor analysis

procedures to be described in this section. Now the distinction between observed

variables that have common ancestry and those that do not is abundantly clear. The

seven variables that share underlying driving forces have an independent-variance

measure (Psi) of zero, while the variables that have nothing in common are shown to be

nearly 100 percent independent. The difference in interpretability is profound.

Chapter 4 Fun with Eigenvectors

225

Initial evals, cumulative pct, Psi, and loadings

 Eigenvalue 2.983 2.019 1.068 1.044

 Cumulative 22.945 38.474 46.688 54.718

 Initial Psi

 RAND0 0.8056 −0.0122 0.0066 0.3741 0.2329

 RAND1 0.2052 0.4851 0.4980 −0.5263 −0.1858

 RAND2 0.2050 0.4664 0.5247 0.5167 0.1873

 RAND3 0.3942 0.5149 −0.4958 0.1883 −0.2437

 RAND4 0.4028 0.5222 −0.4822 −0.1692 0.2518

 RAND5 0.6796 0.0086 0.0043 −0.5326 0.1917

 RAND6 0.7785 0.0082 0.0479 0.0341 0.4669

 RAND7 0.8039 −0.0287 0.0109 −0.0742 0.4355

 RAND8 0.7791 0.0019 0.0045 −0.0287 0.4691

 RAND9 0.8299 0.0093 0.0943 0.1684 −0.3643

 SUM12 0.0017 0.6805 0.7315 −0.0065 0.0013

 SUM1234 0.0010 0.9997 0.0205 0.0054 0.0045

 SUM34 0.0011 0.7270 −0.6856 0.0138 0.0051

Final factor variances, Psi, and factor loadings

 Squared length 2.982 2.010 0.844 0.736

 Final Psi

 RAND0 0.9991 −0.0080 0.0039 0.0255 0.0012

 RAND1 0.0000 0.4861 0.4965 −0.6099 −0.2400

 RAND2 0.0000 0.4654 0.5262 0.6003 0.2415

 RAND3 0.0000 0.5174 −0.4915 0.2427 −0.5519

 RAND4 0.0000 0.5196 −0.4866 −0.2238 0.5611

 RAND5 0.9985 0.0058 0.0022 −0.0346 −0.0009

 RAND6 0.9988 0.0055 0.0251 0.0191 0.0106

 RAND7 0.9989 −0.0193 0.0044 −0.0083 0.0219

 RAND8 0.9998 0.0014 0.0029 −0.0035 0.0122

 RAND9 0.9975 0.0064 0.0483 0.0096 −0.0049

 SUM12 0.0000 0.6805 0.7315 −0.0065 0.0012

 SUM1234 0.0000 0.9997 0.0205 0.0054 0.0045

 SUM34 0.0000 0.7270 −0.6857 0.0138 0.0051

Chapter 4 Fun with Eigenvectors

226

Astute readers familiar with factor analysis will notice a peculiarity about the second

table: in traditional factor analysis, the sum of squares of the loadings in each row, plus

the Psi for that row, add up to the variance of the observed variable of that row.

(This identity may become clearer in a moment when we discuss the upcoming

Equation (4.11).) Because our observed variables have been standardized, this sum

should be 1.0, but for several rows the sum doesn’t quite make it. This is because there

is some perfect colinearity in the dataset; the SUM variables are exact functions of some

of the RAND variables. In traditional factor analysis, such colinearity is forbidden. But

in the algorithm that I use, colinearity usually does not cause numerical difficulties,

so I allow it, especially since the results of this loose algorithm can make colinearities

obvious, as happened in that contrived example. If you have no idea what this paragraph

just said, don’t worry about it; just be aware that if your data does contain any perfect

colinearity, results may be somewhat compromised, but the colinearity will likely be

revealed and thereby made easy to eliminate before further study is made!

Now that we’re nicely motivated, let’s proceed with an overview of the mathematics

of maximum likelihood factor analysis. As is my usual practice, I keep the mathematical

detail limited to the bare minimum needed to gain an intuitive understanding of what’s

going on and to understand the computer code that will follow. If you feel cheated of

rigor, you will have no trouble finding what you desire on the Internet and any of the

numerous textbooks on the subject. Later, when the code is presented, I’ll mention two

particularly useful publications.

Equation (4.8) on page 222 shows how, in the principal components model, the

observed variables are produced by the unobserved factors. This led to Equation (4.9)

showing how the correlation matrix of the observed variables relates to the loadings.

Now we extend this idea to include the unexplained-variance term. In this more general

model, we can’t call the covariance matrix of the observed variables a correlation

matrix, although the analogy is strong. Thus, instead of referring to it as R, we’ll follow

the tradition of using the Greek letter sigma (Σ) to designate the covariance matrix of

the observed variables, x. As mentioned earlier, the covariance matrix Ψ of the ε term is

diagonal, with the individual variances on the diagonal. Then, when our model is given

by Equation (4.10) on page 223, the analog of Equation (4.9) on page 222 is given by

Equation (4.11).

	 S Y= +¢AA 	 (4.11)

Chapter 4 Fun with Eigenvectors

227

This equation should satisfy our intuition, because it says that the covariance of a

model that includes unique variance for each measured variable is just the covariance

created by the common-factor loadings plus the unique variances.

In the simple principal components model (no unique variances), estimating the

A matrix is trivial; it’s just the eigenvectors, each multiplied by the square root of its

corresponding eigenvalue. But when we include unique variance terms, things become a

lot messier. No direct solution is possible. The most common (and likely best) approach

is to find A and Ψ, which maximize the normal-distribution likelihood function

associated with this model.

If there are n cases, the log likelihood function is given by Equation (4.12), in which |.|

means the determinant of the matrix, tr(.) means the trace (sum of diagonal elements),

and S is the sample covariance matrix (which in our context is also the sample

correlation matrix, because the observed variables are standardized). Also, Σ is defined

by Equation (4.11).

	
l

n
trA

2
S,Y SS() = - + ()éë ùû

-ln 1

	 (4.12)

For the remainder of this discussion of maximum likelihood factor analysis,

including the code presented later, we’ll often be mentioning two constants in the

application, so we’ll give them names now. There are npred measured variables. (This

name comes from the fact that the variables are most likely predictor candidates in the

application.) And we are assuming that there are n_dim unobserved common factors. The

developer is responsible for coming up with a reasonable guess for n_dim, although later

we’ll discuss how this guess can be made somewhat intelligently. Naturally, n_dim <=

npred, and n_dim will be much less than npred in nearly any practical application.

This dimensionality difference inspires an important observation about the

log likelihood function, Equation (4.12). The Σ matrix is npred square, and in many

applications npred will be quite large. In some of my applications, npred might be on the

order of 100 variables, or even 1000, while n_dim might be 5 to 10 or so. Equation (4.12)

involves inverting and finding the determinant of a potentially gigantic matrix, not a

trivial undertaking.

Luckily, the definition of Σ given by Equation (4.11) lets us write its determinant

and inverse in a way that is a lot faster to compute. Don’t even think about using the

Chapter 4 Fun with Eigenvectors

228

naive version of Equation (4.12). The required quantities are given in Equations (4.13)

and (4.14), respectively. The derivation of these fierce identities can be found in several

sources, the most detailed (I believe) being Chapter 4 of Factor Analysis as a Statistical

Method, 2nd Ed by Lawley and Maxwell.

	
S Y Y= + ¢ -I A A1 	 (4.13)

	
S Y Y Y Y- - - - - -= - +()¢ ¢1 1 1 1 1 1A I A A A 	 (4.14)

Because Ψ is a diagonal matrix, its inverse is also a diagonal matrix containing

the reciprocals of the diagonal elements of Ψ. That’s a trivial operation. And the key is

that the only general matrix that must be inverted is n_dim square, which in nearly all

practical operations will be a whole lot faster than inverting an npred square matrix.

As for the determinant, Equation (4.13), both terms are easy. The determinant of Ψ is

just the product of its diagonal elements, and the general matrix whose determinant

is needed is the same matrix that has to be inverted for Equation (4.14). For those who

were sleeping that day in linear algebra class, know that the determinant of a matrix is

trivial to compute as part of the inversion process.

�Log Likelihood the Slow, Definitional Way
In this short section I’ll present code for directly using Equation (4.12) to compute the

log likelihood function (except for the factor of n/2, which is constant and would be just

a waste of computer time). No sane programmer would use this method, as it involves

inversion of a potentially gigantic matrix. However, it is instructive and simple and

therefore worthy of a quick treatment.

In this code, we concatenate the Ψ diagonal matrix containing npred parameters with the

npred by n_dim matrix of factor loadings, A, into a single vector that we will call theta (θ). This

greatly simplifies some optimization code that we’ll see later. So the first step here is to split

them apart into PSI and A. Then we use Equation (4.11) to compute Σ in TEMPmat1.

double AnalyzeFactorChild::log_lik (double *theta)

{

 int i, j, k;

 double sum, det, *PSI, *A;

Chapter 4 Fun with Eigenvectors

229

 PSI = theta;

 A = theta + npred;

/*

 Sigma inverse = (Psi + A A') inverse

 Determinant of Sigma

*/

 for (i=0; i<npred; i++) {

 for (j=0; j<npred; j++) {

 sum = 0.0;

 for (k=0; k<n_dim; k++)

 sum += A[i*n_dim+k] * A[j*n_dim+k];

 TEMPmat1[i*npred+j] = sum; // A A'

 }

 TEMPmat1[i*npred+i] += PSI[i]; // This completes Equation (4.11)

 }

Given the safety precautions in the implementation, it would be highly unusual for Σ

to be singular, but if our inversion routine reports this unfortunate event, we return such

a horrendous log likelihood that this problematic search region will be abandoned by the

optimization algorithm. Our inversion routine (the source code is in INVERT.CPP) computes

the determinant of the matrix as an efficient byproduct of inversion. Then we trivially

complete Equation (4.12). Because we need only the trace of the matrix product, we avoid

computing off-diagonal elements. Recall that covar is symmetric, so we can access elements

in either direction. The direction used here is somewhat faster on some compilers.

� k = invert (npred, TEMPmat1, TEMPmat2, &det, invert_rwork, invert_iwork);

 if (k)

 return -1.e60;

/*

 Trace of above times covar

*/

Chapter 4 Fun with Eigenvectors

230

 sum = 0.0;

 for (i=0; i<npred; i++) {

 for (k=0; k<npred; k++)

 sum += TEMPmat2[i*npred+k] * covar[i*npred+k];

 }

 return -log(det) - sum;

}

�Log Likelihood the Fast, Intelligent Way
This method, which is mathematically identical to the direct method just shown, can

be orders of magnitude faster than the direct method because of one reason only: the

matrix that we must invert will almost always be much smaller than that in the direct

method. We still use the same definition of log likelihood, Equation (4.12), but we

compute Σ−1 and the determinant more efficiently, using Equations (4.13) and (4.14).

