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1 Introduction

1.1 Compilation

Definition. Compilation is a process that translates a program in one language (the source

language) into an equivalent program in another language (the object or target language).
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An important part of any compiler is the detection and reporting of errors; this will be dis-

cussed in more detail later in the introduction. Commonly, the source language is a high-level

programming language (i.e. a problem-oriented language), and the target language is a ma-

chine language or assembly language (i.e. a machine-oriented language). Thus compilation is a

fundamental concept in the production of software: it is the link between the (abstract) world

of application development and the low-level world of application execution on machines.

Types of Translators. An assembler is also a type of translator:

program programAssembler
Assembly Machine

An interpreter is closely related to a compiler, but takes both source program and input data.

The translation and execution phases of the source program are one and the same.

Source
program

data
Input

Interpreter
Output

data

Although the above types of translator are the most well-known, we also need knowledge of

compilation techniques to deal with the recognition and translation of many other types of

languages including:
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• Command-line interface languages;

• Typesetting / word processing languages (e.g.TEX);

• Natural languages;

• Hardware description languages;

• Page description languages (e.g. PostScript);

• Set-up or parameter files.

Early Development of Compilers.

1940’s. Early stored-program computers were programmed in machine language. Later, as-

sembly languages were developed where machine instructions and memory locations were given

symbolic forms.

1950’s. Early high-level languages were developed, for example FORTRAN. Although more

problem-oriented than assembly languages, the first versions of FORTRAN still had many

machine-dependent features. Techniques and processes involved in compilation were not well-

understood at this time, and compiler-writing was a huge task: e.g. the first FORTRAN

compiler took 18 man years of effort to write.

Chomsky’s study of the structure of natural languages led to a classification of languages

according to the complexity of their grammars. The context-free languages proved to be useful

in describing the syntax of programming languages.

1960’s onwards. The study of the parsing problem for context-free languages during the 1960’s

and 1970’s has led to efficient algorithms for the recognition of context-free languages. These al-

gorithms, and associated software tools, are central to compiler construction today. Similarly,

the theory of finite state machines and regular expressions (which correspond to Chomsky’s

regular languages) have proven useful for describing the lexical structure of programming lan-

guages.

From Algol 60, high-level languages have become more problem-oriented and machine indepen-

dent, with features much removed from the machine languages into which they are compiled.

The theory and tools available today make compiler construction a managable task, even for

complex languages. For example, your compiler assignment will take only a few weeks (hope-

fully) and will only be about 1000 lines of code (although, admittedly, the source language is

small).

1.2 The Context of a Compiler

The complete process of compilation is illustrated as:
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source program

compiler

skeletal source program

preprocessor

assembly program

assembler

relocatable m/c code

link/load editor

absolute m/c code

1.2.1 Preprocessors

Preprocessing performs (usually simple) operations on the source file(s) prior to compilation.

Typical preprocessing operations include:

(a) Expanding macros (shorthand notations for longer constructs). For example, in C,

#define foo(x,y) (3*x+y*(2+x))

defines a macro foo, that when used in later in the program, is expanded by the

preprocessor. For example, a = foo(a,b) becomes

a = (3*a+b*(2+a))

(b) Inserting named files. For example, in C,

#include "header.h"

is replaced by the contents of the file header.h

1.2.2 Linkers

A linker combines object code (machine code that has not yet been linked) produced from

compiling and assembling many source programs, as well as standard library functions and

resources supplied by the operating system. This involves resolving references in each object

file to external variables and procedures declared in other files.
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1.2.3 Loaders

Compilers, assemblers and linkers usually produce code whose memory references are made

relative to an undetermined starting location that can be anywhere in memory (relocatable

machine code). A loader calculates appropriate absolute addresses for these memory locations

and amends the code to use these addresses.

1.3 The Phases of a Compiler

The process of compilation is split up into six phases, each of which interacts with a symbol

table manager and an error handler. This is called the analysis/synthesis model of compilation.

There are many variants on this model, but the essential elements are the same.

syntax
analyser

semantic
analyser

intermediate
code gen’tor

code
optimizer

symbol-table
manager

error
handler

source program

lexical
analyser

code

target program

generator

1.3.1 Lexical Analysis

A lexical analyser or scanner is a program that groups sequences of characters into lexemes,

and outputs (to the syntax analyser) a sequence of tokens. Here:

(a) Tokens are symbolic names for the entities that make up the text of the program;

e.g. if for the keyword if, and id for any identifier. These make up the output of

the lexical analyser.
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(b) A pattern is a rule that specifies when a sequence of characters from the input

constitutes a token; e.g the sequence i, f for the token if , and any sequence of

alphanumerics starting with a letter for the token id.

(c) A lexeme is a sequence of characters from the input that match a pattern (and hence

constitute an instance of a token); for example if matches the pattern for if , and

foo123bar matches the pattern for id.

For example, the following code might result in the table given below.

program foo(input,output);var x:integer;begin

readln(x);writeln(’value read =’,x) end.

Lexeme Token Pattern

program program p, r, o, g, r, a, m

newlines, spaces, tabs

foo id (foo) letter followed by seq. of alphanumerics

( leftpar a left parenthesis

input input i, n, p, u, t

, comma a comma

output output o, u, t, p, u, t

) rightpar a right parenthesis

; semicolon a semi-colon

var var v, a, r

x id (x) letter followed by seq. of alphanumerics

: colon a colon

integer integer i, n, t, e, g, e, r

; semicolon a semi-colon

begin begin b, e, g, i, n

newlines, spaces, tabs

readln readln r, e, a, d, l, n

( leftpar a left parenthesis

x id (x) letter followed by seq. of alphanumerics

) rightpar a right parenthesis

; semicolon a semi-colon

writeln writeln w, r, i, t, e, l, n

( leftpar a left parenthesis

’value read =’ literal (’value read =’) seq. of chars enclosed in quotes

, comma a comma

x id (x) letter followed by seq. of alphanumerics

) rightpar a right parenthesis

newlines, spaces, tabs

end end e, n, d

. fullstop a fullstop
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It is the sequence of tokens in the middle column that are passed as output to the syntax

analyser.

This token sequence represents almost all the important information from the input program

required by the syntax analyser. Whitespace (newlines, spaces and tabs), although often im-

portant in separating lexemes, is usually not returned as a token. Also, when outputting an id

or literal token, the lexical analyser must also return the value of the matched lexeme (shown

in parentheses) or else this information would be lost.

1.3.2 Symbol Table Management

A symbol table is a data structure containing all the identifiers (i.e. names of variables, proce-

dures etc.) of a source program together with all the attributes of each identifier.

For variables, typical attributes include:

• its type,

• how much memory it occupies,

• its scope.

For procedures and functions, typical attributes include:

• the number and type of each argument (if any),

• the method of passing each argument, and

• the type of value returned (if any).

The purpose of the symbol table is to provide quick and uniform access to identifier attributes

throughout the compilation process. Information is usually put into the symbol table during

the lexical analysis and/or syntax analysis phases.

1.3.3 Syntax Analysis

A syntax analyser or parser is a program that groups sequences of tokens from the lexical

analysis phase into phrases each with an associated phrase type.

A phrase is a logical unit with respect to the rules of the source language. For example, consider:

a := x * y + z
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After lexical analysis, this statement has the structure

id1 assign id2 binop1 id3 binop2 id4

Now, a syntactic rule of Pascal is that there are objects called ‘expressions’ for which the rules

are (essentially):

(1) Any constant or identifier is an expression.

(2) If exp1 and exp2 are expressions then so is exp1 binop exp2.

Taking all the identifiers to be variable names for simplicity, we have:

• By rule (1) exp1 = id2 and exp2 = id3 are both phrases with phrase type ‘expression’;

• by rule (2) exp3 = exp1 binop1 exp2 is also a phrase with phrase type ‘expression’;

• by rule (1) exp4 = id4 is a phase with type ‘expression’;

• by rule (2), exp5 = exp3 binop2 exp4 is a phrase with phrase type ‘expression’.

Of course, Pascal also has a rule that says:

id assign exp

is a phrase with phrase type ‘assignment’, and so the Pascal statement above is a phrase of

type ‘assignment’.

Parse Trees and Syntax Trees. The structure of a phrase is best thought of as a parse

tree or a syntax tree. A parse tree is tree that illustrates the grouping of tokens into phrases.

A syntax tree is a compacted form of parse tree in which the operators appear as the interior

nodes. The construction of a parse tree is a basic activity in compiler-writing.

A parse tree for the example Pascal statement is:

assignment

id1 exp5

exp4

id4

exp3

binop1exp1

id2 id3

exp2

binop2

assign
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and a syntax tree is:

binop1

id1 binop2

id4

id2 id3

assign

Comment. The distinction between lexical and syntactical analysis sometimes seems arbitrary.

The main criterion is whether the analyser needs recursion or not:

• lexical analysers hardly ever use recursion; they are sometimes called linear analysers

since they scan the input in a ‘straight line’ (from from left to right).

• syntax analysers almost always use recursion; this is because phrase types are often defined

in terms of themselves (cf. the phrase type ‘expression’ above).

1.3.4 Semantic Analysis

A semantic analyser takes its input from the syntax analysis phase in the form of a parse tree

and a symbol table. Its purpose is to determine if the input has a well-defined meaning; in

practice semantic analysers are mainly concerned with type checking and type coercion based

on type rules. Typical type rules for expressions and assignments are:

Expression Type Rules. Let exp be an expression.

(a) If exp is a constant then exp is well-typed and its type is the type of the constant.

(b) If exp is a variable then exp is well-typed and its type is the type of the variable.

(c) If exp is an operator applied to further subexpressions such that:

(i) the operator is applied to the correct number of subexpressions,

(ii) each subexpression is well-typed and

(iii) each subexpression is of an appropriate type,

then exp is well-typed and its type is the result type of the operator.

Assignment Type Rules. Let var be a variable of type T1 and let exp be a well-typed

expression of type T2. If
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(a) T1 = T2 and

(b) T1 is an assignable type

then var assign exp is a well-typed assignment.

For example, consider the following code fragment:

intvar := intvar + realarray

where intvar is stored in the symbol table as being an integer variable, and realarray as

an array or reals. In Pascal this assignment is syntactically correct, but semantically incorrect

since + is only defined on numbers, whereas its second argument is an array. The semantic

analyser checks for such type errors using the parse tree, the symbol table and type rules.

1.3.5 Error Handling

Each of the six phases (but mainly the analysis phases) of a compiler can encounter errors. On

detecting an error the compiler must:

• report the error in a helpful way,

• correct the error if possible, and

• continue processing (if possible) after the error to look for further errors.

Types of Error. Errors are either syntactic or semantic:

Syntax errors are errors in the program text; they may be either lexical or grammatical:

(a) A lexical error is a mistake in a lexeme, for examples, typing tehn instead of then,

or missing off one of the quotes in a literal.

(b) A grammatical error is a one that violates the (grammatical) rules of the language,

for example if x = 7 y := 4 (missing then).

Semantic errors are mistakes concerning the meaning of a program construct; they may be

either type errors, logical errors or run-time errors:

(a) Type errors occur when an operator is applied to an argument of the wrong type,

or to the wrong number of arguments.
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(b) Logical errors occur when a badly conceived program is executed, for example:

while x = y do ... when x and y initially have the same value and the body of

loop need not change the value of either x or y.

(c) Run-time errors are errors that can be detected only when the program is executed,

for example:

var x : real; readln(x); writeln(1/x)

which would produce a run time error if the user input 0.

Syntax errors must be detected by a compiler and at least reported to the user (in a helpful

way). If possible, the compiler should make the appropriate correction(s). Semantic errors are

much harder and sometimes impossible for a computer to detect.

1.3.6 Intermediate Code Generation

After the analysis phases of the compiler have been completed, a source program has been

decomposed into a symbol table and a parse tree both of which may have been modified by

the semantic analyser. From this information we begin the process of generating object code

according to either of two approaches:

(1) generate code for a specific machine, or

(2) generate code for a ‘general’ or abstract machine, then use further translators to

turn the abstract code into code for specific machines.

Approach (2) is more modular and efficient provided the abstract machine language is simple

enough to:

(a) produce and analyse (in the optimisation phase), and

(b) easily translated into the required language(s).

One of the most widely used intermediate languages is Three-Address Code (TAC).

TAC Programs. A TAC program is a sequence of optionally labelled instructions. Some

common TAC instructions include:

(i) var1 := var2 binop var3

(ii) var1 := unop var2

(iii) var1 := num
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(iv) goto label

(v) if var1 relop var2 goto label

There are also TAC instructions for addresses and pointers, arrays and procedure calls, but will

will use only the above for the following discussion.

Syntax-Directed Code Generation. In essence, code is generated by recursively walking

through a parse (or syntax) tree, and hence the process is referred to as syntax-directed code

generation. For example, consider the code fragment:

z := x * y + x

and its syntax tree (with lexemes replacing tokens):

:=

+

*

y

z

x

x

We use this tree to direct the compilation into TAC as follows.

At the root of the tree we see an assignment whose right-hand side is an expression, and

this expression is the sum of two quantities. Assume that we can produce TAC code that

computes the value of the first and second summands and stores these values in temp1 and

temp2 respectively. Then the appropriate TAC for the assignment statement is just

z := temp1 + temp2

Next we consider how to compute the values of temp1 and temp2 in the same top-down recursive

way.

For temp1 we see that it is the product of two quantities. Assume that we can produce TAC

code that computes the value of the first and second multiplicands and stores these values in

temp3 and temp4 respectively. Then the appropriate TAC for the computing temp1 is

temp1 := temp3 * temp4

Continuing the recursive walk, we consider temp3. Here we see it is just the variable x and thus

the TAC code
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temp3 := x

is sufficient. Next we come to temp4 and similar to temp3 the appropriate code is

temp4 := y

Finally, considering temp2, of course

temp2 := x

suffices.

Each code fragment is output when we leave the corresponding node; this results in the final

program:

temp3 := x

temp4 := y

temp1 := temp3 * temp4

temp2 := x

z := temp1 + temp2

Comment. Notice how a compound expression has been broken down and translated into a

sequence of very simple instructions, and furthermore, the process of producing the TAC code

was uniform and simple. Some redundancy has been brought into the TAC code but this can

be removed (along with redundancy that is not due to the TAC-generation) in the optimisation

phase.

1.3.7 Code Optimisation

An optimiser attempts to improve the time and space requirements of a program. There are

many ways in which code can be optimised, but most are expensive in terms of time and space

to implement.

Common optimisations include:

• removing redundant identifiers,

• removing unreachable sections of code,

• identifying common subexpressions,

• unfolding loops and
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• eliminating procedures.

Note that here we are concerned with the general optimisation of abstract code.

Example. Consider the TAC code:

temp1 := x

temp2 := temp1

if temp1 = temp2 goto 200

temp3 := temp1 * y

goto 300

200 temp3 := z

300 temp4 := temp2 + temp3

Removing redundant identifiers (just temp2) gives

temp1 := x

if temp1 = temp1 goto 200

temp3 := temp1 * y

goto 300

200 temp3 := z

300 temp4 := temp1 + temp3

Removing redundant code gives

temp1 := x

200 temp3 := z

300 temp4 := temp1 + temp3

Notes. Attempting to find a ‘best’ optimisation is expensive for the following reasons:

• A given optimisation technique may have to be applied repeatedly until no further optimi-

sation can be obtained. (For example, removing one redundant identifier may introduce

another.)

• A given optimisation technique may give rise to other forms of redundancy and thus

sequences of optimisation techniques may have to be repeated. (For example, above

we removed a redundant identifier and this gave rise to redundant code, but removing

redundant code may lead to further redundant identifiers.)

• The order in which optimisations are applied may be significant. (How many ways are

there of applying n optimisation techniques to a given piece of code?)

14



1.3.8 Code Generation

The final phase of the compiler is to generate code for a specific machine. In this phase we

consider:

• memory management,

• register assignment and

• machine-specific optimisation.

The output from this phase is usually assembly language or relocatable machine code.

Example. The TAC code above could typically result in the ARM assembly program shown

below. Note that the example illustrates a mechanical translation of TAC into ARM; it is not

intended to illustrate compact ARM programming!

.x EQUD 0 four bytes for x

.z EQUD 0 four bytes for z

.temp EQUD 0 four bytes each for temp1,

EQUD 0 temp3, and

EQUD 0 temp4.

.prog MOV R12,#temp R12 = base address

MOV R0,#x R0 = address of x

LDR R1,[R0] R1 = value of x

STR R1,[R12] store R1 at R12

MOV R0,#z R0 = address of z

LDR R1,[R0] R1 = value of z

STR R1,[R12,#4] store R1 at R12+4

LDR R1,[R12] R1 = value of temp1

LDR R2,[R12,#4] R2 = value of temp3

ADD R3,R1,R2 add temp1 to temp3

STR R3,[R12,#8] store R3 at R12+8
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2 Languages

In this section we introduce the formal notion of a language, and the basic problem of recognising

strings from a language. These are central concepts that we will use throughout the remainder

of the course.

Note.This section contains mainly theoretical definitions; the lectures will cover examples and

diagrams illustrating the theory.

2.1 Basic Definitions

• An alphabet Σ is a finite non-empty set (of symbols).

• A string or word over an alphabet Σ is a finite concatenation (or juxtaposition) of symbols

from Σ.

• The length of a string w (that is, the number of characters comprising it) is denoted |w|.

• The empty or null string is denoted ǫ. (That is, ǫ is the unique string satisfying |ǫ| = 0.)

• The set of all strings over Σ is denoted Σ∗.

• For each n ≥ 0 we define

Σn = {w ∈ Σ∗ | |w| = n}.

• We define

Σ+ =
⋃

n≥1

Σn.

(Thus Σ∗ = Σ+ ∪ {ǫ}.)

• For a symbol or word x, xn denotes x concatenated with itself n times, with the convention

that x0 denotes ǫ.

• A language over Σ is a set L ⊆ Σ∗.

• Two languages L1 and L2 over common alphabet Σ are equal if they are equal as sets.

