
Beginning
Data Science in R

Data Analysis, Visualization, and
Modelling for the Data Scientist
—
Thomas Mailund

Beginning Data
Science in R

Data Analysis, Visualization,
and Modelling for the Data Scientist

Thomas Mailund

Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist

Thomas Mailund
Aarhus, Denmark

ISBN-13 (pbk): 978-1-4842-2670-4 ISBN-13 (electronic): 978-1-4842-2671-1
DOI 10.1007/978-1-4842-2671-1

Library of Congress Control Number: 2017934529

Copyright © 2017 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Andrew Moskowitz
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance, Inc (SSBM Finance, Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-
permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484226704. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484226704
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Chapter 1: Introduction to R Programming ��� 1

 ■Chapter 2: Reproducible Analysis ��� 29

 ■Chapter 3: Data Manipulation �� 45

 ■Chapter 4: Visualizing Data ��� 75

 ■Chapter 5: Working with Large Datasets ��� 113

 ■Chapter 6: Supervised Learning �� 125

 ■Chapter 7: Unsupervised Learning �� 169

 ■Chapter 8: More R Programming ��� 205

 ■Chapter 9: Advanced R Programming ��� 233

 ■Chapter 10: Object Oriented Programming ��� 257

 ■Chapter 11: Building an R Package ��� 269

 ■Chapter 12: Testing and Package Checking �� 281

 ■Chapter 13: Version Control��� 287

 ■Chapter 14: Profiling and Optimizing �� 303

Index ��� 347

v

Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Chapter 1: Introduction to R Programming ��� 1

Basic Interaction with R ��� 1

Using R as a Calculator �� 3

Simple Expressions �� 3

Assignments ��� 5

Actually, All of the Above Are Vectors of Values… �� 5

Indexing Vectors ��� 6

Vectorized Expressions ��� 7

Comments �� 8

Functions �� 8

Getting Documentation for Functions ��� 9

Writing Your Own Functions�� 10

Vectorized Expressions and Functions ��� 12

A Quick Look at Control Structures �� 12

Factors ��� 16

Data Frames ��� 18

Dealing with Missing Values��� 20

Using R Packages ��� 21

 ■ Contents

vi

Data Pipelines (or Pointless Programming) �� 22

Writing Pipelines of Function Calls ��� 23

Writing Functions that Work with Pipelines �� 23

The magical “�” argument ��� 24

Defining Functions Using � � �� 25

Anonymous Functions �� 26

Other Pipeline Operations ��� 27

Coding and Naming Conventions ��� 28

Exercises �� 28

Mean of Positive Values �� 28

Root Mean Square Error ��� 28

 ■Chapter 2: Reproducible Analysis ��� 29

Literate Programming and Integration of Workflow and Documentation ����������������������� 30

Creating an R Markdown/knitr Document in RStudio��� 30

The YAML Language ��� 33

The Markdown Language ��� 34

Formatting Text ��� 35

Cross-Referencing �� 38

Bibliographies ��� 39

Controlling the Output (Templates/Stylesheets) ��� 39

Running R Code in Markdown Documents ��� 40

Using Chunks when Analyzing Data (Without Compiling Documents) �� 42

Caching Results �� 43

Displaying Data ��� 43

Exercises �� 44

Create an R Markdown Document �� 44

Produce Different Output �� 44

Add Caching�� 44

 ■ Contents

vii

 ■Chapter 3: Data Manipulation �� 45

Data Already in R �� 45

Quickly Reviewing Data �� 47

Reading Data �� 48

Examples of Reading and Formatting Datasets ��� 49

Breast Cancer Dataset �� 49

Boston Housing Dataset ��� 55

The readr Package �� 56

Manipulating Data with dplyr ��� 58

Some Useful dplyr Functions �� 59

Breast Cancer Data Manipulation ��� 65

Tidying Data with tidyr ��� 69

Exercises �� 72

Importing Data �� 73

Using dplyr �� 73

Using tidyr �� 73

 ■Chapter 4: Visualizing Data ��� 75

Basic Graphics�� 75

The Grammar of Graphics and the ggplot2 Package �� 83

Using qplot() ��� 84

Using Geometries ��� 88

Facets ��� 97

Scaling �� 100

Themes and Other Graphics Transformations��� 105

Figures with Multiple Plots ��� 109

Exercises �� 111

 ■ Contents

viii

 ■Chapter 5: Working with Large Datasets ��� 113

Subsample Your Data Before You Analyze the Full Dataset �� 113

Running Out of Memory During Analysis �� 115

Too Large to Plot ��� 116

Too Slow to Analyze �� 120

Too Large to Load ��� 121

Exercises �� 124

Subsampling ��� 124

Hex and 2D Density Plots�� 124

 ■Chapter 6: Supervised Learning �� 125

Machine Learning ��� 125

Supervised Learning �� 125

Regression versus Classification �� 126

Inference versus Prediction �� 127

Specifying Models �� 128

Linear Regression ��� 128

Logistic Regression (Classification, Really) �� 133

Model Matrices and Formula �� 136

Validating Models ��� 145

Evaluating Regression Models�� 145

Evaluating Classification Models �� 147

Random Permutations of Your Data �� 153

Cross-Validation ��� 157

Selecting Random Training and Testing Data ��� 159

Examples of Supervised Learning Packages ��� 161

Decision Trees �� 161

Random Forests �� 163

Neural Networks ��� 164

Support Vector Machines �� 165

 ■ Contents

ix

Naive Bayes �� 165

Exercises �� 166

Fitting Polynomials ��� 166

Evaluating Different Classification Measures ��� 166

Breast Cancer Classification ��� 166

Leave-One-Out Cross-Validation (Slightly More Difficult) ��� 167

Decision Trees �� 167

Random Forests �� 167

Neural Networks ��� 167

Support Vector Machines �� 167

Compare Classification Algorithms ��� 167

 ■Chapter 7: Unsupervised Learning �� 169

Dimensionality Reduction ��� 169

Principal Component Analysis �� 169

Multidimensional Scaling ��� 177

Clustering ��� 181

k-Means Clustering �� 182

Hierarchical Clustering ��� 188

Association Rules ��� 192

Exercises �� 196

Dealing with Missing Data in the HouseVotes84 Data �� 196

Rescaling for k-Means Clustering �� 196

Varying k ��� 196

Project 1 ��� 196

Importing Data �� 197

Exploring the Data �� 198

Fitting Models ��� 203

 ■ Contents

x

Exercises �� 204

Exploring Other Formulas ��� 204

Exploring Different Models ��� 204

Analyzing Your Own Dataset ��� 204

 ■Chapter 8: More R Programming ��� 205

Expressions �� 205

Arithmetic Expressions ��� 205

Boolean Expressions �� 206

Basic Data Types �� 207

The Numeric Type ��� 207

The Integer Type ��� 208

The Complex Type ��� 208

The Logical Type ��� 208

The Character Type ��� 209

Data Structures �� 209

Vectors �� 209

Matrix ��� 210

Lists �� 212

Indexing �� 213

Named Values ��� 215

Factors �� 216

Formulas ��� 216

Control Structures �� 216

Selection Statements ��� 216

Loops �� 218

A Word of Warning About Looping �� 219

Functions �� 220

Named Arguments �� 221

Default Parameters ��� 222

Return Values�� 222

 ■ Contents

xi

Lazy Evaluation ��� 223

Scoping ��� 224

Function Names Are Different from Variable Names �� 227

Recursive Functions ��� 227

Exercises �� 229

Fibonacci Numbers ��� 229

Outer Product ��� 229

Linear Time Merge �� 229

Binary Search ��� 230

More Sorting ��� 230

Selecting the k Smallest Element ��� 231

 ■Chapter 9: Advanced R Programming ��� 233

Working with Vectors and Vectorizing Functions ��� 233

ifelse ��� 235

Vectorizing Functions ��� 235

The apply Family �� 237

Advanced Functions ��� 242

Special Names �� 242

Infix Operators �� 242

Replacement Functions �� 243

How Mutable Is Data Anyway? ��� 245

Functional Programming �� 246

Anonymous Functions �� 246

Functions Taking Functions as Arguments ��� 247

Functions Returning Functions (and Closures) ��� 247

Filter, Map, and Reduce �� 248

Function Operations: Functions as Input and Output ��� 250

Ellipsis Parameters ��� 253

 ■ Contents

xii

Exercises �� 255

between �� 255

apply_if ��� 255

power�� 255

Row and Column Sums �� 255

Factorial Again �� 255

Function Composition ��� 256

 ■Chapter 10: Object Oriented Programming ��� 257

Immutable Objects and Polymorphic Functions ��� 257

Data Structures �� 257

Example: Bayesian Linear Model Fitting ��� 258

Classes ��� 259

Polymorphic Functions ��� 261

Defining Your Own Polymorphic Functions ��� 262

Class Hierarchies �� 263

Specialization as Interface ��� 263

Specialization in Implementations �� 264

Exercises �� 267

Shapes �� 267

Polynomials �� 267

 ■Chapter 11: Building an R Package ��� 269

Creating an R Package ��� 269

Package Names �� 269

The Structure of an R Package ��� 270

�Rbuildignore �� 270

Description ��� 271

NAMESPACE �� 274

R/ and man/ �� 275

 ■ Contents

xiii

Roxygen �� 275

Documenting Functions �� 275

Import and Export ��� 276

Package Scope Versus Global Scope �� 277

Internal Functions ��� 277

File Load Order ��� 277

Adding Data to Your Package ��� 278

Building an R Package ��� 279

Exercises �� 280

 ■Chapter 12: Testing and Package Checking �� 281

Unit Testing ��� 281

Automating Testing ��� 282

Using testthat ��� 283

Writing Good Tests �� 284

Using Random Numbers in Tests �� 285

Testing Random Results ��� 285

Checking a Package for Consistency ��� 286

Exercise �� 286

 ■Chapter 13: Version Control��� 287

Version Control and Repositories ��� 287

Using git in RStudio �� 288

Installing git �� 288

Making Changes to Files, Staging Files, and Committing Changes �� 289

Adding git to an Existing Project ��� 291

Bare Repositories and Cloning Repositories ��� 291

Pushing Local Changes and Fetching and Pulling Remote Changes �� 292

Handling Conflicts��� 294

Working with Branches �� 294

Typical Workflows Involve Lots of Branches ��� 297

Pushing Branches to the Global Repository �� 297

 ■ Contents

xiv

GitHub ��� 297

Moving an Existing Repository to GitHub �� 299

Installing Packages from GitHub �� 300

Collaborating on GitHub �� 300

Pull Requests �� 300

Forking Repositories Instead of Cloning ��� 301

Exercises �� 301

 ■Chapter 14: Profiling and Optimizing �� 303

Profiling �� 303

A Graph-Flow Algorithm ��� 304

Speeding Up Your Code �� 315

Parallel Execution ��� 317

Switching to C++ ��� 320

Exercises �� 322

Project 2 ��� 322

Bayesian Linear Regression ��� 323

Exercises: Priors and Posteriors ��� 324

Predicting Target Variables for New Predictor Values ��� 328

Formulas and Their Model Matrix��� 330

Working with Model Matrices in R �� 331

Exercises �� 334

Model Matrices Without Response Variables �� 334

Exercises �� 335

Interface to a blm Class ��� 336

Constructor ��� 336

Updating Distributions: An Example Interface �� 337

Designing Your blm Class ��� 340

Model Methods ��� 340

 ■ Contents

xv

Building an R Package for blm ��� 342

Deciding on the Package Interface ��� 342

Organization of Source Files ��� 342

Document Your Package Interface Well �� 343

Adding README and NEWS Files to Your Package ��� 343

Testing �� 344

GitHub ��� 344

Conclusions �� 344

Data Science ��� 345

Machine Learning ��� 345

Data Analysis �� 345

R Programming ��� 345

The End �� 346

Acknowledgements �� 346

Index ��� 347

xvii

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus University, Denmark. His background
is in math and computer science, but for the last decade, his main focus has been on genetics and
evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging
species.

xix

About the Technical Reviewer

Andrew Moskowitz is a doctoral candidate in Quantitative Psychology at
UCLA and self-employed statistical consultant. His quantitative research
focuses mainly on hypothesis testing and effect sizes in mixed effects
models. While at UCLA, Andrew has collaborated with a number of
faculty, students, and enterprises to help them derive meaning from data
across an array of fields ranging from psychological services and health
care delivery to marketing.

xxi

Acknowledgments

I would like to thank Asger Hobolth for many useful comments on earlier versions of this manuscript. He
helped me improve the writing and the presentation of the material.

xxiii

Introduction

Welcome to Introduction to Data Science with R. This book was written as a set of lecture notes for two
classes I teach, Data Science: Visualization and Analysis and Data Science: Software Development and
Testing. The book is written to fit the structure of these classes, where each class consists of seven weeks of
lectures and project work. This means that there are 14 chapters with the core material, where the first seven
focus on data analysis and the last seven on developing reusable software for data science.

What Is Data Science?
Oh boy! That is a difficult question. I don’t know if it is easy to find someone who is entirely sure what data
science is, but I am pretty sure that it would be difficult to find two people with fewer than three opinions
about it. It is certainly a popular buzzword, and everyone wants to have data scientists these days, so data
science skills are useful to have on the CV. But what is it?

Since I can’t really give you an agreed upon definition, I will just give you my own: Data science is the
science of learning from data.

This is a very broad definition—almost too broad to be useful. I realize this. But then, I think data
science is an incredibly general field. I don’t have a problem with that. Of course, you could argue that any
science is all about getting information out of data, and you might be right. Although I would say that there
is more to science than just transforming raw data into useful information. The sciences are focusing on
answering specific questions about the world while data science is focusing on how to manipulate data
efficiently and effectively. The primary focus is not which questions to ask of the data but how we can
answer them, whatever they may be. It is more like computer science and mathematics than it is like natural
sciences, in this way. It isn’t so much about studying the natural world as it is about how to compute data
efficiently.

Included in data science is the design of experiments. With the right data, we can address the questions
we are interested in. With a poor design of experiments or a poor choice of which data we gather, this can be
difficult. Study design might be the most important aspect of data science, but is not the topic of this book. In
this book I focus on the analysis of data, once gathered.

Computer science is also mainly the study of computations—as is hinted at in the name—but is a bit
broader in this focus. Although datalogy, an earlier name for data science, was also suggested for computer
science, and for example in Denmark it is the name for computer science, using the name “computer
science” puts the focus on computation while using the name “data science” puts the focus on data. But of
course, the fields overlap. If you are writing a sorting algorithm, are you then focusing on the computation or
the data? Is that even a meaningful question to ask?

There is a huge overlap between computer science and data science and naturally the skillsets you need
overlap as well. To efficiently manipulate data you need the tools for doing that, so computer programming
skills are a must and some knowledge about algorithms and data structures usually is as well. For data
science, though, the focus is always on the data. In a data analysis project, the focus is on how the data flows
from its raw form through various manipulations until it is summarized in some useful form. Although the
difference can be subtle, the focus is not about what operations a program does during the analysis, but
about how the data flows and is transformed. It is also focused on why we do certain transformations of the

 ■ IntroduCtIon

xxiv

data, what purpose those changes serve, and how they help us gain knowledge about the data. It is as much
about deciding what to do with the data as it is about how to do it efficiently.

Statistics is of course also closely related to data science. So closely linked, in fact, that many consider
data science just a fancy word for statistics that looks slightly more modern and sexy. I can’t say that I
strongly disagree with this—data science does sound sexier than statistics—but just as data science is
slightly different from computer science, data science is also slightly different from statistics. Just, perhaps,
somewhat less different than computer science is.

A large part of doing statistics is building mathematical models for your data and fitting the models to
the data to learn about the data in this way. That is also what we do in data science. As long as the focus is on
the data, I am happy to call statistics data science. If the focus changes to the models and the mathematics,
then we are drifting away from data science into something else—just as if the focus changes from the data
to computations we are drifting from data science to computer science.

Data science is also related to machine learning and artificial intelligence, and again there are huge
overlaps. Perhaps not surprising since something like machine learning has its home both in computer
science and in statistics; if it is focusing on data analysis, it is also at home in data science. To be honest, it
has never been clear to me when a mathematical model changes from being a plain old statistical model to
becoming machine learning anyway.

For this book, we are just going to go with my definition and, as long as we are focusing on analyzing
data, we are going to call it data science.

Prerequisites for Reading this Book
In the first seven chapters in this book, the focus is on data analysis and not programming. For those
seven chapters, I do not assume a detailed familiarity with topics such as software design, algorithms, data
structures, and such. I do not expect you to have any experience with the R programming language either.
I do, however, expect that you have had some experience with programming, mathematical modeling, and
statistics.

Programming R can be quite tricky at times if you are familiar with a scripting language or object-
oriented languages. R is a functional language that does not allow you to modify data, and while it does
have systems for object-oriented programming, it handles this programming paradigm very differently from
languages you are likely to have seen such as Java or Python.

For the data analysis part of this book, the first seven chapters, we will only use R for very
straightforward programming tasks, so none of this should pose a problem. We will have to write simple
scripts for manipulating and summarizing data so you should be familiar with how to write basic
expressions like function calls, if statements, loops, and so on. These things you will have to be comfortable
with. I will introduce every such construction in the book when we need them so you will see how they are
expressed in R, but I will not spend much time explaining them. I mostly will just expect you to be able to
pick it up from examples.

Similarly, I do not expect you to know already how to fit data and compare models in R. I do expect that
you have had enough introduction to statistics to be comfortable with basic terms like parameter estimation,
model fitting, explanatory and response variables, and model comparison. If not, I expect you to be at least
able to pick up what we are talking about when you need to.

I won’t expect you to know a lot about statistics and programming, but this isn’t Data Science for
Dummies, so I do expect you to be able to figure out examples without me explaining everything in detail.

After the first seven chapters is a short description of a data analysis project, one of my students did
in an earlier class. It shows how such a project could look, but I suggest that you do not wait until you have
finished the first seven chapters to start doing such analysis yourself. To get the most benefit out of reading
this book, you should be applying what you learn continuously. Already when you begin reading, I suggest
that you find a dataset that you would be interested in finding out more about and then apply what you learn
in each chapter to that data.

 ■ IntroduCtIon

xxv

For the final seven chapters of the book, the focus is on programming. To read this part you should
be familiar with object-oriented programming. I will explain how it is handled in R and how it differs from
languages such as Python, Java or C++ but I expect you to be familiar with terms such as class hierarchies,
inheritance, and polymorphic methods. I will not expect you to be already familiar with functional
programming (but if you are, there should still be plenty to learn in those chapters if you are not already
familiar with R programming as well).