Here is the code:

double AnalyzeFactorChild::log_lik_fast (double *theta)

{

 int i, j, k;

 double sum, det, *PSI, *A;

 PSI = theta;

 A = theta + npred;

/*

 We compute the inverse and determinant of sigma using the fast method

*/

 // �Compute F = PsiInverse A, a component of Equations 4.13 and 4.14 on Page 228

 for (i=0; i<npred; i++) {

 for (j=0; j<n_dim; j++)

 Fmat[i*n_dim+j] = Amat[i*n_dim+j] / PSIvec[i];

 }

Chapter 4 Fun with Eigenvectors

231

 // (A'F + I) completes the n_dim by n_dim matrix which we must invert

 for (i=0; i<n_dim; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<npred; k++)

 sum += Amat[k*n_dim+i] * Fmat[k*n_dim+j];

 TEMPmat1[i*n_dim+j] = sum; // This is A' F

 }

 TEMPmat1[i*n_dim+i] += 1.0;  // Add in the identity matrix

 }

 // �Invert the matrix; in extremely rare case that it is singular, return horrid log likelihood

 // This also gives us the determinant we will need later

 �k = invert (n_dim, TEMPmat1, TEMPmat2, &det, invert_rwork, invert_iwork);

 if (k)

 return -1.e60;

 // Premultiply that by F = PsiInverse A to continue Equation 4.14

 for (i=0; i<npred; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<n_dim; k++)

 sum += Fmat[i*n_dim+k] * TEMPmat2[k*n_dim+j];

 TEMPmat1[i*n_dim+j] = sum;

 }

 }

 // Postmultiply that by F Transpose and simultaneously subtract it from Psi Inverse

 // This completes Equation 4.14, giving us the inverse of Sigma

 for (i=0; i<npred; i++) {

 for (j=0; j<npred; j++) {

 if (i == j)

 sum = 1.0 / PSIvec[i]; // Psi Inverse; we subtract from this

Chapter 4 Fun with Eigenvectors

232

 else

 sum = 0.0;

 for (k=0; k<n_dim; k++)

 sum -= TEMPmat1[i*n_dim+k] * Fmat[j*n_dim+k];

 TEMPmat2[i*npred+j] = sum;

 }

 }

 // The rest of this code is identical to the slow method, just Equation 4.12 without n/2

 // Compute the trace of sigma-inverse times covar

 sum = 0.0;

 for (i=0; i<npred; i++) {

 for (k=0; k<npred; k++)

 sum += TEMPmat2[i*npred+k] * covar[i*npred+k];

 }

 // Finish computation of the determinant of Sigma

 for (i=0; i<npred; i++)

 det *= PSIvec[i];

 return -log(det) - sum;

}

�The Basic Expectation Maximization Algorithm
Even with the simplifications just presented, direct numerical maximization of

Equation (4.12) is much too slow to be practical. With the discovery some years ago

of a wide family of optimization algorithms called expectation maximization,

we suddenly had a method of maximizing the log likelihood with an iterative algorithm

that, under very reasonable conditions, is guaranteed to converge to a global maximum

(there are an infinite number of them). Full theoretical derivation of this algorithm is

far beyond the scope of this text. However, we will present the key equations for an

efficient implementation of this algorithm, which is a core component of the faster

method shown in the next section. The clever sequence of operations given here is taken

from the very helpful paper “ML Estimation for Factor Analysis: EM or Non-EM?” by

J. H. Zhao, Philip L. H. Yu, and Qibao Jiang. This paper can be downloaded for free from

Chapter 4 Fun with Eigenvectors

233

several sites on the Internet; a quick search will find it. If you have no luck, contact me at

my website email address and I’ll send you a PDF.

The algorithm begins by using ordinary principal components to find starting

estimates for A and Ψ:

	 1.	 Compute S, the covariance matrix of the observed variables.

Because we standardize these variables, this is also their

correlation matrix, although standardization is not required for

the general form of the algorithm. However, standardization aids

numerical stability, so I always do it.

	 2.	 Compute the starting estimate of A by keeping the n_dim dominant

eigenvectors of the covariance matrix and multiplying each

eigenvector by the square root of its corresponding eigenvalue.

Thus, we have A0 as an npred by the n_dim matrix.

	 3.	 Compute the starting estimate of Ψ by subtracting the variance of

each variable implied by AA′ from the actual covariance. Look back at

Equation (4.11) on page 226. Assume for this starting approximation

that Σ=S and solve for Ψ, as shown in Equation (4.15).

	 Y0 S AA= - ¢()diag 	 (4.15)

The basic expectation-maximization (EM) algorithm then iterates as shown next.

Each iteration increases the log likelihood function, although in practice convergence

can sometimes be excruciatingly slow.

	 F A= -Yt t
1

	 (4.16)

	 G SF= 	 (4.17)

	
H G I A F= + ¢()t

-1
	 (4.18)

	 A G FI H1t+
-= +()¢ 1

	 (4.19)

	
YYt tdiag+ += - ¢éë ùû1 1S HA 	 (4.20)

Chapter 4 Fun with Eigenvectors

234

There are several issues to consider when programming the basic EM algorithm:

•	 Equation (4.16) implies that the independent variances (the diagonal

of Psi) must be positive, lest we divide by zero. This can be imposed

by checking the new values computed by Equation (4.20) and

resetting them slightly above zero if necessary.

•	 This diddling with Psi ruins the guaranty of convergence, although

in practice, as long as you let them get very close to zero, this should

not be a problem. Nevertheless, a responsible programmer takes

into account that the algorithm could fall into an endless loop of EM

driving Psi below the limit and then the program pushing it back up

again. Users hate endless loops.

•	 Equations (4.18) and (4.19) involve inversion of a matrix that

could, in rare pathological cases, be singular. Make sure you use an

inversion routine that reports singularity and gracefully abort if it

happens. It is extremely rare, but we do care, do we not?

�Code for Basic Expectation Maximization
The class function that implements the algorithm shown in the prior section can be

found in the file AN_FACTOR.TXT. Here we present it, along with a discussion of salient

points as needed. The full context of this routine will appear later, but because it is

straightforward and all variables are clearly named to correspond to the equations, I’ll

present it here, immediately after the algorithm. Memory allocations for the many arrays

can be found on page 248.

int AnalyzeFactorChild::EMstep ()

{

 int i, j, k;

 double sum;

/*

 Compute F = PsiInverse A which is Equation (4.16)

 We trust that we have never let PSIvec drop to a computational zero.

*/

Chapter 4 Fun with Eigenvectors

235

 for (i=0; i<npred; i++) {

 for (j=0; j<n_dim; j++)

 Fmat[i*n_dim+j] = Amat[i*n_dim+j] / PSIvec[i];

 }

/*

 Compute G = covar F which is Equation (4.17)

 �Recall that S in the equation is the covariance (correlation) matrix ‘covar’

*/

 for (i=0; i<npred; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<npred; k++)

 sum += covar[i*npred+k] * Fmat[k*n_dim+j];

 Gmat[i*n_dim+j] = sum;

 }

 }

/*

 Compute H in multiple steps for Equation (4.18)

*/

 // (A'F + I) Inverse

 for (i=0; i<n_dim; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<npred; k++)

 sum += Amat[k*n_dim+i] * Fmat[k*n_dim+j];

 TEMPmat1[i*n_dim+j] = sum; // A’ F

 }

 �TEMPmat1[i*n_dim+i] += 1.0; // This is where we add in the identity matrix

 }

 k = invert (n_dim, TEMPmat1, TEMPmat2, &sum, invert_rwork, invert_iwork);

 if (k) // �This would be an extremely rare pathological event that requires abort

 return 1;

Chapter 4 Fun with Eigenvectors

236

 // G times above finishes Equation (4.18)

 for (i=0; i<npred; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<n_dim; k++)

 sum += Gmat[i*n_dim+k] * TEMPmat2[k*n_dim+j];

 Hmat[i*n_dim+j] = sum;

 }

 }

/*

 Update A in several steps for Equation (4.19)

*/

 // (H'F + I) Inverse

 for (i=0; i<n_dim; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<npred; k++)

 sum += Hmat[k*n_dim+i] * Fmat[k*n_dim+j];

 TEMPmat1[i*n_dim+j] = sum; // H’ F

 }

 �TEMPmat1[i*n_dim+i] += 1.0; // This is where we add in the identity matrix

 }

 �k = invert (n_dim, TEMPmat1, TEMPmat2, &sum, invert_rwork, invert_iwork);

 �if (k) // This would be an extremely rare pathological event that requires abort

 return 1;

 // G times above completes Equation (4.19)

 for (i=0; i<npred; i++) {

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (k=0; k<n_dim; k++)

 sum += Gmat[i*n_dim+k] * TEMPmat2[k*n_dim+j];

 Amat[i*n_dim+j] = sum;

 }

 }

Chapter 4 Fun with Eigenvectors

237

/*

 Update Psi = diag (covar - H A') which is Equation (4.20)

 �We limit it away from zero, because inversion of matrices becomes unstable as Psi gets small.

 �The consequence of this limiting is that, theoretically at least, increase of log likelihood is no longer

guaranteed. In practice, I think decrease would be nearly impossible.

 �Nonetheless, you must prepare for this possibility when this routine is invoked.

*/

 for (i=0; i<npred; i++) {

 sum = covar[i*npred+i];

 for (k=0; k<n_dim; k++)

 sum -= Hmat[i*n_dim+k] * Amat[i*n_dim+k];

 if (sum < 1.e-6) // �We must keep Psi away from zero to avoid fpt issues

 sum = 1.e-6;

 if (sum > 1.0 - 1.e-6) // �Not usual; my own restriction due to standardization

 sum = 1.0 - 1.e-6;

 PSIvec[i] = sum;

 }

 return 0; // Tells caller that all is good in the world

}

�Accelerating the EM Algorithm
Because the EM algorithm just presented can often suffer from slow convergence

(a tendency to zigzag back and forth across the parameter domain), great effort has

gone into finding ways to speed convergence. An Internet search will reveal a vast array

of methods. I’ve studied most of them and done considerable experimentation. In my

opinion, the best (fastest and most reliable convergence) has been named DECME-2s

by its authors. Theoretical details can be found in the manuscript The Dynamic ECME

Algorithm by Yunxiao He (Yale University) and Chuanhai Liu (Purdue University).

It should be easy to find on the Internet. If you have no luck, send me an e-mail at my

web site and I’ll email you a PDF.

Here is an overview of how this acceleration algorithm works. We iterate two

very different optimization steps; this iteration will be discussed later, when the code

is presented. One step is the EM algorithm just shown. The other step is quadratic

Chapter 4 Fun with Eigenvectors

238

optimization, which is the subject of this section. We alternate them in a loop until

convergence is obtained. Note that the loading matrix is unique only up to orthogonal

rotation, so there is an infinite number of equivalent global maxima.

As was mentioned in the log likelihood code, this presentation is easier if we

concatenate the Ψ diagonal matrix containing npred parameters with the npred by n_dim

matrix of factor loadings, A, into a single vector that we will call theta (θ). We will roughly

follow the presentation in the He and Liu paper but change a few bits of notation in a

way that improves readability, at the minor cost of some rigorous notational correctness.

Any such compromises are purely notational and in the spirit of specializing in the

current application, and they do not damage mathematical correctness.

Suppose we have been iterating long enough to have evaluated the log likelihood

at three different points. The most current point (parameter set) is theta_t (θt)

with computed log likelihood LL_t. The immediately prior point is theta_tm1 (θt-1) with

computed log likelihood LL_tm1, and the point before that is theta_tm2 (θt-2) with

computed log likelihood LL_tm2. Also suppose we have just completed an EM step as

described in the prior two sections. We now embark on what is called a QUAD step.

The idea behind a QUAD step is that, especially when in the vicinity of a global

maximum, the log likelihood function tends to become approximately quadratic. There

are any number of ways we could take advantage of this fact. We could pick any single

parameter, or combination of parameters defining a direction, fit a parabola, and find

the maximum of this parabola as an ideally better point. Or we could use two parameters

or directions or three or however many we wish, fit a quadratic surface, and find the

maximum of this surface. Of course, the more directions we employ, the more free

parameters must be estimated for the quadratic surface fit and hence the more (very

expensive!) evaluations of the log likelihood function nearby are needed. He and Liu

compromise on using two directions.

Which two directions are best? The direction taken by the just-completed EM

step, which is θt - θt-1, certainly is reasonable; perhaps the EM step was on the right

track with the direction but stepped a little too far or not quite far enough. Much study

indicates that a major weakness of EM is that it zigzags back and forth, closely retracing

prior movements like a sailboat tacking into the wind, or a switchback path up a

mountainside. This inspires us to use θt - θt-2 as the other direction for the quadratic fit.