Thus L1 = L2 if, and only if, L1 ⊆ L2 and L2 ⊆ L1.

2.2 Decidability

Given a language L over some alphabet Σ, a basic question is: For each possible word w ∈ Σ∗,

can we effectively decide if w is a member of L or not? We call this the decision problem for L.

Note the use of the word ‘effectively’: this implies the mechanism by which we decide on

membership (or non-membership) must be a finitistic, deterministic and mechanical procedure
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that can be carried out by some form of computing agent. Also note the decision problem asks

if a given word is a member of L or not; that is, it is not sufficient to be only able to decide

when words are members of L.

More precisely then, a language L ⊆ Σ∗ is said to be decidable if there exists an algorithm such

that for every w ∈ Σ∗

(1) the algorithm terminates with output ‘Yes’ when w ∈ L and

(2) the algorithm terminates with output ‘No’ when w 6∈ L.

If no such algorithm exists then L is said to be undecidable.

Note. Decidability is based on the notion of an ‘algorithm’. In standard theoretical computer

science this is taken to mean a Turing Machine; this is an abstract, but extremely low-level

model of computation that is equivalent to a digital computer with an infinite memory. Thus it

is sufficient in practice to use a more convenient model of computation such as Pascal programs

provided that any decidability arguments we make assume an infinite memory.

Example. Let Σ = {0, 1} be an alphabet. Let L be the (infinite) language

L = {w ∈ Σ∗ | w = 0n1for some n}.

Does the program below solve the decision problem for L?

read( char );

if char = END_OF_STRING then

print( "No" )

else /* char must be ’0’ or ’1’ */

while char = ’0’ do

read( char )

od; /* char must be ’1’ or END_OF_STRING */

if char = ’1’ then

print( "Yes" )

else

print( "No" )

fi

fi

Answer: ....

2.3 Basic Facts

(1) Every finite language is decidable. (Hence every undecidable language is infinite.)
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(2) Not every infinite language is undecidable.

(3) Programming languages are (usually) infinite but (always) decidable. (Why?)

2.4 Applications to Compilation

Languages may be classified by the means in which they are defined. Of interest to us are

regular languages and context-free languages.

Regular Languages. The significant aspects of regular languages are:

• they are defined by ‘patterns’ called regular expressions;

• every regular language is decidable;

• the decision problem for any regular language is solved by a deterministic finite state

automaton (DFA); and

• programming languages’ lexical patterns are specified using regular expressions, and lex-

ical analysers are (essentially) DFAs.

Regular languages and their relationship to lexical analysis are the subjects of the next section.

Context-Free Languages. The significant aspects of context-free languages are:

• they are defined by ‘rules’ called context-free grammars;

• every context-free language is decidable;

• the decision problem for any context-free language of interest to us is solved by a deter-

ministic push-down automaton (DPDA);

• programming language syntax is specified using context-free grammars, and (most) parsers

are (essentially) DPDAs.

Context-free languages and their relationship to syntax analysis are the subjects of sections 4

and 5.
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3 Lexical Analysis

In this section we study some theoretical concepts with respect to the class of regular languages

and apply these concepts to the practical problem of lexical analysis. Firstly, in Section 3.1, we

define the notion of a regular expression and show how regular expressions determine regular

languages. We then, in Section 3.2, introduce deterministic finite automata (DFAs), the class

of algorithms that solve the decision problems for regular languages. We show how regular

expressions and DFAs can be used to specify and implement lexical analysers in Section 3.3,

and in Section 3.4 we take a brief look at Lex, a popular lexical analyser generator built upon

the theory of regular expressions and DFAs.

Note.This section contains mainly theoretical definitions; the lectures will cover examples and

diagrams illustrating the theory.

3.1 Regular Expressions

Recall from the Introduction that a lexical analyser uses pattern matching with respect to

rules associated with the source language’s tokens. For example, the token then is associated

with the pattern t, h, e, n, and the token id might be associated with the pattern “an

alphabetic character followed by any number of alphanumeric characters”. The notation of

regular expressions is a mathematical formalism ideal for expressing patterns such as these,

and thus ideal for expressing the lexical structure of programming languages.

3.1.1 Definition

Regular expressions represent patterns of strings of symbols. A regular expression r matches a

set of strings over an alphabet. This set is denoted L(r) and is called the language determined

or generated by r.

Let Σ be an alphabet. We define the set RE(Σ) of regular expressions over Σ, the strings they

match and thus the languages they determine, as follows:

• ∅ ∈ RE(Σ) matches no strings. The language determined is L(∅) = ∅.

• ǫ ∈ RE(Σ) matches only the empty string. Therefore L(ǫ) = {ǫ}.

• If a ∈ Σ then a ∈ RE(Σ) matches the string a. Therefore L(a) = {a}.

• if r and s are in RE(Σ) and determine the languages L(r) and L(s) respectively, then

– r|s ∈ RE(Σ) matches all strings matched either by r or by s. Therefore, L(r|s) =

L(r) ∪ L(s).
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– rs ∈ RE(Σ) matches any string that is the concatenation of two strings, the first

matching r and the second matching s. Therefore, the language determined is

L(rs) = L(r)L(s) = {uv ∈ Σ∗ | u ∈ L(r) and v ∈ L(s)}.

(Given two sets S1 and S2 of strings, the notation S1S2 denotes the set of all strings

formed by appending members of S1 with members of S2.)

– r∗ ∈ RE(Σ) matches all finite concatenations of strings which all match r. The

language denoted is thus

L(r∗) = (L(r))∗ =
⋃

i∈N

(L(r))i

= {ǫ} ∪ L(r) ∪ L(r)L(r) ∪ · · ·

3.1.2 Regular Languages

Let L be a language over Σ. L is said to be a regular language if L = L(r) for some r ∈ RE(Σ).

3.1.3 Notation

• We need to use parentheses to overide the convention concerning the precedence of the

operators. The normal convention is: ∗ is higher than concatenation, which is higher

than |. Thus, for example, a|bc∗ is a|(b(c∗)).

• We write r+ for rr∗.

• We write r? for ǫ|r.

• We write rn as an abbreviation for r . . . r (n times r), with r0 denoting ǫ.

3.1.4 Lemma

Writing ‘r = s’ to mean ‘L(r) = L(s)’ for two regular expressions r, s ∈ RE(Σ), the following

identities hold for all r, s, t ∈ RE(Σ):

• r|s = s|r (| is commutative)

• (r|s)|t = r|(s|t) (| is associative)

• (rs)t = r(st) (concatenation is associative)

• r(s|t) = rs|rt (concatenation

• (r|s)t = rt|st distributes over |)
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• ∅r = r∅ = ∅

• ∅|r = r

• ∅∗ = ǫ

• r?∗ = r∗

• r∗∗ = r∗

• (r∗s∗)∗ = (r|s)∗

• ǫr = rǫ = r.

3.1.5 Regular definitions

It is often useful to give names to complex regular expressions, and to use these names in place

of the expressions they represent. Given an alphabet comprising all ASCII characters,

letter = A|B| · · · |Z|a|b| · · · |z

digit = 0|1| · · · |9

ident = letter(letter|digit)∗

are examples of regular definitions for letters, digits and identifiers.

3.1.6 The Decision Problem for Regular Languages

For every regular expression r ∈ RE(Σ) there exists a string-processing machine M = M(r)

such that for every w ∈ Σ∗, when input to M :

(1) if w ∈ L(r) then M terminates with output ‘Yes’, and

(2) if w 6∈ L(r) then M terminates with output ‘No’.

Thus, every regular language is decidable.

The machines in question are Deterministic Finite State Automata.

3.2 Deterministic Finite State Automata

In this section we define the notion of a DFA without reference to its application in lexical

analysis. Here we are interested purely in solving the decision problem for regular languages;

that is, defining machines that say “yes” or “no” given an inputted string, depending on its

membership of a particular language. In Section 3.3 we use DFAs as the basis for lexical

analysers: pattern matching algorithms that output sequences of tokens.

21



3.2.1 Definition

A deterministic finite state automaton (or DFA) M is a 5-tuple

M = (Q, Σ, δ, q0, F )

where

• Q is a finite non-empty set of states,

• Σ is an alphabet,

• δ : Q× Σ→ Q is the transition or next-state function,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of accepting or final states.

The idea behind a DFA M is that it is an abstract machine that defines a language L(M) ⊆ Σ∗

in the following way:

• The machine begins in its start state q0;

• Given a string w ∈ Σ∗ the machine reads the symbols of w one at a time from left to

right;

• Each symbol causes the machine to make a transition from its current state to a new

state; if the current state is q and the input symbol is a, then the new state is δ(q, a);

• The machine terminates when all the symbols of the string have been read;

• If, when the machine terminates, its state is a member of F , then the machine accepts

w, else it rejects w.

Note the name ‘final state’ is not a good one since a DFA does not terminate as soon as a ‘final

state’ has been entered. The DFA only terminates when all the input has been read.

We formalise this idea as follows:

Definition. Let M = (Q, Σ, δ, q0, F ) be a DFA. We define δ̂ : Q× Σ∗ → Q by

δ̂(q, ǫ) = q

for each q ∈ Q and

δ̂(q, aw) = δ̂(δ(q, a), w)

for each q ∈ Q, a ∈ Σ and w ∈ Σ∗.

We define the language of M by

L(M) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.
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3.2.2 Transition Diagrams

DFAs are best understood by depicting them as transition diagrams; these are directed graphs

with nodes representing states and labelled arcs between states representing transitions.

A transition diagram for a DFA is drawn as follows:

(1) Draw a node labelled ‘q’ for each state q ∈ Q.

(2) For every q ∈ Q and every a ∈ Σ draw an arc labelled a from node q to node δ(q, a);

(3) Draw an unlabelled arc from outside the DFA to the node representing the initial

state q0;

(4) Indicate each final state by drawing a concentric circle around its node to form a

double circle.

3.2.3 Examples

Let M1 = (Q, Σ, δ, q0, F ) where Q = {1, 2, 3, 4}, Σ = {a, b}, q0 = 1, F = {4} and where δ is

given by:
δ(1, a) = 2 δ(1, b) = 3

δ(2, a) = 3 δ(2, b) = 4

δ(3, a) = 3 δ(3, b) = 3

δ(4, a) = 3 δ(4, b) = 4.

From the transition diagram for M1 it is clear that:

L(M1) = {w ∈ {a, b}∗ | δ̂(1, w) ∈ F}

= {w ∈ {a, b}∗ | δ̂(1, w) = 4}

= {ab, abb, abbb, . . . , abn, . . .}

= L(ab+).

Let M2 be obtained from M1 by adding states 1 and 2 to F . Then

L(M2) = L(ǫ|ab∗).

Let M3 be obtained from M1 by changing F to {3}. Then

L(M3) = L((b|aa|abb∗a)(a|b)∗).

Simplifications to transition diagrams.

23



• It is often the case that a DFA has an ‘error state’, that is, a non-accepting state from

which there are no transitions other than back to the error state. In such a case it is

convenient to apply the convention that any apparently missing transitions are transitions

to the error state.

• It is also common for there to be a large number of transitions between two given states

in a DFA, which results in a cluttered transition diagram. For example, in an identifier

recognition DFA, there may be 52 arcs labelled with each of the lower- and upper-case

letters from the start state to a state representing that a single letter has been recognised.

It is convenient in such cases to define a set comprising the labels of each of these arcs,

for example,

letter = {a, b, c, . . . , z, A, B, C, . . . , Z} ⊆ Σ

and to replace the arcs by a single arc labelled by the name of this set, e.g. letter.

It is acceptable practice to use these conventions provided it is made clear that they are being

operated.

3.2.4 Equivalence Theorem

(1) For every r ∈ RE(Σ) there exists a DFA M with alphabet Σ such that L(M) = L(r).

(2) For every DFA M with alphabet Σ there exists an r ∈ RE(Σ) such that L(r) =

L(M).

Proof. See J.E. Hopcroft and J. D. Ullman Introduction to Automata Theory, Languages, and

Computation (Addison Wesley, 1979).

Applications. The significance of the Equivalence Theorem is that its proof is constructive;

there is an algorithm that, given a regular expression r, builds a DFA M such that L(M) =

L(r). Thus, if we can write a fragment of a programming language syntax in terms of regular

expressions, then by part (1) of the Theorem we can automatically construct a lexical analyser

for that fragment.

Part (2) of the Equivalence Theorem is a useful tool for showing that a language is regular,

since if we cannot find a regular expression directly, part (2) states that it is sufficient to find

a DFA that recognises the language.

The standard algorithm for constructing a DFA from a given regular expression is not difficult,

but would require that we also take a look at nondeterministic finite state automata (NFAs).

NFAs are equivalent in power to DFAs but are slightly harder to understand (see the course

text for details). Given a regular expression, the RE-DFA algorithm first constructs an NFA

equivalent to the RE (by a method known as Thompson’s Construction), and then transforms

the NFA into an equivalent DFA (by a method known as the Subset Construction).
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3.3 DFAs for Lexical Analysis

Let’s suppose we wish to construct a lexical analyser based on a DFA. We have seen that it

is easy to construct a DFA that recognises lexemes for a given programming language token

(e.g. for individual keywords, for identifiers, and for numbers). However, a lexical analyser

has to deal with all of a programming language’s lexical patterns, and has to repeatedly match

sequences of characters against these patterns and output corresponding tokens. We illustrate

how lexical analysers may be constructed using DFAs by means of an example.

3.3.1 An example DFA lexical analyser

Consider first writing a DFA for recognising tokens for a (minimal!) language with identifiers

and the symbols +, ; and := (we’ll add keywords later). A transition diagram for a DFA that

recognises these symbols is given by:

in_ident

start

other

=

done
assign

error

letter

letter
digit

error

identifier
(or keyword)

whitespace

:
in_assign

other (re-read)

other

+

;

end_of_input

plus

semi_colon

end_of_file

The lexical analyser code (see next section) consists of a procedure get next token which out-

puts the next token, which can be either identifier (for identifiers), plus (for +), semi colon

(for ;), assign (for :=), error (if an error occurs, for example if an invalid character such as

‘(’ is read or if a : is not followed by a =) and end of input (for when the complete input file

has been read).

The (lexical analyser based on) the DFA begins in state start, and returns a token when it

enters state done; the token returned depends on the final transition it takes to enter the done

state, and is shown on the right hand side of the diagram.
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For a state with an output arc labelled other, the intuition is that this transition is made

on reading any character except those labelled on the state’s other arcs; re-read denotes

that the read character should not be consumed—it is re-read as the first character when

get next token is next called.

Notice that adding keyword recognition to the above DFA would be tricky to do by hand and

would lead to a complex DFA—why? However, we can recognise keywords as identifiers using

the above DFA, and when the accepting state for identifiers is entered the lexeme stored in the

buffer can be checked against a table of keywords. If there is a match, then the appropriate

keyword token is output, else identifier token is output.

Further, when we have recognised an identifier we will also wish to output its string value as

well as the identifier token, so that this can be used by the next phase of compilation.

3.3.2 Code for the example DFA lexical analyser

Let’s consider how code may be written based on the above DFA. Let’s add the keywords if,

then, else and fi to the language to make it slightly more realistic.

Firstly, we define enumerated types for the sets of states and tokens:

state = (start, in_identifier, in_assign, done);

token = (k_if, k_then, k_else, k_fi, plus, identifier, assign,

semi_colon, error, end_of_input);

Next, we define some variables that are shared by the lexical analyser and the syntax anal-

yser. The job of the procedure get next token is to set the value of current token to next

token, and if this token is identifier it also sets the value of current identifier to the

current lexeme. The value of the Boolean variable reread character determines whether the

last character read during the previous execution of get next token should be re-read at the

beginning of its next execution. The current character variable holds the value of the last

character read by get next token.

current_token : token;

current_identifier : string[100];

reread_character : boolean;

current_character : char;

We also need the following auxiliary functions (their implementations are omitted here) with

the obvious interpretations:

function is_alpha(c : char) : boolean;
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function is_digit(c : char) : boolean;

function is_white_space(c : char) : boolean;

Finally, we define two constant arrays:

{ Constants used to recognise keyword matches }

NUM_KEYWORDS = 4;

token_tab : array[1..NUM_KEYWORDS] of token = (k_if, k_then, k_else, k_fi);

keyword_tab : array[1..NUM_KEYWORDS] of string = (’if’, ’then’,’else’, ’fi’);

that store keyword tokens and keywords (with associated keywords and tokens stored at the

same location each array) and a function that searches the keyword array for a string and

returns the token associated with a matched keyword or the token identifier if not. Notice

that the arrays and function are easily modified for any number of keywords appearing in our

source language.

function keyword_lookup(s : string) : token;

{If s is a keyword, return this keyword’s token; else

return the identifier token}

var

index : integer;

found : boolean;

begin

keyword_lookup := identifier;

found := FALSE;

index := 1;

while (index <= NUM_KEYWORDS) and (not found) do begin

if keyword_tab[index] = s then begin

keyword_lookup := token_tab[index];

found := TRUE

end;

index := index + 1

end

end;

The get next token procedure is implemented as follows. Notice that within the main loop

a case statement is used to deal with transitions from the current state. After the loop exits

(when the done state is entered), if an identifier has been recognised, keyword lookup is

used to check whether or not a keyword has been matched.
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procedure get_next_token;

{Sets the value of current_token by matching input characters. Also,

sets the values current_identifier and reread_character if

appropriate}

var

current_state : state;

no_more_input : boolean;

begin

current_state := start;

current_identifier := ’’;

while not (current_state = done) do begin

no_more_input := eof; {Check whether at end of file}

if not (reread_character or no_more_input) then

read(current_character);

reread_character := FALSE;

case current_state of

start:

if no_more_input then begin

current_token := end_of_input;

current_state := done

end else if is_white_space(current_character) then

current_state := start

else if is_alpha(current_character) then begin

current_identifier := current_identifier + current_character;

current_state := in_identifier

end else case current_character of

’;’ : begin

current_token := semi_colon;

current_state := done

end;

’+’ : begin

current_token := plus;

current_state := done

end;

’:’ :

current_state := in_assign

else begin

current_token := error;

current_state := done;

end

end; {case}

in_identifier:

if (no_more_input or not(is_alpha(current_character)

or is_digit(current_character))) then begin

current_token := identifier;
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current_state := done;

reread_character := true

end else

current_identifier := current_identifier + current_character;

in_assign:

if no_more_input or (current_character <> ’=’) then begin

current_token := error;

current_state := done

end else begin

current_token := assign;

current_state := done

end

end; {case}

end; {while}

if (current_token = identifier) then

current_token := keyword_lookup(current_identifier);

end;

Test code (in the absence of a syntax analyser) might be the following. This just repeatedly

calls get next token until the end of the input file has been reached, and prints out the value

of the read token.