Plan for the Book
In the book, we cover basic data manipulation—filtering and selecting relevant data; transforming data into
shapes readily analyzable; summarizing data; visualizing data in informative ways both for exploring data and
presenting results; and model building. These are the key aspects of doing analysis in data science. After this
we will cover how to develop R code that is reusable and works well with existing packages, and that is easy
to extend, and we will see how to build new R packages that other people will be able to use in their projects.
These are the essential skills you will need to develop your own methods and share them with the world.

We will do all this using the programming language R (https://www.r-project.org/about.html).
R is one of the most popular (and open source) data analysis programming languages around at the
moment. Of course, popularity doesn’t imply quality, but because R is so popular it has a rich ecosystem of
extensions (called “packages” in R) for just about any kind of analysis you could be interested in. People who
develop statistical methods often implement them as R packages, so you can quite often get the state of the
art techniques very easily in R. The popularity also means that there is a large community of people who can
help if you have problems. Most problems you run into can be solved with a few minutes on Google because
you are unlikely to be the first to run into any particular issue. There are also plenty of online tutorials for
learning more about R and specialized packages, there are plenty of videos with talks about R and popular R
packages, and there are plenty of books you can buy if you want to learn more.

Data Analysis and Visualization
The topics focusing on data analysis and visualization are covered in the first seven chapters:

•	 Chapter 1, Introduction to R programming. In which you learn how to work with data
and write data pipelines.

•	 Chapter 2, Reproducible analysis. In which you find out how to integrate
documentation and analysis in a single document and how to use such documents
to produce reproducible research.

•	 Chapter 3, Data manipulation. In which you learn how to import, tidy up, and
transform data, and compute summaries from data.

•	 Chapter 4, Visualizing and exploring data. In which you learn how to make plots for
exploring data features and for presenting data features and analysis results.

•	 Chapter 5, Working with large datasets. In which you learn how to deal with data
where the number of observations make the usual approaches too slow.

•	 Chapter 6, Supervised learning. In which you learn how to train models when you
have datasets with known classes or regression values.

•	 Chapter 7, Unsupervised learning. In which you learn how to search for patterns you
are not aware of in data.

These chapters are followed by the first project, where you see the various techniques in use.

https://www.r-project.org/about.html
http://dx.doi.org/10.1007/978-1-4842-2671-1_1
http://dx.doi.org/10.1007/978-1-4842-2671-1_2
http://dx.doi.org/10.1007/978-1-4842-2671-1_3
http://dx.doi.org/10.1007/978-1-4842-2671-1_4
http://dx.doi.org/10.1007/978-1-4842-2671-1_5
http://dx.doi.org/10.1007/978-1-4842-2671-1_6
http://dx.doi.org/10.1007/978-1-4842-2671-1_7

 ■ IntroduCtIon

xxvi

Software Development
Software and package development is then covered in the following seven chapters:

•	 Chapter 8, More R programming. In which you’ll return to the basics of R
programming and get a few more details than the tutorial in Chapter 1.

•	 Chapter 9, Advanced R programming. In which you explore more advanced
features of the R programming language, in particular, functional programming.

•	 Chapter 10, Object oriented programming. In which you learn how R models object
orientation and how you can use it to write more generic code.

•	 Chapter 11, Building an R package. In which you learn the necessary components of
an R package and how to program your own.

•	 Chapter 12, Testing and checking. In which you learn techniques for testing your R
code and checking the consistency of your R packages.

•	 Chapter 13, Version control. In which you learn how to manage code under version
control and how to collaborate using GitHub.

•	 Chapter 14, Profiling and optimizing. In which you learn how to identify hotspots
of code where inefficient solutions are slowing you down and techniques for
alleviating this.

These chapters are then followed by the second project, where you’ll build a package for Bayesian linear
regression.

Getting R and RStudio
You will need to install R on your computer to do the exercises in this book. I suggest that you get an
integrated environment since it can be slightly easier to keep track of a project when you have your plots,
documentation, code, etc., all in the same program.

I personally use RStudio (https://www.rstudio.com/products/RStudio), which I warmly recommend.
You can get it for free—just follow the link—and I will assume that you have it when I need to refer to the
software environment you are using in the following chapters. There won’t be much RStudio specifics,
though, and most tools for working with R have the same features, so if you want to use something else you
can probably follow the notes without any difficulties.

Projects
You cannot learn how to analyze data without analyzing data, and you cannot learn how to develop software
without developing software either. Typing in examples from the book is nothing like writing code on your
own. Even doing exercises from the book—which you really ought to do—is not the same as working on your
own projects. Exercises, after all, cover small isolated aspects of problems you have just been introduced to.
In the real world, there is not a chapter of material presented before every task you have to deal with. You
need to work out by yourself what needs to be done and how. If you only do the exercises in this book, you
will miss the most important lessons in analyzing data. How to explore the data and get a feeling for it; how
to do the detective work necessary to pull out some understanding from the data; and how to deal with all
the noise and weirdness found in any dataset. And for developing a package, you need to think through how
to design and implement its functionality so that the various functions and data structures fit well together.

http://dx.doi.org/10.1007/978-1-4842-2671-1_8
http://dx.doi.org/10.1007/978-1-4842-2671-1_1
http://dx.doi.org/10.1007/978-1-4842-2671-1_9
http://dx.doi.org/10.1007/978-1-4842-2671-1_10
http://dx.doi.org/10.1007/978-1-4842-2671-1_11
http://dx.doi.org/10.1007/978-1-4842-2671-1_12
http://dx.doi.org/10.1007/978-1-4842-2671-1_13
http://dx.doi.org/10.1007/978-1-4842-2671-1_14
https://www.rstudio.com/products/RStudio

 ■ IntroduCtIon

xxvii

In this book, I go through a data analysis project to show you what that can look like. To actually
learn how to analyze data, you need to do it yourself as well, and you need to do it with a dataset that I
haven’t analyzed for you. You might have a dataset lying around you have worked on before, a dataset
from something you are just interested in, or you can probably find something interesting at a public data
repository, e.g., one of these:

•	 RDataMining.com

•	 UCI machine learning repository (http://archive.ics.uci.edu/ml/)

•	 KDNuggets (http://www.kdnuggets.com/datasets/index.html)

•	 Reddit r/datasets (https://www.reddit.com/r/datasets)

•	 GitHub awesome public datasets (https://github.com/caesar0301/awesome-
public-datasets)

I suggest that you find yourself a dataset and that after each lesson, you use the skills you have learned
to explore this dataset. Pick data that is structured as a table with observations as rows and variables as
columns, since that is the form of the data we consider in this book. At the end of the first seven chapters,
you will have analyzed this data, you can write a report about your analysis that others can evaluate to follow
and maybe modify it. You will be doing reproducible science.

For the programming topics, I describe another project illustrating the design and implementation
issues involved in making an R package. There, you should be able to learn from just implementing your
own version of the project I use, but you will, of course, be more challenged by working on a project without
any of my help at all. Whichever you do, to get the full benefit of this book you should make your own
package while reading the programming chapters.

http://www.rdatamining.com/resources/data
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.kdnuggets.com/datasets/index.html
http://www.kdnuggets.com/datasets/index.html
https://www.reddit.com/r/datasets
https://www.reddit.com/r/datasets
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets

1© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_1

CHAPTER 1

Introduction to R Programming

We will use R for our data analysis so we need to know the basics of programming in the R language. R is a
full programming language with both functional programming and object oriented programming features.
Learning the language is far beyond the scope of this chapter and is something we return to later. The good
news, though, is that to use R for data analysis, you rarely need to do much programming. At least, if you do
the right kind of programming, you won’t need much.

For manipulating data—and how to do this is the topic of the next chapter—you mainly just have to
string together a couple of operations. Operations such as “group the data by this feature” followed by
“calculate the mean value of these features within each group” and then “plot these means”. This used to be
much more complicated to do in R, but a couple of new ideas on how to structure such data flow—and some
clever implementations of these in a couple of packages such as magrittr and dplyr—has significantly
simplified it. We will see some of this at the end of this chapter and more in the next chapter. First, though,
you need to get a taste for R.

Basic Interaction with R
Start by downloading RStudio if you haven’t done so already (https://www.rstudio.com/products/
RStudio). If you open it, you should see a window similar to Figure 1-1. Well, except that you will be in an
empty project while the figure shows (on the top right) that this RStudio is opened in a project called “Data
Science”. You always want to be working on a project. Projects keep track of the state of your analysis by
remembering variables and functions you have written and keep track of which files you have opened and
such. Choose File ➤ New Project to create a project. You can create a project from an existing directory, but
if this is the first time you are working with R you probably just want to create an empty project in a new
directory, so do that.

https://www.rstudio.com/products/RStudio
https://www.rstudio.com/products/RStudio

Chapter 1 ■ IntroduCtIon to r programmIng

2

Once you have opened RStudio, you can type R expressions into the console, which is the frame on
the left of the RStudio window. When you write an expression there, R will read it, evaluate it, and print the
result. When you assign values to variables, and you will see how to do this shortly, they will appear in the
Environment frame on the top right. At the bottom right, you have the directory where the project lives, and
files you create will go there.

To create a new file, choose File ➤ New File. You can select several different file types. We are interested
in the R Script and R Markdown types. The former is the file type for pure R code, while the latter is used for
creating reports where documentation text is mixed with R code. For data analysis projects, I recommend
using Markdown files. Writing documentation for what you are doing is really helpful when you need to go
back to a project several months down the line.

For most of this chapter, you can just write R code in the console, or you can create an R Script file. If
you create an R Script file, it will show up on the top left, as shown in Figure 1-2. You can evaluate single
expressions using the Run button on the top-right of this frame, or evaluate the entire file using the Source
button. For longer expressions, you might want to write them in an R Script file for now. In the next chapter,
we talk about R Markdown, which is the better solution for data science projects.

Figure 1-1. RStudio

Chapter 1 ■ IntroduCtIon to r programmIng

3

Using R as a Calculator
You can use the R console as a calculator where you just type in an expression you want calculated, press
Enter, and R gives you the result. You can play around with that a little bit to get familiar with how to write
expressions in R—there is some explanation for how to write them below—moving from using R as a
calculator in this sense to writing more sophisticated analysis programs is only a question of degree. A data
analysis program is really little more than a sequence of calculations, after all.

Simple Expressions
Simple arithmetic expressions are written, as in most other programming languages, in the typical
mathematical notation that you are used to.

1 + 2
[1] 3
4 / 2
[1] 2
(2 + 2) * 3
[1] 12

Figure 1-2. RStudio with a new R Script file

Chapter 1 ■ IntroduCtIon to r programmIng

4

It also works pretty much as you are used to. Except, perhaps, that you might be used to integers
behaving as integers in a division. At least in some programming languages, division between integers is
integer division, but in R, you can divide integers and if there is a remainder you will get a floating-point
number back as the result.

4 / 3
[1] 1.333333

When you write numbers like 4 and 3, they are interpreted as floating-point numbers. To explicitly get
an integer, you must write 4L and 3L.

class(4)
[1] "numeric"
class(4L)
[1] "integer"

You will still get a floating-point if you divide two integers, although there is no need to tell R explicitly
that you want floating-point division. If you want integer division, on the other hand, you need a different
operator, %/%:

4 %/% 3
[1] 1

In many languages % is used to get the remainder of a division, but this doesn’t quite work with R, where
% is used to construct infix operators. So in R, the operator for this is %%:

4 %% 3
[1] 1

In addition to the basic arithmetic operators—addition, subtraction, multiplication, division, and the
modulus operator you just saw—you also have an exponentiation operator for taking powers. For this, you
can use ^ or ** as infix operators:

2^2
[1] 4
2^3
[1] 8
2**2
[1] 4
2**3
[1] 8

There are some other data types besides numbers, but we won’t go into an exhaustive list here. There
are two types you do need to know about early, though, since they are frequently used and since not knowing
about how they work can lead to all kinds of grief. Those are strings and “factors”.

Strings work as you would expect. You write them in quotes, either double quotes or single quotes, and
that is about it.

"hello,"
[1] "hello,"
'world!'
[1] "world!"

Chapter 1 ■ IntroduCtIon to r programmIng

5

Strings are not particularly tricky, but I mention them because they look a lot like factors, but factors are
not like strings, they just look sufficiently like them to cause some confusion. I explain factors a little later in
this chapter when you have seen how functions and vectors work.

Assignments
To assign a value to a variable, you use the arrow operators. So you assign the value 2 to the variable x, you
would write the following:

x <- 2

You can test that x now holds the value 2 by evaluating x.

x
[1] 2

And of course, you can now use x in expressions:

2 * x
[1] 4

You can assign with arrows in both directions, so you could also write the following:

2 -> x

An assignment won’t print anything if you write it into the R terminal, but you can get R to print it just
by putting the assignment in parentheses.

x <- "invisible"
(y <- "visible")
[1] "visible"

Actually, All of the Above Are Vectors of Values…
If you were wondering why all the values printed above had a [1] in front of them, I am going to explain
that right now. It is because we are usually not working with single values anywhere in R. We are working
with vectors of values (and you will hear more about vectors in the next section). The vectors we have seen
have length one—they consist of a single value—so there is nothing wrong about thinking about them as
individual values. But they really are vectors.

The [1] does not indicate that we are looking at a vector of length one, though. The [1] tells you that the
first value after [1] is the first value in the vector. With longer vectors, you get the index each time R moves to
the next line of output. This is just done to make it easier to count your way into a particular index.

You will see this if you make a longer vector, for example, you can make one of length 50 using the :
operator:

1:50
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[31] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[46] 46 47 48 49 50

Chapter 1 ■ IntroduCtIon to r programmIng

6

Because we are essentially always working on vectors, there is one caveat I want to warn you about. If
you want to know the length of a string, you might—reasonably enough—think you can get that using the
length function. You would be wrong. That function gives you the length of a vector, so if you give it a single
string, it will always return 1.

length("qax")
[1] 1
length("quux")
[1] 1
length(c("foo", "barz"))
[1] 2

In the last expression, we used the function c() to concatenate two strings. This creates a vector of
two strings, and thus the result of calling length on that is 2. To get the length of the actual string, you want
nchar instead:

nchar("qax")
[1] 3
nchar("quux")
[1] 4
nchar(c("foo", "barz"))
[1] 3 4

Indexing Vectors
If you have a vector and want the i’th element of that vector, you can index the vector to get it like this:

(v <- 1:5)
[1] 1 2 3 4 5
v[1]
[1] 1
v[3]
[1] 3

We have parentheses around the first expression to see the output of the operation. An assignment is
usually silent in R, but by putting the expression in parentheses, we make sure that R prints the result, which
is the vector of integers from 1 to 5. Notice here that the first element is at index 1. Many programming
languages start indexing at 0, but R starts indexing at 1. A vector of length n is thus indexed from 1 to n,
unlike in zero-indexed languages, where the indices go from 0 to n–1.

If you want to extract a subvector, you can also do this with indexing. You just use a vector of the indices
you want inside the square brackets. You can use the : operator for this or the concatenate function, c():

v[1:3]
[1] 1 2 3
v[c(1,3,5)]
[1] 1 3 5

You can even use a vector of Boolean values to pick out those values that are “true”:

v[c(TRUE, FALSE, TRUE, FALSE, TRUE)]
[1] 1 3 5

Chapter 1 ■ IntroduCtIon to r programmIng

7

This is particularly useful when you combine it with expressions. You can, for example, get a vector of
Boolean values telling you which values of a vector are even numbers and then use that vector to pick them out.

v %% 2 == 0
[1] FALSE TRUE FALSE TRUE FALSE
v[v %% 2 == 0]
[1] 2 4

You can get the complement of a vector of indices if you just change the sign of them:

v[-(1:3)]
[1] 4 5

It is also possible to give vector indices names and, if you do, you can use those to index the vector. You
can set the names of a vector when constructing it or use the names() function.

v <- c("A" = 1, "B" = 2, "C" = 3)
v
A B C
1 2 3
v["A"]
A
1
names(v) <- c("x", "y", "z")
v
x y z
1 2 3
v["x"]
x
1

This can be very useful for making tables where you can look up a value by a key.

Vectorized Expressions
Now, the reason that the expressions you saw above worked with vector values instead of single values
(although vectors containing only a single value) is that in R, arithmetic expressions actually all work
component-wise on vectors. When you write an expression such as:

x ** 2 - y

You are actually telling R to take each element in the vector x, square it, and subtract it by the elements in y.

(x <- 1:3)
[1] 1 2 3
x ** 2
[1] 1 4 9
y <- 6:8
x ** 2 - y
[1] -5 -3 1

Chapter 1 ■ IntroduCtIon to r programmIng

8

This also works if the vectors have different lengths, as they actually do in the previous example. The
vector 2 is a vector of length 1 containing the number 2. The way expressions work, when vectors do not have
the same length, is that you just repeat the shorter vector as many times as you need.

(x <- 1:4)
[1] 1 2 3 4
(y <- 1:2)
[1] 1 2
x - y
[1] 0 0 2 2

If the length of the longer vector is not a multiple of the length of the shorter, you get a warning. The
expression still repeats the shorter vector a number of times, just not an integer number of times.

(x <- 1:4)
[1] 1 2 3 4
(y <- 1:3)
[1] 1 2 3
x - y
Warning in x - y: longer object length is not a
multiple of shorter object length
[1] 0 0 0 3

Here, y is used once against the 1:3 part of x, and the first element of y is then used for the 4 in x.

Comments
You probably don’t want to write comments when you are just interacting with the R terminal, but in your
code you do. Comments are just everything that follows #. From a # to the end of the line, the R parser just
skips the text.

This is a comment.

If you write your analysis code in R Markdown documents, which we cover in the next chapter, you
won’t have much need for comments. In those kinds of files, you mix text and R code in a different way. But if
you develop R code, you will have a need for it. So now you know how to write comments.

Functions
You have already seen the use of functions, although you probably didn’t think much about it, when you saw
expressions such as:

length("qax")

You didn’t think about it because there wasn’t anything surprising about it. You just use the usual
mathematical notation for functions: f (x). If you want to call a function, you simply use this notation and
give the function its parameters in parentheses.

Chapter 1 ■ IntroduCtIon to r programmIng

9

In R, you can also use the names of the parameters when calling a function, in addition to the positions.
If you have a function f (x,y) of two parameters, x and y, calling f(5,10) means calling f with parameter x set to
5 and parameter y set to 10. In R, you can specify this explicitly, and these two function calls are equivalent:

f(5, 10)
f(x = 5, y = 10)

If you specify the names of the parameters, the order doesn’t matter anymore, so another equivalent
function call would be:

f(y = 10, x = 5)

You can combine the two ways of passing parameters to functions as long as you put all the positional
parameters before the named ones.

f(5, y = 10)

Except for maybe making the code slightly more readable—it is usually easier to remember what
parameters do than which order they come in—there is not much need for this by itself. Where it really
becomes useful is when combined with default parameters.