It is likely to be fairly orthogonal to the first direction yet lie on a good plane in regard

to most parameters. Thus, it is reasonable to approximate the log likelihood function in

Chapter 4 Fun with Eigenvectors

239

the vicinity of θt by Equation (4.21), which is the actual log likelihood function when it is

restricted to the two directions just described.

	
f x, y l x yt t t t t()= + -() -()éë ùûqq qq qq ++ qq qq- -1 2 	 (4.21)

We then approximate this function with the quadratic function f * shown in

Equation (4.22). H is the two-by-two symmetric matrix of the second-order coefficients,

with constants c and d on the diagonal, and e off-diagonal.

	 f x y f x y a b x y x y* , , , , ,() = + ()()¢ + () ()¢0 H 	 (4.22)

This quadratic approximation has six free parameters (f0, a, b, c, d, e), so we need six

independent points at which the log likelihood is evaluated. For maximum numerical

accuracy, they should be well separated and in the vicinity of θt. As was stated at the

beginning of this section, we already have three such points (θt, θt-1, and θt-2) that define

the plane in which we are operating. The logical choice for one of these would be to shoot

past θt in the θt - θt-1 direction, going the same distance, thus placing θt midway between

θt-1 and the new point. We could do the same with θt-2, again having θt be midway between

θt-2 and the new point. The sixth and final point does not have such nice symmetry, but

the logical choice would be to move past θt in the direction and distance of θt-1 - θt-2. There

is no guarantee that these six points are spaced well enough apart to ensure numerical

accuracy, and we should check on this, but in most cases they will be fine.

There is a complication: the individual, unique variances on the diagonal of Ψ

cannot fall to zero, lest Equation (4.16) on page 233 perform the unthinkable. In fact,

they cannot even get very close to zero, as this would introduce numerical instability all

over the place. Moreover, my own version of the maximum likelihood algorithm imposes

the additional restriction that the unique variances cannot get excessively close to one.

This is not standard practice. The general algorithm does not require that the observed

variables be standardized. As a consequence, there is no upper bound on the unique

variances. But my implementation standardizes the variables, so a variance in excess of

one makes no sense. It still may happen that the A matrix of factor loadings can imply

variance greater than one, but in practice this tends to not happen, and even if it were

to happen, the practical implication for data exploration are inconsequential, so no

restrictions are placed on A. But standardization and enforcement of a 0-1 range for the

unique variance makes interpreting these very important parameters easy. This is the

justification for my modification of the usual algorithm. If you don’t like it, refraining

Chapter 4 Fun with Eigenvectors

240

from standardization and removing upper bounds in the few places they occur in the

code is trivially easy.

This 0-1 restriction means that we can’t just automatically jump past θt as we find the

three new points that complete the set of six. We have to make sure that we do not jump

past a limit of zero or one. The easiest way to do this is to limit the jump size by letting

the new point be θt plus a multiplier times the distance and direction defining the jump.

Ideally, this multiplier will be one, which will leave θt centered as discussed earlier. But if

this jump would take us outside a limit, we lower the multiplier as needed. In particular,

we define the three new points as follows:

	
x1 1 1= + -()qq aa qq qqt t t - 	 (4.23)

	
x2 2 2= + -()qq aa qq qqt t t - 	 (4.24)

	
x3 3 2= + -()qq aa qq qqt t t- -1 	 (4.25)

In each of these three cases, for the sake of good spacing we let á be 1.0 if possible,

but less if needed to stay inside the limit. If it turns out that á needs to be tiny in order to

stay inside the limit, there’s no point in continuing, because the points will be too close;

computation of the quadratic fit coefficients will be ill-conditioned.

We already know the log likelihood of θt, θt-1, and θt-2. We compute the log likelihood

of each of the three new points. The constant f0 in Equation (4.22) would clearly best be

l(θt) so that the function is centered there. The remaining five coefficients are computed

as shown here:

	
a=

l l l lt t txx qq aa qq qq

aa aa
--1 1

2
1

1 1
2

()- ()- ()- ()é
ë

ù
û

+ 	
(4.26)

	
b=

l l l lt t txx qq aa qq qq

aa aa
--1 2

2
2

2 2
2

()- ()- ()- ()é
ë

ù
û

+ 	
(4.27)

	 c l l at t= ()- ()+-qq qq1 	 (4.28)

	
d l l bt= ()- ()+-qq qq2 t 	 (4.29)

	
e

l l a b c dt= -
()- ()- -() - +()xx qq aa aa

aa
3 3 3

2

3
22 	

(4.30)

Chapter 4 Fun with Eigenvectors

241

The quadratic function expressed in Equation (4.22) on page 239 has a zero gradient

at the (x,y) point given by Equation (4.31). This will usually be its maximum, although it

will often be a saddle point. Only under rare pathological conditions will it be a minimum.

Note that in the He and Liu paper cited earlier, they accidentally omit the minus sign.

	
x y a b,()=- ()1

2
, H-1

	 (4.31)

Once we have computed the a-e coefficients and found the stationary point of the

quadratic approximation by using Equation (4.31), we are almost ready to test that point

to see if it is an improvement. (It’s not unusual for the improvement to be huge!)

But as when we found the three extra x points, we have to worry about remaining

inside our 0-1 interval for the unique variances. We handle the problem in essentially the

same way, by moving in the (x,y) direction from θt as far as we can if we cannot get all the

way to (x,y). This is expressed in Equation (4.32).

	
xx qq aa qq qq qq qq-- --4 4 1 2= + -()éë ùû + -()t t t t tx y 	 (4.32)

As we did with the three extra points, we try to let 4=1, in which case x4 is exactly

at the stationary point of the quadratic fit. But if this point lies outside the permissible

range of 0-1 for any unique variance, we shrink 4 as needed to bring it into the fold.

To finish, we select whichever of these seven points has the greatest log likelihood.

�Code for Quadratic Acceleration with DECME-2s
Much of the code for the algorithm of the previous section is just tedious repetition. The

complete code, minus most error checking that depends on the implementation, can

be found in AN_FACTOR.TXT. The presentation here will skip over a few sections that are

redundant to prior code blocks. Because some coding issues are tricky but important,

explanatory text will be interspersed with the code. Memory allocations for the many

arrays can be found on page 248.

We begin with some basic initialization. The number of parameters is the number

of unique variances plus the number of factor loadings. When this routine is called,

theta_t contains the most recent parameters, those just computed by EMstep(), and LL_t

is their log likelihood. (The tm1 and tm2 earlier points and their log likelihoods are also

available.) These may end up being the best we’ve got because of QUADstep() failing to

Chapter 4 Fun with Eigenvectors

242

cause any improvement. So initialize the best and return value to handle this possibility.

Finally, initialize a flag to indicate if any ill-condition situations arise.

void AnalyzeFactorChild::QUADstep (double *LLret)

{

 int i, nparams, ill_conditioned;

 double direc, alim, alim1, alim2, alim3, alim4;

 double x, y, det, aa, bb, cc, dd, ee, cci, ddi, eei;

 nparams = npred + npred * n_dim; // Psi, A

 *LLret = LL_t; // �We return log likelihood here

 �memcpy (best_theta, theta_t, nparams * sizeof(double)); // �Keep track of best here

 ill_conditioned = 0; // �Will be set if trouble happens

We now have to compute the three new points, those based on θt–θt–1, θt–θt–2, and

θt–1–θt–2. We’ll present only the first, as the second and third are nearly identical. The

following code computes α1 (alim1 in the code) in Equation (4.23) on page 240.

 alim1 = 1.0; // �This is the ideal value, as it creates symmetric spacing

 for (i=0; i<npred; i++) {

 direc = theta_t[i] - theta_tm1[i];

 if (direc > 0.0)

 alim = (1.0 - 1.e-5 - theta_t[i]) / direc;

 else if (direc < 0.0)

 alim = (1.e-5 - theta_t[i]) / direc;

 else

 alim = 1.0;

 if (alim < alim1) // Ensure that all parameters are within the bounds

 alim1 = alim;

 }

In the previous code, alim1 will be the intersection (minimum) of all possible

0-1 limitations and hence guarantees that all unique variance parameters are legal.

If the direction for one of these parameters is positive, the upper limit of 1.0 will be

our concern, so we keep it away from one by 1.e-5. If the direction is negative, hitting

the lower bound of zero is the concern. Otherwise, we have no limit problem for this

parameter. By keeping track of the minimum multiplier across all parameters, we

guarantee that no parameter will go outside its legal bound.

Chapter 4 Fun with Eigenvectors

243

The offset of 1.e-5 is not critical, except for one thing. The EMstep() code shown on

page 236 forced the computed unique variances to be 1.e-6 away from the 0-1 bound.

This QUADstep() code must keep it a bit further away. Otherwise, QUADstep() could set a

point outside the EMstep() limit, and if this point happens to be the winner and hence be

kept, then EMstep() might force a backtrack. This would complicate convergence tests. In

fact, there is nothing wrong with QUADstep() forcing the point to be even further inside

the limits, perhaps a lot further, because there is no danger in doing this. All we are doing

here is defining the positions of the three new points that form the basis of the quadratic

fit. There’s not much critical about that, as long as the points are spaced far enough apart

to ensure good numerical accuracy in computing the fit.

Now that we have a multiplier that is as close to the optimal 1.0 as possible, yet

without violating any bounds, we can use Equation (4.23) on page 240 to compute the

first of these three new trial points. The following steps are taken:

•	 If the step distance out from θt is so small that computation of the

quadratic fit would be ill conditioned, we flag this fact so that we do

not try the fit later. It would be reasonable to quit right here, instead

of going on to the second point as I do in my implementation.

However, continuing sometimes pays off, as the second or third point

can often have superior log likelihood. Besides, the situation of a tiny

multiplier is uncommon, so the issue is largely moot anyway.

•	 Evaluate the log likelihood (LL_1) at this first of the three new points.

If it sets a new record, update the record and save these superior

parameters in best_theta.

•	 In the extremely rare case (I’ve never seen it happen) that the log

likelihood function has a catastrophic failure, set the ill_conditioned flag

to prevent an attempt at a quadratic fit later.

 if (alim1 < 0.01) // �Points must be far enough apart to get a good quadratic curve

  ill_conditioned = 1;

 else {

 for (i=0; i<nparams; i++) {

 direc = theta_t[i] - theta_tm1[i];

 trial_theta[i] = theta_t[i] + alim 1 * direc; // �Equation (4.23)

 }

Chapter 4 Fun with Eigenvectors

244

 LL1 = log_lik_fast (trial_theta);

 if (LL1 > *LLret) {

 *LLret = LL1;

 �memcpy (best_theta, trial_theta, nparams * sizeof(double));

 }

 if (LL1 < -1.e50)

 ill_conditioned = 1;

 }

The other two new points are similarly constructed; this redundant code is omitted

here but can be found in AN_FACTOR.TXT. Before continuing to the quadratic fit, we

make sure that the ill_conditioned flag has not been set. If all is good, we compute the five

quadratic fit coefficients using Equations (4.26) through (4.30), which start on page 240.

 if (ill_conditioned) // We need all six points to be good to proceed

 goto QUAD_FINISH;

 aa = (LL1 - LL_t - alim1 * alim1 * (LL_tm1 - LL_t)) / (alim1 + alim1 * alim1);

 bb = (LL2 - LL_t - alim2 * alim2 * (LL_tm2 - LL_t)) / (alim2 + alim2 * alim2);

 cc = LL_tm1 - LL_t + aa;

 dd = LL_tm2 - LL_t + bb;

 ee = -0.5 * (LL3 - LL_t - (aa-bb) * alim3 - (cc + dd) * alim3 * alim3) / (alim3 * alim3);

Equation (4.31) on page 241 requires H−1, but we use the simple direct formula,

because it is just two-by-two. We could even simplify the code a bit more by skipping the

intermediate step of inverting the matrix, but it’s clearer this way. The determinant of

the matrix is an important indicator of the situation. In the extremely unlikely event that

the determinant is positive, we have a minimum instead of a maximum, so don’t bother

continuing! If the determinant is tiny, the fit is too ill-conditioned to be worth pursuing.