{Request tokens from lexical analyser, outputting their

values, until end_of_input}

begin

reread_character := false;

repeat

get_next_token;

writeln(’Current Token is ’, token_to_text(current_token));

if (current_token = identifier) then

writeln(’Identifier is ’, current_identifier);

until (current_token = end_of_input)

end.

where

function token_to_text(t : token) : string;

converts token values to text.
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3.4 Lex

Lex is a widely available lexical analyser generator.

3.4.1 Overview

Given a Lex source file comprising regular expressions for various tokens, Lex generates a lexical

analyser (based on a DFA), written in C, that groups characters matching the expressions into

lexemes, and can return their corresponding tokens.

In essence, a Lex file comprises a number of lines typically of the form:

pattern action

where pattern is a regular expression and action is a piece of C code.

When run on a Lex file, Lex produces a C file called lex.yy.c (a lexical analyser).

When compiled, lex.yy.c takes a stream of characters as input and whenever a sequence of

characters matches a given regular expression the corresponding action is executed. Characters

not matching any regular expressions are simply copied to the output stream.

Example. Consider the Lex fragment:

a { printf( "read ’a’\n" ); }

b { printf( "read ’b’\n" ); }

After compiling (see below on how to do this) we obtain a binary executable which when

executed on the input:

sdfghjklaghjbfghjkbbdfghjk

dfghjkaghjklaghjk

produces

sdfghjklread ’a’

ghjread ’b’

fghjkread ’b’

read ’b’

dfghjk

dfghjkread ’a’

ghjklread ’a’

ghjk
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Example. Consider the Lex program:

%{

int abc_count, xyz_count;

%}

%%

ab[cC] {abc_count++; }

xyz {xyz_count++; }

\n { ; }

. { ; }

%%

main()

{

abc_count = xyz_count = 0;

yylex();

printf( "%d occurrences of abc or abC\n", abc_count );

printf( "%d occurrences of xyz\n", xyz\_count );

}

• This file first declares two global variables for counting the number of occurrences of abc

or abC and xyz.

• Next come the regular expressions for these lexemes and actions to increment the relevant

counters.

• Finally, there is a main routine to initialise the counters and call yylex().

When executed on input:

akhabfabcdbcaxyzXyzabChsdk

dfhslkdxyzabcabCdkkjxyzkdf

the lexical analyser produces:

4 occurrences of ’abc’ or ’abC’

3 occurrences of ’xyz’

Some features of Lex illustrated by this example are:
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(1) The notation for |; for example, [cC] matches either c or C.

(2) The regular expression \n which matches a newline.

(3) The regular expression . which matches any character except a newline.

(4) The action { ; } which does nothing except to suppress printing.

3.4.2 Format of Lex Files

The format of a Lex file is:

definitions

analyser specification

auxiliary functions

Lex Definitions. The (optional) definitions section comprises macros (see below) and global

declarations of types, variables and functions to be used in the actions of the lexical analyser

and the auxiliary functions (if present). All such global declaration code is written in C and

surrounded by %{ and %}.

Macros are abbreviations for regular expressions to be used in the analyser specification. For

example, the token ‘identifier’ could be defined by:

IDENTIFIER [a-zA-Z][a-zA-Z0-9]*

The shorthand character range construction ‘[x-y]’ matches any of the characters between

(and including) x and y. For example, [a-c] means the same as a|b|c, and [a-cA-C] means

the same as a|b|c|A|B|C.

Definitions may use other definitions (enclosed in braces) as illustrated in:

ALPHA [a-zA-Z]

ALPHANUM [a-zA-Z0-9]

IDENTIFIER {ALPHA}{ALPHANUM}*

and:

ALPHA [a-zA-Z]

NUM [0-9]

ALPHANUM ({ALPHA}|{NUM})

IDENTIFIER {ALPHA}{ALPHANUM}*

Notice the use of parentheses in the definition of ALPHANUM. What would happen without them?
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Lex Analyser Specifications. These have the form:

r1 { action1 }

r2 { action2 }

. . . . . .

rn { actionn }

where r1, r2, . . . , rn are regular expressions (possibly involving macros enclosed in braces) and

action1, action2, . . ., actionn are sequences of C statements.

Lex translates the specification into a function yylex() which, when when called, causes the

following to happen:

• The current input character(s) are scanned to look for a match with the regular expres-

sions.

• If there is no match, the current character is printed out, and the scanning process resumes

with the next character.

• If the next m characters match ri then

(a) the matching characters are assigned to string variable yytext,

(b) the integer variable yyleng is assigned the value m,

(c) the next m characters are skipped, and

(d) actioni is executed. If the last instruction of actioni is return n; (where n

is an integer expression) then the call to yylex() terminates and the value of

n is returned as the function’s value; otherwise yylex() resumes the scanning

process.

• If end-of-file is read at any stage, then the call to yylex() terminates returning the value

0.

• If there is a match against two or more regular expressions, then the expression giving

the longest lexeme is chosen; if all lexemes are of the same length then the first matching

expression is chosen.

Lex Auxiliary Functions. This optional section has the form:

fun1

fun2

. . .

funn

where each funi is a complete C function.

We can also compile lex.yy.c with the lex library using the command:

gcc lex.yy.c -ll
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This has the effect of automatically including a standard main() function, equivalent to:

main()

{

yylex();

return;

}

Thus in the absence of any return statements in the analyser’s actions, this one call to yylex()

consumes all the input up to and including end-of-file.

3.4.3 Lexical Analyser Example

The lex program below illustrates how a lexical analyser for a Pascal-type language is defined.

Notice that the regular expression for identifiers is placed at the end of the list (why?).

We assume that the syntax analyser requests tokens by repeatedly calling the function yylex().

The global variable yylval (of type integer in this example) is generally used to pass tokens’

attributes from the lexical analyser to the syntax analyser and is shared by both phases of the

compiler. Here it is being used to pass integers’ values and identifiers’ symbol table positions

to the syntax analyser.
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%{

definitions (as integers) of IF, THEN, ELSE, ID, INTEGER, ...

%}

delim [ \t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

integer [+\-]?{digit}+

%%

{ws} { ; }

if { return(IF); }

then { return(THEN); }

else { return(ELSE); }

... ...

{integer} { yylval = atoi(yytext); return(INTEGER); }

{id} { yylval = InstallInTable(); return(ID); }

%%

int InstallInTable()

{

put yytext in symbol table and return

the position it has been inserted.

}
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4 Syntax Analysis

In this section we will look at the second phase of compilation: syntax analysis, or parsing.

Since parsing is a central concept in compilation and because (unlike lexical analysis) there are

many approaches to parsing, this section makes up most of the remainder of the course.

In Section 4.1 we discuss the class of context-free languages and its relationship to the syntac-

tic structure of programming languages and the compilation process. Parsing algorithms for

context-free languages fall into two main categories: top-down and bottom-up parsers (the names

refer to the process of parse tree construction). Different types of top-down and bottom-up

parsing algorithms will be discussed in Sections 4.2 and 4.3 respectively.

4.1 Context-Free Languages

Regular languages are inadequate for specifying all but the simplest aspects of programming

language syntax. To specify more-complex languages such as

• L = {w ∈ {a, b}∗ | w = anbn for some n},

• L = {w ∈ {(, )}∗ | w is a well-balanced string of parentheses} and

• the syntax of most programming languages,

we use context-free languages. In this section we define context-free grammars and languages,

and their use in describing the syntax of programming languages. This section is intended to

provide a foundation for the following sections on parsing and parser construction.

Note Like Section 3, this section contains mainly theoretical definitions; the lectures will cover

examples and diagrams illustrating the theory.

4.1.1 Context-Free Grammars

Definition. A context-free grammar is a tuple G = (T, N, S, P ) where:

• T is a finite nonempty set of (terminal) symbols (tokens),

• N is a finite nonempty set of (nonterminal) symbols (denoting phrase types) disjoint from

T ,

• S ∈ N (the start symbol), and

• P is a set of (context-free) productions (denoting ‘rules’ for phrase types) of the form

A→ α where A ∈ N and α ∈ (T ∪N)∗.
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Notation. In what follows we use:

• a, b, c, . . . for members of T ,

• A, B, C, . . . for members of N ,

• . . . , X, Y, Z for members of T ∪N ,

• u, v, w, . . . for members of T ∗, and

• α, β, γ, . . . for members of (T ∪N)∗.

Examples.

(1) G1 = (T, N, S, P ) where

• T = {a, b},

• N = {S} and

• P = {S → ab, S → aSb}.

(2) G2 = (T, N, S, P ) where

• T = {a, b},

• N = {S, X} and

• P = {S → X, S → aa, S → bb, S → aSa, S → bSb, X → a, X → b}.

Notation. It is customary to ‘define’ a context free grammar by simply listing its productions

and assuming:

• The terminals and nonterminals of the grammar are exactly those terminals appearing in

the productions. (It is usually clear from the context whether a symbol is a terminal or

nonterminal.)

• The start symbol is the nonterminal on the left-hand side of the first production.

• Right-hand sides separated by ‘|’ indicate alternatives.

For example, G2 above can be written as

S → X | aa | bb | aSa | bSb

X → a | b
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BNF Notation. The definition of a grammar as given so far is fine for simple theoretical

grammars. For grammars of real programming languages, a popular notation for context-free

grammars is Backus-Naur Form. Here, non-terminal symbols are given a descriptive name and

placed in angled brackets, and “|” is used, as above, to indicate alternatives. The alphabet

will also commonly include keywords and language symbols such as <=. For example, BNF for

simple arithmetic expressions might be

< exp > → < exp > + < exp > | < exp > − < exp > |

< exp > ∗ < exp > | < exp > / < exp > |

( < exp > ) | < number >

< number > → < digit > | < digit > < number >

< digit > → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

and a typical rule for while loops would be:

< while loop > → while < exp > do < command list > od

< command list > → < assignment > | < conditional > . . .

Note that the symbol ::= is often used in place of →.

Derivation and Languages. A (context-free) grammar G defines a language L(G) in the

following way:

• We say αAβ immediately derives αγβ if A→ γ is a production of G. We write αAβ =⇒

αγβ.

• We say α derives β in zero or more steps, in symbols α
∗

=⇒ β, if

(i) α = β or

(ii) for some γ we have α
∗

=⇒ γ and γ =⇒ β.

• If S
∗

=⇒ α then we say α is a sentential form.

• We say α derives β in one or more steps, in symbols α
+

=⇒ β, if α
∗

=⇒ β and α 6= β.

• We define L(G) by

L(G) = {w ∈ T ∗ | S
+

=⇒ w}.

• Let L ⊆ T ∗. L is said to be a context-free language if L = L(G) for some context-free

grammar G.
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4.1.2 Regular Grammars

A grammar is said to be regular if all its productions are of the form:

(a) A→ uB or A→ u (a right-linear grammar)

(b) A→ Bu or A→ u (a left-linear grammar).

A language L ⊆ T ∗ is regular (see Section 3) if L = L(G) for some regular grammar G.

4.1.3 ǫ-Productions

A grammar may involve a production of the form

A→

(that is, with an empty right-hand side). This is called an ǫ-production and is often written A→

ǫ. ǫ-productions are often useful in specifying languages although they can cause difficulties

(ambiguities), especially in parser design, and may need to be removed–see later.

As an example of the use of ǫ-productions,

< stmt > → begin < stmt > end < stmt > | ǫ

generates well-balanced ‘begin/end’ strings (and the empty string).

4.1.4 Left- and Rightmost Derivations

A derivation in which the leftmost (rightmost) nonterminal is replaced at each step in the

derivation is called a leftmost (rightmost) derivation.

Examples. Let G be a grammar with productions

E → E + E | E ∗ E | x | y | z.

(a) A leftmost derivation of x + y ∗ z is

E =⇒ E + E =⇒ x + E =⇒ x + E ∗ E =⇒ x + y ∗ E =⇒ x + y ∗ z.

(b) A rightmost derivation of x + y ∗ z is

E =⇒ E + E =⇒ E + E ∗ E =⇒ E + E ∗ z =⇒ E + y ∗ z =⇒ x + y ∗ z.

39



(c) Another leftmost derivation of x + y ∗ z is

E =⇒ E ∗ E =⇒ E + E ∗ E =⇒ x + E ∗ E =⇒ x + y ∗ E =⇒ x + y ∗ z

(thus left- and rightmost derivations need not be unique).

(d) The following is neither left- nor rightmost:

E =⇒ E + E =⇒ E + E ∗ E =⇒ E + y ∗ E =⇒ x + y ∗ E =⇒ x + y ∗ z.

4.1.5 Parse Trees

Let G = (T, N, S, P ) be a context-free grammar.

(1) A parse (or derivation) tree in grammar G is a pictorial representation of a derivation

in which

(a) every node has a label that is a symbol of T ∪N ∪ {ǫ},

(b) the root of the tree has label S,

(c) interior nodes have nonterminal labels,

(d) if node n has label A and descendants n1 . . . nk (in order, left-to-right)

with labels X1 . . .Xk respectively, then A→ X1 · · ·Xk must be a produc-

tion of P , and

(e) if node n has label ǫ then n is a leaf and is the only descendant of its

parent.

(2) The yield of a parse tree with root node r is y(r) where:

(a) if n is a leaf node with label a then y(n) = a, and

(b) if n is an interior node with descendents n1 . . . nk then

y(n) = y(n1) · · ·y(nk).

Theorem. Let G = (T, N, S, P ) be a context-free grammar. For each α ∈ (T ∪N)∗ there exists

a parse tree in grammar G with yield α if, and only if, S
∗

=⇒ α.

Examples.

1. Consider the parse trees for the derivations (a) and (c) of the above examples. Notice that

the derivations are different and so are the parse trees, although both derivations are leftmost.

2. Let G be a grammar with productions

< stmt > → if < boolexp > then < stmt > |

if < boolexp > then < stmt > else < stmt > |

< other >

< boolexp > → . . .
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< other > → . . .

A classical problem in parsing is that of the dangling else: Should

if < boolexp > then if < boolexp > then < other > else < other >

be parsed as

if < boolexp > then ( if < boolexp > then < other > else < other > )

or

if < boolexp > then ( if < boolexp > then < other > ) else < other >

Theorem. Let G = (T, N, S, P ) be a context-free grammar and let w ∈ L(G). For every parse

tree of w there is precisely one leftmost derivation of w and precisely one rightmost derivation

of w.

4.1.6 Ambiguity

A grammar G for which there is some w ∈ L(G) for which there are two (or more) parse trees

is said to be ambiguous. In such a case, w is known as an ambiguous sentence. Ambiguity is

usually an undesirable property since it may lead to different interpretations of the same string.

Unfortunately:

Equivalently (by the above theorem), a grammar G is ambiguous if there is some w ∈ L(G) for

which there exists more than one leftmost derivation (or rightmost derivation).

Theorem. The decision problem: Is G an unambiguous grammar? is undecidable.

However, for a particular grammar we can sometimes resolve ambiguity via disambiguating

rules that force troublesome strings to be parsed in a particular way. For example, let G be

with productions

< stmt > → < matched > | < unmatched >

< matched > → if < boolexp > then < matched > else < matched > |

< other >

< unmatched > → if < boolexp > then < stmt > |

if < boolexp > < then > < matched > else < unmatched >

< boolexp > → . . .

< other > → . . .

(< matched > is intended to denote an if-statement with a matching ‘else’ or some other (non-

conditional) statement, whereas < unmatched > denotes an if-statement with an unmatched

‘if’.)
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Now, according to this G,

if < boolexp > then if < boolexp > then < other > else < other >

has a unique parse tree. (exercise: convince yourself that this parse tree really is unique.)

4.1.7 Inherent Ambiguity

We have seen that it is possible to remove ambiguity from a grammar by changing the (non-

terminals and) productions to give an equivalent (in terms of the language defined) but unam-

biguous grammar. However, there are some context-free languages for which every grammar is

ambiguous; such languages are called inherently ambiguous.

Formally,

Theorem.There exists a context-free language L such that for every context-free grammar G,

if L = L(G) then G is ambiguous.

Furthermore,

Theorem. The decision problem: Is L an inherently ambiguous language? is undecidable.

4.1.8 Limits of Context-Free Grammars

It is known that not every language is context-free. For example,

L = {w ∈ {a, b, c}∗ | w = anbncn for some n ≥ 1}

is not context-free, nor is

L = {w ∈ {a, b, c}∗ | w = ambncp for m ≤ n ≤ p}

although proof of these facts is beyond the scope of this course.

More significantly, there are some aspects of programming language syntax that cannot be

captured with a context-free grammar. Perhaps the most well-know example of this is the

rule that variables must be declared before they are used. Such properties are often called

context-sensitive since they can be specified by grammars that have productions of the form

αAβ → αγβ

which, informally, says that A can be replaced by γ but only when it occurs in the context

α . . . β.

In practice we still use context-free grammars; problems are resolved by allowing strings (pro-

grams) that parse but are technically invalid, and then by adding further code that checks for

invalid (context-sensitive) properties.

42



In this section we describe a number of techniques for constructing a parser for a given context-

free language from a context-free grammar for that language. Parsers fall into two broad

categories: top-down parsers and bottom-up parsers, as described in the next two sections.