A lot of functions in R take many parameters. More than you really can remember the use for and
definitely the order of. They are a lot like programs that take a lot of options but where you usually just use
the defaults unless you really need to tweak an option. These functions take a lot of parameters, but most of
them have useful default values, and you usually do not have to specify the values to set them to. When you
do need it, though, you can specify it with a named parameter.

Getting Documentation for Functions
Since it can easily be hard to remember the details of what a function does, and especially what all the
parameters to a function do, you often have to look up the documentation for functions. Luckily, this is very
easy to do in R and in RStudio. Whenever you want to know what a function does, you can just ask R, and it
will tell you (assuming that the author of the function has written the documentation).

Take the function length from the example you saw earlier. If you want to know what the function does,
just write ?length in the R terminal. If you do this in RStudio, it will show you the documentation in the
frame on the right, as shown in Figure 1-3.

Chapter 1 ■ IntroduCtIon to r programmIng

10

Try looking up the documentation for a few functions. For example, the nchar function you also saw
previously.

All infix operators, like + or %%, are also functions in R, and you can read the documentation for them as
well. But you cannot write ?+ in the R terminal and get the information. The R parser doesn’t know how to
deal with that. If you want help on an infix operator, you need to quote it, and you do that using backquotes.
So to read the documentation for +, you need to write:

?`+`

You probably do not need help to figure out what addition does, but people can write their own infix
operators, so this is useful to know when you need help on those.

Writing Your Own Functions
You can easily write your own functions. You use function expressions to define a function and an
assignment to give a function a name. For example, to write a function that computes the square of a
number, you can write:

square <- function(x) x**2
square(1:4)
[1] 1 4 9 16

Figure 1-3. RStudio’s help frame

Chapter 1 ■ IntroduCtIon to r programmIng

11

The function(x) x**2 expression defines the function, and anywhere you need a function, you can
write the function explicitly like this. Assigning the function to a name lets you use the name to refer to the
function, just like assigning any other value, like a number or a string to a name, will let you use the name for
the value.

Functions you write yourself works just like any function already part of R or part of an R package. With
one exception, though: you will not have documentation for your own functions unless you write it, and that
is beyond the scope of this chapter (but covered in Chapter 11).

The square function just does a simple arithmetic operation on its input. Sometimes you want the
function to do more than a single thing. If you want the function to do several operations on its input, you
need several statements for the function, and in that case you need to give it a “body” of several statements,
and such a body has to go in curly brackets.

square_and_subtract <- function(x, y) {
 squared <- x ** 2
 squared - y
}
square_and_subtract(1:5, rev(1:5))
[1] -4 0 6 14 24

(Check the documentation for rev to see what is going on here. Make sure you understand what this
example is doing.)

In this simple example, we didn’t really need several statements. We could just have written the
function as:

square_and_subtract <- function(x, y) x ** 2 - y

As long as there is only a single expression in the function, we don’t need the curly brackets. For more
complex functions you will need it, though.

The result of a function—what it returns as its value when you call it—is the last statement or expression
(there really isn’t any difference between statements and expressions in R; they are the same thing). You can
make the return value explicit, though, using the return() expression.

square_and_subtract <- function(x, y) return(x ** 2 - y)

This is usually only used when you want to return a value before the end of the function—and to see
examples of this, you really need control structures, so you will have to wait a little bit to see an example—so
it isn’t used as much as in many other languages.

One important point here, though, if you are used to programming in other languages: the return()
expression needs to include the parentheses. In most programming languages, you could just write:

square_and_subtract <- function(x, y) return x ** 2 - y

This doesn’t work for R. Try it, and you will get an error.

http://dx.doi.org/10.1007/978-1-4842-2671-1_11

Chapter 1 ■ IntroduCtIon to r programmIng

12

Vectorized Expressions and Functions
Many functions work with vectorized expressions just as arithmetic expressions. In fact, any function you
write that is defined just using such expressions will work on vectors, just like the square function.

This doesn’t always work. Not all functions take a single value and return a single value, and in those
cases, you cannot use them in vectorized expressions. Take for example the function sum, which adds all the
values in a vector you give it as an argument (check ?sum now to see the documentation).

sum(1:4)
[1] 10

This function summarizes its input into a single value. There are many similar functions, and naturally,
these cannot be used element-wise on vectors.

Whether a function works on vector expressions or not depends on how it is defined. Most functions in
R either work on vectors or summarizes vectors like sum. When you write your own functions, whether the
function works element-wise on vectors or not depends on what you put in the body of the function. If you
write a function that just does arithmetic on the input, like square, it will work in vectorized expressions. If
you write a function that does some summary of the data, it will not. For example, if we write a function to
compute the average of its input like this:

average <- function(x) {
 n <- length(x)
 sum(x) / n
}
average(1:5)
[1] 3

This function will not give you values element-wise. Pretty obvious, really. It gets a little more
complicated when the function you write contains control structures, which we will get to in the next
section. In any case, this would be a nicer implementation since it only involves one expression:

average <- function(x) sum(x) / length(x)

Oh, one more thing: don’t use this average function to compute the mean value of a vector. R already
has a function for that, mean, that deals much better with special cases like missing data and vectors of length
zero. Check out ?mean.

A Quick Look at Control Structures
While you get very far just using expressions, for many computations you need more complex programming.
Not that it is particularly complex, but you do need to be able to select a choice of what to do based on
data—selection or if statements—and ways of iterating through data—looping or for statements.

If statements work like this:

if (<boolean expression>) <expression>

Chapter 1 ■ IntroduCtIon to r programmIng

13

If the Boolean expression evaluates to true, the expression is evaluated; if not, it will not.

this won't do anything
if (2 > 3) "false"
this will
if (3 > 2) "true"
[1] "true"

For expressions like these, where we do not alter the program state by evaluating the expression, there
isn’t much of an effect in evaluating the if expression. If we, for example, assign it to a variable, there will be
an effect.

x <- "foo"
if (2 > 3) x <- "bar"
x
[1] "foo"
if (3 > 2) x <- "baz"
x
[1] "baz"

If you want to have effects for both true and false expressions, you have this:

if (<boolean expression>) <true expression> else <false expression>
if (2 > 3) "bar" else "baz"
[1] "baz"

If you want newlines in if statements, whether you have an else part or not, you need curly brackets.
This won’t work:

if (2 > 3)
 x <- "bar"

But this will:

if (2 > 3) {
 x <- "bar"
}

An if statement works like an expression.

if (2 > 3) "bar" else "baz"

This evaluates to the result of the expression in the if or the else part.

x <- if (2 > 3) "bar" else "baz"
x
[1] "baz"

Chapter 1 ■ IntroduCtIon to r programmIng

14

You cannot use it for vectorized expressions, though, since the Boolean expression, if you give it a
vector, will evaluate the first element in the vector:

x <- 1:5
if (x > 3) "bar" else "baz"
Warning in if (x > 3) "bar" else "baz": the
condition has length > 1 and only the first
element will be used
[1] "baz"

If you want a vectorized version of if statements, you can instead use the ifelse function:

x <- 1:5
ifelse(x > 3, "bar", "baz")
[1] "baz" "baz" "baz" "bar" "bar"

(Read the ?ifelse documentation to get the details of this function.)
This, of course, also has consequences for writing functions that use if statements. If your function

contains a body that isn’t vectorized, your function won’t be either.

maybe_square <- function(x) {
 if (x %% 2 == 0) {
 x ** 2
 } else {
 x
 }
}
maybe_square(1:5)
Warning in if (x%%2 == 0) {: the condition has
length > 1 and only the first element will be used
[1] 1 2 3 4 5

If you want a vectorized function, you need to use ifelse(), or you can use the Vectorize() function to
translate a function that isn’t vectorized into one that is.

maybe_square <- function(x) {
 ifelse (x %% 2 == 0, x ** 2, x)
}
maybe_square(1:5)
[1] 1 4 3 16 5
maybe_square <- function(x) {
 if (x %% 2 == 0) {
 x ** 2
 } else {
 x
 }
}
maybe_square <- Vectorize(maybe_square)
maybe_square(1:5)
[1] 1 4 3 16 5

Chapter 1 ■ IntroduCtIon to r programmIng

15

The Vectorize function is what is known as a “functor”—a function that takes a function as input
and returns a function. It is beyond the scope of this chapter to cover how functions can be manipulated
like other data, but it is a very powerful feature of R that we return to in Chapter 9 about advanced R
programming.

To loop over elements in a vector, you use for statements.

x <- 1:5
total <- 0
for (element in x) total <- total + element
total
[1] 15

As with if statements, if you want the body to contain more than one expression, you need to put it in
curly brackets.

The for statement runs through the elements of a vector. If you want the indices instead, you can use
the seq_along() function, which, when given a vector as input, returns a vector of indices.

x <- 1:5
total <- 0
for (index in seq_along(x)) {
 element <- x[index]
 total <- total + element
}
total
[1] 15

There are also while statements for looping. These repeat as long as an expression is true.

x <- 1:5
total <- 0
index <- 1
while (index <= length(x)) {
 element <- x[index]
 index <- index + 1
 total <- total + element
}
total
[1] 15

If you are used to zero-indexed vectors, pay attention to the index <= length(x) here. You would
normally write index < length(x) in zero-indexed languages. Here that would miss the last element.

There is also a repeat statement that loops until you explicitly exit using the break statement.

x <- 1:5
total <- 0
index <- 1
repeat {
 element <- x[index]
 total <- total + element
 index <- index + 1

http://dx.doi.org/10.1007/978-1-4842-2671-1_9

Chapter 1 ■ IntroduCtIon to r programmIng

16

 if (index > length(x)) break
}
total
[1] 15

There is also a next statement that makes the loop jump to the next iteration.
Now that I have told you about loops, I feel I should also say that they generally are not used as much

in R as in many other programming languages. Many actively discourage using loops, and they have a
reputation for leading to slow code. The latter is not justified in itself, but it is easier to write slow code using
loops than the alternative. Instead, you use functions to take over the looping functionality. There is usually
a function for doing whatever you want to accomplish using a loop and when there is not, you can usually
get what you want by combining the three functions—Map, Filter, and Reduce.

But that is beyond the scope of this chapter; we return to it later in the book.

Factors
Now let us return to data types and the factors I hinted at earlier. Factors are essentially just vectors, but
of categorical values. That just means that the elements of a factor should be considered as categories or
classes and not as numbers. For example categories such as “small”, “medium”, and “large” could be encoded
as numbers but there isn’t really any natural numbers to assign to them. We could encode soft drink sizes
like 1, 2, and 3 for “small”, “medium”, and “large”. By doing this, we are implicitly saying that the difference
between “small” and “medium” is half of the difference between “small” and “large”, which may not be the
case. Data with sizes “small”, “medium”, and “large” should be encoded as categorical data, not numbers,
and in R that means encoding them as factors.

A factor is usually constructed by giving it a list of strings. These are translated into the different
categories, and the factor becomes a vector of these categories.

f <- factor(c("small", "small", "medium",
 "large", "small", "large"))
f
[1] small small medium large small large
Levels: large medium small

The categories are called “levels”.

levels(f)
[1] "large" "medium" "small"

By default, these are ordered alphabetically, which in this example gives us the order “large”, “medium”,
“small”. You can change this order by specifying the levels when you create the factor.

ff <- factor(c("small", "small", "medium",
 "large", "small", "large"),
 levels = c("small", "medium", "large"))
ff
[1] small small medium large small large
Levels: small medium large

Chapter 1 ■ IntroduCtIon to r programmIng

17

Changing the order of the levels like this changes how many functions handle the factor. The order of
factor levels mostly affects how summary information is printed and how factors are plotted.

summary(f)
large medium small
2 1 3
summary(ff)
small medium large
3 1 2

The order the levels are given shouldn’t be an “ordering” of the categories, though. It is just used for
displaying results; there is not an order semantics given to the levels unless you explicitly specify one.

Some categorical data has a natural order. Like “small”, “medium” and “large”. Other categories are not
naturally ordered. There is no natural way of ordering “red”, “green”, and “blue”. When we print data, it will
always come out ordered since text always comes out ordered. When we plot data, it is usually also ordered.
But in many mathematical models, we would treat ordered categorical data different from unordered
categorical data, so the distinction is sometimes important.

By default, factors do not treat the levels as ordered, so they assume that categorical data is like “red”,
“green”, and “blue”, rather than ordered like “small”, “medium”, and “large”. If you want to specify that the
levels are actually ordered, you can do that using the ordered argument with the factor() function.

of <- factor(c("small", "small", "medium",
 "large", "small", "large"),
 levels = c("small", "medium", "large"),
 ordered = TRUE)
of
[1] small small medium large small large
Levels: small < medium < large

You can also use the ordered() function:

ordered(ff)
[1] small small medium large small large
Levels: small < medium < large
ordered(f, levels = c("small", "medium", "large"))
[1] small small medium large small large
Levels: small < medium < large

A factor is actually not stored as strings, even though we create it from a vector of strings. It is stored as
a vector of integers where the integers are indices into the levels. This can bite you if you try to use a factor to
index with.

Read the following code carefully. We have the vector v that can be indexed with the letters A, B, C, and D.
We create a factor, ff, that consists of these four letters in that order. When we index with it, we get what we
would expect. Since ff is the letters A to D, we pick out the values from v with those labels and in that order.

v <- 1:4
names(v) <- LETTERS[1:4]
v
A B C D
1 2 3 4
(ff <- factor(LETTERS[1:4]))

Chapter 1 ■ IntroduCtIon to r programmIng

18

[1] A B C D
Levels: A B C D
v[ff]
A B C D
1 2 3 4

We are lucky to get the expected result, though. Because this expression is not indexing using the names
we might expect it to use. Read the following even more carefully!

(ff <- factor(LETTERS[1:4], levels = rev(LETTERS[1:4])))
[1] A B C D
Levels: D C B A
v[ff]
D C B A
4 3 2 1

This time ff is still a vector with the categories A to D in that order, but we have specified that the levels
are D, C, B, and A, in that order. So the numerical values that the categories are stored as are actually these:

as.numeric(ff)
[1] 4 3 2 1

What we get when we use it to index into v are those numerical indices, so we get the values pulled out
of v in the reversed order from what we would expect if we didn’t know this (which you now know).

The easiest way to deal with a factor as the actual labels it has is to translate it into a vector of strings.
You can use that vector to index:

as.vector(ff)
[1] "A" "B" "C" "D"
v[as.vector(ff)]
A B C D
1 2 3 4

If you ever find yourself using a factor to index something—or in any other way treat a factor as if it was
a vector of strings—you really should stop and make sure that you explicitly convert it into a vector of strings.
Treating a factor as if it were a vector of strings, when in fact, it is a vector of integers, only leads to tears and
suffering in the long run.

Data Frames
The vectors we have seen, whatever their type, are just sequences of data. There is no structure to them
except for the sequence order, which may or may not be relevant for how to interpret the data. That is not
how data we want to analyze looks. What we usually have is several variables that are related as part of the
same observations. For each observed data point, you have a value for each of these variables (or missing
data indications if some variables were not observed). Essentially, what you have is a table with a row per
observation and a column per variable. The data type for such tables in R is the data.frame.

A data frame is a collection of vectors, where all must be of the same length, and you treat it as a two-
dimensional table. We usually think of data frames as having each row correspond to some observation and
each column to some property of the observations. Treating data frames that way makes them extremely
useful for statistical modeling and fitting.

Chapter 1 ■ IntroduCtIon to r programmIng

19

You can create a data frame explicitly using the data.frame function, but usually you will read in the
data frame from files.

df <- data.frame(a = 1:4, b = letters[1:4])
df
a b
1 1 a
2 2 b
3 3 c
4 4 d

To get to the individual elements in a data frame, you must index it. Since it is a two-dimensional data
structure, you should give it two indices.

df[1,1]
[1] 1

You can, however, leave one of these empty, in which case you get an entire column or an entire row.

df[1,]
a b
1 1 a
df[,1]
[1] 1 2 3 4

If the rows or columns are named, you can also use the names to index. This is mostly used for column
names since it is the columns that correspond to the observed variables in a dataset. There are two ways to
get to a column, but explicitly indexing:

df[,"a"]
[1] 1 2 3 4

Or using the $column_name notation that does the same thing but lets you get at a column without
having to use the [] operation and quote the name of a column.

df$b
[1] a b c d
Levels: a b c d

By default, a data frame will consider a character vector as a factor, and you need to tell it explicitly not
to if you want a character vector.

df <- data.frame(a = 1:4, b = letters[1:4], stringsAsFactors = FALSE)

Functions for reading in data from various text formats will typically also convert string vectors to
factors, and you need to prevent this explicitly. The readr package (see https://github.com/hadley/readr)
is a notable exception where the default is to treat character vectors as character vectors.

https://github.com/hadley/readr

Chapter 1 ■ IntroduCtIon to r programmIng

20

You can combine two data frames row-wise or column-wise by using the rbind and cbind functions:

df2 <- data.frame(a = 5:7, b = letters[5:7])
rbind(df, df2)
a b
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 f
7 7 g
df3 <- data.frame(c = 5:8, d = letters[5:8])
cbind(df, df3)
a b c d
1 1 a 5 e
2 2 b 6 f
3 3 c 7 g
4 4 d 8 h

For more sophisticated manipulation of data frames, you really should use the dplyr package
(see https://github.com/hadley/dplyr) or similar. We return to this in Chapter 3.

Dealing with Missing Values
Most datasets have missing values—parameters that weren’t observed or that were incorrectly recorded and
had to be masked out. How you deal with missing data in an analysis depends on the data and the analysis,
but it must be addressed, even if all you do is remove all observations with missing data.

Missing data is represented in R by the special value NA (not available). Values of any type can be
missing and represented as NA, and importantly R knows that NA means missing values and treats NAs
accordingly. You should always represent missing data as NA instead of some special number (like -1 or
999 or whatever). R knows how to work with NA but has no way of knowing that -1 means anything besides
minus one.

Operations that involve NA are themselves NA. You cannot operate on missing data and get anything
but more missing values in return. This also means that if you compare two NAs, you get NA. Because NA is
missing information, it is not even equal to itself.