 // Invert two-by-two H matrix

 det = cc * dd - ee * ee;

 if (det > -1.e-12)

 goto QUAD_FINISH;

 cci = dd / det; // Upper-left diagonal of inverse

 ddi = cc / det; // Lower-right

 eei = -ee / det; // Off-diagonal

Chapter 4 Fun with Eigenvectors

245

 // Compute x and y, the max or saddle point of this quadratic fit, using Equation (4.31)

 x = -0.5 * (aa * cci + bb * eei);

 y = -0.5 * (aa * eei + bb * ddi);

Now we have to use the same procedure that we used for the three new points,

expressing this stationary (and ideally maximum) as θt plus a multiplier times the direction

of the stationary point. With any luck, the multiplier can be 1.0 so that we can evaluate

the log likelihood at exactly the stationary point (and ideally maximum versus just saddle

point) of this quadratic fit. But we may have to shrink the multiplier below one in order to

avoid violating the 0-1 constraint on one or more unique variances. We saw this expressed

in Equation (4.32) on page 241. The code to do this is shown next. It is similar to what we

saw earlier for the three new points. Then we just retrieve the best parameters. We’re done.

 alim4 = 1.0;

 for (i=0; i<npred; i++) {

 direc = x * (theta_t[i] - theta_tm1[i]) + y * (theta_t[i] - theta_tm2[i]);

 if (direc > 0.0)

 alim = (1.0 - 1.e-5 - theta_t[i]) / direc;

 else if (direc < 0.0)

 alim = (1.e-5 - theta_t[i]) / direc;

 else

 alim = 1.0;

 if (alim < alim4)

 alim4 = alim;

 }

 if (alim4 < 0.01) // �Not worth another expensive log likelihood eval if this close

 goto QUAD_FINISH;

 else {

 for (i=0; i<nparams; i++) {

 direc = x * (theta_t[i] - theta_tm1[i]) + y * (theta_t[i] - theta_tm2[i]);

 trial_theta[i] = theta_t[i] + alim 4 * direc; // Equation (4.32)

 }

 LL4 = log_lik_fast (trial_theta);

 if (LL4 > *LLret) {

 *LLret = LL4;

 memcpy (best_theta, trial_theta, nparams * sizeof(double));

 }

 }

Chapter 4 Fun with Eigenvectors

246

QUAD_FINISH:

 memcpy (PSIvec, best_theta, npred * sizeof(double));

 memcpy (Amat, best_theta+npred, npred * n_dim * sizeof(double));

}

�Putting It All Together
In this section we’ll present an overview, along with numerous code fragments, about

how to assemble the routines just seen into a complete routine for performing my

modified version of maximum likelihood factor analysis. The full code, except for error

handling, can be found in AN_FACTOR.TXT. We begin with the class declaration:

class AnalyzeFactorChild {

public:

 AnalyzeFactorChild (int npreds, int *preds, int n_dim, int nonpar);

 ~AnalyzeFactorChild ();

 int AnalyzeFactorChild::EMstep ();

 void AnalyzeFactorChild::QUADstep (double *LL);

 double AnalyzeFactorChild::log_lik (double *theta);

 double AnalyzeFactorChild::log_lik_fast (double *theta);

 int error; // Flags any error during constructor

 int npred; // Number of predictors

 int n_dim; // User-specified number of dimensions

 int preds[MAX_VARS]; // Database indices of predictors

 int nonpar; // Use nonparametric correlation for tail control?

 // Work areas for optimization

 double *covar; // Covariance (correlation) matrix

 double *Amat;

 double *Fmat;

 double *Gmat;

 double *Hmat;

 double *PSIvec;

 double *TEMPmat1;

 double *TEMPmat2;

Chapter 4 Fun with Eigenvectors

247

 double *invert_rwork;

 int *invert_iwork;

 // Work areas specifically for QUADstep

 double *theta_t;

 double *theta_tm1;

 double *theta_tm2;

 double *trial_theta;

 double *best_theta;

 double LL_t;

 double LL_tm1;

 double LL_tm2;

 double LL1;

 double LL2;

 double LL3;

 double LL4;

};

There are a few global variables that hold information about this process and its

results. The purpose of these variables is to facilitate subsequent operations such as

rotation or display. They are declared external here.

extern int eigen_npred; // Number of variables (generally predictors)

extern int eigen_preds[MAX_VARS]; // Their indices in database

extern int eigen_n_dim; // User-specified number of unobserved factors

extern double *eigen_evals;

extern double *eigen_structure;

extern double *eigen_phi;

We make local and global copies of the calling parameters. The error flag will be set to

a nonzero quantity if there is an error during the constructor call.

 eigen_npred = npred = np;

 eigen_n_dim = n_dim = nd;

 nonpar = nonp;

 for (i=0; i<np; i++)

 eigen_preds[i] = preds[i] = p[i];

 error = 0;

Chapter 4 Fun with Eigenvectors

248

Back when the EMstep() and QUADstep() routines were presented, they referenced

numerous arrays that we had to trust were properly allocated. We now see these

allocations. The global variables need to be freed (or just reallocated, if that’s your

preference) because their sizes may change now from what they were previously.

 if (eigen_evals != NULL)

 FREE (eigen_evals);

 if (eigen_structure != NULL)

 FREE (eigen_structure);

 if (eigen_phi != NULL)

 FREE (eigen_phi);

 val = (double *) MALLOC (npred * sizeof(double));

 eigen_evals = (double *) MALLOC (npred * sizeof(double));

 eigen_structure = (double *) MALLOC (npred * npred * sizeof(double));

 eigen_phi = (double *) MALLOC (npred * sizeof(double));

 work1 = (double *) MALLOC (npred * sizeof(double)); // �For means and evec_rs()

 work2 = (double *) MALLOC (npred * sizeof(double)); // For stddev

 covar = (double *) MALLOC (npred * npred * sizeof(double));

 Amat = (double *) MALLOC (npred * n_dim * sizeof(double));

 Fmat = (double *) MALLOC (npred * n_dim * sizeof(double));

 Gmat = (double *) MALLOC (npred * n_dim * sizeof(double));

 Hmat = (double *) MALLOC (npred * n_dim * sizeof(double));

 PSIvec = (double *) MALLOC (npred * sizeof(double));

 TEMPmat1 = (double *) MALLOC (npred * npred * sizeof(double));

 TEMPmat2 = (double *) MALLOC (npred * npred * sizeof(double));

 invert_rwork = (double *) MALLOC ((npred * npred + 2 * npred) * sizeof(double));

 invert_iwork = (int *) MALLOC (npred * sizeof(int));

 k = npred * n_dim + npred; // Number of parameters (Psi plus A)

 theta_t = (double *) MALLOC (5 * k * sizeof(double));

 theta_tm1 = theta_t + k;

 theta_tm2 = theta_tm1 + k;

 trial_theta = theta_tm2 + k;

 best_theta = trial_theta + k;

Chapter 4 Fun with Eigenvectors

249

 if (nonpar)

 nonpar_work = (double *) MALLOC (2 * n_cases * sizeof(double));

 else

 nonpar_work = NULL;

If the user has requested that nonparametric correlation be used (to accommodate

heavy-tailed data), we compute it here. See SPEARMAN.CPP for the computation routine.

 if (nonpar) {

  k = 0;

   for (i=1; i<npred; i++) {

 for (j=0; j<i; j++) {

 for (icase=0; icase<n_cases; icase++) {

 nonpar_work[icase] = database[icase*n_vars+preds[i]];

 nonpar_work[n_cases+icase] = database[icase*n_vars+preds[j]];

 }

 �covar[i*npred+j] = spearman (n_cases, nonpar_work, nonpar_work+n_cases,

 nonpar_work, nonpar_work+n_cases);

 ++k;

 }

 }

 }

Otherwise, we compute the mean and standard deviation and correlation matrix.

It would be mathematically equivalent to directly compute the covariance matrix and

then convert it to a correlation matrix, but that method has slightly less numerical

stability. Note that although the correlation matrix is symmetric and evec_rs() ignores the

redundant upper triangle, EMstep() is most efficient and clear when the entire matrix is

filled in, so we copy the lower triangle to the upper.

 else {

 for (i=0; i<npred; i++)

 work1[i] = work2[i] = 1.e-60;

 for (i=0; i<n_cases; i++) {

 for (j=0; j<npred; j++)

 work1[j] += database[i*n_vars+preds[j]];

 }

Chapter 4 Fun with Eigenvectors

250

 for (j=0; j<npred; j++)

 work1[j] /= n_cases; // Mean vector

 for (i=0; i<n_cases; i++) {

 for (j=0; j<npred; j++) {

 diff = database[i*n_vars+preds[j]] - work1[j];

 work2[j] += diff * diff;

 }

 }

 for (j=0; j<npred; j++)

 work2[j] = sqrt (work2[j] / n_cases); // Standard deviation

// Compute correlation matrix 'covar'

 for (i=1; i<npred; i++) {

 for (j=0; j<i; j++)

 covar[i*npred+j] = 0.0;

 }

 for (i=0; i<n_cases; i++) {

 for (j=1; j<npred; j++) {

 diff = (database[i*n_vars+preds[j]] - work1[j]) / work2[j];

 for (k=0; k<j; k++) {

 diff2 = (database[i*n_vars+preds[k]] - work1[k]) / work2[k];

 covar[j*npred+k] += diff * diff2;

 }

 }

 }

 for (j=0; j<npred; j++) {

 for (k=0; k<j; k++)

 covar[j*npred+k] /= n_cases;

 }

 } // Else not nonpar, so compute means, stddev, correl

// The strict lower triangle has been computed. Fill in diagonal and upper triangle.

Chapter 4 Fun with Eigenvectors

251

 for (j=0; j<npred; j++) {

 covar[j*npred+j] = 1.0;

 for (k=j+1; k<npred; k++)

 covar[j*npred+k] = covar[k*npred+j]; // Needed for EMstep()

 }

We now compute the eigenvalues and vectors of the correlation matrix and then

compute the initial factor structure matrix by multiplying each eigenvector by the square

root of its corresponding eigenvalue. We place all of them in the global area, although

the first n_dim columns will be replaced with the factors later. Of more immediate

importance is that we place the first n_dim columns in Amat, which will be the current

estimate of the factor loadings throughout the algorithm.

 evec_rs (covar, npred, 1, eigen_structure, eigen_evals, work1);

 for (i=0; i<npred; i++) {

 for (j=0; j<npred; j++) {

 eigen_structure[i*npred+j] *= sqrt(eigen_evals[j]);

 if (eigen_structure[i*npred+j] < -1.0) // �In a perfect fpt world would never happen

 eigen_structure[i*npred+j] = -1.0;

 if (eigen_structure[i*npred+j] > 1.0)

 eigen_structure[i*npred+j] = 1.0;

 if (j < n_dim)

 Amat[i*n_dim+j] = eigen_structure[i*npred+j];

 }

 }

Compute the initial value of the Psi (Ψ) diagonal as was described on page 232. In

particular, we implement Equation (4.15). Keep all of the unique variances away from

zero, as many things become undefined or unstable at or near zero. We save these values

in the global area, even though they will be overwritten later. It’s silly, perhaps, but clean

and clear. More importantly, we save them in PSIvec, which will hold the current values

during optimization.