4.2 Top-Down Parsers

Top-down parsing can be thought of as the process of creating a parse tree for a given input

string by starting at the top with the start symbol and then working depth-first downwards to

the leaves. Equivalently, it can be viewed as creating a leftmost derivation of the input string.

We begin, in Section 4.2.1, by showing how a simple parser may be coded in an ad-hoc way using

a standard programming language such as Pascal. In Section 4.2.2 we define those grammars

for which such a simple parser may be written. In Section 4.2.3 we show how to add syntax-

tree construction and (very limited) error recovery code to these parsing algorithms. Finally,

in Section 4.2.4 we show how this simple approach to parsing can be made more structured by

using the same algorithm for all grammars, where the algorithm uses a different look-up table

for each particular grammar.

4.2.1 Recursive Descent Parsing

The simplest idea for creating a parser for a grammar is to construct a recursive descent parser

(r.d.p.). This is a top-down parser, and needs backtracking in general; i.e the parser needs to

try out different production rules; if one production rule fails it needs to backtrack in the input

string (and the parse tree) in order to try further rules. Since backtracking can be costly in

terms of parsing time, and because other parsing methods (e.g. bottom-up parsers) do not

require it, it is rare to write backtracking parsers in practice.

We will show here how to write a non-backtracking r.d.p. for a given grammar. Such parsers

are commonly called predictive parsers since they attempt to predict which production rule

to use at each step in order to avoid the need to backtrack; if when attempting to apply a

production rule, unexpected input is read, then this input must be an error and the parser

reports this fact. As we will see, is not possible to write such a simple parser for all grammars:

for many programming languages’ grammars such a parser cannot be written. For these we’ll

need more powerful parsing methods which we will look at later.

We will not concern ourselves here with the construction of a parse tree or syntax tree—we’ll

just attempt to write code that produces (implicitly, via procedure calls) a derivation of an

input string (if the string is in the language given by the grammar) or reports an error (for

an incorrect string). This code will form the basis of a complete syntax analyser—syntax tree

construction and error recovery code will just be inserted into it at the correct places, as we’ll

see in Section 4.2.3.
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We will write a r.d.p. for the grammar G with productions:

A → a | BCA

B → be | cA

C → d

We will assume the existence of a procedure get next token which reads terminal symbols (or

tokens) from the input, and places them into the variable current token. The tokens for the

above grammar are a, b, c, d and e. We’ll also assume the tokens end of input (for end of

string) and error for a non-valid input.

We’ll also assume the following auxiliary procedure which tests whether the current token is

what is expected and, if so, reads the next token; otherwise it calls an error routine. Later

on we’ll see more about error recovery, but for now assume that the procedure error simply

outputs a message and causes the program to terminate.

procedure match(expected : token);

begin

if current_token = expected then

get_next_token

else

error

end;

The parser is constructed from three procedures, one for each non-terminal symbol. The aim

of each procedure is to try to match any of the right-hand-sides of production rules for that

non-terminal symbol against the next few symbols on the input string; if it fails to do this then

there must be an error in the input string, and the procedure reports this fact.

Consider the non-terminal symbol A and the A-productions A → a and A → BCA. The

procedure parse A attempts to match either an a or BCA. It first needs to decide which

production rule to choose: it makes its choice based on the current input token. If this is a, it

obviously uses the production rule A→ a and is bound to succeed since it already knows it is

going to find the a(!).

Notice that any string derivable from BCA begins with either a b or a c, because of the right

hand sides of the two B-productions. Therefore, if either b or c is the current token, then

parse A will attempt to parse the next few input symbols using the rule A→ BCA. In order

to attempt to match BCA it calls procedures parse B, parse C and parse A in turn, each of

which may result in a call to error if the input string is not in the language. If the current

token is neither a, b or c the input cannot be derived from A and therefore error is called.

procedure parse_A
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begin

case current_token of

a : match(a);

b, c : begin

parse_B; parse_C; parse_A

end

else

error

end

end;

The procedures parse B and parse C are constructed in a similar fashion.

procedure parse_B;

begin

case current_token of

b : begin

match(b);

match(e)

end;

c : begin

match(c);

parse_A

end

else

error

end

end;

procedure parse_C;

begin

match(d)

end;

To execute the parser, we need to (i) make sure that the first token of the input string has

been read into current token, (ii) call parse A since this is the start symbol, and if an error

is not generated by this call (iii) check that the end of the input string has been reached. This

is accomplished by

get_next_token;

parse_A;
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if current_token = end_of_input then

writeln(‘Success!’)

else

error

By executing the parser on a range of inputs that drive the algorithm through all possible

branches (try the algorithm on beda, bed and cbedada for examples), it is easy to convince

oneself that the algorithm is a neat and correct solution to the parsing problem for this particular

grammar.

Notice how the algorithm

i. determines a sequence of productions that are equivalent to the construction of a parse

tree that starts from the root and builds down to the leaves, and

ii. determines a leftmost derivation.

Although it is possible to construct compact, efficient recursive descent parsers by hand for

some very large grammars, the method is somewhat ad hoc and more useful general-purpose

methods are preferred.

We note that the method of constructing a r.d.p. will fail to produce a correct parser if the

grammar is left recursive; that is if A
+

=⇒ Aα for some nonterminal A–why?

Also notice that each for each nonterminal of the above grammar it is possible to predict which

production (if any) is to be matched against, purely on the basis of the current input character.

This is clearly the case for the grammar G above, because as we have seen:

• To recognise an A: if the current symbol is a, we try the production rule A → a; if the

symbol is b or c, we try A→ BCA; otherwise we report an error;

• To recognise a B, if the current symbol is b, we try B → be; if the symbol is cA we try

B → cA; otherwise we report an error;

• To recognise a C, if the current symbol is d, we try C → d; otherwise we report an error.

The choice is determined by the so-called First sets of the right-hand sides of the production

rules. In general, First(α) for any string α ∈ (T ∪N)∗ denotes the set of all terminal symbols

that can begin strings derivable from α. For example, the First set of the right hand side of the

rules A→ a and A→ BCA are First(a) = {a} and First(BCA) = {b, c} respectively. Notice

that, to be able to write a predictive parser for a grammar, for any non-terminal symbol, the

First sets for all pairs of distinct productions’ right-hand sides must be disjoint. This is the
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case for G, since

First(a) ∩ First(BCA) = {a} ∩ {b, c}

= ∅

First(be) ∩ First(cA) = {b} ∩ {c}

= ∅.

(and C has no pairs of productions since there is only one C-production rule).

For the grammar G2, with productions

A → b | BCA

B → be | cA

C → d

this is not the case, since

First(b) ∩ First(BCA) = {b} ∩ {b, c}

= {b}

6= ∅

and therefore we can not write a predictive parser for G2.

Things become slightly more complicated when grammars have ε productions. For example,

let the grammar G3 have productions:

A → aBb

B → c | ε.

Consider parsing the string adb. Obviously, parse A would be written:

procedure parse_A

begin

if current_token = a then begin

match(a); parse_B; match(b)

end else

error

end;

How do we write a procedure parse B that would recognise strings derivable from B? Well,

consider what the parser should do for the following three strings:

• acb. The procedure parse A would consume the first a and then call parse B. We would

want parse B to try the rule B → c to consume the c, to leave parse A to consume the

final b and thus result in a successful parse.
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• ab. Again parse A would consume the a. Now, we would like parse B to apply B → ε

(which does not consume any input), leaving parse A to consume the b (success again).

• aa. Again parse A would consume the a. Now, obviously parse B should not try B → c

(since the next symbol is a), nor should it try B → ε since there is no way in which the

next symbol a is going to be matched—therefore it should (correctly) report an error.

The choice then, of whether to use the ε production depends on whether the next symbol can

legally immediately follow a B in a sentential form. The set of all such symbols is denoted

Follow(B). For G2, Follow(B) = {b} and thus the code for parse B should be:

procedure parse_B;

begin

case current_token of

c : match(c);

b : (* do nothing *)

else

error

end

end;

(Notice that the b is not consumed). Finally, let G4 be a grammar with productions

A → aBb

B → b | ε

and consider parsing the strings ab and abb. Obviously, parse A will be as above, and thus would

consume the a in both strings. However, it is impossible for a procedure parse B to choose,

purely on the basis of the current character (b in both cases) whether to try the production

B → b (which would be correct for abb but not for ab) or B → ε (which would be correct for

ab but not for abb).

Formally, the problem is that ε is in the First set one of the B-production’s right hand sides

(we use the convention that First(ε) = {ε}) and that one of the other First sets—First(b)—

of a righthand side is not disjoint from the set Follow(B). Indeed, both sets are {b}. This

condition of disjointedness must be fullfilled to be able to write a predictive parser.

Formally, grammars for which predictive parsers can be constructed are called LL(1) grammars.

(The first ‘L’ is for left-to-right reading of the input, the second ‘L’ is for leftmost derivation,

and the ‘1’ is for one symbol of lookahead.) LL(1) grammars are the most widely-used examples

of LL(k) grammars: those that require k symbols of lookahead. In the following section we

define what it means for a grammar to be LL(1) based on the concept of First and Follow

sets.
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4.2.2 LL(1) Grammars

To define formally what it means for a grammar to be LL(1) we first define the two functions

First and Follow. These functions help us to construct a predictive parser for a given LL(1)

grammar, and their definition should be the first step in writing such a parser.

We let First(α) be the set of all terminals that can begin strings derived from α (First(α) also

includes ǫ if α
∗

=⇒ ǫ).

To compute First(X) for all symbols X, apply the following rules until nothing else can be

added to any First set:

• if X ∈ T , then First(X) = {X}.

• if X → ǫ ∈ P , then add ǫ to First(X).

• if X → Y1 . . . Yn ∈ P , then add all non-ǫ members of First(Y1) to First(X). If Y1

∗
=⇒ ǫ

then also add all non-ǫ members of First(Y2) to First(X). If Y1

∗
=⇒ ǫ and Y2

∗
=⇒ ǫ then

also add all non-ǫ members of First(Y3) to First(X), etc. If all Y1, . . . , Yn
∗

=⇒ ǫ, then

add ǫ to First(X).

To compute First(X1 . . .Xm) for any string X1 . . .Xm, first add to First(X1 . . .Xm) all non-

ǫ members of First(X1). If ǫ ∈ First(X1) then add all non-ǫ members of First(X2) to

First(X1 . . .Xm), etc. Finally, if every set First(X1), . . . , F irst(Xm) contains ǫ then we also

add ǫ to First(X1 . . . Xm).

From the definition of First, we can give a first condition for a grammar G = (T, N, S, P ) to

be LL(1), as follows. For each non-terminal A ∈ N , suppose that

A→ β1 | β2 | · · · | βn

are all the A-productions in P . For G to be LL(1) it is necessary, but not sufficient, for

First(βi) ∩ First(βj) = ∅

for each 1 ≤ i, j ≤ n where i 6= j.

We let Follow(A) be the set of terminal symbols that can appear immediately to the right of

the non-terminal symbol A in a sentential form. If A appears as the rightmost non-terminal in

a sentential form, then Follow(A) also contains the symbol $.

To compute Follow(A) for all non-terminals A, apply the following rules until nothing can be

added to any Follow set.

• Place $ in Follow(S).

• If there is a production A→ αBβ, then place all non-ǫ members of First(β) in Follow(B).
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• If there is a production A → αB, or a production A → αBβ where β
∗

=⇒ ǫ, then place

everything in Follow(A) into Follow(B).

Now, supposing a grammar G meets the first condition above. G is an LL(1) grammar if it also

meets the following condition. For each A ∈ N , let

A→ β1 | β2 | · · · | βn

be all the A-productions. If ǫ ∈ First(βk) for some 1 ≤ k ≤ n (and notice, if the first condition

holds, there will only be at most one such value of k) then it must be the case that

Follow(A) ∩ First(βi) = ∅

for each 1 ≤ i ≤ n, i 6= k.

Example. Let G have the following productions:

S → BAaC

A → D | E

B → b

C → c

D → aF

E → ǫ

F → f

First and Follow sets for this grammar are:

First(BAaC) = {b} Follow(S) = {$}

First(D) = {a} Follow(A) = {a}

First(E) = {ǫ} Follow(B) = {a}

First(b) = {b} Follow(C) = {$}

First(c) = {c} Follow(D) = {a}

First(aF ) = {a} Follow(E) = {a}

First(f) = {f} Follow(F ) = {a}.

It is clear that G meets the first condition above, as

First(D) ∩ First(E) = {a} ∩ {ǫ} = ∅.

However, G does not meet the second condition because

Follow(A) ∩ First(D) = {a} ∩ {a} 6= ∅.

Many non-LL(1) grammars can be transformed into LL(1) grammars (by removing left recursion

and left factoring (see Section 4.2.5), to enable a predictive parser to be written for them.

However, although left factoring and elimination of left recursion are easy to implement, they

often make the grammar hard to read. Moreover, not every grammar can be transformed into

an LL(1) grammar, and for such grammars we need other methods of parsing.
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4.2.3 Non-recursive Predictive Parsing

A significant aspect of LL(1) grammars is that it is possible to construct non-recursive predictive

parsers from an LL(1) grammar. Such parsers explicitly maintain a stack, rather than implicitly

via recursive calls. They also use a parsing-table which is a two dimensional array M of elements

M [A, a] where A is a non-terminal symbol and a is either a terminal symbol or the end-of-string

symbol $. Each element M [A, a] of M is either an A-production or an error entry. Essentially,

M [A, a] says which production to apply when we need to match an A (in this case, A will be

on the top of the stack), and when the next symbol input symbol is a.

Constructing an LL(1) parsing table. To construct the parsing table M , we complete the

following steps for each production A→ α of the grammar G:

• For each terminal a in First(α), let M [A, a] be A→ α.

• If ǫ ∈ First(α), let M [A, b] be A → α for all terminals b in Follow(A). If ǫ ∈ First(α)

and $ ∈ Follow(A), let M [A, $] be A→ α.

Let all other elements of M denote an error.

What happens if we try to construct such a table for a non-LL(1) grammar?

The LL(1) parsing algorithm. The non-recursive predictive parsing algorithm (common to
all LL(1) grammars) is shown below. Note the use of $ to mark the bottom of the stack and

the end of the input string.

set stack to $S (with S on top);

set input pointer to point to the first symbol of the input w$;

repeat the following step

(letting X be top of stack and a be current input symbol):

if X = a = $ then we have parsed the input successfully;

else if X = a (a token) then pop X off the stack and advance input pointer;

else if X is a token or $ but not equal to a then report an error;

else (X is a non-terminal) consult M[X,a]:

if this entry is a production X -> Y1...Yn then pop X from the stack

and replace it with Yn...Y1 (with Y1 on top);

output the production X -> Y1...Yn

else report an error

Example. Consider the grammar G with productions:

C → cD | Ed

D → EFC | e

E → ǫ | f

F → g

51



First we define useful First and Follow sets for this grammar:

First(cD) = {c} First(f) = {f} Follow(C) = {$}

First(Ed) = {d, f} First(g) = {g} Follow(D) = {$}

First(EFC) = {f, g} First(F ) = {g} Follow(E) = {d, g}

First(ǫ) = {ǫ} First(C) = {c, d, f} Follow(F ) = {c, d, f}

This gives the following LL(1) parsing table:

c d e f g $

C C → cD C → Ed C → Ed

D D → e D → EFC D → EFC

E E → ǫ E → f E → ǫ

F F → g

which, when used with the LL(1) parsing algorithm on input string cgfd, gives:

Stack Input Action

$C cgfd$ C → cD

$Dc cgfd$ match

$D gfd$ D → EFC

$CFE gfd$ E → ǫ

$CF gfd$ F → g

$Cg gfd$ match

$C fd$ C → Ed

$dE fd$ E → f

$df fd$ match

$d d$ match

$ $ accept.
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4.2.4 Syntax-tree Construction for Recursive-Descent Parsers

In this section we extend the recursive descent parser writing technique of Section 4.2.1 in order

to build syntax trees. We consider the construction of a r.d.p. for the following simple grammar

which only allows assignments and if-statements.

〈command list〉 ::= 〈command〉 〈rest commands〉

〈rest commands〉 ::= ; 〈command list〉 | null

〈command〉 ::= 〈if command〉 | 〈assignment〉

〈if command〉 ::= if 〈expression〉 then 〈command list〉 else 〈command list〉 fi

〈assignment〉 ::= identifier := 〈expression〉

〈expression〉 ::= 〈atom〉 〈rest expression〉

〈rest expression〉 ::= + 〈atom〉 〈rest expression〉 | null

〈atom〉 ::= identifier

In order to construct a predictive parser, we first list the important First and Follow sets.

These are (grouped for each of the eight non-terminals):

First(〈command〉 〈rest commands〉) = {if, identifier}

First(; 〈command list〉) = {;}

First(null) = {null}

Follow(〈rest commands〉) = {else, fi, $}

First(〈if command〉) = {if}

First(〈assignment〉) = {identifier}

First(if 〈expression〉 then 〈command list〉 else 〈command list〉 fi) = {if}

First(identifier := 〈expression〉) = {identifier}

First(〈atom〉 〈rest expression〉) = {identifier}

First(+ 〈atom〉 〈rest expression〉) = {+}

First(null) = {null}

Follow(〈rest expression〉) = {;, else, fi, then, $}

First(identifier) = {identifier}
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We will construct syntax trees rather than parse trees, since the former are much smaller and

simpler yet contain all the information required to enable straightforward code generation.

Notice that:

• command sequences are better constructed as lists rather than as trees as would be natural

given the grammar;

• expressions are better constructed as syntax trees that better illustrate the expression

(with proper rules of precedence and associativity), rather than directly as given by the

grammar;

• the grammar fails to represent the fact that ‘+’ should be left associative; (i.e. x+y+z

is parsed as x+(y+z) rather than the correct (x+y)+z—this is not really a problem for

‘+’, but for ‘-’ it would be, since 1-1-1 would be evaluated 1-(1-1) = 1 rather than the

conventional (1-1)-1 = -1. In fact, it is impossible to write an LL(1) that achieves this

task. Therefore, we will get the parser to construct the correct (left associative) syntax

tree using a clever technique–see the code.