NA + 5
[1] NA
NA == NA
[1] NA
NA != NA
[1] NA

If you want to check if a value is missing, you must use the function is.na:

is.na(NA)
[1] TRUE
is.na(4)
[1] FALSE

https://github.com/hadley/dplyr
http://dx.doi.org/10.1007/978-1-4842-2671-1_3

Chapter 1 ■ IntroduCtIon to r programmIng

21

Functions such as sum() will by default return NA if its input contains NA:

v <- c(1,NA,2)
sum(v)
[1] NA

If you want just to ignore the NA values, there is often a parameter for specifying this:

sum(v, na.rm = TRUE)
[1] 3

Using R Packages
Out of the box, R has a lot of functionality but where the real power comes in is through its package
mechanism and the large collection of packages available for download and use.

When you install RStudio, it also installs a set of default packages. You can see which packages are
installed by clicking on the Packages tab in the lower-right frame, as shown in Figure 1-4.

Figure 1-4. RStudio packages

Chapter 1 ■ IntroduCtIon to r programmIng

22

From here you can update packages—new versions of important packages are regularly released—and
you can install new packages. Try installing the package magrittr (see https://github.com/smbache/
magrittr). We are going to use it shortly.

You can also install packages from the R console. Just write:

install.packages("magrittr")

Once you have installed a package, you have access to the functionality in it. You can get function f in
package by writing package::f() or you can load all functions from a package into your global namespace
to access them without using the package:: prefix.

Loading the functionality from the magrittr package is done like this:

library(magrittr)

Data Pipelines (or Pointless Programming)
Most data analysis consists of reading in some data, performing some operations on that data and, in the
process, transforming it from its raw form into something we can start to make meaning out of. Then you do
some summarizing or visualization toward the end.

These steps in an analysis are typically expressed as a sequence of function calls that each change the
data from one form to another. It could look like this pseudo-code:

my_data <- read_data("/some/path/some_file.data")
clean_data <- remove_dodgy_data(my_data)
data_summaries <- summarize(clean_data)
plot_important_things(data_summaries)

There isn’t really anything wrong with writing a data analysis in this way. But there are typically many
more steps involved than just these. When there are, you either have to get very inventive in naming the
variables you are saving data in or you have to overwrite variable names by reassigning to a variable after
modifying the data. Both having many variable names and reassigning to variables can be problematic.

If you have may variables, it is easier accidentally to call a function on the wrong variable. For example,
you might summarize the my_data variable instead of the clean_data. While you would get an error if you
called a function with a variable name that doesn’t exist, you won’t necessarily get a simple error. If you just
call a function with incorrect data, you might not notice it, but it would probably give you the wrong result. It
would not be an error easy to debug later.

There is slightly less of a problem with reassigning to a variable. It is mostly an issue when you work
with R interactively. There, if you want to go back and change part of the program you are writing, you have
to go all the way back to the start, where the data is imported. You cannot just start somewhere in the middle
of the function calls with a variable that doesn’t refer to the same data as it did when you ran the program
from scratch. It is less of a problem if you always run your R scripts from the beginning, but the typical use of
R is to work with it in an interactive console or Markdown document, and this can be a problem.

A solution, then, is not to call the functions one at a time and assign each temporary result to a variable.
Instead of having four statements in the previous example, one per function call, you would just feed the
result of the first function call into the next.

plot_important_things(
 summarize(
 remove_dodgy_data(
 read_data("/some/path/some_file.data"))))

https://github.com/smbache/magrittr
https://github.com/smbache/magrittr

Chapter 1 ■ IntroduCtIon to r programmIng

23

You get rid of all the variables, but the readability suffers, to put it mildly. You have to read the code from
right to left and inside out.

Writing Pipelines of Function Calls
The magrittr package implements a trick to alleviate this problem. It does this by introducing a “pipe
operator,” %>%, that lets you write the functions you want to combine from left to right. You get the same
effect as if you were calling one after the other and sending the result from one function to the input of the
next function.

The operator works such that writing:

x %>% f

Is equivalent to writing:

f(x)

And writing:

x %>% f %>% g %>% h

Is equivalent to writing:

h(g(f(x)))

The previous example would become:

read_data("/some/path/some_file.data") %>%
 remove_dodgy_data %>%
 summarize %>%
 plot_important_things

Reading code like this might still take some getting used to, but it is much easier to read than combining
functions from the inside and out.

If you have ever used pipelines in UNIX shells, you should immediately see the similarities. It is the
same approach to combining functions/programs. By combining several functions, each of which does
something relatively simple, you can create very powerful pipelines.

Writing pipelines using the %>% operator is a relatively new idiom introduced to R programming, but
one that is very powerful and is being used more and more in different R packages.

Incidentally, if you are wondering why the package that implements pipes in R is called magrittr, it
refers to Belgian artist René Magritte who famously painted a pipe and wrote: “Ceci n’est pas une pipe”
(“This is not a pipe”) below it. But enough about Belgian surrealists.

Writing Functions that Work with Pipelines
The %>% operator actually does something very simple, which in turn makes it simple to write new functions
that work well with it. It simply takes whatever is computed on the left side of it and inserts it as the first
argument to the function given on the right side, and it does this left to right. So x %>% f becomes f(x),
x %>% f %>% g becomes f(x) %>% g and then g(f(x)), and x %>% f(y) becomes f(x,y). If you are
already providing parameters to a function in the pipeline, the left side of %>% is just inserted before those
parameters in the pipeline.

Chapter 1 ■ IntroduCtIon to r programmIng

24

If you want to write functions that work well with pipelines, you should, therefore, make sure that
the most likely parameter to come through a pipeline is the first parameter of your function. Write your
functions so the first parameter is the data it operates on, and you have done most of the work.

For example, if you wanted a function that would sample n random rows of a data frame, you could
write it such that it takes the data frame as the first argument and the parameter n as its second argument
and then you could simply pop it right into a pipeline:

subsample_rows <- function(d, n) {
 rows <- sample(nrow(d), n)
 d[rows,]
}

d <- data.frame(x = rnorm(100), y = rnorm(100))
d %>% subsample_rows(n = 3)
x y
46 0.5622234 -0.4184033
17 -0.5973131 -1.5549958
38 -2.0004727 -1.0736909

The magical “.” argument
Now, you cannot always be so lucky that all the functions you want to call in a pipeline take the left side
of the %>% as its first parameter. If this is the case, you can still use the function, though, because magrittr
interprets . in a special way. If you use . in a function call in a pipeline, then that is where the left side of the
%>% operation goes instead of as default first parameter of the right side. So if you need the data to go as the
second parameter, you put a . there, since x %>% f(y, .) is equivalent to f(y, x). The same goes when you
need to provide the left side as a named parameter since x %>% f(y, z = .) is equivalent to f(y, z = x),
something that is particularly useful when the left side should be given to a model-fitting function. Functions
fitting a model to data are usually taking a model specification as their first parameter and the data they are
fitting as a named parameter called data.

d <- data.frame(x = rnorm(10), y = rnorm(10))
d %>% lm(y ~ x, data = .)
##
Call:
lm(formula = y ~ x, data = .)
##
Coefficients:
(Intercept) x
0.0899 0.1469

We return to model fitting, and what an expression such as y ~ x means, in a later chapter, so don’t
worry if it looks a little strange for now. If you are interested, you can always check the documentation of the
lm() function.

Chapter 1 ■ IntroduCtIon to r programmIng

25

The magrittr package does more with . than just changing the order of parameters. You can use . more
than once when calling a function and you can use it in expressions or in function calls:

rnorm(4) %>% data.frame(x = ., is_negative = . < 0)
x is_negative
1 -0.6187822 TRUE
2 -1.5446573 TRUE
3 -2.4387665 TRUE
4 -1.7097824 TRUE
rnorm(4) %>% data.frame(x = ., y = abs(.))
x y
1 1.5754641 1.5754641
2 -0.2162109 0.2162109
3 -0.1151102 0.1151102
4 -0.4561123 0.4561123

There is one caveat: If . only appears in function calls, it will still be given as the first expression to the
function on the right side of %>%.

rnorm(4) %>% data.frame(x = sin(.), y = cos(.))
. x y
1 -1.471748 -0.9950987 0.09888622
2 -1.732544 -0.9869474 -0.16104285
3 0.642917 0.5995326 0.80035036
4 2.081730 0.8722884 -0.48899182

The reason is that it is more common to see expressions with function calls like this when the full data
is also needed than when it is not. So by default, f(g(.),h(.)) gets translated into f(.,g(.),h(.)). If you
want to avoid this behavior, you can put curly brackets around the function call, since {f(g(.),h(.))} is
equivalent to f(g(.),h(.)). (The meaning of the curly brackets is explained soon.) You can get both the
behavior f(.,g(.),h(.)) and the behavior {f(g(.),h(.))} in function calls in a pipeline; the default is just
the most common case.

Defining Functions Using .
While . is mainly used for providing parameters to functions in a pipeline, it can also be used as a short-hand
for defining new functions. Writing:

. %>% f

Is equivalent to writing:

function(.) f(.)

And is a quick way of defining a function as a combination of other functions. For example:

f <- . %>% cos %>% sin

Is equivalent to

f <- function(.) sin(cos(.))

Chapter 1 ■ IntroduCtIon to r programmIng

26

Defining functions from combining other functions is called “tacit” or “point-free” programming (or
sometimes even pointless programming, although that is a little harsh), referring to the way you are not
storing the intermediate steps (points) of a computation. You write:

f <- . %>% cos %>% sin

Instead of:

f <- function(x) {
 y <- cos(x)
 z <- sin(y)
 z
}

Naturally, this is mostly used when you have a sub-pipeline that you intend to call on more than one
dataset. You can just write a function specifying the pipeline like you would write an actual pipeline. You just
give it . as the very first left side, instead of a dataset, and you are defining a function instead of running data
through a pipeline.

Anonymous Functions
Pipelines are great when you can call existing functions one after another, but what happens if you need a
step in the pipeline where there is no function doing what you want? You can, of course, always write such
a missing function but if you need to write functions time and time again for doing small tasks in pipelines,
you have a similar problem to when you needed to save all the intermediate steps in an analysis in variables.
You do not want to have a lot of functions defined because there is a risk that you use the wrong one in a
pipeline—especially if you have many similar functions, as you are likely to have if you need a function for
every time you need a little bit of data-tweaking in your pipelines.

Again, magrittr has the solution: lambda expressions. This is a computer science term for anonymous
functions, that is, functions that you do not give a name.

When you define a function in R, you actually always create an anonymous function. Any expression of
the form function(x) expression is a function, but it doesn’t have a name unless you assign it to a variable.

As an example, consider a function that plots the variable y against the variable x and fits and plots a
linear model of y against x. You can define and name such a function to get the following code:

plot_and_fit <- function(d) {
 plot(y ~ x, data = d)
 abline(lm(y ~ x, data = d))
}

x <- rnorm(20)
y <- x + rnorm(20)
data.frame(x, y) %>% plot_and_fit

Since giving the function a name doesn’t affect how the function works, it isn’t necessary to do so. You
can just put the code that defined the function where the name of the function goes to get this:

data.frame(x, y) %>% (function(d) {
 plot(y ~ x, data = d)
 abline(lm(y ~ x, data = d))
})

Chapter 1 ■ IntroduCtIon to r programmIng

27

It does the exact same thing, but without defining a function. It is just not that readable either. Using
. and curly brackets, you can improve the readability (slightly) by just writing the body of the function and
referring to the input of it—what was called d above—as .:

data.frame(x, y) %>% {
 plot(y ~ x, data = .)
 abline(lm(y ~ x, data = .))
}

Other Pipeline Operations
The %>% operator is a very powerful mechanism for specifying data analysis pipelines, but there are some
special cases where slightly different behavior is needed.

One case is when you need to refer to the parameters in a data frame you get from the left side of the
pipe expression directly. In many functions, you can get to the parameters of a data frame just by naming
them, as you have seen with lm and plot, but there are cases where that is not so simple.

You can do that by indexing . like this:

d <- data.frame(x = rnorm(10), y = 4 + rnorm(10))
d %>% {data.frame(mean_x = mean(.$x), mean_y = mean(.$y))}
mean_x mean_y
1 0.4167151 3.911174

But if you use the operator %$% instead of %>%, you can get to the variables just by naming them instead.

d %$% data.frame(mean_x = mean(x), mean_y = mean(y))
mean_x mean_y
1 0.4167151 3.911174

Another common case is when you want to output or plot some intermediate result of a pipeline. You
can of course write the first part of a pipeline, run data through it, and store the result in a parameter, output
or plot what you want, and then continue from the stored data. But you can also use the %T>% (tee) operator.
It works like the %>% operator but where %>% passes the result of the right side of the expression on, %T>%
passes on the result of the left side. The right side is computed but not passed on, which is perfect if you only
want a step for its side-effect, like printing some summary.

d <- data.frame(x = rnorm(10), y = rnorm(10))
d %T>% plot(y ~ x, data = .) %>% lm(y ~ x, data = .)

The final operator is %<>%, which does something I warned against earlier—it assigns the result of a
pipeline back to a variable on the left. Sometimes you do want this behavior—for instance if you do some
data cleaning right after loading the data and you never want to use anything between the raw and the
cleaned data, you can use %<>%.

d <- read_my_data("/path/to/data")
d %<>% clean_data

I use it sparingly and prefer to just pass this case through a pipeline, as follows:

d <- read_my_data("/path/to/data") %>% clean_data

Chapter 1 ■ IntroduCtIon to r programmIng

28

Coding and Naming Conventions
People have been developing R code for a long time, and they haven’t been all that consistent in how they do
it. So as you use R packages, you will see many different conventions on how code is written and especially
how variables and functions are named.

How you choose to write your code is entirely up to you as long as you are consistent with it. It helps
somewhat if your code matches the packages you use, just to make everything easier to read, but it really is
up to you.

A few words on naming is worth going through, though. There are three ways people typically name
their variables, data, or functions, and these are:

underscore_notation(x, y)
camelBackNotation(x, y)
dot.notation(x, y)

You are probably familiar with the first two notations, but if you have used Python or Java or C/C++
before, the dot notation looks like method calls in object oriented programming. It is not. The dot in the
name doesn’t mean method call. R just allows you to use dots in variable and function names.

I will mostly use the underscore notation in this book, but you can do whatever you want. I recommend
that you stay away from the dot notation, though. There are good reasons for this. R actually put some
interpretation into what dots mean in function names, so you can get into some trouble. The built-in
functions in R often use dots in function names, but it is a dangerous approach, so you should probably stay
away from it unless you are absolutely sure that you are avoiding its pitfalls.

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Mean of Positive Values
You can simulate values from the normal distribution using the rnorm() function. Its first argument is
the number of samples you want, and if you do not specify other values, it will sample from the N(0,1)
distribution.

Write a pipeline that takes samples from this function as input, removes the negative values, and
computes the mean of the rest. Hint: One way to remove values is to replace them with missing values (NA); if
a vector has missing values, the mean() function can ignore them if you give it the option na.rm = TRUE.

Root Mean Square Error
If you have “true” values, t = (t

1
, …, tn) and “predicted” values y = (y

1
, …, yn), then the root mean square error

is defined as RMSE ,t y() = -()
=
å1

1

2

n
t y

i

n

i i .

Write a pipeline that computes this from a data frame containing the t and y values. Remember that you
can do this by first computing the square difference in one expression, then computing the mean of that in the
next step, and finally computing the square root of this. The R function for computing the square root is sqrt().

29© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_2

CHAPTER 2

Reproducible Analysis

The typical data analysis workflow looks like this: you collect your data and you put it in a file or spreadsheet
or database. Then you run some analyses, written in various scripts, perhaps saving some intermediate
results along the way or maybe always working on the raw data. You create some plots or tables of relevant
summaries of the data, and then you go and write a report about the results in a text editor or word
processor. It is the typical workflow. Most people doing data analysis do this or variations thereof. But it is
also a workflow that has many potential problems.

There is a separation between the analysis scripts and the data, and there is a separation between the
analysis and the documentation of the analysis.

If all analyses are done on the raw data then issue number one is not a major problem. But it is common
to have scripts for different parts of the analysis, with one script storing intermediate results that are then
read by the next script. The scripts describe a workflow of data analysis and, to reproduce an analysis, you
have to run all the scripts in the right order. Often enough, this correct order is only described in a text file or,
even worse, only in the head of the data scientist who wrote the workflow. What is even worse, it won’t stay
there for long and is likely to be lost before it is needed again.

Ideally, you always want to have your analysis scripts written in a way in which you can rerun any part
of your workflow, completely automatically, at any time.

For issue number two, the problem is that even if the workflow is automated and easy to run again,
the documentation quickly drifts away from the actual analysis scripts. If you change the scripts, you
won’t necessarily remember to update the documentation. You probably don’t forget to update figures
and tables and such, but not necessarily the documentation of the exact analysis run. Options to functions
and filtering choices and such. If the documentation drifts far enough from the actual analysis, it becomes
completely useless. You can trust automated scripts to represent the real data analysis at any time—that is
the benefit of having automated analysis workflows in the first place—but the documentation can easily
end up being pure fiction.

What you want is a way to have dynamic documentation. Reports that describe the analysis workflow
in a form that can be understood both by machines and humans. Machines use the report as an automated
workflow that can redo the analysis at any time. We humans use it as documentation that always accurately
describes the analysis workflow that we run.

Chapter 2 ■ reproduCible analysis

30

Literate Programming and Integration of Workflow and
Documentation
One way to achieve the goal of having automated workflows and documentation that is always up to date is
something called “literate programming”. Literate programming is an approach to software development,
proposed by Stanford computer scientist Donald Knuth, which never became popular for programming,
possibly because most programmers do not like to write documentation.

The idea in literate programming is that the documentation of a program—in the sense of the
documentation of how the program works and how algorithms and data structures in the program works—is
written together with the code implementing the program. Tools such as Javadoc and Roxygen (http://
roxygen.org) do something similar. They have documentation of classes and methods written together
with the code in the form of comments. Literate programming differs slightly from this. With Javadoc
and Roxygen, the code is the primary document, and the documentation is comments added to it. With
literate programming, the documentation is the primary text for humans to read and the code is part of this
documentation, included where it falls naturally to have it. The computer code is extracted automatically
from this document when the program runs.

Literate programming never became a huge success for writing programs, but for doing data science,
it is having a comeback. The results of a data analysis project is typically a report describing models and
analysis results, and it is natural to think of this document as the primary product. So the documentation is
already the main focus. The only thing needed to use literate programming is a way of putting the analysis
code inside the documentation report.