Chapter 4 Fun with Eigenvectors

252

 for (i=0; i<npred; i++) {

 eigen_phi[i] = 1.0;

 for (j=0; j<n_dim; j++)

 eigen_phi[i] -= eigen_structure[i*npred+j] * eigen_structure[i*npred+j];

 if (eigen_phi[i] < 1.e-3)

 eigen_phi[i] = 1.e-3;

 PSIvec[i] = eigen_phi[i]; // Initialize for optimization

 }

We come now to the heart of the matter, the iterative alternation of EMstep() and

QUADstep(). When we get to QUADstep(), we’ll need the log likelihood at three points:

current (t), lag 1 (tm1), and lag2 (tm2). These are as follows:

 theta_t LL_t

 theta_tm1 LL_tm1

 theta_tm2 LL_tm2

So we initialize by letting the starting values just computed be the oldest point,

and then we run one EMstep() to be the second oldest. When we get inside the loop,

we’ll begin the loop with an EMstep(), which will give the current point. Here is the

initialization code. Note that the values computed now will be shifted back one time slot

inside the loop. Also recall that PSIvec and Amat are the current values of the parameters

as optimization progresses, and they serve as both input to and output from EMstep().

 memcpy (theta_tm1, PSIvec, npred * sizeof(double));

 memcpy (theta_tm1+npred, Amat, npred * n_dim * sizeof(double));

 LL_tm1 = log_lik_fast (theta_tm1);

 if (EMstep ()) {

 // Issue error message here; this error is extremely unlikely

 goto FACTOR_FINISH;

 }

 memcpy (theta_t, PSIvec, npred * sizeof(double));

 memcpy (theta_t+npred, Amat, npred * n_dim * sizeof(double));

 LL_t = log_lik_fast (theta_t);

 EMreverse = 0; // �Will count rare pathological event that can cause endless looping

Chapter 4 Fun with Eigenvectors

253

Preparation for the iteration is complete. We have the log likelihood computed at two

points and stored in the current (t) and lag 1 (tm1) slots. For cleanliness, we place a limit

on looping. In practice, we will never come even close to this limit. The optimization

loop now begins.

The first step in the loop is to perform an EMstep(), which modifies the current values of

PSIvec and Amat to be an improvement. Then we shift the two most recent points (t and tm1)

and their log likelihoods back one time slot into the past and update the current point.

 for (iter=0; iter<10000; iter++) {

 if (EMstep ()) { // �This takes and returns PSIvec and Amat without touching theta_t

 // Issue error message here

 break;

 }

 memcpy (theta_tm2, theta_tm1, npred * sizeof(double));

 memcpy (theta_tm2+npred, theta_tm1+npred, npred * n_dim * sizeof(double));

 LL_tm2 = LL_tm1;

 memcpy (theta_tm1, theta_t, npred * sizeof(double));

 memcpy (theta_tm1+npred, theta_t+npred, npred * n_dim * sizeof(double));

 LL_tm1 = LL_t;

 memcpy (theta_t, PSIvec, npred * sizeof(double)); // �EMstep() computed this

 memcpy (theta_t+npred, Amat, npred * n_dim * sizeof(double));

 LL_t = log_lik_fast (theta_t);

We check here for an unusual but possible pathological situation. If one or more of

the unique variances (PSIvec) are extremely close to their 0-1 bound and EMstep() wants

to drive them even closer, past the threshold built into the algorithm, then the value may

bounce back and forth endlessly, pushed past the threshold by the EM algorithm and

then snapped back by my modification that keeps them all away from the boundary.

Count occurrences of this and abort if necessary.

 if (LL_t < LL_tm1) {

 ++EMreverse;

 if (EMreverse > 10) {

 // Issue error message here

 break;

 }

 }

Chapter 4 Fun with Eigenvectors

254

At this point we have our three points, so we can call QUADstep(). Then we shift the former

current value back one time slot and update the current value. There is no need to copy tm1

to tm2 as we did after EMstep() because EMstep() does not need any lagged values.

 QUADstep (&LL); // Takes t, tm1, and tm2 as input and computes PSIvec, Amat

 memcpy (theta_tm1, theta_t, npred * sizeof(double));

 memcpy (theta_tm1+npred, theta_t+npred, npred * n_dim * sizeof(double));

 LL_tm1 = LL_t; // This came from EM above

 memcpy (theta_t, PSIvec, npred * sizeof(double));

 memcpy (theta_t+npred, Amat, npred * n_dim * sizeof(double));

 LL_t = LL; // This came from the QUADstep we just did

At this point, tm1 is after the most recent EMstep(), t is after this QUADstep(), and tm2 is

still after the EMstep() before the most recent EMstep().

The final step in the loop is to check for convergence. It is dangerous to use changes

in the log likelihood as a convergence test (though many do) because this function can

become extremely flat near the optimum. So instead we base the test on the maximum

change in any parameter after a set of three optimization steps, QUADstep(), EMstep(),

and QUADstep(). (It really is three instead of what appears at first glance to be two; walk

through the code if you don’t believe me.)

 max_change = 0.0;

 for (i=0; i<npred+npred*n_dim; i++) {

 diff = fabs (theta_t[i] - theta_tm2[i]);

 if (diff > max_change)

 max_change = diff;

 }

 if (max_change < 1.e-6) // Fairly arbitrary choice

  ++convergence_counter;

 else

 convergence_counter = 0;

 if (convergence_counter > 2) // Fairly arbitrary choice

 break;

 }

Chapter 4 Fun with Eigenvectors

255

After convergence is obtained, we copy the class variables containing the unique

variances and factor loadings to the global area. Compute eigen_evals as the squared

length of each column; it’s not really an eigenvalue, but the resemblance is there, and

we’ll make some use of this in a moment.

 for (i=0; i<npred; i++) {

 eigen_phi[i] = PSIvec[i];

 for (j=0; j<n_dim; j++)

 eigen_structure[i*npred+j] = Amat[i*n_dim+j];

 }

 for (j=0; j<n_dim; j++) {

 sum = 0.0;

 for (i=0; i<npred; i++)

 sum += Amat[i*n_dim+j] * Amat[i*n_dim+j];

 eigen_evals[j] = sum;

 }

Sometimes it can be useful to see the factor loadings with the columns sorted from

most to least prominent, as is the case for raw principal components. Note that this is

not as useful as may seem, because unlike principal components, factor loadings are not

unique and do not necessarily come out of the optimization algorithm in any particular

order. Because we do initialize the loading to be principal components, there is usually a

strong resemblance. But the factor loadings are unique only up to rotation; they define a

unique subspace, but orthogonal rotations within that subspace give identical values for

the log likelihood. So if you are interested in the loadings, it often pays to do a rotation

such as varimax after computing them.

The code on the next page is a crude but simple algorithm for sorting the columns

according to their squared length. Last but not least, we free all of the work areas.

 for (i=1; i<n_dim; i++) {

 im1 = i - 1;

 ibig = im1;

 big = eigen_evals[im1];

 /* Find largest eval beyond im1 */

Chapter 4 Fun with Eigenvectors

256

 for (j=i; j<n_dim; j++) {

 if (eigen_evals[j] > big) {

 big = eigen_evals[j];

 ibig = j;

 }

 }

 if (ibig != im1) { // Do we need to swap ibig and im1?

 eigen_evals[ibig] = eigen_evals[im1];

 eigen_evals[im1] = big;

 for (j=0; j<npred; j++) {

 sum = eigen_structure[j*npred+im1];

 eigen_structure[j*npred+im1] = eigen_structure[j*npred+ibig];

 eigen_structure[j*npred+ibig] = sum;

 }

 }

 }

FACTOR_FINISH:

 FREE (covar);

 FREE (work1);

 FREE (work2);

 FREE (Amat);

 FREE (Fmat);

 FREE (Gmat);

 FREE (Hmat);

 FREE (PSIvec);

 FREE (TEMPmat1);

 FREE (TEMPmat2);

 FREE (invert_rwork);

 FREE (invert_iwork);

 FREE (theta_t);

 if (nonpar_work != NULL)

 FREE (nonpar_work);

}

Chapter 4 Fun with Eigenvectors

257

�Thoughts on My Version of the Algorithm
I’ve mentioned several times during this development that my version of the maximum-

likelihood factor analysis algorithm is slightly different from the usual version, though

not much, and easily revised to the standard version. The reason is that in my own

work, I am not so much interested in the factor loadings as the unique variances. This

lets me identify any variables that are members of highly redundant sets. Such variables

can be removed or given special treatment. One particularly useful approach is to

collect all variables with unique variance near zero and compute their most dominant

principal components. This provides a few very nonredundant variables to replace many

redundant variables, usually with negligible loss of information.

Since a measure of uniqueness versus redundancy is my primary goal, I am

motivated to standardize the variables before beginning the factor analysis and then

enforce a rigid 0−1 constraint on the unique variances. This makes the computed values

easy to interpret. The more usual approach is to ensure that the variables are roughly

commensurate before conducting the analysis, avoid standardization, and impose no

upper limit on the unique variance.

If you want to implement the usual algorithm rather than mine, the changes in the

code are almost trivial to implement. Skip standardization, computing the covariance

matrix instead of the correlation matrix. In the code that computes the initial estimate

of Psi, Equation (4.15) on page 233 will have to be evaluated with the actual diagonal

of S, the variances, rather than 1.0, which is the diagonal of a correlation matrix. In the

EMstep() code, remove the imposition of an upper bound of one. In the QUADstep() code

do the same. That’s it. But please understand that in the absence of standardization,

convergence can be significantly slower than with standardized variables.

�Measuring Coherence
It is often the case that a set of variables that are measured across time will have

varying interrelationships. It may be that under “normal” circumstances they move in

predictable patterns relative to one another. One example comes from the commodity

futures markets. Long-range (several months ahead) weather predictions impact futures

prices for grains, which in turn impact futures prices for meat products. If a time comes

along in which their interrelationship falters, this is an indication that something funny is

going on, and maybe we had better sit up and pay attention. In particular, if we are using

a trained model to make predictions, we should consider whether this model is still valid.

Chapter 4 Fun with Eigenvectors

258

The opposite situation can happen as well: time-series variables that normally

have a certain degree of independence may suddenly begin to track unnaturally. The

classic example of this is in the stock market. Frightening world events, such as talk of

immanent war, may cause the prices of all market sectors to trend lower simultaneously,

when under normal circumstances they tend to move somewhat independently.

Of course, these phenomena are not limited to financial applications. Suppose an

assembly line monitors various recent (across a lookback window of time) parameters

such as flow rate of various ingredients, temperature of heating chambers, color of final

product as it rolls off the line, and so forth. Normally, these variables should have a fairly

constant interrelationship. If we suddenly see this relationship disappear, we had better

run some diagnostics on the line and see what’s going on.

It should come as no surprise that there is an infinite number of ways to measure

coherence, the degree to which a set of time-series variables are interrelated within a

lookback window that moves forward as time progresses. One reasonable way is to

determine how much of the standardized total variance is concentrated in the largest

eigenvalue. (We should always standardize the variables so that individual offsets and

scales do not impact our measurement.) The disadvantage of this approach is that it

measures the degree to which coherent variation exists in a single dimension. Sometimes

this is appropriate, so we should consider the largest eigenvalue as a possible measure

of coherence. But in many or most applications, coherence may be represented by

relationships in several dimensions. As a trivial example, we may have four variables,

and their normal relationship may be that X1 and X2 are correlated, as are X3 and X4,

while variables in the first pair have little or no relationship with those in the second

pair. Examining just the largest eigenvalue will miss this dual relationship since a single

eigenvector cannot represent both relationships.

This problem can be alleviated by considering the fraction of the total variance

contained in the few largest eigenvalues. But this requires an assumption of how many

relationships exist (the dimensionality of the relationship space). In many cases, one can

do an eigenstructure analysis in advance, under normal conditions, and choose to use

the number of dominant eigenvalues. This is a good approach when it is feasible.

I now present a more general approach that is appropriate when one does not have

prior information concerning the number of valid relationships or when the number of

relationships varies across time, a common occurrence when there is a large number of

variables. This would be the case, for example, when we are studying the price changes

of a large basket (a hundred or more) of equities. This method is superior under such

conditions but inferior when the dimensionality is constant and we know what it is.

Chapter 4 Fun with Eigenvectors

259

So if we happen to have a known fixed dimensionality, the best approach is to add that

number of largest eigenvalues and divide by the sum of all eigenvalues (which will equal

the number of variables if the variables are standardized).

A good way to approach the more general situation (no assumption of

dimensionality) is to visualize the eigenvalues, sorted from largest to smallest, as sitting

on a teeter-totter or balance-beam scale. Imagine that the largest eigenvalue is on the

far left, the smallest on the far right, and the intermediates equally spaced in between.

The coherence is the rotational force exerted on the beam caused by imbalance in the

eigenvalues. We can compute this force as a weighted sum of the eigenvalues, with the

weights defined by the equally spaced locations on the beam. The weights to the left of

the center are positive, and the weights to the right of center are symmetrically negative.