We first write some type definitions to represent arbitrary nodes in a syntax tree. Assume that

MAXC is a constant with value 3, which represents the maximum number of children a node can

have (if-commands need three children, for the condition, the then clause and the else clause).

{ There are command nodes and expression nodes.

Command nodes can be if or assign nodes; expression

nodes can be indentifiers or operations }

node_kind = (n_command, n_expr);

command_kind = (c_if, c_assign);

expr_kind = (e_ident, e_operation);

tree_ptr = ^tree_node;

tree_node = record

children : array[1..MAXC] of tree_ptr;

kind : node_kind; { is it a command or expression node? }

ckind : command_kind; { what kind of command is it? }

ident : string[20]; { for assignment lhs and simple expressions }

sibling : tree_ptr; { the next command in the list }

ekind : expr_kind; { what kind of expression is it? }

operator : token { expression operator }

end;

Note that some of the fields of this record type will be redundant for certain types of node. For

example, only command nodes will have siblings and only expression nodes will have operators.
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We could use variant records (or unions in C) but this would complicate the discussion slightly,

so we choose not to. Also note that we do not need a field for operators, since we only have ‘+’

in the grammar; however, using this field we can easily add extra operations to the grammar.

Recall from Section 4.2.1, that we write a procedure parse A for each non-terminal A in the

grammar, the aim of which is to recognise strings derivable from A. To write a parser that

constructs syntax trees, we replace the procedure parse A by a function whose additional role

it is to construct and return a syntax tree for the recognised string. The code for the above

grammar is as follows.

We assume that the lexical analyser takes the form of a procedure get next token that updates

the variables current token and current identifier, and that we have a match procedure

that checks tokens. The tokens for the grammar are k if, k then, k else, k fi, assign,

semi colon, identifier, emd of input and error.

We first define two auxiliary functions that the other functions will call in order to create nodes

for expressions or commands, respectively.

function new_expr_node(t : expr_kind) : tree_ptr;

{Construct a new expression node of kind t}

var

i : integer; temp : tree_ptr;

begin

new(temp);

for i := 1 to MAXC do temp^.children[i] := nil;

temp^.kind := n_expr;

temp^.ekind := t;

new_expr_node := temp

end;

function new_command_node(t : command_kind) : tree_ptr;

{Construct a new command node of kind t}

var

i : integer; temp : tree_ptr;

begin

new(temp);

for i := 1 to MAXC do temp^.children[i] := nil;

temp^.kind := n_command;

temp^.ckind := t;

temp^.sibling := nil;

new_command_node := temp

end;

Next, we define match and syntax error procedures:
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procedure match(expected : token);

{Check the current token is as expected; if so,

read the next token in}

begin

if current_token = expected then

get_next_token

else

syntax_error(’Unexpected token’)

end;

procedure syntax_error(s : string);

{Output error message}

begin

writeln(s);

writeln(’Exiting’);

halt

end;

For the first three rules in the BNF (those for lists of commands) we have the following functions.

A linked list of commands is built using tree nodes’ sibling fields.

Note that in parse command list, we do not bother looing at the current token to see if it is

valid, since we know parse command will do this. Notice also how the parse rest commands

function uses the set Follow(〈rest commands〉) = {else, fi, $} to determine when to use the

ε-production.

function parse_command_list : tree_ptr;

var

temp : tree_ptr;

begin

temp := parse_command;

temp^.sibling := parse_rest_commands;

parse_command_list := temp

end;
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function parse_rest_commands : tree_ptr;

var

temp : tree_ptr;

begin

temp := nil;

if current_token = semi_colon then begin

match(semi_colon);

temp := parse_command_list

end else if not (current_token in [k_else,

k_fi, end_of_input]) then

syntax_error(’Incomplete command’);

parse_rest_commands := temp

end;

function parse_command : tree_ptr;

begin

case current_token of

k_if : parse_command := parse_if_command;

identifier : parse_command := parse_assignment;

else begin

syntax_error(’Expected if or variable’);

parse_command := nil

end

end

end;

The two types of command (if commands and assignments) are parsed using the following

functions.

function parse_assignment : tree_ptr;

var

temp : tree_ptr;

begin

temp := new_command_node(c_assign);

temp^.ident := current_identifier;

match(identifier);

match(assign);

temp^.children[1] := parse_expression;

parse_assignment := temp

end;

57



function parse_if_command : tree_ptr;

var

temp : tree_ptr;

begin

temp := new_command_node(c_if);

match(k_if);

temp^.children[1] := parse_expression;

match(k_then);

temp^.children[2] := parse_command_list;

match(k_else);

temp^.children[3] := parse_command_list;

match(k_fi);

parse_if_command := temp

end;

The final three functions handle expressions. Notice that the function parse rest expression

takes an argument comprising the (already parsed) left hand side expression, and also that it

uses the set Follow(〈rest expression〉) = {;, then, else, fi, $} to determine whether to use the

ε-production.

Follow through the functions for the case x+y+z to convince yourself that they return the

correct interpretation (x+y)+z.

function parse_expression : tree_ptr;

{Parse an expression, and force it to be left associative}

var

left : tree_ptr;

begin

left := parse_atom;

parse_expression := parse_rest_expression(left);

end;
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function parse_rest_expression(left : tree_ptr) : tree_ptr;

{If there is an operator on the input, construct an expression

with lhs left (already parsed) by parsing rhs. Otherwise, return

left as the expression}

var

new_e : tree_ptr;

begin

if (current_token = plus) then begin

new_e := new_expr_node(e_operation);

new_e^.operator := current_token;

new_e^.children[1] := left;

get_next_token;

new_e^.children[2] := parse_atom;

parse_rest_expression := parse_rest_expression(new_e)

end else if (current_token in [semi_colon, end_of_input,

k_else, k_fi, k_then]) then

parse_rest_expression := left

else begin

syntax_error(’Badly formed expression’);

parse_rest_expression := nil

end

end;

function parse_atom : tree_ptr;

var

temp : tree_ptr;

begin

temp := nil;

if current_token = identifier then begin

temp := new_expr_node(e_identifier);

temp^.ident := current_identifier

match(identifier);

end else

syntax_error(’Badly formed expression’)

parse_atom := temp

end;

4.2.5 Operations on context-free grammars for top-down parsing

As we have seen, many grammars are not suitable for use in top-down parsing. In particular,

for predictive parsing only LL(1) grammars may be used. Many grammars can be transformed

into more suitable forms in order to make construction of top-down parsers possible. Two
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useful techniques are left-factoring and removal of left recursion.

Left factoring. Many simple parsing algorithms (e.g. those we have studied so far) cannot

cope with grammars with productions such as

〈if stmt〉 → if 〈bool〉 then 〈stmt list〉 fi |

if 〈bool〉 then 〈stmt list〉 else 〈stmt list〉 fi

where two or more productions for a given non-terminal share a common prefix. This is because

they have to make a decision on which production rule to use based only on the first symbol

of the rule.

We will not look at the general algorithm for left-factoring a grammar. For the above example

however, we simply factor-out the common prefix to obtain the equivalent grammar rules:

〈if stmt〉 → if 〈bool〉 then 〈stmt list〉 〈rest if〉

〈rest if〉 → else 〈stmt list〉 fi | fi

Removing Immediate Left Recursion. A grammar is said to be immediately left recursive

if there is a production of the form A→ Aα. Grammars for programming languages are often

immediately left recursive, or have general left recursion (see next section). However, a large

class of parsing algorithms (specifically top-down parsers) cannot cope with such grammars.

Here we shall show how immediate left recursion can be removed from a context-free grammar,

and in the next section we will see how general left recursion can be removed.

Consider a grammar G with productions A → Aα | β where β does not begin with an A.

We can make a new grammar G′ that defines the same language as G but without any left

recursion, by replacing the above productions with

A → βA′

A′ → αA′ | ǫ

More generally, consider a grammar G with productions

A→ Aα1 | Aα2 | · · · | Aαn | β1 | β2 | · · · | βm

where none of β1, . . . , βm begin with an A. We can make a new grammar G′ without left

recursion by replacing the above productions with

A → β1A
′ | β2A

′ | · · · | βmA′

A′ → α1A
′ | α2A

′ | · · · | αnA′ | ǫ

Removing Left Recursion. A grammar is said to be left recursive if A
+

=⇒ Aα for some

nonterminal A. Let G be a grammar that has no ǫ-productions and no cycles. (A grammar G

has a cycle if A
+

=⇒ A for some nonterminal A.) The following is an algorithm that removes

left recursion from G.
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Arrange the nonterminals in some order A1 . . . An

for i := 1 to n do

for j := 1 to i-1 do

replace each production of the form Ai → Ajγ with Ai → δ1γ | · · · | δkγ

where Aj → δ1 | · · · | δk are all the current Aj productions;

od

remove any immediate left recursion from all current Ai-productions

od

In order to understand how the algorithm works, we begin by considering how G might be left

recursive. First, we arrange the nonterminals into some order A1, . . . , An. In order for G to be

left recursive, it must be that Ai
+

=⇒ Aiα for some i and some α. Now consider an arbitrary

Ai-production Ai → β. Clearly, there are two possibilities for β:

(1) β is of the form β = aγ for some terminal a, or

(2) β is of the form β = Ajγ for some nonterminal Aj .

Notice that if every Ai-production is of the form (1) then any derivation from Ai will yield a

string that starts with a terminal symbol. Since Ai is a nonterminal, it is impossible to have

Ai
+

=⇒ Aiα for any α — contradicting the assumption of G’s left recursiveness. Thus, it must

be that at least one Ai-production is of the form Ai → Ajγ. Suppose that j > i for every such

production (for all non-terminals Ai): Then it must be that whenever Ai derives a string α and

the leftmost symbol of α is a nonterminal Ak, then k > i. Since this means k 6= i, G cannot be

left recursive.

The way the algorithm works is to transform the productions of G in such a way that the new

productions are either of the form Ai → aα or of the form Ai → Ajα where j > i, and thus

the new grammar cannot be left recursive.

In more detail, the algorithm considers the Ai - productions for i = 1, 2, . . . , n. The case i = 1

is a special case since if Ai → Ajα then j ≥ i. If j > i then the production is in the right form,

and if j = i then we have an instance of immediate left recursion that can be removed as in

the previous section.

For i = 2, . . . , n, it is possible to have Ai-productions of the form Ai → Ajα with j < i. For

each of these productions the algorithm substitutes for Aj each possible right hand side of an

Aj-production. That is, if Aj → δ1 | · · · | δp are all the Aj-productions, then the algorithm

replaces Ai → Ajγ with Ai → δ1γ | · · · | δpγ. Now, since the algorithm has already processed

the Aj-productions (think inductively here!), it must be the case that if the leftmost symbol of

δr (r = 1, . . . , p) is a nonterminal Ak say, then k > j (because δr is the right hand side of an

Aj-production). Thus the lowest index of any nonterminal occurring as the leftmost symbol of

the right hand side of any Ai-production has been increased from j to k.
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We require this lowest index to be greater than (or equal to) i. If k is already greater than (or

equal to) i then the production Ai → δrγ is of the right form (we can remove the immediate left

recursion if k = i). Otherwise, j < k < i. Now, k − j iterations of the inner loop later, j will

be equal to k, and so the algorithm will then consider Ai-productions of the form Ai → Akα.

As before, since k < i the algorithm has already considered the Ak-productions, and so all the

Ak-productions whose right hand sides start with a nonterminal Al will have l > k. Thus, on

substituting these right hand sides for Ak in Ai → Akα, we obtain productions whose right

hand sides begin with a terminal symbol a nonterminal Al for l > k. Thus the lowest index of

any nonterminal occurring as the leftmost symbol of the right hand side of any Ai-production

has now been increased from j to k to l.

Continuing in this way, we see that by the time that we have dealt with the case j = i− 1 we

must arrive at a situation where the lowest index has been increased to i or greater.

Example. Let us remove the left recursion from the following productions:

A1 → a | A2b

A2 → c | A3d

A3 → e | A4f

A4 → g | A2h

Consider what happens when we execute the above algorithm on these productions. First, the

nonterminals are already ordered, so we proceed with the outer loop. For each value of i the

algorithm modifies the set of Ai-productions — this set may grow as the algorithm proceeds.

Consider the Ai-productions for i = 1, 2, 3. Notice each is of the form Ai → α where the

leftmost symbol of α is either a terminal, or is Aj for j > i. Thus the algorithm does nothing

for i = 1, 2, 3.

At i = 4, there are no Ai-productions of the form A4 → A1γ and so nothing happens for j = 1.

At j = 2, A4 → A2γ is a production for γ = h. The current A2-productions are A2 → c | A3d,

and so we replace A4 → A2h with A4 → ch | A3dh. This ends the case j = 2, and the

A4-productions are currently A4 → g | ch | A3dh.

At j = 3, we see A4 → A3γ is a current A4-production for γ = dh. The current A3-productions

are A3 → e | A4f , and so A4 → A3dh is replaced with A4 → edh | A4fdh. This ends the case

j = 3 and the A4-productions are now A4 → g | ch | edh | A4fdh.

This ends the inner loop, and so we remove the immediate left recursion from A4’s productions,

resulting in:

A4 → gA′
4 | chA′

4 | edhA′
4

A′
4 → fdhA′

4 | ǫ.
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4.3 Bottom-up Parsers

Bottom-up parsing can be thought of as the process of creating a parse tree for a given input

string by working upwards from the leaves towards the root. The most well-known form of

bottom-up parsing is that of shift-reduce parsing to which we will restrict our attention; this is

a non-recursive, non-backtracking method. Shift-reduce parsing works by matching substrings

of the input string against productions of a grammar G and then replacing such substrings

with the appropriate nonterminal, so that the input string (provided it is in L(G)) is eventually

‘reduced’ to the start symbol S. In contrast to top-down parsing that traces out a leftmost

derivation, shift-reduce parsing aims to yield a rightmost derivation (in reverse).

Example. Consider a grammar G with the following productions:

A → ab | BAc

B → CA

C → d | Ba | abc.

Now consider the input string w = dababc. The d matches C → d so w can be reduced to

w1 = Cababc. Next, the first ab matches A→ ab so w1 can be reduced to w2 = CAabc. Next,

CA matches B → CA so w2 can be reduced to w3 = Babc. Now ab matches A→ ab so w3 can

be reduced to w4 = BAc. Finally, w4 can be reduced to A (the start symbol) by the production

A → BAc. We have reduced w to the start symbol, and reversing this process does indeed

yield a rightmost derivation of w from A:

A =⇒ BAc =⇒ Babc =⇒ CAabc =⇒ Cababc =⇒ dababc.

There are other sequences of reductions that reduce w to A but they need not yield rightmost

derivations. For example, we could have chosen to reduce w2 to CAAc (and then to BAc), but

this yields:

A =⇒ BAc =⇒ CAAc =⇒ CAabc =⇒ Cababc =⇒ dababc.

Further, notice that not all sequences of reductions lead to the start symbol. For example, w2

can be reduced to CAC that can only be reduced to BC.

General idea of shift-reduce parsing. A shift-reduce parser uses a stack in a similar way

to LL(1) parsers. The stack begins empty, and a parse is complete when S appears as the only

symbol on the stack. The parser has two possible actions (besides ‘accept’ and ‘error’) at each

step:

• To shift the current input symbol onto the top of the stack.

• To reduce a string (for example, α) at the top of the stack to the non-terminal A, given

the production A→ α.

Consider the above grammar and the input string dababc. The actions that a shift-reduce

parser might make are:
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Stack Input Action

dababc$ shift

d ababc$ reduce C → d

C ababc$ shift

Ca babc$ shift

Cab abc$ reduce A→ ab

CA abc$ reduce B → CA

B abc$ shift

Ba bc$ shift

Bab c$ reduce A→ ab

BA c$ shift

BAc $ reduce A→ BAc

A $ accept.

It is important to note that this is only an illustration of what a shift-reduce parser might do; it

does not show how the parser makes decisions on what actions to take. The main problem with

shift-reduce parsing is deciding when to shift and when to reduce (notice that in the example,

we do not reduce the top of the stack every time possible—e.g we did not reduce the Ba to

C when the stack contained Bab as this would have given an incorrect parse). A shift-reduce

parser looks at the contents of the stack and at (some of) the input to decide what action to

take. Different types of shift-reduce parsers use the available stack/input in different ways, as

will will see in the next section.

Handles. The difficulty in writing a shift-reduce parser begins with deciding when reducing a

substring of an input string will result in a (reverse) step in a rightmost derivation.

Informally, a handle of a string is a substring that matches the right hand side of a production,

and whose reduction represents one (reverse) step in a rightmost derivation from the start

symbol.

Formally, a handle of a right-sentential form γ is a pair h = (A→ β, p) comprising a production

A → β and a position p indicating where the substring β may be found and replaced by A

to produce the the previous right-sentential form in a rightmost derivation of γ. That is, if

S
∗

=⇒ αAw =⇒ αβw = γ is a rightmost derivation, then (A→ β, p) is a handle of αβw when

p marks the position immediately after α.

For example, with reference to the example above, (A → ab, 2) is a handle of Cababc since

Cababc is a right-sentential form, and replacing ab by A at position 2 yields CAabc that is the

predecessor of Cababc in its rightmost derivation. In contrast, (A → ab, 4) is not a handle of

Cababc since although CabAc =⇒ Cababc is a rightmost derivation, it is not possible to derive

CabAc from the start symbol with a rightmost derivation.

An important fact underlying the shift/reduce method of parsing is that handles will always

appear on the top of the stack. In other words, if there is a handle to reduce at all, then the last

symbol of the handle must be on top of the stack; it is then a matter of tracing down through
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the stack to find the start of the handle.

Viable Prefixes. The second technical notion that we require in order to understand how a

shift/reduce parser can be made to make choices that lead to a rightmost derivation is that of

a viable prefix.