Many programming languages have support for this. Mathematica (https://www.wolfram.com/
mathematica/) has always had notebooks where you could write code together with documentation. Jupyter
(http://jupyter.org), the descendant of iPython Notebook, lets you write notebooks with documentation
and graphics interspersed with executable code. And in R there are several ways of writing documents
that are used both as automated analysis scripts as well as for generating reports. The most popular of
these approaches is R Markdown (for writing these documents) and knitr (for running the analysis and
generating the reports).

Creating an R Markdown/knitr Document in RStudio
To create a new R Markdown document, go to the File menu, choose New File and then R Markdown. Now
RStudio will bring up a window where you can decide which kind of document you want to make and add
some information, such as title and author name. It doesn’t matter so much what you do here; you can
change it later. But try making an HTML document.

The result is a new file with some boilerplate text in it, as shown in Figure 2-1. At the top of the file,
between two lines containing just --- is some meta-information for the document, and after the second ---
is the actual text. It consists of a mix of text, formatted in the Markdown language, and R code.

http://roxygen.org/
http://roxygen.org/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
http://jupyter.org/

Chapter 2 ■ reproduCible analysis

31

In the toolbar above the open file, there is a menu option called Knit HTML. If you click it, it will
translate the R Markdown into an HTML document and open it, as shown in Figure 2-2. You have to save the
file first, though. If you click the Knit HTML button before saving, you will be asked to save the file.

Figure 2-1. A new R Markdown file

Chapter 2 ■ reproduCible analysis

32

The newly created HTML file is also written to disk with the name you gave the R Markdown file. The R
Markdown file will have suffix .rmd and the HTML file will have the same prefix, but with the suffix .html.

If you click the gear logo next to Knit HTML (in earlier versions of R Studio this is a down-pointing
arrow), you get some additional options. You can ask to see the HTML document in the pane to the right in
RStudio instead of in a new window. Having the document in a panel instead of a separate window can be
convenient if you are on a laptop and do not have a lot of screen space. You can also generate a file or a Word
file instead of an HTML file.

If you decide to produce a file in a different output format, RStudio will remember this. It will update the
Knit HTML to Knit or Knit Word and it will update the metadata in the header of your file. If you manually
update the header, this is reflected in the Knit X button. If you click the gear icon one step farther right, you
get some more options for how the document should be formatted.

The actual steps involved in creating a document involves two tools and three languages, but it is all
integrated so you typically will not notice. There is the R code embedded in the document. The R code is first
processed by the knitr package that evaluates it and handles the results such as data and plots according
to options you give it. The result is a Markdown document (notice no R). This Markdown document is
then processed by the tool pandoc, which is responsible for generating the output file. For this, it uses the
metadata in the header, which is written in a language called YAML, whereas the actual formatting is written
in the the Markdown language.

Figure 2-2. Compiled Markdown file

Chapter 2 ■ reproduCible analysis

33

You usually don’t have to worry about pandoc working as the back-end of document processing. If
you just write R Markdown documents, then RStudio will let you compile them into different types of
output documents. But because the pipeline goes from R Markdown via knitr to Markdown and then via
pandoc to the various output formats, you do have access to a very powerful tool for creating documents. I
have written this book in R Markdown where each chapter is a separate document that I can run through
knitr independently. I then have pandoc with some options take the resulting Markdown documents,
combine them, and produce both output and Epub output. With pandoc, it is possible to use different
templates for setting up the formatting, and having it depend on the output document you create by using
different templates for different formats. It is a very powerful, but also a very complicated, tool and it is far
beyond what we can cover in this book. Just know that it is there if you want to take document writing in R
Markdown further than what you can readily do in RStudio.

As I mentioned, there are actually three languages involved in an R Markdown document. We will
handle them in order—first the header language, which is YAML, then the text formatting language, which is
Markdown, and then finally how R is embedded in a document.

The YAML Language
YAML is a language for specifying key-value data. YAML stands for the (recursive) acronym YAML Ain’t
Markup Language. So yes, when I called this section “The YAML Language,” I shouldn’t have included
language since the L stands for language, but I did. I stand by that choice. The acronym used to stand for Yet
Another Markup Language but since “markup language” typically refers to commands used to mark up text
for either specifying formatting or for putting structured information in a text, which YAML doesn’t do, the
acronym was changed. YAML is used for giving options in various forms to a computer program processing a
document, not so much for marking up text, so it isn’t really a markup language.

In your R Markdown document, the YAML is used in the header, which is everything that goes between
the first and second line with three dashes. In the document you create when you make a new R Markdown
file, it can look like this:

title: "My Markdown Document"
author: "Thomas Mailund"
date: "17 July 2016"
output: html_document

You usually do not have to modify this header manually. If you use the GUI, it will adjust the header
for you when you change options. You do need to alter it to include bibliographies, though, which we get to
later. And you can always add anything you want to the header if you need to and it can be easier than using
the GUI. But you don’t have to modify the header that often.

YAML gives you a way to specify key-value mappings. You write key: and then the value afterward.
So above, you have the key title referring to My Markdown Document, the key author to refer to "Thomas
Mailund" and so on. You don’t necessarily need to quote the values unless they have a colon in them, but
you always can.

The YAML header is used both by RStudio and pandoc. RStudio uses the output key for determining
which output format to translate your document into and this choice is reflected in the Knit toolbar button.
pandoc, on the other hand, uses the title, author, and date to put that information into the generated
document.

Chapter 2 ■ reproduCible analysis

34

You can have slightly more structure to the key-value specifications. If a key should refer to a list of
values, you use -. So if you have more than one author, you can use something like this:

...
author:
 - "Thomas Mailund"
 - "Christian Storm"
...

Or you can have more nested key-value structure, so if you change the output theme (using Output
Options after clicking on the tooth-wheel in the toolbar), you might see something like this:

output:
 html_document:
 theme: united

How the options are used depends on the tool-chain used to format your document. The YAML header
just provides specifications. Which options you have available and what they do is not part of the language.

For pandoc, it depends on the templates used to generate the final document (see later), so there isn’t
even a complete list that I can give you for pandoc. Anyone who writes a new template can decide on new
options to use. The YAML header gives you a way to provide options to such templates, but there isn’t a fixed
set of keywords to use. It all depends on how tools later in the process interpret them.

The Markdown Language
The Markdown language is a markup language—the name is a pun. It was originally developed to make it
easy to write web pages. HTML, the language used to format web pages, is also a markup language but is not
always easily human readable. Markdown intended to solve this by formatting text with very simple markup
commands—familiar from e-mails back in the day before e-mails were also HTML documents—and then
have tools for translating Markdown into HTML.

Markdown has gone far beyond just writing web pages, but it is still a very simple and intuitive language
for writing human-readable text with markup commands that can then be translated into other document
formats.

In Markdown, you write plain text as plain text. So the body of text is just written without any markup.
You will need to write it in a text editor so the text is actually text, not a word processor where the file format
already contains a lot of markup information that isn’t readily seen onscreen. If you are writing code, you
should already know about text editors. If not, just use RStudio to write R Markdown files, and you will be
okay.

Markup commands are used when you want something else than just plain text. There aren’t many
commands to learn—the philosophy is that when writing you should focus on the text and not the
formatting—so they are very quickly learned.

Chapter 2 ■ reproduCible analysis

35

Formatting Text
First, there are section headers. You can have different levels of headers—think chapters, sections,
subsections, etc.— and you specify them using # starting at the beginning of a new line.

Header 1
Header 2
Header 3

For the first two, you can also use this format:

Header 1
========

Header 2

To have lists in your document, you write them as you have probably often seen them in raw text
documents. A list with bullets (and not numbers) is written like this:

 * this is a
 * bulleted
 * list

The result looks like this:

•	 this is a

•	 bulleted

•	 list

You can have sublists just by indenting. You need to move the indented line in so there is a space
between where the text starts at the outer lever and where the bullet is at the next level. Otherwise, the line
goes at the outer level. The output of this:

 * This is the first line
 * This is a sub-line
 * This is another sub-line
 * This actually goes to the outer level
 * This is definitely at the outer level

Is this list:

•	 This is the first line

 – This is a sub-line
 – This is another sub-line

•	 This actually goes to the outer level

•	 Back to the outer level

Chapter 2 ■ reproduCible analysis

36

If you prefer, you can use - instead of * for these lists and you can mix the two.

 - First line
 * Second line
 - nested line

•	 First line

•	 Second line

 – nested line

To have numbered lists, just use numbers instead of * and -.

 1. This is a
 2. numbered
 3. list

The result looks like this:

 1. This is a

 2. numbered

 3. list

You don’t actually need to get the numbers right, you just need to use numbers. So

 1. This is a
 3. numbered
 2. list

Would produce the same (correctly numbered) output. You will start counting at the first number,
though, so

 4. This is a
 4. numbered
 4. list

Produces:

4. This is a
5. numbered
6. list

To construct tables, you also use a typical text representation with vertical and horizontal lines. Vertical
lines separate columns and horizontal lines separate headers from the table body. This code:

First Header	Second Header	Third Header
First row	Centered text	Right justified
Second row	*Some data*	*Some data*
Third row	*Some data*	*Some data*

Chapter 2 ■ reproduCible analysis

37

Will result in this table:

First Header Second Header Third Header

First row Centered text Right justified

Second row Some data Some data

Third row Some data Some data

The : in the line separating the header from the body determines the justification of the column. Put it
on the left to get left justification, on both sides to get the text centered, and on the right to get the text right
justified.

Inside text, you use markup codes to make text italic or boldface. You use either *this* or _this_ to
make this italic, while you use **this** or __this__ to make this boldface.

Since Markdown was developed to make HTML documents it, of course, has an easy way to insert links.
You use the notation [link text](link URL) to put link text into the document as a link to link URL.
This notation is also used to make cross-references inside a document—similar to how HTML documents
have anchors and internal links—but more on that later.

To insert images into a document, you use a notation similar to the link notation, but you just put a !
before the link. So ![Image description](URL to image) will insert the image pointed to by URL to image
with a caption saying Image description. The URL here will typically be a local file, but it can be a remote
file referred to via HTTP.

With long URLs, the marked-up text can be hard to read even with this simple notation and it is possible
to remove the URLs from the actual text and place them later in the document, for example, after the
paragraph referring to the URL or at the end of the document. For this, you use the notation [link text]
[link tag] and define the link tag as the URL you want later.

This is some text [with a link][1].
The link tag is defined below the paragraph.

[1]: interesting-url-of-some-sort-we-dont-want-inline

You can use a string here for the tag. Using numbers is easy, but for long documents, you won’t be able
to remember what each number refers to.

This is some text [with a link][interesting].
The link tag is defined below the paragraph.

[interesting]: interesting-url-of-some-sort-we-dont-want-inline

You can make block quotes in text using notation you will be familiar with from e-mails.

> This is a
> block quote

Gives you this:
This is a block quote

Chapter 2 ■ reproduCible analysis

38

To put verbatim input as part of your text, you can either do it inline or as a block. In both cases you use
backticks `. Inline in the text, you use single backticks `foo`. To create a block of text you write:

```
block of
text
```

You can also just indent text with four spaces, which is how I managed to make a block of verbatim text
that includes three backticks.

Markdown is used a lot by people who document programs, so there is a notation for getting code
highlighted in verbatim blocks. The convention is to write the name of the programming language after the
three backticks, then the program used for formatting the document will highlight the code when it can. For
R code you write r, so this block:

```r
f <- function(x) ifelse(x %% 2 == 0, x**2, x**3)
f(2)
```

Is formatted like this:

f <- function(x) ifelse(x %% 2 == 0, x**2, x**3)
f(2)

The only thing this markup of blocks does is highlight the code. It doesn’t try to evaluate the code.
Evaluating code happens before the Markdown document is formatted and we return to that shortly.

Cross-Referencing
Out of the box, there is not a lot of support for making cross references in Markdown documents. You
can make cross-references to sections but not figures or tables. There are ways of doing it with extensions
to pandoc—I use it in this book—but out of the box from RStudio, you cannot. Although, with the work
being done for making book-writing and lengthy reports in Bookdown (https://bookdown.org/yihui/
bookdown/), that might change soon.1

The easiest way to reference a section is to put the name of the section in square brackets. If I write
[Cross referencing] here, I get a link to this cross-referencing section. Of course, you don’t always want
the name of the section to be the text of the link, so you can also write [this section][Cross referencing]
to get a link to this section.

This approach naturally works only if all section titles are unique. If they are not, you cannot refer
to them simply by their names. Instead, you can tag them to give them a unique identifier. You do this by
writing the identifier after the title of the section. To put a name after a section header, you write:

Cross referencing {#section-cross-ref}

Then you can refer to the section using [this](#section-cross-ref). Here you do need the # sign in
the identifier. That markup is leftover from HTML, where anchors use #.

1In any case, having cross-references to sections but not figures is still better than Word, where the feature is there but
buggy to the point of uselessness, in my experience.

https://bookdown.org/yihui/bookdown/
https://bookdown.org/yihui/bookdown/

Chapter 2 ■ reproduCible analysis

39

Bibliographies
Often you want to cite books or papers in a report. You can, of course, handle citations manually, but a
better approach is to have a file with the citation information and then refer to it using markup tags. To add a
bibliography, you use a tag in the YAML header called bibliography.

...
bibliography: bibliography.bib
...

You can use several different formats here; see the R Markdown documentation (http://rmarkdown.
rstudio.com/authoring_bibliographies_and_citations.html) for a list. The suffix .bib is used for
BibLaTeX. The format for the citation file is the same as BibTeX, and you get citation information in that
format from nearly every site that will give you bibliography information.

To cite something from the bibliography, you use [@smith04] where smith04 is the identifier used in
the bibliography file. You can cite more than one paper inside square brackets separated by a semicolon,
[@smith04; doe99], and you can add text such as chapters or page numbers [@smith04, chapter 4]. To
suppress the author name(s) in the citation, say when you mention the name already in the text, you put
- before the @, so you write As Smith showed [-@smith04].... For in-text citations, similar to \citet{}
in natbib, you just leave out the brackets: @smith04 showed that... and you can combine that with
additional citation information as @smith04 [chapter 4] showed that....

To specify the citation style to use, you use the csl tag in the YAML header.

...
bibliography: bibliography.bib
csl: biomed-central.csl
...

Check out the citation styles list at https://github.com/citation-style-language/styles for a large
number of different formats. There should be most, if not all, of your heart desires there.

Controlling the Output (Templates/Stylesheets)
The pandoc tool has a powerful mechanism for formatting the documents it generates. This is achieved using
stylesheets in CSS for HTML and from using templates for how to format the output for all output formats.
The template mechanism lets you write an HTML or LaTeX document, say, that determines where various
part of the text goes and where variables from the YAML header is used. This mechanism is far beyond
what we can cover in this chapter, but I just want to mention it if you want to start writing papers using R
Markdown. You can do this, you just need to have a template for formatting the document in the style a
journal wants. Often they provide LaTeX templates, and you can modify these to work with Markdown.

There isn’t much support for this in RStudio, but for HTML documents, you can use the Output Options
command (click on the tooth-wheel) to choose different output formatting.

http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
http://dx.doi.org/10.1007/978-1-4842-2671-1_4
http://dx.doi.org/10.1007/978-1-4842-2671-4
https://github.com/citation-style-language/styles

Chapter 2 ■ reproduCible analysis

40

Running R Code in Markdown Documents
The formatting so far is all Markdown (and YAML). Where it combines with R and makes it R Markdown
is through knitr. When you format a document, the first step evaluates R code to create a Markdown
document. This translates an .rmd document into an .md document, but this intermediate document is
deleted afterward unless you explicitly tell RStudio not to do so. It does that by running all the R code you
want to be executed and putting it into the Markdown document.

The simplest R code you can evaluate is part of a text. If you want an R expression evaluated, you use
backticks but add r right after the first. So to evaluate 2 + 2 and put the result in your Markdown document,
you write `r and then the expression 2 + 2 and get the result 4 inserted into the text. You can write any
R expression there to get it evaluated. This is useful for inserting short summary statistics like means and
standard deviations directly into the text and ensuring that the summaries are always up to date with the
actual data you are analyzing.

For longer chunks of code, you use the block-quotes, the three backticks. Instead of just writing:

```r
2 + 2
```

which will only display the code (highlighted as R code), you put the r in curly brackets.
This will insert the code in your document but will also show the result of evaluating it right after the

code block. The boilerplate code you get when creating an R Markdown document in RStudio shows you
examples of this (see Figure 2-3).

Figure 2-3. Code chunk in RStudio

You can name code chunks by putting a name right after r. You don’t have to name all chunks, and if
you have a lot of chunks, you probably won’t bother naming all of them. But if you give them a name, they
are easily located by clicking on the structure button in the bar below the document (see Figure 2-4). You can
also use the name to refer to chunks when caching results, which we will cover later.

Chapter 2 ■ reproduCible analysis

41

If you have the most recent version of RStudio, you should see a toolbar to the right on every code
chunk (see Figure 2-5). The rightmost option, the Play button, will let you evaluate the chunk. The results
will be shown below the chunk unless you have disabled that option. The middle button evaluates all
previous chunks down to and including the current one. This is useful when the current chunk depends on
previous results. The tooth-wheel lets you set options for the chunk.

Figure 2-4. Document structure with chunk names

Figure 2-5. Code chunk toolbar

Figure 2-6. Code chunk options

The chunk options, shown in Figure 2-6, control the output you get when evaluating a code chunk.
The Output drop-down selects what output the chunk should generate in the resulting document, while
the Show Warnings and Show Messages buttons determine whether warnings and messages, respectively,
should be included in the output. The Use Custom Figure Size button is used to determine the size of figures
you generate. We return to these later.

Chapter 2 ■ reproduCible analysis

42

If you modify these options, you will see that the options are included in the top line of the chunk. You
can of course also manually control the options here, and there are more options than what you can control
with the window in the GUI. You can read the knitr documentation for all the details (http://yihui.name/
knitr/).

This dialog box will handle most of your needs, though, except for displaying tables or when you want to
cache results of chunks, both of which we return to later.

Using Chunks when Analyzing Data (Without Compiling Documents)
Before continuing, though, I want to stress that working with data analysis in an R Markdown document is
useful for more than just creating documents. I personally do all my analysis in these documents because
I can combine documentation and code, regardless of whether I want to generate a report at the end. The
combination of explanatory text and analysis code is just convenient to have.

The way code chunks are evaluated as separate pieces of analysis is also part of this. You can evaluate
chunks individually, or all chunks down to a point, and I find that very convenient when doing an analysis.
There are keyboard shortcuts for evaluating all chunks, all previous chunks, or just the current chunk (see
Figure 2-7), which makes it very easy to write a bit of code for an exploratory analysis and evaluate just that
piece of code. If you are familiar with Jupyter or similar notebooks, you will recognize the workflow.