Let’s consider the two most extreme possibilities. Suppose every variable is

completely independent of every other variable within our lookback window. Their

correlation matrix will be an identity matrix, and the eigenvalues will all be equal

(1.0). Because the weights given to each eigenvalue are symmetric around the center

(in accord with the balance beam analogy), the weighted sum will be zero. Thus, the

coherence in this totally uncorrelated situation will be zero. Note that a coherence less

than zero is not possible, because the eigenvalues are sorted, with the larger values on

the left (positive weights) side.

For convenience, we scale the weights such that the leftmost weight (that for the

largest eignvalue) is 1.0, and that for the rightmost (the smallest eigenvalue) is -1.0. Now

suppose the measured variables are all perfectly correlated with one another; they are

all (possibly different) linear transformations of some underlying variable. There will

be only one nonzero eigenvalue in this one-dimensional situation, and it will equal

the number of variables. Hence, the weighted sum will be the number of variables (the

leftmost weight times this largest eigenvalue). If we normalize the weighted sum by

dividing it by the number of variables, we see that the coherence in this situation of all

variables being perfectly correlated with one another is 1.0.

Thus, we have a 0-1 measure of the degree to which a set of variables have

correlations among themselves, as defined by the imbalance in their eigenvalue

distribution. This measure makes no assumptions on the dimensionality of the

underlying structure.

Note that in real life, random variation will cause variables that are truly uncorrelated

to have some measured correlation, especially if the lookback window is short. Any

correlation at all among the measured variables will cause some imbalance in the

eigenvalues; the only way they can all be equal (and hence achieve perfect balance) is if

Chapter 4 Fun with Eigenvectors

260

all off-diagonal correlations are exactly zero. So in practice, the computed coherence has

an unavoidable upward bias. But usually we are not interested in the actual coherence.

In a data mining situation we are most concerned with stability across time: is the

coherence reasonably constant? It is a sudden unexplained change in the coherence that

merits our attention. That’s the flag for employing multiple models or other remedial

action.

�Code for Tracking Coherence
We show here the essential code for computing coherence across a moving window. As

usual, mundane things like error checking are omitted for clarity. The complete code can

be found in the file AN_COHERENCE.CPP.

We begin with allocation of memory. The array val will hold the computed coherence

values. All other allocations are temporary work areas. There are n_cases in the database,

each consisting of a row of n_vars variables, from which we will select npred of them,

indexed in preds. The moving window consists of lookback observations.

 int icase, i, j, k;

 double *dptr, *means, *evals, *evects, *workv, minval, maxval, meanval;

 double sum, total, diff, diff2, *nonpar_work, factor;

 char msg[512], line[1024], coherence_log[1024];

 FILE *fp;

 val = (double *) MALLOC ((n_cases-lookback+1) * sizeof(double));

 means = (double *) MALLOC (npred * sizeof(double));

 covar = (double *) MALLOC (npred * npred * sizeof(double));

 evals = (double *) MALLOC (npred * sizeof(double));

 evects = (double *) MALLOC (npred * npred * sizeof(double));

 workv = (double *) MALLOC (npred * sizeof(double));

 if (nonpar) // Did the user request nonparametric correlation?

   nonpar_work = (double *) MALLOC (2 * lookback * sizeof(double));

 else

 nonpar_work = NULL;

/*

 Get ready to write coherence values to a file

*/

Chapter 4 Fun with Eigenvectors

261

 _fullpath (coherence_log, "COHERENCE.TXT", 1024); // �Will write coherences here

 if (fopen_s (&fp, coherence_log, "wt")) {

  // Handle error messages here

 goto COHERENCE_FINISH;

 }

This is the main loop that processes all cases. We’ll keep track of the minimum,

maximum, and mean coherences to report to the user.

/*

 Main outer loop does all cases

*/

 minval = 1.e30;

 maxval = -1.e30;

 meanval = 0.0;

 for (icase=lookback-1; icase<n_cases; icase++) {

If the user requested nonparametric correlation, compute it here. We need only the

lower minor triangle of the symmetric correlation matrix.

 if (nonpar) {

  covar[0] = 1.0; // First diagonal entry

  for (i=1; i<npred; i++) {

  for (j=0; j<i; j++) {  // Just do lower minor triangle

   for (k=0; k<lookback; k++) { // Traverse the moving window

  dptr = database + n_vars * (icase - k);   // �Point to this case in database

   nonpar_work[k] = dptr[preds[i]]; // Get one variable

   nonpar_work[lookback+k] = dptr[preds[j]]; // And the other

  }

 �covar[i*npred+j] = spearman (lookback, nonpar_work, // In SPEARMAN.CPP

 nonpar_work+lookback, nonpar_work, nonpar_work+lookback);

  }

   covar[i*npred+i] = 1.0; // Diagonal of a correlation matrix is 1.0

   }

  }

Chapter 4 Fun with Eigenvectors

262

If the user did not request nonparametric correlation, compute the covariance

matrix and then convert it to a correlation matrix. First we must compute the means to

center the data.

 else {

 for (i=0; i<npred; i++)

 means[i] = 0.0;

 for (i=0; i<lookback; i++) { // �Compute means across window

 dptr = database + n_vars * (icase - i); // �Point to this case in database

 for (j=0; j<npred; j++)

 means[j] += dptr[preds[j]];

 }

 for (j=0; j<npred; j++)

 means[j] /= lookback;

Now compute the covariance matrix and convert it to a correlation matrix.

 for (i=0; i<npred; i++) {

 for (j=0; j<=i; j++)

 covar[i*npred+j] = 0.0;

 }

 for (i=0; i<lookback; i++) {

 dptr = database + n_vars * (icase - i); // �Point to this case in database

 for (j=0; j<npred; j++) { // One variable

 diff = dptr[preds[j]] - means[j]; // Center it

 for (k=0; k<=j; k++) { // �Lower triangle, including diagonal

 diff2 = dptr[preds[k]] - means[k]; // �Center the other variable

 covar[j*npred+k] += diff * diff2; // �Definition of covariance

 }

 }

 }

 for (j=0; j<npred; j++) {

 for (k=0; k<=j; k++)

 covar[j*npred+k] /= lookback;

 }

Chapter 4 Fun with Eigenvectors

263

 for (j=1; j<npred; j++) { // �Convert lower minor triangle to correlations

 for (k=0; k<j; k++)

 covar[j*npred+k] /= sqrt (covar[j*npred+j] * covar[k*npred+k]);

 }

 for (j=0; j<npred; j++) // Diagonal is unity

 covar[j*npred+j] = 1.0;

 } // Else not nonpar, so compute means and covar, correlation

Compute the eigenvalues of the correlation matrix. Compute the coherence and

store it in val for display and writing to a file. The total is the sum of all eigenvalues, which

theoretically equals npred, so this is a minor waste but helps with clarity and tiny floating-

point errors.

 evec_rs (covar, npred, 0, evects, evals, workv); // In EVEC_RS.CPP

 factor = 0.5 * (npred - 1); // Center of balance beam

 sum = total = 0.0;

 for (i=0; i<npred; i++) {

 total += evals[i]; // Not really needed

 sum += (factor - i) * evals[i] / factor; // Coherence is weighted sum

 }

 // Compute and save the criterion

 sum /= total;

 val[icase-lookback+1] = sum;

 if (val[icase-lookback+1] > maxval)

   maxval = val[icase-lookback+1];

 if (val[icase-lookback+1] < minval)

  minval = val[icase-lookback+1];

 meanval += val[icase-lookback+1];

 } // For all cases

Chapter 4 Fun with Eigenvectors

264

�Coherence in the Stock Market
On the next page I show coherence plots for just three stocks, BAC, DOW, and IBM,

which represent very different market sectors. Both use nonparametric correlation of

daily market changes. The top plot has a lookback of 50 days, and the bottom 252 days

(about one year of trading).

One thing that pops out is the tremendous range of coherence. With just 50 days, the

coherence ranges from practically zero to almost 0.9, and even with a year of lookback it

still varies tremendously. The sudden sharp spike just before case 1000 is Black Monday

(October 19, 1987). Surely there is useful information to data mine here!

Figure 4-2.  Coherence with lookback=50

Chapter 4 Fun with Eigenvectors

265

Figure 4-3.  Coherence with lookback=252

Chapter 4 Fun with Eigenvectors

267
© Timothy Masters 2018
T. Masters, Data Mining Algorithms in C++, https://doi.org/10.1007/978-1-4842-3315-3_5

CHAPTER 5

Using the DATAMINE
Program
This chapter serves as a user’s manual for the DATAMINE program, which demonstrates

the algorithms presented in this book. Each menu selection is discussed in its own

section.

�File/Read Data File
A text file in standard database format is read. In particular, standard-format Excel CSV

files may be read, as well as databases produced by many common statistical and data

analysis programs. The first line must specify the names of the variables in the database.

The maximum length of each variable name is 15 characters. The name must start with a

letter and may contain only letters, numbers, and the underscore (_) character.

Subsequent lines contain the data, one case per line. Missing data is not allowed.

Spaces, tabs, and commas may be used as delimiters for the first (variable names)

and subsequent (data) lines.

Here are the first few lines from a typical data file. Six variables are present, and three

cases are shown.

RAND0 RAND1 RAND2 RAND3 RAND4 RAND5

-0.82449359 0.25341070 0.30325535 -0.40908301 -0.10667177 0.73517430

-0.47731471 -0.13823473 -0.03947150 0.34984449 0.31303233 0.66533709

 0.12963752 -0.42903802 0.71724504 0.97796118 -0.23133837 0.81885117

268

�File/Exit
The program is terminated.

�Screen/Univariate Screen
The algorithm described starting on page 110 is used to screen a set of predictor

candidates for a relationship with a single target. The menu shown in Figure 5-1 will

appear.

Figure 5-1.  Univariate screening

The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be tested for a

relationship with a single target.

•	 Target: Select a single target.

Chapter 5 Using the DATAMINE Program

269

•	 Predictor bin definition: Specify the nature of the predictors (and by

extension, the target). The choices are as follows:

•	 Predictors and target continuous: All variables are to be treated as

continuous.

•	 Use all cases: All variables are treated as discrete. Continuous

variables are converted to discrete bins. The user must specify the

number of bins to use for the predictors.

•	 Use tails only: The predictors are split into two bins: the tails

(extreme values). The user must specify the fraction of extreme

values to keep in each tail.

•	 Target bins: If the user selected either of the discrete options (Use all

cases or Use tails only), then this specifies the number of bins into

which the target variable is categorized.

•	 Continuous subtypes: If the user selected Predictors and target

continuous, you specify the relationship criterion to be used. See the

section beginning on page 77.

•	 Discrete subtypes: If the user selected either of the discrete options

above (Use all cases or Use tails only), then this specifies the

relationship criterion to be used. See the section beginning on page 77.

•	 Monte Carlo Permutation Test: A Replications value greater than 1

will cause a Monte Carlo permutation test to be performed, with this

many tests run, one of which is unpermuted. The user also specifies

the type of permutation, Complete or Cyclic. This topic is discussed

starting on page 89.

•	 CSCV subsets: This controls performance of the CSCV test, discussed

starting on page 97.

�Screen/Bivariate Screen
This section discusses bivariate screening, in which we search for relationships between

one or more predictor candidates and one or more target candidates. The menu shown

in Figure 5-2 will appear.

Chapter 5 Using the DATAMINE Program

270

The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be tested for

pairwise relationships with one or more targets.

•	 Target: Select a set of targets to be tested for a relationship with pairs

of predictors.

•	 Predictor bins: This specifies the number of bins into which the

predictor variables are categorized.

•	 Target bins: This specifies the number of bins into which the target

variables are categorized.

•	 Criterion: The user chooses whether the relationship criterion is

mutual information (page 17) or uncertainty reduction (page 61).

•	 Monte Carlo Permutation Test: A Replications value greater than 1

will cause a Monte Carlo permutation test to be performed, with this

many tests run, one of which is unpermuted. The user also specifies

the type of permutation, Complete or Cyclic. This topic is discussed

starting on page 89.