A viable prefix is a prefix of a right-sentential form that does not continue past the right hand

end of the rightmost handle of that sentential form. For the example, the viable prefixes of

Cababc are ǫ, C, Ca and Cab since the rightmost handle of Cababc is the first occurrence of ab.

The significance of viable prefixes is that provided the input seen up to a given point can be

reduced to a viable prefix (as is always possible initially since ǫ is always a viable prefix), it is

always possible to add more symbols to yield a handle at the top of the stack.

4.3.1 LR(k) Parsing

An LR(k) grammar is one for which we can construct a shift/reduce parser that reads input

left-to-right and builds an rightmost derivation in reverse, using at most k symbols of lookahead.

There are situations where a shift/reduce parser cannot resolve conflicts even knowing the entire

contents of the stack and the next k inputs: such grammars, which include all ambiguous

grammars, are called non-LR.

However, shift/reduce parsing can be adapted to cope with ambiguous grammars, and moreover

LR parsing (i.e. LR(k) parsing for some k ≥ 0) has a number of advantages. Most importantly,

LR parsers can be constructed to recognise virtually all programming language constructs for

which context-free grammars can be devised (including all LL(k) grammars). In fact, it is rarely

the case that more than one lookahead character is required. Also, the LR parsing method can

be implemented efficiently, and LR parsers can detect syntax errors as soon as theoretically

possible.

The process of constructing an LR parser is however relatively involved, and in general, too

difficult to do by hand. For this reason parser generators have been devised to automate the

process of constructing an LR parser where this is possible. One well-known such tool is the

program yacc. The remainder of this section is devoted to explaining the LR(k) parsing method

in order to provide a thorough understanding of the ideas behind this tool.

4.3.2 LR, SLR and LALR parsing

The LR parsing algorithm is a stack-based shift/reduce parsing algorithm involving a parsing

table that dictates an appropriate action for a given state of the parse. We will look at four

different kinds of LR parser that use at most one symbol of lookahead. Each kind is an instance

of the general LR parsing algorithm but is distinguished by the kind of parsing table employed.
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The four types are:

• LR(0) parsers. As implied by the 0, the actions taken by LR(0) parsers are not influenced

by lookahead characters.

• SLR(1) parsers (“S” meaning “simple”).

• LALR(1) parsers (“LA” meaning “lookahead”).

• LR(1) parsers.

The grammars for which each of the types of parsers may be constructed is described by the

hierarchy:

LR(0) ⊂ SLR(1) ⊂ LALR(1) ⊂ LR(1)

such that every LR(0) grammar is also an SLR(1) grammar, etc. Roughly speaking, the more

general the parser type, the more difficult the (manual) construction of the parsing table (i.e.

LR(0) parsing tables are the easiest to construct, LR(1) tables are the most difficult). Finally,

although the parsing tables for LR(0), SLR(1) and LALR(1) grammars are essentially the

same size, LR(1) parsing tables can be extremely large. Because many programming language

constructs cannot be described by SLR(1) grammars (and hence neither by LR(0) grammars),

but almost all can be described (with effort) by LALR(1) grammars, it is the LALR(1) class

of parser that has proven the most popular for bottom-up parsing; yacc, for example, is an

LALR(1) parser generator.

We will first look at the LR parsing algorithm (or ‘LRP’ for ‘LR parser’ for short) and then

look at how to construct the parsing table in the case of each of the others.

4.3.3 The LR Parsing Algorithm

The LRP is essentially a shift/reduce parser that is augmented with states. The stack holds

strings of the form

s0X1s1X2s2 · · ·Xmsm

(with sm on the top) where X1, . . . , Xm are grammar symbols and s0, . . . , sm are states. The

idea behind a state in the stack is that it summarises the information in the stack below it:

to be more precise, a state represents a viable prefix that has occurred before that state was

reached. One of these states represents ‘nothing has yet been read’ (note that the empty string

is always a viable prefix) and is designated the initial state. In fact, this initial state is the

initial state of a DFA that recognises viable prefixes as we shall see below.

The states are used by the LRP’s goto function: this is a function that takes a state and a

grammar symbol as arguments and produces a new state; the idea is that if goto(s, X) = s′ then

s′ represents the viable prefix obtainable by appending an X to the viable prefix represented by

s. (In other words, the goto function is the transition function of the DFA mentioned above.)
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The behaviour of the LRP is best described in terms of configurations; that is, a pair

(s0X1s1X2s2 · · ·Xmsm, ai . . . an)

comprising the contents of the stack and the input yet to be read. The idea behind such

a configuration is that it represents the LRP having up to this point constructed the right-

sentential form

X1X2 . . . Xmai . . . an

and about to read ai.

The LRP starts with the initial state on its stack and the input pointer at the start of the

input. It then repeatedly looks at the current (topmost) state and input symbol and takes the

appropriate action before considering the next state and input, until processing is complete.

For a given configuration such as the above (with current state sm and input symbol ai) the

action action(sm, ai) taken by the LRP is one of the following:

• action(sm, ai) = shift s. Here the parser puts ai and s onto the stack (in that order)

and advances the input pointer. Thus from the configuration above, the LRP enters the

configuration:

(s0X1s1X2s2 · · ·Xmsmais, ai+1 . . . an).

• action(sm, ai) = reduce by A → β. This action occurs when the top r (say) grammar

symbols constitute β; that is, when Xm−r+1 . . . Xm = β. When this does occur, the

topmost 2r symbols are replaced with A and s = goto(sm−r, A) (in that order); thus, in

this case the configuration becomes:

(s0X1s1X2s2 · · ·Xm−rsm−rAs, ai . . . an).

• action(sm, ai) = accept. Here parsing is completed and the LRP terminates.

• action(sm, ai) = error. Here a syntax error has been detected and the LRP calls an error

recovery routine.

4.3.4 LR(0) State Sets and Parsing

We begin our discussion of the different types of LR parser by looking at LR(0) parsers. As

implied by the ‘0’, an LR(0) parser makes decisions on whether to shift or reduce based purely

on the contents of the stack, not on lookahead. Although few useful grammars are LR(0), the

construction of LR(0) parsing tables illustrates most of the concepts that we will need to build

SLR(1), LR(1) and LALR(1) parsing tables.

As mentioned previously, the idea behind the ‘states’ on the stack of an LR parser is that a

state represents a viable prefix that has occurred on the stack up to a given point in the parse.
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We begin to make this idea more precise by defining an LR(0) item (or ‘item’ for short) to

be a string of the form A → α • β where A → αβ is a production. (If A →, that is, A → ǫ,

then A→ • is the only item for this production.) Thus, for example, the production A→ XY

yields the three items: A→ •XY , A→ X • Y and A→ XY •.

In general, the dot (•) is a marker denoting the current position in parsing a string; that is, an

item of the form A→ α • β represents a parser having parsed α and about to (try and) parse

β.

We begin the process of constructing LR(0) parsing tables by augmenting the grammar G with

a new production S ′ → S (where S ′ is a new start symbol) to form an augmented grammar

G′. The reason for this is that we can use the item S ′ → •S to represent the start of the parse

(that is, the initial state).

Item Closures. Notice that if A→ α•Bβ is an item, this represents a state in a shift/reduce

parser where α is the current viable prefix on the top of the stack, and we expect to see (a string

derivable from) Bβ in the input. However, if B → γ is a production then (a string derivable

from) γ is also acceptable input at this point.

Thus, in this situation A→ α •Bβ and B → •γ are equivalent in the sense that α is a viable

prefix for sentential forms derivable from either item. In order to compute all the items of the

parse equivalent to a given item (or set of item) we define the closure of a set of items I for a

grammar using the following algorithm:

closure(I)

let J := I

repeat

for each item A→ α •Xβ in J

for each X → γ add X → •γ to J

until J does not change

return J

The reason why the closure operation is defined on sets of items will be clearer later.

State Transitions. If the parser is in a certain state and then reads a symbol X, then

intuitively the parser will change state in the sense that the set of strings it expects to see

having read the X will be different (in general) to the set of strings the parser was expecting

to see before the X. More formally, if A→ α •Xβ is an item then reading an X results in the

new item A→ αX • β (and all the items equivalent to it).

We formalise these transitions between states of the parse with the function goto(I, X) that

takes a set of items and a grammar symbol X as input, and returns a set of (equivalent) items

as output, using the following algorithm:

goto(I,X)
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let J be the empty set

for any item A→ α •Xβ in I

add A→ αX • γ to J

return closure(J)

LR(0) State Set Construction. We now construct all possible states that an LR(0) parser

for an LR(0) grammar G = (T, N, S, P ) can be in. Initially, the parser will be in the state

closure({S ′ → •S}).

We construct all other states from this initial state by using the goto and closure operations

above, until no new states can be generated. The following algorithm accomplishes this task:

C := {closure({S ′ → •S})}

repeat

for each state I ∈ C

for each item A→ α •Xβ in I

let J be goto(I, X)

add J to C

until C does not change

return C

Example. Consider the LR(0) grammar

S → (S) | a

which we augment with the production S ′ → S. We begin construction of the LR(0) state set

by computing the closure of the item {S ′ → •S},

{S ′ → •S, S → •(S), S → •a}

which we will refer to as I0. So C = {I0} after the initial step of the algorithm. In the next

step of the algorithm we compute goto(I0, S), goto(I0, a) and goto(I0, ():

goto(I0, S) = closure({S ′ → S•})

= {S ′ → S•}

= I1 (say)

goto(I0, a) = closure({S → a•})

= {S → a•}

= I2 (say)

goto(I0, () = closure({S → (•S)})

= {S → (•S), S → •(S), S → •a}

= I3 (say)
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and thus C = {I0, I1, I2, I3} after the first iteration of the repeat-forever loop.

On the next iteration, (noticing that neither I1 nor I2 contain items of the form A→ α •Xβ)

we consider I3 and compute goto(I3, S), goto(I3, a) and goto(I3, ():

goto(I3, S) = closure({S → (S•)})

= {S → (S•)}

= I4 (say)

goto(I3, a) = closure({S → a•})

= I2

goto(I3, () = closure({S → (•S)})

= I3

and now C = {I0, I1, I2, I3, I4}. On the next iteration, we need only compute goto(I4, )):

goto(I4, )) = closure({S → (S)•})

= {S → (S)•}

= I5 (say)

and now C = {I0, I1, I2, I3, I4, I5}. It is clear that a further iteration of the loop will not yield

any further states, so we have finished.

The states and goto functions can be depicted as a DFA....

Constructing LR(0) Parsing tables. We construct an LR(0) parsing table as follows:

(1) Construct the set {I0, . . . , In} of states for the augmented grammar G′.

(2) The parsing actions for state Ii are determined as follows:

(a) If A→ α • aβ ∈ Ii and goto(Ii, a) = Ij then action(i, a) = shift j.

(b) If A→ α• ∈ Ii then action(i, a) = reduce A→ α, for each a ∈ T ∪ {$}.

(c) If S ′ → S• ∈ Ii then action(i, $) = accept.

(3) The goto actions for state i are as given by directly from the goto function; that is,

if goto(Ii, A) = Ij then let goto(i, A) = j.

(4) All entries not defined by the above rules are made error.

(5) The initial state is the one constructed from {S ′ → •S}.

Rule (a) above says that, if we have parsed α and we can see a terminal symbol b then we

should shift the symbol onto the stack and go into state j.

Rule (b) says that, if we have finished parsing a particular production rule α then we should

reduce by that production rule for all terminal symbols.
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Rule (c) says that, if we have successfully parsed the start symbol then we have finished.

This method of creating a parser will fail if there are any conflicts in the above rules, and

grammars leading to such conflicts are not LR(0).

Example. For the example grammar we obtain the following parsing table, where sj means

shift j, rj means reduce using production rule j (where rule 1 is S → (S) and rule 2 is S → a),

and ok means ‘accept’.

action goto

State a ( ) $ S

0 s2 s3 1

1 ok

2 r2 r2 r2 r2

3 s2 s3 4

4 s5

5 r1 r1 r1 r1

A trace of the parse of the string ((a)) is as follows:

Stack Input Action

0 ((a))$ shift 3

0(3 (a))$ shift 3

0(3(3 a))$ shift 2

0(3(3a2 ))$ reduce S → a

0(3(3S4 ))$ shift 5

0(3(3S4)5 )$ reduce S → (S)

0(3S4 )$ shift 5

0(3S4)5 $ reduce S → (S)

0S1 $ accept

Notice that from the rules for constructing an LR(0) parsing table, for a grammar to be LR(0),

if a state contains an item of the form A → α• (signifying the fact that α should be reduced

to A) then it cannot also contain another item of the form:

(a) B → β•, or

(b) B → β • aγ.

In the case of (a), the parser cannot decide whether to reduce using rule A→ α or rule B → β;

this is known as a reduce-reduce conflict. In the case of (b), the parser cannot decide whether

to reduce using rule A→ α or to shift (by the item B → β •aγ); this is known as a shift-reduce

conflict. A grammar is LR(0) if, and only if, all states contain either no items of the form

A→ α•, or contain exactly one item.
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4.3.5 SLR(1) Parsing

SLR(1) parsing is more powerful than LR(0) as it consults (by the way an SLR(1) parsing table

is constructed) the next input token to direct its actions. The construction of an SLR(1) table

begins with the LR(0) state set construction as with LR(0) parsers.

Let’s consider an example. We first construct the LR(0) state set. We then show that the

grammar is not LR(0) due to shift-reduce conflicts. We then show how to construct general

SLR(1) parsing tables and apply this to our example.

Example. Consider the following productions for a grammar for arithmetic expressions.

(1) E → E + T

(2) E → T

(3) T → T ∗ F

(4) T → F

(5) F → (E)

(6) F → a

augmented with the production E ′ → E.

The state set construction proceeds as follows. We begin by constructing the initial state:

I0 = closure({E ′ → •E})

= {E ′ → •E, E → •E + T, E → •T, T → •T ∗ F, T → •F, F → •(E), F → •a}.

Thus C = {I0} after the initial step of the algorithm.

Next, we see that we need to compute goto(I0, X) for X = a, (, E, T , F :

goto(I0, a) = closure({F → a•})

= {F → a•}

= I1 (say)

goto(I0, () = closure({F → (•E)})

= {F → (•E), E → •E + T, E → •T, T → •T ∗ F,

T → •F, F → •(E), F → •a}

= I2 (say)

goto(I0, E) = closure({E ′ → E•, E → E •+T})

= {E ′ → E•, E → E •+T}

= I3 (say)

goto(I0, T ) = closure({E → T•, T → T • ∗F})
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= {E → T•, T → T • ∗F}

= I4 (say)

goto(I0, F ) = closure({T → F•})

= {T → F•}

= I5 (say).

Thus now C = {I0, I1, I2, I3, I4, I5}.

On the next iteration of the loop we need to consider I1, I2, I3, I4, I5. First, notice that there

are no items in I1 that have any symbols following the marker, and hence goto(I1, X) = ∅ for

each possible symbol X. We now compute goto(I2, X) for X = a, (, E, T, F as follows:

goto(I2, a) = closure({F → a•})

= I1

goto(I2, () = closure({F → (•E)})

= I2

goto(I2, E) = closure({F → (E•), E → E •+T})

= {F → (E•), E → E •+T}

= I6 (say)

goto(I2, T ) = closure({E → T•, T → T • ∗F})

= I4

goto(I2, F ) = closure({T → F•})

= I5.

For I3 we only need to compute goto(I3, +):

goto(I3, +) = closure({E → E + •T})

= {E → E + •T, T → •T ∗ F, T → •F, F → •(E), F → •a}

= I7 (say).

For I4 we need only compute goto(I4, ∗):

goto(I4, ∗) = closure({T → T ∗ •F})

= {T → T ∗ •F, F → •(E), F → •a})

= I8 (say).

We also see that goto(I5, X) = ∅ for all X, as in the case of I1. Thus, after the second iteration

of the loop we have C = {I0, I1, I2, I3, I4, I5, I6, I7, I8}.

In the next iteration we need to consider I6, I7, I8. For I6, we see that we need to compute

goto(I6, +) and goto(I6, )):

goto(I6, +) = closure({E → E + •T})

= I7

goto(I6, )) = closure({F → (E)•})
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= {F → (E)•}

= I9 (say).

For I7, we see that we need to compute goto(I7, X) for X = a, (, T, F :

goto(I7, a) = closure({F → a•})

= I1

goto(I7, () = closure({F → (•E)})

= I2

goto(I7, T ) = closure({E → E + T•, T → T • ∗F )})

= {E → E + T•, T → T • ∗F})

= I10 (say)

goto(I7, F ) = closure({T → F•})

= I5.

For I8, we see that we need to compute goto(I8, X) for X = a, (, F :

goto(I8, a) = closure({F → a•})

= I1

goto(I8, () = closure({F → (•E)})

= I2

goto(I8, F ) = closure({T → T ∗ F•})

= {T → T ∗ F•}

= I11 (say).

Thus, after the third iteration of the loop we have C = {I0, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11}.

Next, we need to consider I9, I10, I11. For I9 and I11, we see that goto(I9, X) = goto(I11, X) = ∅

for all X. For I10 we only need to compute goto(I10, ∗):

goto(I10, ∗) = closure({T → T ∗ •F})

= I8.

Thus, C did not change during the fourth iteration of the loop and we have finished(!).

Now, consider an attempt at constructing an LR(0) parsing table from this state set. Specif-

ically, consider the state I4 (we could also have chosen I10). This state contains the items

E → T• and T → T • ∗F and goto(I4, ∗) = I8. This is a shift-reduce conflict (we would

attempt to place both s8 and r2 at location (4, ∗) in the table).

Constructing SLR(1) Parsing Tables.

In LR(0) parsing a reduce action is performed whenever the parser enters a state i (i.e. Ii) whose

(only) item is of the form A→ α• regardless of the next input symbol. In SLR(1) parsing, if a

state contains an item of this form then the reduction of α to A is only performed if the next

token is in Follow(A) (the set of all terminal symbols that can follow A in a sentential form),
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else it performs a different action (e.g. a shift, reduce, or error) based on the other items of

state Ii.