Figure 2-7. Options for evaluating chunks

Even without the option for generating final documents from a Markdown document, I would still be
using them just for this feature.

http://yihui.name/knitr/
http://yihui.name/knitr/

Chapter 2 ■ reproduCible analysis

43

Caching Results
Sometimes part of an analysis is very time-consuming. Here I mean in CPU time, not thinking time—it is
also true for thinking time, but you don’t need to think the same things over and over. If you are not careful,
however, you will need to run the same analysis on the computer again and again.

If you have such time-consuming steps in your analysis, then compiling documents will be very slow.
Each time you compile the document, all the analysis is done from scratch. This is the functionality you
want since this makes sure that the analysis does not have results left over from code that isn’t part of the
document, but it limits the usability of the workflows if they take hours to compile.

To alleviate this, you can cache the results of a chunk. To cache the result of a chunk, you should add the
option cache=TRUE to it. This means adding that in the header of the chunk similar to how output options are
added. You will need to give the chunk a name to use this. Chunks without names are actually given a default
name, but this name changes according to how many nameless chunks you have earlier in the document
and you can’t have that if you use the name to remember results. So you need to name it. A named chunk
that is set to be cached will not only be when you compile a document if it has changed since the last time it
was evaluated. If it hasn’t changed, the cached results of the last evaluation will just be reused.

R cannot cache everything, so if you load libraries in a cached chunk they won’t be loaded unless the
chunk is being evaluated. That means there are some limits to what you can do, but generally it is a very
useful feature.

Since other chunks can depend on a cached chunk, there can also be problems if a cached chunk
depends on another chunk, cached or not. The chunk will only be re-evaluated if you have changed the code
inside it, so if it depends on something you have changed, it will remember results based on outdated data.
You have to be careful about that.

You can set up dependencies between chunks, though, to fix this problem. If a chunk is dependent on
the results of another chunk, you can specify this using the chunk option dependson=other. Then, if the
chunk other (and you need to name such chunks) is modified, the cache is considered invalid, and the
depending chunk will be evaluated again.

Displaying Data
Since you are writing a report on data analysis, you naturally want to include some results. That means
displaying data in some form or other.

You can simply include the results of evaluating R expressions in a code chunk, but often you want to
display the data using tables or graphics, especially if the report is something you want to show to people not
familiar with R. Luckily, both tables and graphics are easy to display.

To make a table, you can use the function kable() from the knitr package. Try adding a chunk like this
to the boilerplate document you have:

library(knitr)
kable(head(cars))

The library(knitr) imports functions from the knitr package so you get access to the kable()
function. You don’t need to include it in every chunk you use kable() in, just in any chunk before you use
the function—the setup chunk is a good place—but adding it in the chunk, you write now will work.

The function kable() will create a table from a data frame in the Markdown format so it will be
formatted in the later step of the document compilation. Don’t worry too much about the details in the code
here; the head() function just picks out the first lines of the cars data so the table doesn’t get too long.

Using kable() should generate a table in your output document. Depending on your setup, you might
have to give the chunk the output option result="asis" to make it work, but it usually should give you a
table even without this.

Chapter 2 ■ reproduCible analysis

44

We will cover how to summarize data in later chapters. Usually, you don’t want to make tables of full
datasets, but for now, you can try just getting the first few lines of the cars data.

Adding graphics to the output is just as simple. You simply make a plot in a code chunk, and the result
will be included in the document you generate. The boilerplate R Markdown document already gives you an
example of this. We will cover plotting in much more detail later.

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Create an R Markdown Document
Go to the File menu and create an R Markdown document. Read through the boilerplate text to see how it is
structured. Evaluate the chunks. Compile the document.

Produce Different Output
Create from the same R Markdown document an HTML document, a document, and a Word document.

Add Caching
Add a cached code chunk to your document. Make the code there sample random numbers, e.g., using
rnorm(). When you recompile the document, you should see that the random numbers do not change.

Make another cached chunk that uses the results of the first cached chunk. Say, compute the mean of
the random numbers. Set up dependencies and verify that if you modify the first chunk, the second chunk
gets evaluated.

45© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_3

CHAPTER 3

Data Manipulation

Data science is as much about manipulating data as it is about fitting models to data. Data rarely arrives in a
form that we can directly feed into the statistical models or machine learning algorithms we want to analyze
them with. The first stages of data analysis are almost always figuring out how to load the data into R and
then figuring out how to transform it into a shape you can readily analyze. The code in this chapter, and all
the following, assumes that the packages magrittr and ggplot2 have been loaded (just to avoid explicitly
doing so in each example).

Data Already in R
There are some datasets already built into R or available in R packages. Those are useful for learning how to
use new methods. If you already know a dataset and what it can tell you, it is easier to evaluate how a new
method performs. It’s also useful for benchmarking methods you implement. They are of course less helpful
when it comes to analyzing new data.

Distributed together with R is the package dataset. You can load the package into R using the
library() function and get a list of the datasets in it, together with a short description of each, like this:

library(datasets)
library(help = "datasets")

To load an actual dataset into R’s memory, use the data() function. The datasets are all relatively small,
so they are ideal for quickly testing the code you are working with. For example, to experiment with plotting
x-y plots (see Figure 3-1), you could use the cars dataset that consists of only two columns—a speed and a
breaking distance:

data(cars)
head(cars)
speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10
cars %>% qplot(speed, dist, data = .)

Chapter 3 ■ Data Manipulation

46

Don’t worry about the plotting function for now; we return to plotting in the next chapter.
If you are developing new analysis or plotting code, usually one of these datasets is useful for testing it.
Another package with several useful datasets is mlbench. It contains datasets for machine learning

benchmarks so these datasets are aimed at testing how new methods perform on known datasets. This package
is not distributed together with R, but you can install it, load it, and get a list of the datasets in it like this:

install.packages("mlbench")
library(mlbench)
library(help = "mlbench")

In this book, I use data from one of those two packages when giving examples of data analyses.
The packages are convenient for me for giving examples, and if you are developing new functionality

for R they are suitable for testing, but if you are interested in data analysis, presumably you are interested in
your own data, and there they are of course useless. You need to know how to get your own data into R. We
get to that shortly, but first I want to say a few words about how you can examine a dataset and get a quick
overview.

Figure 3-1. Plot of the cars dataset

Chapter 3 ■ Data Manipulation

47

Quickly Reviewing Data
I have already used the function head(), which shows the first n lines of a data frame where n is an option
with default 6. You can use another n to get more or less this:

cars %>% head(3)
speed dist
1 4 2
2 4 10
3 7 4

The similar function tail() gives you the last n lines:

cars %>% tail(3)
speed dist
48 24 93
49 24 120
50 25 85

To get summary statistics for all the columns in a data frame, you can use the summary() function:

cars %>% summary
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

It isn’t that exciting for the cars dataset, so let’s see it on another built-in dataset:

data(iris)
iris %>% summary
Sepal.Length Sepal.Width Petal.Length
Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
Median :5.800 Median :3.000 Median :4.350
Mean :5.843 Mean :3.057 Mean :3.758
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
Max. :7.900 Max. :4.400 Max. :6.900
Petal.Width Species
Min. :0.100 setosa :50
1st Qu.:0.300 versicolor:50
Median :1.300 virginica :50
Mean :1.199
3rd Qu.:1.800
Max. :2.500

Chapter 3 ■ Data Manipulation

48

The summary you get depends on the types the columns have. Numerical data is summarized by their
quartiles and meanwhile categorical, and Boolean data is summarized by counts of each category or TRUE/
FALSE values. In the iris dataset there is one column, Species, that is categorical, and its summary is the
count of each level.

To see the type of each column, you can use the str() function. This gives you the structure of a data
type and is much more general than you need here, but it does give you an overview of the types of columns
in a data frame and is very useful for that.

Reading Data
There are several packages for reading data in different file formats, from Excel to JSON to XML and so on. If
you have data in a particular format, try to Google for how to read it into R. If it is a standard data format, the
chances are that there is a package that can help you.

Quite often, though, data is available in a text table of some kind. Most tools can import and export
those. R has plenty of built-in functions for reading such data. Use this to get a list of them:

?read.table

These functions are all variations of the read.table() function, just using different default options. For
instance, while read.table() assumes that the data is given in whitespace-separated columns, the read.
csv() function assumes that the data is represented as comma-separated values, so the difference between
the two functions is in what they consider being separating data columns.

The read.table() function takes a lot of arguments. These are used to adjust it to the specific details of
the text file you are reading. (The other functions take the same arguments, they just have different defaults.)
The options I find I use the most are these:

•	 header—This is a Boolean value telling the function whether it should consider the
first line in the input file a header line. If it’s set to true, it uses the first line to set
the column names of the data frame it constructs; if it is set to false the first line is
interpreted as the first row in the data frame.

•	 col.names—If the first line is not used to specify the header, you can use this option
to name the columns. You need to give it a vector of strings with a string for each
column in the input.

•	 dec—This is the decimal point used in numbers. I get spreadsheets that use both .
and , for decimal points, so this is an important parameter to me. How important it
will be to you probably depends on how many nationalities you collaborate with.

•	 comment.char—By default, the function assumes that # is the start of a comment and
ignores the rest of a line when it sees it. If # is actually used in your data, you need to
change this. The same goes if comments are indicated with a different symbol.

•	 stringsAsFactors—By default, the function will assume that columns containing
strings should really be interpreted as factors. Needless to say, this isn’t always
correct. Sometimes a string is a string. You can set this parameter to FALSE to make
the function interpret strings as strings. This is an all or nothing option, though. If it
is TRUE, all columns with strings will be interpreted as factors and if it is FALSE, none
of them will.

Chapter 3 ■ Data Manipulation

49

•	 colClasses—Lets you specify which type each column should have, so here you
can specify that some columns should be factors, and others should be strings. You
have to specify all columns, though, which is cumbersome and somewhat annoying
since R, in general, is pretty good at determining the right types for a column. The
option will only take you so far in any case. You can tell it that a column should be
an ordered factor but not what the levels should be and such. I mainly use it for
specifying which columns should be factors and which should be strings, but using it
will also speed up the function for large datasets since R then doesn’t have to figure
out the column types itself.

For reading in tables of data, read.table() and friends will usually get you there with the right options.
If you are having problems reading data, check the documentation carefully to see if you cannot tweak
the functions to get the data loaded. It isn’t always possible, but it usually is. When it really isn’t, I usually
give up and write a script in another language to format the data into a form, I can load into R. For raw
text processing, R isn’t really the right tool and rather than forcing all steps in an analysis into R, I will be
pragmatic and choose the best tools for the task, and R isn’t always it. But before taking drastic measures
and go programming in another language, you should carefully check if you cannot tweak one of the read.
table() functions first.

Examples of Reading and Formatting Datasets
Rather than discussing the import of data in the abstract, let’s now see a couple of examples of how data can
be read in and formatted.

Breast Cancer Dataset
As a first example of reading data from a text file, we consider the BreastCancer dataset from mlbench. Then
we have something to compare our results with. The first couple of lines from this dataset are:

library(mlbench)
data(BreastCancer)
BreastCancer %>% head(3)
Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
Marg.adhesion Epith.c.size Bare.nuclei
1 1 2 1
2 5 7 10
3 1 2 2
Bl.cromatin Normal.nucleoli Mitoses Class
1 3 1 1 benign
2 3 2 1 benign
3 3 1 1 benign

The data can be found at https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin
+(Original), where there is also a description of the data. I have made this tinyURL to the actual data file
http://tinyurl.com/kw4xtts. While R can read data from URLs, it cannot deal with the magic behind
tinyURL and the real URL is too long to fit on the page of this book, so I have saved it in a variable, data_url,
that I will use. To run the code yourself, you simply need to use the tinyURL. It will send you to the real URL,
and then you can copy that into your code.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original
http://tinyurl.com/kw4xtts

Chapter 3 ■ Data Manipulation

50

To download the data, you could go to the URL and save the file. Explicitly downloading data outside of
the R code has pros and cons. It is pretty simple, and you can look at the data before you start parsing it, but
on the other hand, it gives you a step in the analysis workflow that is not automatically reproducible. Even if
the URL is described in the documentation and uses a link that doesn’t change over time, it is a manual step
in the workflow. And a step that people could make mistakes in.

Instead, I am going to read the data directly from the URL. Of course, this is also a risky step in a
workflow because I am not in control of the server the data is on, and I cannot guarantee that the data
will always be there and that it won’t change over time. It is a bit of a risk either way. I will usually add the
code to my workflow for downloading the data, but I will also store the data in a file. If I leave the code for
downloading the data and saving it to my local disk in a cached Markdown chunk, it will only be run the one
time I need it.

I can read the data and get it as a vector of lines using the readLines() function. I can always use that to
scan the first one or two lines to see what the file looks like.

lines <- readLines(data_url)
lines[1:5]
[1] "1000025,5,1,1,1,2,1,3,1,1,2"
[2] "1002945,5,4,4,5,7,10,3,2,1,2"
[3] "1015425,3,1,1,1,2,2,3,1,1,2"
[4] "1016277,6,8,8,1,3,4,3,7,1,2"
[5] "1017023,4,1,1,3,2,1,3,1,1,2"

For this data, it seems to be a comma-separated values file without a header line. So I save the data with
the .csv suffix. None of the functions for writing or reading data in R cares about the suffixes, but it is easier
for me to remember what the file contains that way.

writeLines(lines, con = "data/raw-breast-cancer.csv")

For that function to succeed, I first need to make a data/ directory. I suggest you have a data/ directory
for all your projects, always, since you want your directories and files structured when you are working on a
project.

The file I just wrote to disk can then read in using the read.csv() function.

raw_breast_cancer <- read.csv("data/raw-breast-cancer.csv")
raw_breast_cancer %>% head(3)
X1000025 X5 X1 X1.1 X1.2 X2 X1.3 X3 X1.4 X1.5
1 1002945 5 4 4 5 7 10 3 2 1
2 1015425 3 1 1 1 2 2 3 1 1
3 1016277 6 8 8 1 3 4 3 7 1
X2.1
1 2
2 2
3 2

Of course, I wouldn’t write exactly these steps into a workflow. Once I have discovered that the data at
the end of the URL is a .csv file, I would just read it directly from the URL.

Chapter 3 ■ Data Manipulation

51

raw_breast_cancer <- read.csv(data_url)
raw_breast_cancer %>% head(3)
X1000025 X5 X1 X1.1 X1.2 X2 X1.3 X3 X1.4 X1.5
1 1002945 5 4 4 5 7 10 3 2 1
2 1015425 3 1 1 1 2 2 3 1 1
3 1016277 6 8 8 1 3 4 3 7 1
X2.1
1 2
2 2
3 2

The good news is that this data looks similar to the BreastCancer data. The bad news is that it appears
that the first line in BreastCancer seems to have been turned into column names in raw_breast_cancer.
The read.csv() function interpreted the first line as a header. This we can fix using the header parameter.

raw_breast_cancer <- read.csv(data_url, header = FALSE)
raw_breast_cancer %>% head(3)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
1 1000025 5 1 1 1 2 1 3 1 1 2
2 1002945 5 4 4 5 7 10 3 2 1 2
3 1015425 3 1 1 1 2 2 3 1 1 2

Now the first line is no longer interpreted as header names. That is good, but the names you actually get
are not that informative about what the columns contain.

If you read the description of the data from the web site, you can see what each column is and choose
names that are appropriate. I am going to cheat here and just take the names from the BreastCancer dataset.

I can set the names explicitly like this:

names(raw_breast_cancer) <- names(BreastCancer)
raw_breast_cancer %>% head(3)
Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
Marg.adhesion Epith.c.size Bare.nuclei
1 1 2 1
2 5 7 10
3 1 2 2
Bl.cromatin Normal.nucleoli Mitoses Class
1 3 1 1 2
2 3 2 1 2
3 3 1 1 2

Chapter 3 ■ Data Manipulation

52

Or I could set them where I load the data:

raw_breast_cancer <- read.csv(data_url, header = FALSE,
 col.names = names(BreastCancer))
raw_breast_cancer %>% head(3)
Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
Marg.adhesion Epith.c.size Bare.nuclei
1 1 2 1
2 5 7 10
3 1 2 2
Bl.cromatin Normal.nucleoli Mitoses Class
1 3 1 1 2
2 3 2 1 2
3 3 1 1 2

Okay, we are getting somewhere. The Class column is not right. It encodes the classes as numbers (the
web page documentation specifies 2 for benign and 4 for malignant), but in R it would be more appropriate
with a factor.

You can translate the numbers into a factor by first translating the numbers into strings and then the
strings into factors. I don’t like modifying the original data—even if I have it in a file—so I am going to copy it
first and then do the modifications.

formatted_breast_cancer <- raw_breast_cancer

It is easy enough to map the numbers to strings using ifelse():

map_class <- function(x) {
 ifelse(x == 2, "bening",
 ifelse(x == 4, "malignant",
 NA))
}
mapped <- formatted_breast_cancer$Class %>% map_class
mapped %>% table
.
bening malignant
458 241

I could have made it simpler with this:

map_class <- function(x) {
 ifelse(x == 2, "bening", "malignant")
}
mapped <- formatted_breast_cancer$Class %>% map_class
mapped %>% table
.
bening malignant
458 241

Chapter 3 ■ Data Manipulation

53

Since 2 and 4 are the only numbers in the data:

formatted_breast_cancer$Class %>% unique
[1] 2 4

But it is always a little risky to assume that there are no unexpected values, so I always prefer to have
“weird values” as something I handle explicitly by setting them to NA.

Nested ifelse() are easy enough to program, but if there are many different possible values, it also
becomes somewhat cumbersome. Another option is to use a table to map between values. To avoid confusion
between a table as the one you are going to implement and the function table(), which counts how many
times a given value appears in a vector, I am going to call the table you create a dictionary. A dictionary is a
table where you can look up words, and that is what you are implementing.

For this, you can use named values in a vector. Remember that you can index in a vector both using
numbers and using names.