Figure 5-2.  Bivariate screening

Chapter 5 Using the DATAMINE Program

271

•	 Max printed: If the user specifies numerous predictors and targets,

the number of combinations of pairs of predictors with individual

targets can be enormous. A line in the DATAMINE.LOG file is printed for

each such combination, sorted from best to worst. This option lets the

user limit the number of lines printed, beginning with the best.

�Screen/Relevance Minus Redundancy
This section discusses relevance-minus-redundancy screening, in which we use a

forward stepwise search for relationships between a set of predictor candidates and a

single target variable. This algorithm was discussed on page 124. The menu shown in

Figure 5-3 will appear.

Figure 5-3.  Relevance-minus-redundancy screening

The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be stepwise tested

for inclusion in the set of predictors having maximum relationship

with the target.

•	 Target: Select a single target to be tested for a relationship with a set

of predictors.

Chapter 5 Using the DATAMINE Program

272

•	 Predictor bin definition: Specify the nature of the predictors (and, by

extension, the target). The choices are as follows:

•	 Predictors and target continuous: All variables are to be treated as

continuous.

•	 Use all cases: All variables are treated as discrete. Continuous

variables are converted to discrete bins. The user must specify the

number of bins to use for the predictors.

•	 Use tails only: The predictors are split into two bins: the tails

(extreme values). The user must specify the fraction of extreme

values to keep in each tail.

•	 Target bins: If the user selected either of the discrete options (Use all

cases or Use tails only), then this specifies the number of bins into

which the target variable is categorized.

•	 Max kept: This is the maximum number of variables in the predictor set.

•	 Monte Carlo Permutation Test: A Replications value greater than 1

will cause a Monte Carlo permutation test to be performed, with this

many tests run, one of which is unpermuted. The user also specifies

the type of permutation, Complete or Cyclic. This topic is discussed

starting on page 89.

�Screen/FREL
The Feature Weighting as Regularized Energy-Based Learning (FREL) algorithm

presented starting on page 141 is used to rank predictor candidates in terms of their

relationship with a single target variable. This method is particularly useful when the

data is fairly clean (noise-free) but has relatively few cases compared to the number of

predictor candidates. The menu screen shown in Figure 5-4 appears.

Chapter 5 Using the DATAMINE Program

273

The user must make the following selections and specifications:

•	 Predictors: Select a set of predictor candidates to be ranked in terms

of their relationship with the target.

•	 Target: Select a single target to be tested for a relationship with a set

of predictors.

•	 Target bins: This specifies the number of bins into which the target

variable is categorized.

•	 Regularization factor: This controls penalization for excessively

large weights in the ranking scores. It is legal and computationally

harmless to set this to zero. A general discussion of this parameter

appears on page 145. Also see a more specific example of its use on

page 151.

Figure 5-4.  FREL screening

Chapter 5 Using the DATAMINE Program

274

•	 Bootstrap iterations and Sample size: This is the number of bootstrap

iterations to use, as well as the sample size for each. Bootstrapping is

nearly always beneficial. See the discussion on page 146 for details.

•	 Monte Carlo Permutation Test: A Replications value greater than 1

will cause a Monte Carlo permutation test to be performed, with this

many tests run, one of which is unpermuted. The user also specifies

the type of permutation, Complete or Cyclic. This topic is discussed

starting on page 147.

�Analyze/Eigen Analysis
An eigenvalue/eigenvector analysis as described starting on page 189 is performed. The

eigenvalues and their cumulative percent of total variance are printed, along with the

factor structure. A graph of the cumulative percent is displayed on the screen.

The user specifies the variables that are to take part in the analysis. If the

Nonparametric box is checked, Spearman rho (page 79) is used to compute the

correlation matrix instead of ordinary correlation. This is useful when the data may have

outliers.

�Analyze/Factor Analysis
A maximum-likelihood factor analysis as described starting on page 221 is performed.

The eigenvalues and their cumulative percent of total variance are printed first, along

with the factor structure and initial Psi estimates (basic communalities). A graph of the

cumulative percent is displayed on the screen. Then, the final factor analysis information

is printed. Note that the Squared length printed at the top of each column of factor

loadings is roughly analogous to the eigenvalues for an ordinary principal components

analysis, but only roughly. This is because these factors are unique only up to rotation, so

the natural ordering seen with the eigenvalues is no longer guaranteed.

The user specifies the variables that are to take part in the analysis. If the

Nonparametric box is checked, Spearman rho (page 79) is used to compute the

correlation matrix instead of ordinary correlation. This is useful when the data may have

outliers.

Chapter 5 Using the DATAMINE Program

275

�Analyze/Rotate
If the user has performed either an Eigen analysis or a Factor analysis, a varimax factor

rotation (page 199) may be performed. The menu shown in Figure 5-5 appears.

Figure 5-5.  Rotate eigenvectors

The user must specify the number of factors to rotate. If the starting factors are from

an Eigen analysis, we rotate the factor loadings corresponding to the specified number of

largest eigenvalues. If they are from a Factor analysis, fully sensible results are obtained

only if the user specifies the fixed number of factors that were computed in the factor

analysis.

There are three ways to specify the number of factors to be rotated:

•	 A fixed number

•	 Those (starting from the largest eigenvalue) that make up the

specified minimum percent of total variance.

•	 Horn’s algorithm, described on page 202, determines the number of

factors to keep. In this case, the percentile and number of replications

must be specified.

Chapter 5 Using the DATAMINE Program

276

�Analyze/Cluster Variables
The technique described starting on page 213 is used to cluster variables. This operation

may be invoked only if an Eigen analysis (most sensible) or Factor analysis (less sensible)

has been performed. The user makes three specifications.

•	 Centroid method (vs leader): If this box is checked, the centroid

method is used for updating group identifiers. Otherwise, the leader

method (keep the characteristics of one group) is used.

•	 Number of factors to keep: This is the number of factors on which to

base the clustering. If an Eigen analysis is used for this clustering (the

usually recommendation), these will be the factors corresponding to

the largest eigenvalues.

•	 Start printing group membership when n reaches: The number of

groups starts out at the number of variables. Each time a group is

absorbed, the program can print group membership information.

Obviously, this can result in a huge printout if the number of

variables is large. This option lets the user specify that group

membership printing does not begin until this many groups remain.

�Analyze/Coherence
A time-domain coherence analysis, as described on page 257, is performed. The user

specifies the variables that are to take part (which must be aligned in time) as well as the

following parameters:

•	 Connect: If this box is checked, the plotted coherence values are

connected. Otherwise, they are discrete vertical bars.

•	 Nonparametric: If this box is checked, Spearman rho (page 79) is

used to compute the correlation matrix. Otherwise, it is computed

with ordinary correlation. This option is recommended if the data

may have outliers.

Chapter 5 Using the DATAMINE Program

277

•	 Lookback window cases: This many of the most recent cases are used

in the moving window for computation of coherence within the

window. Longer windows result in more accurate measurements but

poorer location in time.

�Plot/Series
This just plots a time series of a single variable selected by the user. If the Connected box

is checked, the plotted points are connected. Otherwise, each point is represented by a

discrete vertical line.

�Plot/Histogram
This plots a histogram of a single variable selected by the user. The user may optionally

request that the lower and/or upper bounds of the plot be limited to specified values.

If this is not done, the actual plot limits are at or slightly outside the full range of the

variable. The user also specifies the number of bins to use.

�Plot/Density
A plot for revealing relationship anomalies, as discussed starting on page 167, is done.

The menu shown in Figure 5-6 appears.

Chapter 5 Using the DATAMINE Program

278

The user specifies the following items:

•	 Horizontal variable: This is the variable that will be represented by

the horizontal axis. The user may optionally check the Lower limit

and/or the Upper limit box above this list and specify a numeric value

(values) for display limits. If a box is not checked, the corresponding

limit is at or slightly outside the actual range of the variable.

•	 Vertical variable: This specifies the variable for the vertical axis, as

described.

•	 Plot in color: If this box is selected, the plot will be in color, with

yellow indicating large values of the plotted quantity and blue

indicating small values. Otherwise, it is black-and-white, with black

indicating large values and white indicating small values.

•	 Sharpen: If this box is selected, areas of unusually large concentration

are made to stand out from the background by accentuating them at

the expense of contrast in other areas.

Figure 5-6.  Variable pair density

Chapter 5 Using the DATAMINE Program

279

•	 Histogram equalization: If this box is selected, the program applies

a nonlinear transform to the data in such a way that every possible

displayed tone or color occurs in the display in approximately equal

quantity. The effect of this transformation is usually that small

changes in the data are made more visible, while simultaneously

reducing the prominence of large changes.

•	 Resolution: This is the number of horizontal and vertical divisions

at which the plot is computed. Computation time is roughly

proportional to the square of this value. Larger values can reveal

more detail about the relationship between the variables.

•	 Relative width: This is the width of the Parzen smoothing window,

relative to the standard deviation of each variable. Smaller values

reveal more information but can also accentuate noise. If the data is

noisy, large width values are appropriate to smooth out the noise.

•	 Tone shift: This moves the overall display range. A positive value shifts

the tones in the “high” direction, and negative shifts tones toward the

“low” direction. The default of zero produces no change.

•	 Tone spread: This expands or compresses the range of the display.

The default of zero produces no change. Negative values are legal

but rarely useful, as this compresses variation into a narrow range,

making discrimination difficult. Positive values, rarely beyond five

or so, expand the center of the display range while squashing the

extremes. This emphasizes features in the interior of the grid range, at

the expense of the extremes.

•	 Actual density: This plots the actual density, as discussed on page 171.

•	 Marginal density: This plots the marginal density product, as

discussed on page 171.

•	 Inconsistency: This plots the marginal inconsistency, as discussed on

page 171.

•	 Mutual information: This plots the contribution of each region to the

total mutual information, as discussed on page 172.

Chapter 5 Using the DATAMINE Program

281
© Timothy Masters 2018
T. Masters, Data Mining Algorithms in C++, https://doi.org/10.1007/978-1-4842-3315-3

Index

A
Adaptive partitioning

actual counts, compute, 57
algorithm coding, 50–51
bin counts, 49
bivariate density, 46
bivariate distribution, 47, 50
chi-square test, 49

statistic, 49
two-by-two, 49, 56, 60

continuous data, 56
continuous variables, 45
currentDataStart, 58
currentDataStop, 58
discrete formula, 45
four-by-four chi-square tests, 60
indices, 51
indices array, 53
method, 42
MUTINF_C.CPP, 51
naive algorithms, 46
nonrandom distribution, 49
nonuniform data distribution, 56
partitioning diagram, 47–48
random variation, 46
rearranging indices, 58
rectangle off the stack, 53
splitting across tied data, 50
splitting tied cases, 52
stack entries, 52, 53

starting and stopping indices, 54
subrectangle cases, 58–59
TEST_DIS program, 46
tunable parameters, 45
two-by-two grid, 46
two-by-two split, 53, 56
variety of distributions, 46

Alpha level, 92
Anomalies

actual density, 169, 171
database, 174
DATAMINE program, 183
density and marginal product, 178
histogram equalization, 181
histogram normalization, 174
implications, 180
marginal density product, 169, 171
marginal inconsistency, 170–172
maxMIx and maxMIy, 179
mean and standard deviation, 176–177
multivariate extensions, 168
mutual information

contribution, 170, 172–173
numeric values, 177–178
optional sharpening, 182
parameters, 182
Parzen window method, 168
quantities, 177–178
scale factors, 175–176
scale positive and negative values, 180

https://doi.org/10.1007/978-1-4842-3315-3

282

user-specified limits, 174–175
user-specified parameters, 173
variables, 167, 173

Asymmetric information measures
causality, 61
transfer entropy (see Transfer entropy)
uncertainty reduction

asymmetric predictive
information, 62

coding, 63–65
computation formula, 62
entropy circles Y, 62
STATS.CPP file, 63

B
Bits, 1
Bivariate screening

binning-type relationship
criteria, 116

bin-unrolled version, 118–119
bivar_threaded() method, 118
blocks, 124
Monte Carlo permutation tests, 117
parameter-passing structure, 120
predictors, 117
SCREEN_BIVAR.CPP file, 118
thread parameters, 121–122

C
Chi-square and Cramer’s V, 85–87
Combinatorially symmetric cross

validation (CSCV)
algorithm, 102–109
best IS performers, 102
components, 97

dataset, 109
evaluation, 99
in-sample (IS), 100
Monte Carlo permutation testing, 98
OOS performance, 100
overfitting, 98
performance statistics, 99
predictive model, 101
R-square, 101
synthetic variables, 109

Conditional entropy, 15–17
Confusion matrices, 21
Continuous mutual information

adaptive partitioning (see Adaptive
partitioning)

Parzen window method (see Parzen
window method)

TEST_CON Program, 60–61
Correlation, 78
Cumulative distribution function, 39
Cyclic test, 34

D
DATAMINE program

analyze/cluster variables, 276
analyze/coherence

analysis, 276–277
analyze/eigen analysis, 274
analyze/factor analysis, 274
analyze/rotate, 275
analyze/rotate eigenvectors, 275
file/exit, 268
file/read data file, 267
plot/density, 277–279
plot/histogram, 277
plot/series, 277
screen/bivariate screen, 269–271

Anomalies (cont.)