The rules for constructing SLR(1) parsing tables are the same as for LR(0) tables giving in the

previous section, except that we replace rule 2(b):

If A→ α• ∈ Ii then action(i, a) = reduce A→ α, for each a ∈ T ∪ {$}

by

If A→ α• ∈ Ii then action(i, a) = reduce A→ α, for each a ∈ Follow(A).

Lets consider the example grammar. The Follow sets are

Follow(E) = {$, +, )}

Follow(T ) = {$, ∗, +, )}

Follow(F ) = {$, ∗, +, )}.

Notice first that the shift-reduce conflict mentioned above has been resolved. Recall the items

E → T• and T → T • ∗F of I4 where goto(I4, ∗) = I8. As ∗ /∈ Follow(E), we do not choose to

reduce in this state (i.e. we place only s8 in the parsing table at position (4, ∗)).

The complete SLR(1) parsing table for this grammar is as shown below.

action goto

State a + ∗ ( ) $ E T F

0 s1 s2 3 4 5

1 r6 r6 r6 r6

2 s1 s2 6 4 5

3 s7 ok

4 r2 s8 r2 r2

5 r4 r4 r4 r4

6 s7 s9

7 s1 s2 10 5

8 s1 s2 11

9 r5 r5 r5 r5

10 r1 s8 r1 r1

11 r3 r3 r3 r3

A parse of the string a + a ∗ a is:
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Step Stack Input Action

1 0 a + a ∗ a shift 1

2 0a1 +a ∗ a reduce by F → a

3 0F5 +a ∗ a reduce by T → F

4 0T4 +a ∗ a reduce by E → T

5 0E3 +a ∗ a shift 7

6 0E3 + 7 a ∗ a shift 1

7 0E3 + 7a1 ∗a reduce by F → a

8 0E3 + 7F5 ∗a reduce by T → F

9 0E3 + 7T10 ∗a shift 8

10 0E3 + 7T10 ∗ 8 a shift 1

11 0E3 + 7T10 ∗ 8a1 $ reduce by F → a

12 0E3 + 7T10 ∗ 8F11 $ reduce by T → T ∗ F

13 0E3 + 7T10 $ reduce by E → E + T

14 0E3 $ accept

It can be seen from the SLR(1) table construction rules that a grammar is SLR(1) if, and only

if, the following conditions are satisfied for each state i:

(a) For any item A→ α • aβ, there is no other item B → γ• with a ∈ Follow(B);

(b) For any two items A→ α• and B → β•, Follow(A) ∩ Follow(B) = ∅.

Violation of (a) will lead to a shift-reduce conflict: if the parser is in state i and a is the next

token, the parser cannot decide whether to shift the a (and goto(i, a)) onto the stack or to

reduce the top of the stack using the rule B → γ. Violation of (b) will lead to a reduce-reduce

conflict: if the parser is in state i and the next token a is in Follow(A) and Follow(B), the

parser cannot decide whether to reduce using rule A → α or rule B → β. For non-SLR(1)

grammars that are still LR(1), we need to look at LR(1) and LALR(1) parsers.
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5 Javacc

Javacc is a compiler compiler which takes a grammar specification and writes a parser for that

language in Java. It comes with a useful tool called Jjtree which in turn produces a Javacc

file with extra code added to construct a tree from a parse. By running the output from Jjtree

through Javacc and then compiling the resulting Java files we get a full top-down parser for

our grammar. The process is shown in figure 1

Language Specification myFile.jjt

jjtree

myFile.jj

Parser in Java

javac

parser

Javacc file

myFiles.java

javacc

Figure 1: The JavaTree Compilation Process

Because the parser is top-down we can only use Javacc on LL(k) grammars, meaning that we

have to remove any left-recursion from the grammar before writing the parser.

5.1 Grammar and Coursework

The grammar we will be compiling, both in these notes and in your coursework, is defined here:

program → decList begin statementList | statementList

decList → dec decList | dec

dec → type id

type → float | int

statementList → statement ; statementList | statement

statement → ifStatement | repeatStatement | assignStatement | readStatement | writeStatement

ifStatement → ifPart end | ifPart elsePart end
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ifPart → if exp then statementList

elsePart → else statementList

repeatStatement → repeat statementList until exp

assignStatement → id := exp

readStatement → read id

writeStatement → write exp

exp → simpleExp boolop simpleExp | simpleExp

boolOp → < | =

simpleExp → term addOp simpleExp | term

addOp → + | -

term → factor mulOp factor | factor

mulOp → * | /

factor → id | float | int | ( exp )

So we have an optional list of variable declarations, followed by a series of statements. There

are 5 statements, a conditional, an iterational, an assignment, and a read and write statement.

All variables must be declared before use and each variable can be a floating point number

or an integer. We also have various expressions. Note how the grammar forces all arithmetic

expressions to have the correct operator precedence. Other ways of achieving this will be

discussed in the lectures. There are no boolean variables but two boolean operators are available

for conditional and repeat statements, less than, and equals. The terminals in this grammar

are precisely those written in bold in the above list.

Your coursework comes in seven parts with a deadline at midnight on the Friday of weeks 2 -

6, 8 and 11. The coursework is designed to take 30 hours to complete in total, so you should

spend about 3 hours each week. The early parts shouldn’t take that long so you are encouraged

to work ahead. I hope to put a model answer on Blackboard by Monday evening each week,

together with your grade, so if you achieved a disappointing grade for one assignment you can

use the model answer for the next. Each week the coursework will build upon the previous

work. Because I am giving model answers each week there will be no extensions. If you have

a reasonable excuse for not submitting on time you will be exempted from that coursework.

You are recommended to spend each Friday afternoon working on this assignment. Although

there will not be formal lab classes you are strongly recommended to use Friday afternoons

as such. You plan each week should be to read the relevant section of this document, try out

the examples, ensure that you understand fully what is going on, and complete the coursework

for that week. If this takes less than three hours you should start work on the next one. The

first five courseworks are worth 10% each, the last two are worth 25% each. The coursework in

total is worth 30% of the marks for the module.
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5.2 Recognising Tokens

Our first job is to build a recogniser for the terminal symbols in the grammar. Lets look at a

minimal javacc file:

options{

STATIC = true;

}

PARSER_BEGIN(LexicalAnalyser)

class LexicalAnalyser{

public static void main(String[] args){

LexicalAnalyser lexan = new LexicalAnalyser(System.in);

try{

lexan.start();

}//end try

catch(ParseException e){

System.out.println(e.getMessage());

}//end catch

System.out.println("Finished Lexical Analysis");

}//end main

}//end class

PARSER_END(LexicalAnalyser)

//Ignore all whitespace

SKIP:{" "|"\t"|"\n"|"\r"}

//Declare the tokens

TOKEN:{<INT: (["0"-"9"])+>}

//Now the operators

TOKEN:{<PLUS: "+">}

TOKEN:{<MINUS: "-">}

TOKEN:{<MULT: "*">}

TOKEN:{<DIV: "/">}

void start():

{}

{

<PLUS> {System.out.println("Plus");} |

<MINUS> {System.out.println("Minus");} |

<DIV> {System.out.println("Divide");} |

<MULT> {System.out.println("Multiply");}|

<INT> {System.out.println("Integer");}

}
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First we have a section for options. Most of the options available default to acceptable values

for this example but we want this program to be static because we are going to write a main

method here rather than in another file. Therefore we set this to true because it defaults to

false.

Next we have a block of code delimited by PARSER BEGIN(LexicalAnalyser) and

PARSER END(LexicalAnalyser). The argument is the name which Javacc will give the finished

parser. Within that there is a class declaration. All code within the PARSER BEGIN and

PARSER END delimiters will be output verbatim by Javacc. Now we write the main method,

which constructs a new parser and calls its start() method. This has to be placed inside a try-

catch block because Javacc automatically generates its own internally defined ParseExceptions

and throws them if something goes wrong with the parse. Finally we print a message to the

screen announcing that we have finished the parse successfully.

We then have some SKIPped items. In this case we are simply telling the final parser to ignore

all whitespace, spaces, tabs, newlines and carriage returns. This is normal as we usually want

to encourage users of our language to use whitespace to indent their programs to make them

easier to read. There are languages in which whitespace has meaning, e.g. Haskell, but these

tend to be rare.

We then have to declare the tokens or terminal symbols of the grammar. The first declaration

is simply a regular expression for integers. We can put in square brackets a range of values,

in this case 0 - 9, separated by a hyphen. This means “anything between these two values

inclusive”. Then wrapping the range expression in parentheses and adding a “+” symbol we

say that an INT (our name for integers) is one or more instances of a digit. Note that literals

are always included in quote marks.

We then include definitions for the arithmetic operators. For such a simple example this is not

necessary since we could use literals instead, but we will be making this more complex later so

it’s as well to start off the right way. Besides, it sometimes makes the code difficult to read if

we mix literals and references freely. A TOKEN declaration consists of:

• The keyword TOKEN.

• A colon.

• An open brace.

• An open angle bracket.

• The name by which we will be referring to this token.

• A colon.
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• A regular expression defining the pattern for recognising this token.

• The close angle bracket.

• The close brace.

We can have multiple token (or skip) declarations in a single line by including the | (or) symbol,

as in the skip declarations in the example above.

We finally define the start() method in which all the work is done. A method declaration in

Javacc consists of the return type (in this case void), the name of the method (in this case

start) and any arguments required, followed by a colon and two (!) sets of braces. The first

one contains variables local to this method (in this case none). The second one contains the

grammar’s production rules. In the above example we are saying that a legal program consists

of a single instance of one of the grammar terminals.

Each statement inside the start() method follows a format whereby a previously defined token

is followed by a set on one or more (one in this example) statements inside braces. This states

that when the respective token is identified by the parser the code inside the braces (which

must be legal Java code) is executed. Thus, if the parser recognises an int it will print integer

to the terminal.

We first run the code through Javacc :Javacc lexan.jj. (The file-type .jj is compulsory). This

gives us a series of messages. Most of these relate to the files being produced by Javacc. We

then compile the resulting java files: javac *.java. This gives us the .class files which can be

run from the command line with Java LexicalAnalyser.

N.B. You are strongly recommended to type in the above code and compile it. You

should do this with all the examples given in this chapter. Test your parser with

both legal and illegal input to see what happens.

At the moment we can only read a single token. The first improvement is to continue to read

tokens until either we reach the end of the input or we read illegal input. We can do this by

simply creating another regular expression inside the start() method.

void start():

{}

{

(<PLUS> |

<MINUS> |

<DIV> |

<MULT> |

<INT>)+

}

Also we can redirect the input from the console to an input file:
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java LexicalAnalyser < input.txt

This file will now, when compiled, produce a parser which recognises any number of our oper-

ators and integers, printing to the screen what it has found. I will continue to do this until it

reaches the end of input or finds an error.

It is time to do assignment 1. The deadline for this is Friday midnight of week

two. You must write a Javacc file which recognises all legal terminal symbols in

the grammar defined on page 77.

5.3 JjTree

So far all we have done is create a lexical analyser which merely decides whether each input

is a token (terminal symbol) or not. The first time it finds an error it exits. The above

program demonstrates how each token is specified and given a name. Then when each token

is recognised we insert a piece of java code to execute. For a complete compiler we need to

construct a tree. Having done that we can traverse the tree generating machine-code for our

target machine. Luckily Javacc comes with a tree builder which inserts all the code necessary

for the construction of such a tree. We will now build a complete parser using this tool – Jjtree.

First of all it should be noted that Jjtree is a pre-processor for Javacc, i.e. it takes our input

file and outputs Javacc code with tree building code built in. The process is shown in figure 1.

The input file to Jjtree needs a file-type of jjt so let’s just change the file we have been using

to Lexan.jjt (from Lexan.jj) and add a few lines of code:

options{

STATIC = true;

}

PARSER_BEGIN(LexicalAnalyser)

class LexicalAnalyser{

public static void main(String[] args)throws ParseException{

LexicalAnalyser lexan = new LexicalAnalyser(System.in);

SimpleNode root = lexan.start();

System.out.println("Finished Lexical Analysis");

root.dump("");

}

}

PARSER_END(LexicalAnalyser)

//Ignore all whitespace
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SKIP:{" "|"\t"|"\n"|"\r"}

//Declare the tokens

TOKEN:{<INT: (["0"-"9"])+>}

//Now the operators

TOKEN:{<PLUS: "+">}

TOKEN:{<MINUS: "-">}

TOKEN:{<MULT: "*">}

TOKEN:{<DIV: "/">}

SimpleNode start():

{}

{

(<PLUS> {System.out.println("Plus");} |

<MINUS> {System.out.println("Minus");} |

<DIV> {System.out.println("Divide");} |

<MULT> {System.out.println("Multiply");} |

<INT>{System.out.println("Integer");

)+

{return jjtThis;}

}

We have stated that calling lexan.start() will return an object of type SimpleNode and as-

signed this to a variable called root. This will be the root of our tree. SimpleNode is the

default type of node returned by JavaTree methods. We will be seeing later how we can change

this behaviour. The final line of the main method now calls root.dump(‘‘’’), passing it an

empty string. This is a method defined within the files produced automatically by JavaTree

and its behaviour can be changed if we wish. At the moment it prints to the output a text

description of the tree which has been built by the parse if successful. The start() method now

has a return value of type simpleNode and the final line of the method returns jjtThis. jjtThis

is the node currently under construction when it is executed. Running this code (Lexan.jjt)

through jjtree produces a file called Lexan.jj. Run this through Javacc and we get the usual se-

ries of .java files. Finally invoking javac *.java produces our parser, this time with tree building

capabilities built in. Running the compiled code with the following input file...

123

+

- * /

...produces the following output:
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Integer

Plus

Minus

Multiply

Divide

Finished Lexical Analysis

start

It is the same as before except that we now see the result of printing out the tree (dump(””)).

It produces the single line start. This is in fact the name of the root of the tree. We have

constructed a tree with a single node called start. Let’s add a few production rules to get a

clearer idea of what is happening.

SimpleNode start():

{}

{

(multExp())* {return jjtThis;}

}

void multExp():

{}

{

intExp() <MULT> intExp()

}

void intExp():

{}

{

<INT>

}

What we are doing here is stating that all internal nodes in our finished tree take the form of

a method, while all terminal nodes are tokens which we have defined.

The code is the same until the definition of the start() method. The we have a series of methods,

each of which contains a production rule for that non-terminal symbol. The start() rule expects

0 or more multExp’s. A multExp is an intExp followed by a MULT terminal followed by another

intExp. An intExp is simply an INT terminal. The grammar in BNF form is as follows:

start → multExp | multExp start | ǫ

multExp → intExp MULT intExp

intExp → INT
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where INT and MULT are terminal symbols.

The output from this after being run on the input:

1*12

3 *14

45 * 6

is more interesting:

start

multExp

intExp

intExp

multExp

intExp

intExp

multExp

intExp

intExp

Pictorially the tree we have built from the parse of the input is shown in figure 2

Start

MultExp MultExp MultExp

IntExp IntExp IntExp IntExp IntExp IntExp

Figure 2: The tree built from the parse

We have a start node containing three multExp’s, each of which contains two children, both

of which are intExp’s. It is time for assignment 2. All you have to do is change the

file you produced for assignment 1 into a jjtree file which contains the complete

specification for the module grammar given on page 77

Notice how the nodes take the same name as the method name in which they are defined? Let’s

change this behaviour:

SimpleNode start() #Root:{}{...}

void multExp() #MultiplicationExpression:{}{...}

void intExp() #IntegerExpression:{}{...}
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All we have done is precede the method body with a local name (indicated by the # sign).

This gives us the following, more easily understandable output:

Root

MultiplicationExpression

IntegerExpression

IntegerExpression

MultiplicationExpression

IntegerExpression

IntegerExpression

MultiplicationExpression

IntegerExpression

IntegerExpression

To see the full effect of this change we can add two options to the first section of the file:

MULTI = true;

NODE_PREFIX = "";

The first tells the compiler builder to create different types of node, rather than just SimpleNode.

If we don’t add the second line the files thus generated will all have a default prefix. We will

be using these different names later.

It is time for assignment 3. Change all the methods you have written so far so

that they produce node names and types which are other than the names of the

methods.

5.4 Information within nodes

With the addition of the above method of changing node names we have a great deal of infor-

mation about interior nodes. What about terminal nodes? We know that we have, for example,

an identifier or perhaps a floating point number but what is the name of that identifier,

or the actual value of the float? We will need to know that information in order to be able to

use it when, for example, generating code.

Looking at the list of files that Javacc generates for us we can see lots of nodes. Examining the

code we can see that all of them extend SimpleNode. Let’s look at the superclass:

/* Generated By:JJTree: Do not edit this line. SimpleNode.java */

public class SimpleNode implements Node {

protected Node parent;
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protected Node[] children;

protected int id;

protected LexicalAnalyser parser;

public SimpleNode(int i) {

id = i;

}

public SimpleNode(LexicalAnalyser p, int i) {

this(i);

parser = p;

}

public void jjtOpen() {

}

public void jjtClose() {

}

public void jjtSetParent(Node n) { parent = n; }

public Node jjtGetParent() { return parent; }

public void jjtAddChild(Node n, int i) {

if (children == null) {

children = new Node[i + 1];

} else if (i >= children.length) {

Node c[] = new Node[i + 1];

System.arraycopy(children, 0, c, 0, children.length);

children = c;

}

children[i] = n;

}

public Node jjtGetChild(int i) {

return children[i];

}

public int jjtGetNumChildren() {

return (children == null) ? 0 : children.length;

}

/* You can override these two methods in subclasses of SimpleNode to

customize the way the node appears when the tree is dumped. If

87



your output uses more than one line you should override

toString(String), otherwise overriding toString() is probably all

you need to do. */

public String toString() { return LexicalAnalyserTreeConstants.jjtNodeName[id]; }

public String toString(String prefix) { return prefix + toString(); }

/* Override this method if you want to customize how the node dumps

out its children. */

public void dump(String prefix) {

System.out.println(toString(prefix));

if (children != null) {

for (int i = 0; i < children.length; ++i) {

SimpleNode n = (SimpleNode)children[i];

if (n != null) {

n.dump(prefix + " ");

}

}

}

}

}

The child nodes for this node are kept in an Array. jjtgetChild(i), returns the ith child node,

jjtGetNumChildren() returns the number of children this node has and dump() alters how

the nodes are printed to the screen when we call the Root note. Notice that dump() in particular

recursively invokes dump() on all its children after printing itself, giving a pre-order printout

of the tree. This can easily be changed to in-order or post-order.