You can create a vector where you use names as the indices. Use the keys you want to map from as the
indices and the names you want as results as the values. We want to map from numbers to strings, which
poses a small problem. If we index into a vector with numbers, R will think we want to get positions in the
vector. If we make the vector v <- c(2 = "benign", 4 = "malignant"), which we can’t, it is a syntax error
and for good reasons, then how should v[2] be interpreted? Do we want the value at index 2, "malignant",
or the value that has key 2, "benign"? When we use a vector as a table, we need to have strings as keys. That
also means that the numbers in the vector we want to map from should be converted to strings before we
look up in the dictionary. The code looks like this:

dict <- c("2" = "benign", "4" = "malignant")
map_class <- function(x) dict[as.character(x)]

mapped <- formatted_breast_cancer$Class %>% map_class
mapped %>% table
.
benign malignant
458 241

That worked fine, but if we look at the actual vector instead of summarizing it, we will see that it looks a
little strange.

mapped[1:5]
2 2 2 2 2
"benign" "benign" "benign" "benign" "benign"

This is because when we create a vector by mapping in this way we preserve the names of the values.
Remember that the dictionary we made to map our keys to values has the keys as names; these names are
passed on to the resulting vector. We can get rid of them using the unname() function.

mapped %<>% unname
mapped[1:5]
[1] "benign" "benign" "benign" "benign" "benign"

Now we just need to translate this vector of strings into a factor, and we will have our Class column.
The BreastCancer dataset actually represent the Id column as strings and all the other columns as

categorical (some ordered, some not), but I am not going to bother with that. If you want to transform the
data this way, you know how to do it.

Chapter 3 ■ Data Manipulation

54

The entire reading of data and formatting can be done like this:

read.csv(data_url, header = FALSE,
 col.names = names(BreastCancer)) ->
 raw_breast_cancer ->
 formatted_breast_cancer

dict <- c("2" = "benign", "4" = "malignant")
map_class <- function(x) dict[as.character(x)]
formatted_breast_cancer$Class <-
 formatted_breast_cancer$Class %>%
 map_class %>%
 unname %>%
 factor(levels = c("benign", "malignant"))

It is not strictly necessary to specify the levels in the factor() call, but I prefer always to do so explicitly.
If there is an unexpected string in the input to factor(), it would end up being one of the levels, and I
wouldn’t know about it until much later. Specifying the levels explicitly alleviates that problem.

If you don’t like writing and naming a function just to map the class representation—and why would
you want to pollute your namespace with a map_class() function you won’t remember what does a few
weeks later?—you can use a lambda expression:

raw_breast_cancer$Class %>%
 { dict <- c("2" = "benign", "4" = "malignant")
 dict[as.character(.)]
 } %>%
 unname %>%
 factor(levels = c("benign", "malignant")) %>%
 table
.
benign malignant
458 241

Now, you don’t want to spend time parsing input data files all the time so I recommend putting all the
code you write to read in data and transforming it into the form you want in a cached code chunk in an R
Markup document. This way you will only evaluate the code when you change it.

You can also explicitly save data using the save() function.

formatted_breast_cancer %>%
 save(file = "data/formatted-breast-cancer.rda")

Here I use the suffix .rda for the data. It stands for R data, and your computer will probably recognize it.
If you click on a file with that suffix, it will be opened in RStudio (or whatever tool you use to work on R). The
actual R functions for saving and loading data do not care what suffix you use, but it is easier to recognize the
files for what they are if you stick to a fixed suffix.

The data is saved together with the name of the data frame, so when you load it again using the load()
function, you don’t have to assign the loaded data to a variable. It will be loaded into the name you used
when you saved the data.

load("data/formatted-breast-cancer.rda")

Chapter 3 ■ Data Manipulation

55

This is both good and bad. I would probably have preferred to control which name the data is assigned
to so I have explicit control over the variables in my code, but save() and load() are designed to save more
than one variable, so this is how they work.

I personally do not use these functions that much. I prefer to write my analysis pipelines in Markdown
documents, and there it is easier just to cache the import code.

Boston Housing Dataset
For the second example of loading data, we take another dataset from the mlbench package. The BostonHousing
data contains information about crime rates and some explanatory variables we can use to predict crime rates.

library(mlbench)
data(BostonHousing)
str(BostonHousing)
'data.frame': 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237..
$ zn : num 18 0 0 0 0 0 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..
$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 ..
$ nox : num 0.538 0.469 0.469 0.458 0.458 0..
$ rm : num 6.58 6.42 7.18 7 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..
$ dis : num 4.09 4.97 4.97 6.06 ...
$ rad : num 1 2 2 3 3 3 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311..
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..
$ b : num 397 397 393 395 ...
$ lstat : num 4.98 9.14 4.03 2.94 ...
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

As before, the link to the actual data is pretty long so I will give you a tinyURL to it: http://tinyurl.
com/zq2u8vx. I have also saved the original URL in the variable data_url.

I have already looked at the file at the end of the URL and seen that it consists of whitespace-separated
columns of data, so the function you need to load it is read.table().

boston_housing <- read.table(data_url)
str(boston_housing)
'data.frame': 506 obs. of 14 variables:
$ V1 : num 0.00632 0.02731 0.02729 0.03237 ...
$ V2 : num 18 0 0 0 0 0 12.5 12.5 ...
$ V3 : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 ..
$ V4 : int 0 0 0 0 0 0 0 0 ...
$ V5 : num 0.538 0.469 0.469 0.458 0.458 0.458..
$ V6 : num 6.58 6.42 7.18 7 ...
$ V7 : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 ..
$ V8 : num 4.09 4.97 4.97 6.06 ...
$ V9 : int 1 2 2 3 3 3 5 5 ...
$ V10: num 296 242 242 222 222 222 311 311 ...
$ V11: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 ..
$ V12: num 397 397 393 395 ...
$ V13: num 4.98 9.14 4.03 2.94 ...
$ V14: num 24 21.6 34.7 33.4 36.2 28.7 22.9 27..

http://tinyurl.com/zq2u8vx
http://tinyurl.com/zq2u8vx

Chapter 3 ■ Data Manipulation

56

If we compare the data that we have loaded with the data from mlbench, we see that we have integers
and numeric data in our imported data but that it should be a factor for the chas variable and numeric for all
the rest. We can use the colClasses parameter for read.table() to fix this. We just need to make a vector of
strings for the classes; a vector that is "numeric" for all columns except for the "chas" column, which should
be "factor".

col_classes <- rep("numeric", length(BostonHousing))
col_classes[which("chas" == names(BostonHousing))] <- "factor"

We should also name the columns, but again we can cheat and get the names from BostonHousing:

boston_housing <- read.table(data_url,
 col.names = names(BostonHousing),
 colClasses = col_classes)
str(boston_housing)
'data.frame': 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237..
$ zn : num 18 0 0 0 0 0 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7..
$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 ..
$ nox : num 0.538 0.469 0.469 0.458 0.458 0..
$ rm : num 6.58 6.42 7.18 7 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 6..
$ dis : num 4.09 4.97 4.97 6.06 ...
$ rad : num 1 2 2 3 3 3 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311..
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 1..
$ b : num 397 397 393 395 ...
$ lstat : num 4.98 9.14 4.03 2.94 ...
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22...

The levels in the "chas" factor are 0 and 1. It is not really good levels as they are very easily confused
with numbers—they will print like numbers—but they are not. The numerical values in the factor are
actually 1 for “0” and 2 for “1”, so that can be confusing. But it is the same levels as the mlbench data frame, so
I will just leave it the way it is as well.

The readr Package
The read.table() class of functions will usually get you to where you want to go with importing data. I
use these in almost all my work. But there is a package aimed at importing data that tries to speed up the
importing and be more consistent in how data is imported, so I think I should mention it.

That package is readr.

library(readr)

It implements the same class of import functions as the built-in functions. It just uses underscores
instead of dots in the function names. So where you would use read.table(), the readr package gives you
read_table(). Similarly, it gives you read_csv() as a substitute for read.csv().

Chapter 3 ■ Data Manipulation

57

The readr package has different defaults for how to read data. For instance, it doesn’t by default
consider string columns as factors. Other than that, its main claim to fame is that it’s faster than the built-in R
functions. This shouldn’t concern you much if you put your data import code in a cached code chunk. In any
case, if loading data is an issue, you need to read Chapter 5.

Anyway, because the package exists, and because it is popular, I thought I should mention it.
Let’s look at how to import data using the functions in the package. We return to the breast cancer data we

imported earlier. We downloaded the breast cancer data and put it in a file called data/raw-breast-cancer.
csv, so we can try to read it from that file. Obviously, since it is a CSV file, we will use the read_csv() function.

raw_breast_cancer <- read_csv("data/raw-breast-cancer.csv")
Warning: Duplicated column names deduplicated: '1'
=> '1_1' [4], '1' => '1_2' [5], '1' => '1_3' [7],
'1' => '1_4' [9], '1' => '1_5' [10], '2' =>
'2_1' [11]
Parsed with column specification:
cols(
`1000025` = col_integer(),
`5` = col_integer(),
`1` = col_integer(),
`1_1` = col_integer(),
`1_2` = col_integer(),
`2` = col_integer(),
`1_3` = col_character(),
`3` = col_integer(),
`1_4` = col_integer(),
`1_5` = col_integer(),
`2_1` = col_integer()
)
raw_breast_cancer %>% head(3)
A tibble: 3 × 11
`1000025` `5` `1` `1_1` `1_2` `2` `1_3`
<int> <int> <int> <int> <int> <int> <chr>
1 1002945 5 4 4 5 7 10
2 1015425 3 1 1 1 2 2
3 1016277 6 8 8 1 3 4
... with 4 more variables: `3` <int>,
`1_4` <int>, `1_5` <int>, `2_1` <int>

The function works similar to the read.csv() function and interprets the first as the column names. We
don’t want that, but this function doesn’t have the option to tell it that the first line is not the names of the
columns. Instead, we can inform it what the names of the columns are and then it will read the first line as
actual data.

http://dx.doi.org/10.1007/978-1-4842-2671-1_5

Chapter 3 ■ Data Manipulation

58

raw_breast_cancer <- read_csv("data/raw-breast-cancer.csv",
 col_names = names(BreastCancer))
Parsed with column specification:
cols(
Id = col_integer(),
Cl.thickness = col_integer(),
Cell.size = col_integer(),
Cell.shape = col_integer(),
Marg.adhesion = col_integer(),
Epith.c.size = col_integer(),
Bare.nuclei = col_character(),
Bl.cromatin = col_integer(),
Normal.nucleoli = col_integer(),
Mitoses = col_integer(),
Class = col_integer()
)
raw_breast_cancer %>% head(3)
A tibble: 3 × 11
Id Cl.thickness Cell.size Cell.shape
<int> <int> <int> <int>
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
... with 7 more variables: Marg.adhesion <int>,
Epith.c.size <int>, Bare.nuclei <chr>,
Bl.cromatin <int>, Normal.nucleoli <int>,
Mitoses <int>, Class <int>

It imports data similarly to the functions we have already seen, but the printed results are slightly
different. This is just because it represents data frames slightly differently. There are different ways of
representing data frames, we will also read about this more soon, and the readr packages loads data in a
different format. That is why it prints differently. The way you interact with this representation is the same as
with any other data frame, so it doesn’t matter for this use.

Which functions you use to import data doesn’t much matter. You can use the built-in functions or the
readr functions. It is up to you.

Manipulating Data with dplyr
Data frames are ideal for representing data where each row is an observation of different parameters you
want to fit in models. Nearly all packages that implement statistical models or machine learning algorithms
in R work on data frames. But to actually manipulate a data frame, you often have to write a lot of code to
filter data, rearrange data, and summarize it in various ways. A few years ago, manipulating data frames
required a lot more programming than actually analyzing data. That has improved dramatically with the
dplyr package (pronounced “d plier” where “plier” is pronounced as the tool, “pliers”).

This package provides a number of convenient functions that let you modify data frames in various
ways and string them together in pipes using the %>% operator. As far as I know, this operator was first used
in this package, and if you only import dplyr you get the operator as well. However, magrittr implements
several extensions so I suggest you always import magrittr as well.

If you import dplyr, you get functions that let you build pipelines for data frame manipulation.

Chapter 3 ■ Data Manipulation

59

Some Useful dplyr Functions
I will not be able to go through all of the dplyr functionality in this chapter. In any case, it is updated
frequently enough that, by the time you read this, there will probably be more functionality than at the time I
wrote the chapter. So be sure to check the package’s documentation for updates.

This section describes the functions I use on a regular basis. They all take a data frame or equivalent
as the first argument so they work perfectly with pipelines. When I say “data frame equivalent,” I mean that
they take as an argument anything that works like a data frame. Quite often there are better representations
of data frames than the built-in data structure. For large datasets, it is often better to use a different
representation than the built-in data frame; something we will return to in Chapter 5. Some alternative
data structures are better because they can work with data on disk. R’s data frames have to be loaded
into memory, and others are just faster to do some operations on. Or maybe they just print better. If you
write the name of a data frame into the R terminal, it will print the entire data. Other representations will
automatically give you the head of the data.

The dplyr package has several representations. One I use a lot is the tbl_df representation. I use it just
because I prefer the output when I print such tables.

iris %>% tbl_df
A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5.0 3.4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
... with 140 more rows, and 2 more variables:
Petal.Width <dbl>, Species <fctr>

It only prints the first ten rows, and it doesn’t print all columns. The output is a little easier to read than
if you get the entire data frame.

Now on to the dplyr functions.

select(): Pick Selected Columns and Get Rid of the Rest
The select() function selects columns of the data frame. It is equivalent to indexing columns in the data.

You can use it to pick out a single column:

iris %>% tbl_df %>% select(Petal.Width) %>% head(3)
A tibble: 3 × 1
Petal.Width
<dbl>
1 0.2
2 0.2
3 0.2

http://dx.doi.org/10.1007/978-1-4842-2671-1_5

Chapter 3 ■ Data Manipulation

60

Or pick several columns:

iris %>% tbl_df %>%
 select(Sepal.Width, Petal.Length) %>% head(3)
A tibble: 3 × 2
Sepal.Width Petal.Length
<dbl> <dbl>
1 3.5 1.4
2 3.0 1.4
3 3.2 1.3

You can even give it ranges of columns:

iris %>% tbl_df %>%
 select(Sepal.Length:Petal.Length) %>% head(3)
A tibble: 3 × 3
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3

How that works depends on the order of the columns in the data frame and it is not something I find all
that useful.

The real usefulness comes with pattern matching on column names. There are different ways to pick
columns based on the column names:

iris %>% tbl_df %>%
 select(starts_with("Petal")) %>% head(3)
A tibble: 3 × 2
Petal.Length Petal.Width
<dbl> <dbl>
1 1.4 0.2
2 1.4 0.2
3 1.3 0.2
iris %>% tbl_df %>%
 select(ends_with("Width")) %>% head(3)
A tibble: 3 × 2
Sepal.Width Petal.Width
<dbl> <dbl>
1 3.5 0.2
2 3.0 0.2
3 3.2 0.2
iris %>% tbl_df %>%
 select(contains("etal")) %>% head(3)
A tibble: 3 × 2
Petal.Length Petal.Width
<dbl> <dbl>
1 1.4 0.2
2 1.4 0.2
3 1.3 0.2

Chapter 3 ■ Data Manipulation

61

iris %>% tbl_df %>%
 select(matches(".t.")) %>% head(3)
A tibble: 3 × 4
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
... with 1 more variables: Petal.Width <dbl>

The matches function searches for a regular expression, and in this example it will select any name that
contains a t except if it is the first or last letter.

Check out the documentation for dplyr to see which options you have for selecting columns.
You can also use select() to remove columns. The previous examples select the columns you want to

include, but if you use - before the selection criteria, you will exclude, instead of include, the columns you
specify.

iris %>% tbl_df %>%
 select(-starts_with("Petal")) %>% head(3)
A tibble: 3 × 3
Sepal.Length Sepal.Width Species
<dbl> <dbl> <fctr>
1 5.1 3.5 setosa
2 4.9 3.0 setosa
3 4.7 3.2 setosa

mutate():Add Computed Values to Your Data Frame
The mutate() function lets you add a column to your data frame by specifying an expression for how to
compute it:

iris %>% tbl_df %>%
 mutate(Petal.Width.plus.Length = Petal.Width + Petal.Length) %>%
 select(Species, Petal.Width.plus.Length) %>%
 head(3)
A tibble: 3 × 2
Species Petal.Width.plus.Length
<fctr> <dbl>
1 setosa 1.6
2 setosa 1.6
3 setosa 1.5

You can add more columns than one by specifying them in the mutate() function:

iris %>% tbl_df %>%
 mutate(Petal.Width.plus.Length = Petal.Width + Petal.Length,
 Sepal.Width.plus.Length = Sepal.Width + Sepal.Length) %>%
 select(Petal.Width.plus.Length, Sepal.Width.plus.Length) %>%
 head(3)

Chapter 3 ■ Data Manipulation

62

A tibble: 3 × 2
Petal.Width.plus.Length Sepal.Width.plus.Length
<dbl> <dbl>
1 1.6 8.6
2 1.6 7.9
3 1.5 7.9

You could of course also just call mutate() several times in your pipeline.

Transmute(): Add Computed Values to Your Data Frame and Get Rid of All
Other Columns
The transmute() function works just like the mutate() function, except it is combined with a select() so
the result is a data frame that only contains the new columns you make.

iris %>% tbl_df %>%
 transmute(Petal.Width.plus.Length = Petal.Width + Petal.Length) %>%
 head(3)
A tibble: 3 × 1
Petal.Width.plus.Length
<dbl>
1 1.6
2 1.6
3 1.5

arrange(): Reorder Your Data Frame by Sorting Columns
The arrange() function just reorders the data frame by sorting columns according to what you specify:

iris %>% tbl_df %>%
 arrange(Sepal.Length) %>%
 head(3)
A tibble: 3 × 5
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 4.3 3.0 1.1
2 4.4 2.9 1.4
3 4.4 3.0 1.3
... with 2 more variables: Petal.Width <dbl>,
Species <fctr>

Chapter 3 ■ Data Manipulation

63

By default, it orders numerical values in increasing order, but you can ask for decreasing order using the
desc() function:

iris %>% tbl_df %>%
 arrange(desc(Sepal.Length)) %>%
 head(3)
A tibble: 3 × 5
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 7.9 3.8 6.4
2 7.7 3.8 6.7
3 7.7 2.6 6.9
... with 2 more variables: Petal.Width <dbl>,
Species <fctr>

filter(): Pick Selected Rows and Get Rid of the Rest
The filter() function lets you pick out rows based on logical expressions. You give the function a predicate,
specifying what a row should satisfy to be included.

iris %>% tbl_df %>%
 filter(Sepal.Length > 5) %>%
 head(3)
A tibble: 3 × 5
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 5.4 3.9 1.7
3 5.4 3.7 1.5
... with 2 more variables: Petal.Width <dbl>,
Species <fctr>

You can get as inventive as you want here with the logical expressions:

iris %>% tbl_df %>%
 filter(Sepal.Length > 5 & Species == "virginica") %>%
 select(Species, Sepal.Length) %>%
 head(3)
A tibble: 3 × 2
Species Sepal.Length
<fctr> <dbl>
1 virginica 6.3
2 virginica 5.8
3 virginica 7.1

Chapter 3 ■ Data Manipulation

64

group_by(): Split Your Data Into Subtables Based on Column Values
The group_by() function tells dplyr that you want to work on data separated into different subsets.