Index

283

screen/FREL, 272–274
screen/relevance minus

redundancy, 271–272
screen/univariate screen, 268–269

E
Eigenvectors

clustering variables, subspace, 213–217
columns, 193
communality, 193, 224
correlation matrix, 221, 259, 263
cumulative row, 190
data analysis, 221
dataset, 196–199
eigenvalues, 186–188
factor loading matrix, 222
error handling,

AN_FACTOR.TXT, 246–256
expectation maximization, 232–241
factor structure, 189–190
factor-to-observed equation, 223
Horn’s algorithm, 202–213
independent-variance

measure, 224–225
least-squares approximations, 222
log likelihood function, 228–232
lookback observations, 260–262
maximum likelihood factor

analysis, 224, 226–227, 257
measurements, 186
medical field, 221
observed-to-factor equation, 223
principal axis, 186
principal component, 186, 188–189,

191–192, 226–227
quadratic acceleration,

DECME-2s, 241–246

RAND variables, 226
real symmetric matrix, 194–195
and rotation, 194
set of variables, 257
single dimension, 258
stock market, 264–265
SUM variables, 226
time-series variables, 258
uniqueness vs. redundancy, 257
varimax rotation, 192, 199–201

Entropy
continuous random variable, 5
entropy of X, 3
mail today random variable, 3
expected value, 2
improvement, 10–12
information content, 4
joint and conditional, 12–16
natural logarithms, 1
partitioning, continuous variable, 5–10
proportional, 4
random variable X, 4

Expectation maximization, 232–241

F
Fano’s bound, 19–21
Feature weighting as regularized energy-

based learning (FREL)
algorithm, 149–153
bootstrap loop, 161
bootstrapping, 146–147
classification application, 141
compute_loss() algorithm, 153
energy, 143
energy-based model, 142
interpreting weights, 146
machine learning, 142

Index

284

monotonic function, 145
Monte Carlo permutation test, 147–148
multithreaded code, 153–164
nearest-neighbor classification, 143
nested loops, 154
npred predictors, 153
null hypothesis, 141
optimal model, 143
optimizer, 159
parameters, 142
p-values, 166
regression model, 144
regularization, 145–146
regularization factor, 165
scalar quantity, 143
training set, 143
two-part requirement, 144
weighted nearest-neighbor

classification, 145
weight estimation algorithm, 162
wrapper function, 156

Fleuret algorithm, 140
Forward stepwise selection, 125

G
Grainger causality, 65

H, I
Higher-order methods, 126
Horn’s algorithm, 202–213

J
Joint entropy, 14

K
Kullback-Liebler distance, 67

L
Left-tail test, 90

M
Mean squared error (MSE), 144
Monte Carlo permutation test

(MCPT), 94, 141, 147–148
Multivariate extensions, 88–89
Mutual information

algorithms
automated partitioning, 29
bin boundaries, 31
bin membership, 33
discrete, 29
integer comparisons, 30
MUTINF_D.CPP, 28
splitting bound, 31–33

confusion matrices, 21–23
Fano’s bound

extending upper limits, 23–27
and predictor variables

selection, 19, 21
random variables X and Y, 18
statements, 17–18
TEST_DIS.CPP program, 34–36
and uncertainty reduction, 88
X and Y relationships, 19

N
Nat, 1–2
Nonlinearity, 82–85

Feature weighting as regularized energy-
based learning (FREL) (cont.)

Index

285

Nonparametric correlation, 79–82
Null hypothesis, 90

O
One-dimensional Parzen window, 42
Online parallel formula, 207
Ordinary correlation, 78–79
Out-of-sample (OOS) performance, 100
Overfitting, 98

P, Q
Parzen window approximation, 37
Parzen window method

adaptive partitioning method, 42
arguments, 37
computing mutual information, 43
density() member function, 40
depvals, 41
effective density estimator, 38
Gaussian function of equation, 38
integrate() calls, 41
mutinf(), 41
MutualInformationParzen object, 40
normal distribution, 38, 42
normalized Parzen density, 39
outercrit(), 41
PARZDENS.CPP, 38
probability density, 37
sorting algorithm qsortdsi() swaps, 39
scaling factor, 42
sigma, 43–45
sigma scale factor, 39
window widths, 43

Permutation tests
intuitive approach, 91
left-tail test, 90

modestly rigorous statement
procedure, 89

Monte Carlo, 94
permutation algorithms, 93
right-tail test, 90
selection bias, 95
serial correlation, 93

Principal components, 188–189
Proportional entropy, 4

R
Relationship

chi-square and Cramer’s V, 85–87
multivariate extensions, 88–89
nonlinearity, 82
nonparametric correlation, 79–82
ordinary correlation, 78

Right-tail test, 90

S
Schreiber’s information transfer, see

Transfer entropy
Screening for relationships

backward stepwise selection, 77
bivariate screening, 76
forward selection preserving

subsets, 77
forward stepwise selection, 76
univariate screening, 76

Scree plot, 202
Swap confusion matrix, 23
Spread confusion, 23
Standard statistical algorithm, 39
Stepwise predictor selection

binary variables, 136, 139, 140
dataset, 132

Index

286

Group pval, 136
maximizing relevance, 125–127
minimizing redundancy, 125–127
p-value, 135, 136
relevance minus redundancy

algorithm, 128–131
Solo pval, 135
superior selection

algorithm, 136, 139, 140
Sure confusion, 23

T
Target variable, 102
TEST_CON program, 60–61
TEST_DIS program, 34–36
Transfer entropy

causative effect, 68
computing information transfer, 65
conditional probabilities, 68
form of causality, 65
Gaussian noise, 65
Grainger causality, 65
Granger’s rules, 66
information transfer, properties, 66–67
Kullback-Liebler distance, 67–68
marginal probabilities, 72
model-based market-trading

datasets, 69
nbins_x-1 and nbins_y-1, 70

negative subscript, 71
nx=nbins_x^xhist and ny=nbins_

y^yhist, 71
probability matrix, 70
program code, 70
rigorous statement, problem, 69
SCREEN_UNIVAR.CPP, 73
straightforward implementation,

equations, 72
traditional version, 69
TRANS_ENT.CPP file, 69
TRANSFER.CPP, 73

Triangular test, 34
Two-dimensional Parzen density code, 40

U
Unbiased probability, 96
Uniform error test, 34
Univariate screening

dataset variables, 114
modern processors, 110
Monte Carlo permutation test, 116
multithreading, 111
p-values, 116
SCREEN_UNIVAR.CPP, 110, 111
variable and set, 111

V, W, X, Y, Z
Varimax rotation algorithm, 192, 199–201

Stepwise predictor selection (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Information and Entropy
	 Entropy
	 Entropy of a Continuous Random Variable
	 Partitioning a Continuous Variable for Entropy
	 An Example of Improving Entropy

	 Joint and Conditional Entropy
	 Code for Conditional Entropy

	 Mutual Information
	 Fano’s Bound and Selection of Predictor Variables
	 Confusion Matrices and Mutual Information
	 Extending Fano’s Bound for Upper Limits
	 Simple Algorithms for Mutual Information
	 The TEST_DIS Program

	 Continuous Mutual Information
	 The Parzen Window Method
	 Adaptive Partitioning
	 The TEST_CON Program

	 Asymmetric Information Measures
	 Uncertainty Reduction
	 Transfer Entropy: Schreiber’s Information Transfer

	Chapter 2: Screening for Relationships
	 Simple Screening Methods
	 Univariate Screening
	 Bivariate Screening
	 Forward Stepwise Selection
	 Forward Selection Preserving Subsets
	 Backward Stepwise Selection

	 Criteria for a Relationship
	 Ordinary Correlation
	 Nonparametric Correlation
	 Accommodating Simple Nonlinearity
	 Chi-Square and Cramer’s V
	 Mutual Information and Uncertainty Reduction
	 Multivariate Extensions

	 Permutation Tests
	 A Modestly Rigorous Statement of the Procedure
	 A More Intuitive Approach
	 Serial Correlation Can Be Deadly
	 Permutation Algorithms
	 Outline of the Permutation Test Algorithm
	 Permutation Testing for Selection Bias

	 Combinatorially Symmetric Cross Validation
	 The CSCV Algorithm
	 An Example of CSCV OOS Testing

	 Univariate Screening for Relationships
	 Three Simple Examples

	 Bivariate Screening for Relationships
	 Stepwise Predictor Selection Using Mutual Information
	 Maximizing Relevance While Minimizing Redundancy
	 Code for the Relevance Minus Redundancy Algorithm
	 An Example of Relevance Minus Redundancy
	 A Superior Selection Algorithm for Binary Variables

	 FREL for High-Dimensionality, Small Size Datasets
	 Regularization
	 Interpreting Weights
	 Bootstrapping FREL
	 Monte Carlo Permutation Tests of FREL
	 General Statement of the FREL Algorithm
	 Multithreaded Code for FREL
	 Some FREL Examples

	Chapter 3: Displaying Relationship Anomalies
	 Marginal Density Product
	 Actual Density
	 Marginal Inconsistency
	 Mutual Information Contribution
	 Code for Computing These Plots
	 Comments on Showing the Display

	Chapter 4: Fun with Eigenvectors
	 Eigenvalues and Eigenvectors
	 Principal Components (If You Really Must)
	 The Factor Structure Is More Interesting
	 A Simple Example
	 Rotation Can Make Naming Easier

	 Code for Eigenvectors and Rotation
	 Eigenvectors of a Real Symmetric Matrix
	 Factor Structure of a Dataset
	 Varimax Rotation

	 Horn’s Algorithm for Determining Dimensionality
	 Code for the Modified Horn Algorithm

	 Clustering Variables in a Subspace
	 Code for Clustering Variables

	 Separating Individual from Common Variance
	 Log Likelihood the Slow, Definitional Way
	 Log Likelihood the Fast, Intelligent Way
	 The Basic Expectation Maximization Algorithm
	 Code for Basic Expectation Maximization
	 Accelerating the EM Algorithm
	 Code for Quadratic Acceleration with DECME-2s
	 Putting It All Together
	 Thoughts on My Version of the Algorithm

	 Measuring Coherence
	 Code for Tracking Coherence
	 Coherence in the Stock Market

	Chapter 5: Using the DATAMINE Program
	 File/Read Data File
	 File/Exit
	 Screen/Univariate Screen
	 Screen/Bivariate Screen
	 Screen/Relevance Minus Redundancy
	 Screen/FREL
	 Analyze/Eigen Analysis
	 Analyze/Factor Analysis
	 Analyze/Rotate
	 Analyze/Cluster Variables
	 Analyze/Coherence
	 Plot/Series
	 Plot/Histogram
	 Plot/Density

	Index