We can add functionality to the node classes by adding it to SimpleNode, since all other nodes

inherit from this. Add the following to the SimpleNode file:

protected String type = "Interior node";

protected int intValue;

public void setType(String type){this.type = type;}

public void setInt(int value){intValue = value;}

public String getType(){return type;}

public int getInt(){return intValue;}

By adding these members to the SimpleNode class all subclasses of SimpleNode will inherit

them. Now change the code in the intExp method as follows:
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void factor() #Factor:

{Token t;}

{

<ID> |

<FLOAT> |

t = <INT> {jjtThis.setType("int"); jjtThis.setInt(Integer.parseInt(t.image));} |

<OPENPAR> exp() <CLOSEPAR>

}

Each time javacc recognises a predefined token it produces an object of type Token. The class

Token contains some useful methods of which two are seen here, kind and image. This is

exactly the information we need to add to our nodes.

What we are saying here is that if the method factor() is called then it will be an ID, and

int, a float or a parenthesised expression. If it is an int we add to the factor node the type

and the value of this particular int.

Now, when we have a factor node we know, if it is an integer, what value it has. We can also,

by adding to this code, know exactly which type of factor we are dealing with. Look at the

dump() method:

public void dump(String prefix) {

System.out.println(toString(prefix));

if(toString().equals("Factor")){

if(getType().equals("int")){

System.out.println("I am an integer and my value is " + getInt());}

}

if (children != null) {

for (int i = 0; i < children.length; ++i) {

SimpleNode n = (SimpleNode)children[i];

if (n != null) {

n.dump(prefix + " ");

}

}

}

}

Now when we call the dump() method of our root node we will get all the information we had

previously, plus, for each terminal factor node, if it is an integer we will know its value as well.

Time for assignment 4. Alter your code (in the factor method and the SimpleNode

class) so that variables, integers and floats will all print out what they are, plus

their value or name.
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5.5 Conditional statements in jjtree

Many of the methods we have defined so far for the internal nodes have an optional part. This

means that, for example, a statement list is a single statement followed by an optional semi-

colon and statement list. This use of recursion allows us to have as many statements in our

grammar as we want. Unfortunately it means that when the tree is constructed it will not be

possible to tell what exactly we have when we are examining a statement list node without

counting to see how many child nodes there are. This unnecessarily complicates our code so

let’s see how to alter it:

void multExp() #MultiplicationExpression(>1):

{}

{

intExp() (<MULT> intExp())?

}

The production rule now states that a multExp is a single intExp followed by 0 or 1 intExps

(indicated by the question mark). The (>1) expression says to return a MultiplicationExpres-

sion node only if there is more than one child. If the expression consists of just a single intExp

the method returns that, rather than a MultiplicationExpression.

This very much simplifies the output of dump(), and also makes our job much easier when

walking the tree to, for example, type check assignment statements, or generate machine code.

Now when we visit an expression or statement we know exactly what sort of node we are

dealing with.

5.6 Symbol Tables

Because our terminal nodes are treated differently from interior nodes we need to maintain a

symbol table to keep track of them. We will use this during all phases of our finished compiler

so we should look at it now. Of course we will implement a symbol table as a hash table, so

that we can access our variables in constant time.

This would also be a convenient time to add some demands to our language, such as the re-

quirement to declare variables before using them, and forbidding, or at least detecting, multiple

declarations.

Our Variables have a name, a type and a value. This is a trivial class to implement:

public class Variable{

private String type;

private String name;
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private int intValue = 0;

private double floatValue = 0.0;

public Variable(int value, String name){

this.name = name;

type = "integer";

intValue = value;

}

public Variable(double value, String name){

this.name = name;

type = "float";

floatValue = value;

}

public String getType(){return type;}

public String getString(){return name;}

public int getInt(){return intValue;}

public double getDouble(){return floatValue;}

}

Now that we have Variables we need to declare a HashMap in which to put them. Once

we have done that we add to our LexicalAnalyser class a method for adding variables to our

symbol table:

public static void addToSymbolTable(Variable v){

if(symbolTable.containsKey(v.getName())){

System.out.println("Variable " + v.getName() + " multiply declared");

}

else{

symbolTable.put(v.getName(), v);

}

}

This quite simply interrogates the symbol table to see if the Variable we have just read exists

or not. If it does we print out an error message, otherwise we add the new variable to the table.

All that is left to do is invoke our function when we read a variable declaration:

void dec() #Declaration:

{String tokType;

Token tokName;

Variable v;}
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{

tokType = type() tokName = <ID>{

if(tokType.equals("integer"))v = new Variable(0, tokName.image);

else v = new Variable(0.0, tokName.image);

addToSymbolTable(v);

}

}

String type() #Type:

{Token t;}

{

t = <FPN> {return "float";} |

t = <INTEGER> {return "integer";}

}

Read the above carefully, type it in and make sure you understand exactly what is going on.

Then start this week’s assignment. Assignment 5. Alter the code you have written so

far so that methods with alternative numbers of children return the appropriate

type of node. Then add the symbol table code given above. (Ideally you should

declare the main method in a class of its own to avoid having all the extra methods

and fields declared as static.) Then add code which detects if the writer is trying

to use a variable which has not been declared, printing an error message if (s)he

does so.

5.7 Visiting the Tree

In altering the dump() method in the previous example we merely altered the toString()

method. But let’s think about what we are trying to do, especially with the abilities you have

all demonstrated by progressing thus far in your studies.

Let us consider what we have here. We have a data structure (a tree) which we want to

traverse, operating upon each node (for the time being we will merely print out details of the

node). Those of you who took CS-211 - Programming with Objects and Threads will recognise

immediately the Visitor pattern. (See, you always knew that module would come in handy.)

Fortunately the writers of Javacc also took that module so they have already thought of this.

If we add a VISITOR switch to the options section:

options{

MULTI = true;

NODE_PREFIX = "";

STATIC = false;

VISITOR = true;
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}

...jjtree writes a Visitor interface for us to implement. It defines an accept method for each

of the nodes allowing us to pass our implementation of the Visitor to each node. This is the

Visitor interface for our current example:

/* Generated By:JJTree: Do not edit this line. ./LexicalAnalyserVisitor.java */

public interface LexicalAnalyserVisitor

{

public Object visit(SimpleNode node, Object data);

public Object visit(Root node, Object data);

public Object visit(DeclarationList node, Object data);

public Object visit(Declaration node, Object data);

public Object visit(Type node, Object data);

public Object visit(StatementList node, Object data);

public Object visit(Statement node, Object data);

public Object visit(IfStatement node, Object data);

public Object visit(IfPart node, Object data);

public Object visit(ElsePart node, Object data);

public Object visit(RepeatStatement node, Object data);

public Object visit(AssignmentStatement node, Object data);

public Object visit(ReadStatement node, Object data);

public Object visit(WriteStatement node, Object data);

public Object visit(Expression node, Object data);

public Object visit(BooleanOperator node, Object data);

public Object visit(SimpleExpression node, Object data);

public Object visit(AdditionOperator node, Object data);

public Object visit(Term node, Object data);

public Object visit(MultiplicationOperator node, Object data);

public Object visit(Factor node, Object data);

}

Warning 1. Jjtree does not consistently rewrite all of its classes. This means that

if you have been writing these classes and experimenting with them as you have

read this (highly recommended) you should delete all files except the .jjt file, add

the new options and then recompile with Jjtree.

Warning 2. We will be writing an implementation of the Visitor interface. This is

our own file and is not therefore rewritten by Jtree. Therefore from now on if we

alter the .jjt file and then compile byte code with javac *.java we may get errors if

we have not checked our implementation of the Visitor first.
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Now instead of dump()ing our tree we visit it with a visitor. By implementing the visit()

method of each particular type of node in a different way we can do anything we want, without

altering the construct of the nodes themselves, exactly what the Visitor pattern was designed

to do.

public class MyVisitor implements ParserVisitor{

public Object visit(Root node, Object data){

System.out.println("Hello. I am a Root node");

if(node.jjtGetNumChildren() == 0){

System.out.println("I have no children");

}

else{

for(int i = 0; i < node.jjtGetNumChildren(); i++){

node.children[i].jjtAccept(this, data);

}

}

}

Simple isn’t it! Assignment 6. Write a Visitor class, implementing LexicalAnaly-

serVisitor, which visits each node in turn, printing out the type of node it is and

how many children it has.

5.8 Semantic Analyses

Now that we have our symbol table and a Visitor interface it is easy to implement a Visitor

object which can do anything we wish with the data held in the tree which our parser builds.

In the last assignment all we did was print out details of the type of node. In a real compiler we

would want eventually to generate machine code for our target machine. We will not be doing

that as an assignment, though if you are enjoying this module I hope you might want to do this

out of interest. For your final assignment you are going to be doing some semantic analysis,

to ensure that you do not attempt to assign incorrect values to variables, e.g. a floating point

number to an integer variable.

You have three weeks to do this assignment so there will be plenty of help given during lectures

and you have plenty of time to come and see me, or ask Program Advisory for help. It should

be clear thet we only need to write code for assignment statements. Let’s look at this:

void assignStatement() #AssignmentStatement:

{}

{
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<ID> <ASSIGN> exp()

}

When we read the ID token we can check its type by looking it up in the symbol table as

we have done before. All we need to do is decide what the type of the exp is. This is your

assignment. Start from the bottom nodes of your tree and work your way up to the expression.
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6 Tiny

For your coursework you will be writing a compiler which compiles a while language, similar to

the one you met in Theory of Programming Languages, into an assembly language called tiny.

A tiny machine simulator can be downloaded from the course web-site to test your compiler.

This section describes the tiny language.

6.1 Basic Architecture

tiny consists of a read–only instruction memory, a data memory, and a set of eight general–

purpose registers. These all use nonnegative integer addresses, beginning at 0. Register 7 is

the program counter and is the only special register, as described below.

The following C declarations will be used in the descriptions which follow:

#define IADDR_SIZE...

/* size of instruction memory */

#define DADDR_SIZE...

/* size of data memory */

#define NO_REGS 8

/* number of registers */

#define PC_REG 7

Instruction iMem[IADDR_SIZE];

int dMem[DADDR_SIZE];

int reg[NO_REGS];

tiny performs a conventional fetch–execute cycle:

do

/* fetch */

currentInstruction = iMem[reg[pcRegNo]++];

/* execute current instruction */

...

...

while (!(halt|error));

At start–up the tiny machine sets all registers and data memory to 0, then loads the value

of the highest legal address (namely DADDR SIZE - 1) into dMem[0]. This allows memory

to easily be added to the machine since programs can find out during execution how much
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RO Instructions

Format : opcode r, s, t

Opcode Effect

HALT stop execution (operands ignored)

IN reg[r] ← integer value read from the standard input. (s and t ignored)

OUT reg[r] → the standard output (s and t ignored)

ADD reg[r] = reg[s] + reg[t]

SUB reg[r] = reg[s] - reg[t]

MUL reg[r] = reg[s] * reg[t]

DIV reg[r] = reg[s] / reg[t] (may generate ZERO DIV)

RM Instructions

Format : opcode r, d(s) a = d + reg[s]; any reference to dMem[a] generates DMEM ERR

if a < 0 or a ≥ DADDR SIZE

Opcode Effect

LD reg[r] = dMem[a] (load r with memory value at a)

LDA reg[r] = a (load address a directly into r)

LDC reg[r] = d (load constant d directly into r. s is ignored)

ST dMem[a] = reg[r] (store value in r to memory location a)

JLT if (reg[r] < 0) reg[PC REG] = a

(jump to instruction a if r is negative, similarly for the following)

JLE if(reg[r] ≤ 0) reg[PC REG] = a

JGE if(reg[r] ≥ 0) reg[PC REG] = a

JGT if(reg[r] > 0) reg[PC REG] = a

JEQ if(reg[r] == 0) reg[PC REG] = a

JNE if(reg[r] != 0) reg[PC REG] = a

Table 1: The tiny instruction set

memory is available. The machine then starts to execute instructions beginning at iMem[0].

The machine stops when a HALT instruction is executed. The possible error conditions include

IMEM ERR, which occurs if reg[PC REG] < 0 or reg[PC REG] ≥ IADDR SIZE in the fetch

step, and the two conditions DMEM ERR and ZERO DIV, which occur during instruction

execution execution as described below.

The instruction set of the machine is given in table 1, together with a brief description of the

effect of each instruction.

There are two basic instruction formats: register–only, or RO instructions, and register–

memory, or RM instructions. A register–only instruction has the format

opcode r,s,t

where the operands r, s, t are legal registers (checked at load time). Thus, such instructions

are three–address, and all three addresses must be registers. All arithmetic instructions are
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limited to this format, as are the two primitive input/output instructions.

A register–memory instruction has the format

opcode r,d(s)

In this code r and s must be legal registers (checked at load time), and d is a positive or

negative integer representing an offset. This instruction is a two–address instruction, where the

first address is always a register and the second address is a memory address a given by a =

d + reg[r], where a must be a legal address (0 ≤ a < DADDR SIZE). If a is out of the legal

range, then DMEM ERR is generated during execution.

RM instructions include three different load instructions corresponding to the three addressing

modes “load constant” (LDC), “load address” (LDA), and “load memory” (LD). In addition

there is one store instruction and six conditional jump instructions.

In both RO and RM instructions, all three operands must be present, even though some of

them may be ignored. This is due to the simple nature of the loader, which only distinguishes

between the two classes of instruction (RO and RM) and does not allow different formats within

each class. (This actually makes code generation easier since only two different routines will be

needed).

Table 1 and the discussion of the machine up to this point represent the complete tiny archi-

tecture. In particular there is no hardware stack or other facilities of any kind. No register

except the PC is special in any way, there is no sp or fp. A compiler for the machine must

therefore maintain any runtime environment organisation entirely manually. Although this may

be unrealistic it has the advantage that all operations must be generated explicitly as they are

needed.

Since the instruction set is minimal we should give some idea of how they can be used to achieve

some more complicated programming language operations. (Indeed, the machine is adequate,

if not comfortable, for even very sophisticated languages).

i. The target register in the arithmetic, IN, and load operations comes first, and the source

register(s) come second, similar to the 80x85 and unlike the Sun SparcStation. There is

no restriction on the use of registers for sources and targets; in particular the source and

target registers may be the same.

ii. All arithmetic operations are restricted to registers. No operations (except load and store

operations) act directly on memory. In this the machine resembles RISC machines such

as the Sun SparcStation. On the other hand the machine has only 8 registers, while most

RISC processors have many more.

iii. There are no floating point operations or floating point registers. (But the language you

are compiling has no floating point variables either).
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iv. There is no restriction on the use of the PC in any of the instructions. Indeed, since there

is no unconditional jump, it must be simulated by using the PC as the target register in

an LDA instruction:

LDA 7, d(s)

This instruction has the effect of jumping to location d + reg[s].

v. There is also no indirect jump instruction, but it too can be imitated if necessary, by

using an LD instruction. For example,

LD 7,0(1)

jumps to the instruction whose address is stored in memory at the location pointed to by

register 1.

vi. The conditional jump instructions (JLT etc.), can be made relative to the current position

in the program by using the PC as the second register. For example

JEQ 0,4(7)

causes the machine to jump five instructions forward in the code if register 0 is 0. An

unconditional jump can also be made relative to the PC by using the PC twice in an

LDA instruction. Thus

LDA 7,-4(7)

performs an unconditional jump three instructions backwards.

vii. There are no procedure calls or JSUB instruction. Instead we must write

LD 7,d(s)

which has the effect of jumping to the procedure whose entry address is dMem[d +

reg[s]]. Of course we need to remember to save the return address first by executing

something like

LDA 0,1(7)

which places the current PC value plus one into reg[0].

6.2 The machine simulator

The machine accepts text files containing TM instructions as described above with the following

conventions:

• An entirely blank line is ignored

• A line beginning with an asterisk is considered to be a comment and is ignored.

• Any other line must contain an integer instruction location followed by a colon followed

by a legal instruction. Any text after the instruction is considered to be a comment and

is ignored.
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The machine contains no other features–in particular there are no symbolic labels and no macro

facilities.

We now have a look at a TM program which computes the factorial of a number input by the

user.

* This program inputs an integer, computes

* its factorial if it is positive,

* and prints the result

0: IN 0,0,0 r0 = read

1: JLE 0,6(7) if 0 < r0 then

2: LDC 1,1,0 r1 = 1

3: LDC 2,1,0 r2 = 1

* repeat

4: MUL 1,1,0 r1 = r1 * r0

5: SUB 0,0,2 r0 = r0 - r2

6: JNE 0,-3(7) until r0 = 0

7: OUT 1,0,0 write r1

8: HALT 0,0,0 halt

* end of program

Strictly speaking there is no need for the HALT instruction at the end of the code since the

machine sets all instruction locations to HALT before loading the program, however it is useful

to put it in as a reminder, and also as a target for jumps which wish to end the program.

If this program were saved in the file fact.tm then this file can be loaded and executed as in

the following sample session. (The simulator assumes the file extension .tm if one is not given).

tm fact TM simulation (enter h for help) ... Enter command: g Enter value for IN instruction:

7 OUT instruction prints: 5040 HALT: 0,0,0 Halted Enter command: q Simulation done.

The g command stands for “go”, meaning that the program is executed starting at the current

contents of the PC (which is 0 after loading), until a HALT instruction is read. The complete

list of simulator commands can be obtained by using the command h.
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