By itself, it isn’t that useful. It just tells dplyr that, in future computations, it should consider different
subsets of the data as separate datasets. It is used with the summarise() function, where you want to
compute summary statistics.

You can group by one or more variables; you just specify the columns you want to group by as separate
arguments to the function. It works best when grouping by factors or discrete numbers; there isn’t much fun
in grouping by real numbers.

iris %>% tbl_df %>% group_by(Species) %>% head(3)
Source: local data frame [3 x 5]
Groups: Species [1]
##
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
... with 2 more variables: Petal.Width <dbl>,
Species <fctr>

Not much is happening here. You have restructured the data frame such that there are groupings, but
until you do something with the new data, there isn’t much to see. The power of group_by() is when it’s
combined with the summarise() function.

summarise/summarize(): Calculate Summary Statistics
The spelling of this function depends on which side of the pond you are on. It is the same function regardless
of how you spell it.

The summarise() function is used to compute summary statistics from your data frame. It lets you compute
different statistics by expressing what you want to summarize. For example, you can ask for the mean of values:

iris %>%
 summarise(Mean.Petal.Length = mean(Petal.Length),
 Mean.Sepal.Length = mean(Sepal.Length))
Mean.Petal.Length Mean.Sepal.Length
1 3.758 5.843333

Where it is really powerful is in the combination with group_by(). There you can split the data into
different groups and compute the summaries for each group:

iris %>%
 group_by(Species) %>%
 summarise(Mean.Petal.Length = mean(Petal.Length))
A tibble: 3 × 2
Species Mean.Petal.Length
<fctr> <dbl>
1 setosa 1.462
2 versicolor 4.260
3 virginica 5.552

Chapter 3 ■ Data Manipulation

65

A summary function worth mentioning here is n(), which just counts how many observations you have
in a subset of your data:

iris %>%
 summarise(Observations = n())
Observations
1 150

Again, this is more interesting when combined with group_by():

iris %>%
 group_by(Species) %>%
 summarise(Number.Of.Species = n())
A tibble: 3 × 2
Species Number.Of.Species
<fctr> <int>
1 setosa 50
2 versicolor 50
3 virginica 50

You can combine summary statistics simply by specifying more than one in the summary() function:

iris %>%
 group_by(Species) %>%
 summarise(Number.Of.Samples = n(),
 Mean.Petal.Length = mean(Petal.Length))
A tibble: 3 × 3
Species Number.Of.Samples Mean.Petal.Length
<fctr> <int> <dbl>
1 setosa 50 1.462
2 versicolor 50 4.260
3 virginica 50 5.552

Breast Cancer Data Manipulation
To get a little more feeling for how the dplyr package can help you explore data, let’s see it in action.

We’ll return to the breast cancer data. We start with the modifications we used to transform the raw data
we imported from the CVS file (stored in the variable raw_breast_cancer).

When we formatted this dataset, we had to structure the factor for the Class variable. We did this by
explicitly assigning to the Class variable using formatted_breast_cancer$Class, but we can do it directly as
a data frame transformation using the mutate() function from dplyr.

formatted_breast_cancer <-
 raw_breast_cancer %>%
 mutate(Class = Class %>% {
 c("2" = "benign", "4" = "malignant")[as.character(.)]
 } %>%
 unname %>%
 factor(levels = c("benign", "malignant")))

Chapter 3 ■ Data Manipulation

66

Here, we cannot assign to a dict variable inside the mutate() function, so I had to put the dictionary
construction before the subscript. It isn’t pretty, and it may not be that readable. This is one of the cases
where I would probably use a function to do the mapping.

format_class <- . %>% {
 dict <- c("2" = "benign", "4" = "malignant")
 dict[as.character(.)]
} %>% unname %>% factor(levels = c("benign", "malignant"))

formatted_breast_cancer <-
 raw_breast_cancer %>% mutate(Class = format_class(Class))

Now whether this is more readable, I don’t know. It might not be if you are not used to writing code as
pipelines like this, but once you get used to reading pipeline code, it isn’t too bad. In any case, it makes the
transformation very clear, and there can be no doubt that we are creating the formatted_breast_cancer
data frame by doing transformations on the raw_breast_cancer data frame.

Now let’s look a little at the actual data. This is a very crude analysis of the data we can do for
exploratory purposes. It is not a proper analysis, but we will return to that in Chapter 6.

We could be interested in how the different parameters affect the response variable, the Class variable.
For instance, are cell thickness different for benign and malignant tumors? To check that, we can group the
data by the Cell parameter and look at the mean cell thickness.

formatted_breast_cancer %>%
 group_by(Class) %>%
 summarise(mean.thickness = mean(Cl.thickness))
A tibble: 2 × 2
Class mean.thickness
<fctr> <dbl>
1 benign 2.956332
2 malignant 7.195021

It looks like there is a difference. Now whether this difference is significant requires a proper test—after
all, we are just comparing means here, and the variance could be huge. But just by exploring the data, we get
a hint that there might be something to work with.

We could ask the same question for other variables, like cell size:

formatted_breast_cancer %>%
 group_by(Class) %>%
 summarise(mean.size = mean(Cell.size))
A tibble: 2 × 2
Class mean.size
<fctr> <dbl>
1 benign 1.325328
2 malignant 6.572614

http://dx.doi.org/10.1007/978-1-4842-2671-1_6

Chapter 3 ■ Data Manipulation

67

Another way of looking at this could be to count, for each cell size, how many benign tumors and how many
malignant tumors we see. Here, we need to group by both cell size and class and then count, and we would
probably want to arrange the data so we get the information in order of increasing or decreasing cell size:

formatted_breast_cancer %>%
 arrange(Cell.size) %>%
 group_by(Cell.size, Class) %>%
 summarise(ClassCount = n())
Source: local data frame [18 x 3]
Groups: Cell.size [?]
##
Cell.size Class ClassCount
<int> <fctr> <int>
1 1 benign 380
2 1 malignant 4
3 2 benign 37
4 2 malignant 8
5 3 benign 27
6 3 malignant 25
7 4 benign 9
8 4 malignant 31
9 5 malignant 30
10 6 benign 2
11 6 malignant 25
12 7 benign 1
13 7 malignant 18
14 8 benign 1
15 8 malignant 28
16 9 benign 1
17 9 malignant 5
18 10 malignant 67

Here again, we get some useful information. It looks like there are more benign tumors compared to
malignant tumors when the cell size is small and more malignant tumors when the cell size is large. Again,
this is something we can start to work from when we later want to build statistical models.

This kind of grouping only works because the cell size is measured as discrete numbers. It wouldn’t be
helpful to group by a floating-point number. There plotting is more useful. But for this data, we have the cell
size as integers, so we can explore the data just by building tables in this way.

We can also try to look at combined parameters. We have already seen that both cell size and cell
thickness seem to be associated with how benign or malignant a tumor is, so let’s try to see how the cell
thickness behaves as a function of both class and cell size.

Chapter 3 ■ Data Manipulation

68

formatted_breast_cancer %>%
 group_by(Class, as.factor(Cell.size)) %>%
 summarise(mean.thickness = mean(Cl.thickness))
Source: local data frame [18 x 3]
Groups: Class [?]
##
Class `as.factor(Cell.size)`
<fctr> <fctr>
1 benign 1
2 benign 2
3 benign 3
4 benign 4
5 benign 6
6 benign 7
7 benign 8
8 benign 9
9 malignant 1
10 malignant 2
11 malignant 3
12 malignant 4
13 malignant 5
14 malignant 6
15 malignant 7
16 malignant 8
17 malignant 9
18 malignant 10
... with 1 more variables: mean.thickness <dbl>

I am not sure how much I learn from this. It seems that for the benign tumors, the thickness increases
with the cell size but for the malignant ones, there isn’t that pattern.

Maybe we can learn more by ordering the data in a different way. What if we look at the numbers of
benign and malignant tumors for each cell size and see what the thickness is?

formatted_breast_cancer %>%
 group_by(as.factor(Cell.size), Class) %>%
 summarise(mean.thickness = mean(Cl.thickness))
Source: local data frame [18 x 3]
Groups: as.factor(Cell.size) [?]
##
`as.factor(Cell.size)` Class
<fctr> <fctr>
1 1 benign
2 1 malignant
3 2 benign
4 2 malignant
5 3 benign
6 3 malignant
7 4 benign
8 4 malignant
9 5 malignant
10 6 benign

Chapter 3 ■ Data Manipulation

69

11 6 malignant
12 7 benign
13 7 malignant
14 8 benign
15 8 malignant
16 9 benign
17 9 malignant
18 10 malignant
... with 1 more variables: mean.thickness <dbl>

I am not sure how much we learned from that either, but at least it looks like for each cell size where we
have both benign and malignant tumors, the thickness is greater with the malignant tumors than with the
benign. That is something at least. A place to start the analysis. You can learn more when you start plotting
data and when do a proper statistical analysis. We return to that process in later chapters. For now, we leave
it at that.

Tidying Data with tidyr
I am not really sure where the concept of “tidy data” comes from. Hadley Wickham, the author of many of
the essential packages you will use in your R data analysis, describes tidy data as such (from http://vita.
had.co.nz/papers/tidy-data.pdf):

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A
dataset is messy or tidy depending on how rows, columns, and tables are matched
up with observations, variables, and types.

In my experience, tidy data means that I can plot or summarize the data efficiently. It mostly comes
down to which data is represented as columns in a data frame and which is not.

In practice, this means that I have columns in my data frame that I can work with for the analysis I want
to do. For example, if I want to look at the iris dataset and see how the Petal.Length varies among species,
I can look at the Species column against the Petal.Length column.

iris %>% select(Species, Petal.Length) %>% head(3)
Species Petal.Length
1 setosa 1.4
2 setosa 1.4
3 setosa 1.3

I have a column specifying the Species and another specifying the Petal.Length and it is easy enough
to look at their correlation. I can plot one against the other (we cover visualization in the next chapter). I can
let the x-axis be species and the y-axis be Petal.Length (see Figure 3-2).

iris %>% select(Species, Petal.Length) %>%
 qplot(Species, Petal.Length, geom = "boxplot", data = .)

http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf

Chapter 3 ■ Data Manipulation

70

This works because I have a column for the x-axis and another for the y-axis. But what happens if I
want to plot the different measurements of the irises to see how those are? Each measurement is a separate
column. They are Petal.Length, Petal.Width, and so on.

Now I have a bit of a problem because the different measurements are in different columns in my data
frame. I cannot easily map them to an x-axis and a y-axis.

The tidyr package addresses that.

library(tidyr)

It has a function, gather(), that modifies the data frame so columns become names in a factor and
other columns become values.

What it does is essentially transform the data frame so that you get one column containing the name of
your original columns and another column containing the values in those columns.

Figure 3-2. Plotting species versus petal length

Chapter 3 ■ Data Manipulation

71

In the iris dataset, we have observations for sepal length and sepal width. If we want to examine
Species versus Sepal.Length or Sepal.Width, we can readily do this. We have more of a problem if we want
to examine for each species both measurements at the same time. The data frame just doesn’t have the
structure we need for that.

If we want to see Sepal.Length and Sepal.Width as two measurements, we can plot against their
values. We would need to make a column in our data frame that tells us if a measurement is a length or a
width and another column that shows us what the measurement actually is. The gather() function from
tidyr lets you do that.

iris %>%
 gather(key = Attribute, value = Measurement,
 Sepal.Length, Sepal.Width) %>%
 select(Species, Attribute, Measurement) %>%
 head(3)
Species Attribute Measurement
1 setosa Sepal.Length 5.1
2 setosa Sepal.Length 4.9
3 setosa Sepal.Length 4.7

This code tells gather() to make a column called Attributes that contains the names of columns from
the input data frame and another called Measurement that will contain the values of the key columns. From
the resulting data frame, you can see that the Attribute column contains the Sepal.Length and Sepal.
Width names (well, you can see it if you don’t run it through head(); in the output here you only see Sepal.
Length), and another column that shows the Measurements.

This transforms the data into a form where we can plot the attributes against measurements (see
Figure 3-3 for the result).

iris %>%
 gather(key = Attribute, value = Measurement,
 Sepal.Length, Sepal.Width) %>%
 select(Species, Attribute, Measurement) %>%
 qplot(Attribute, Measurement,
 geom = "boxplot",
 facets = . ~ Species, data = .)

Chapter 3 ■ Data Manipulation

72

The tidyr package contains functions for both mapping columns to values and for mapping back from
values to columns. The gather() function is the one I regularly use so that is the only one I will mention here.

Exercises
It is time to put what you have learned into practice. There are only a few exercises, but I hope you will do
them. You can’t learn without doing exercises, after all.

Figure 3-3. Plot measurements versus values

Chapter 3 ■ Data Manipulation

73

Importing Data
To get a feeling of the steps in importing and transforming data, you need to try it yourself. So try finding a
dataset you want to import. You can do that from one of the repositories I listed in the Introduction:

•	 RDataMining.com (http://www.rdatamining.com/resources/data)

•	 UCI machine learning repository (http://archive.ics.uci.edu/ml/)

•	 KDNuggets (http://www.kdnuggets.com/datasets/index.html)

•	 Reddit r/datasets (https://www.reddit.com/r/datasets)

•	 GitHub awesome public datasets (https://github.com/caesar0301/awesome-
public-datasets)

Or maybe you already have a dataset you would like to analyze.
Have a look at your dataset and figure out which import function you need. You might have to set a few

parameters in the function to get the data loaded correctly, but with a bit of effort, you should be able to. For
column names, you should either choose some appropriate ones from reading the data description or if you
are loading something in that is already in mlbench, you can cheat as I did in the examples.

Using dplyr
Now take the data you just imported and examine various summaries. It is not so important what you look at
in the data, as it is that you try to summarize different aspects of it. We will look at proper analyses later. For
now, just use dplyr to explore your data.

Using tidyr
Look at the dplyr example in this chapter. There I plotted Sepal.Length and Sepal.Width for each species.
Do the same thing for Petal.Length and Petal.Width.

If there is something similar you can do with the dataset you imported in the first exercise, try doing it
with that dataset as well.

http://www.rdatamining.com/resources/data
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.kdnuggets.com/datasets/index.html
http://www.kdnuggets.com/datasets/index.html
https://www.reddit.com/r/datasets
https://www.reddit.com/r/datasets
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets

75© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_4

CHAPTER 4

Visualizing Data

Nothing really tells a story about your data as powerfully as good plots. Graphics capture your data much
better than summary statistics and often show you features that you would not be able to glean from
summaries alone.

R has very powerful tools for visualizing data. Unfortunately, it also has more tools than you’ll really
know what to do with. There are several different frameworks for visualizing data, and they are usually not
particularly compatible, so you cannot easily combine the various approaches.

In this chapter, we look at graphics in R. We cannot possibly cover all the plotting functionality, so I
will focus on a few frameworks. First, the basic graphics framework. It is not something I frequently use or
recommend that you use, but it is the default for many packages so you need to know about it. Secondly,
we discuss the ggplot2 framework, which is my preferred approach to visualizing data. It defines a small
domain-specific language for constructing data and is perfect for exploring data as long as you have it in a
data frame (and with a little bit more work for creating publication-ready plots).

Basic Graphics
The basic plotting system is implemented in the graphics package. You usually do not have to include the
package:

library(graphics)

It is already loaded when you start up R. But you can use this to get a list of the functions implemented
in the package:

library(help = "graphics")

This list isn’t exhaustive, though, since the main plotting function, plot(), is generic and many
packages write extensions to it to specialize plots.

In any case, you create basic plots using the plot() function. This function is a so-called generic
function, which means that what it does depends on the input it gets. So you can give it different first
arguments to get plots of various objects.

The simplest plot you can make is a scatterplot, which plot points for x and y values, as shown in
Figure 4-1.

x <- rnorm(50)
y <- rnorm(50)
plot(x, y)

Chapter 4 ■ Visualizing Data

76

The plot() function takes a data argument you can use to plot data from a data frame, but you cannot
write code like this to plot the cars data from the datasets package:

data(cars)
cars %>% plot(speed, dist, data = .)

Despite giving plot() the data frame, it will not recognize the variables for the x and y parameters, and
so adding plots to pipelines requires that you use the %$% operator to give plot() access to the variables in a
data frame. So, for instance, we can plot the cars data like this:

cars %$% plot(speed, dist, main="Cars data",
 xlab="Speed", ylab="Stopping distance")

Figure 4-2 uses main as a title and xlab and ylab specify the axes labels.

Figure 4-1. A typical scatterplot

Chapter 4 ■ Visualizing Data

77

The data argument of plot() is used when the variables of the plot are specified as a formula. It is
combined with a formula that the data parameter of the plot() function is used. If the x and y values are
specified in a formula, you can give the function a data frame that holds the variables and plot from that, as
follows:

cars %>% plot(dist ~ speed, data = .)

Figure 4-2. A scatterplot of speed and distance for cars

Chapter 4 ■ Visualizing Data

78

By default, the plot shows the data as points, but you can specify a type parameter to display the data in
other ways, such as lines or histograms (see Figure 4-3).

cars %$% plot(speed, dist, main="Cars data", type="h",
 xlab="Speed", ylab="Stopping distance")

5 10 15 20 25

0
20

40
60

80
12

0

Cars data

Speed

St
op

pi
ng

 d
is

ta
nc

e

Figure 4-3. Histogram plot of speed and distance for cars

Chapter 4 ■ Visualizing Data

79

Histogram of speed

speed

Fr
eq
ue
nc
y

0 5 10 15 20 25

0
5

10
15

Figure 4-4. Histogram for cars speed

To get a histogram of a single variable, use the function hist() instead of plot(), as shown in Figure 4-4.

cars %$% hist(speed)

What is meant by plot() being a generic function (something we cover in much greater detail in
Chapter 10) is that it will have different functionality depending on the parameters you give it.

Different kinds of objects can have their own plotting functionality, though, and they often do. This is
why you probably will use basic graphics from time to time even if you follow my advice and use ggplot2 for
your own plotting.

Linear regression, for example, created with the lm() function, has its own plotting routine. Try
evaluating the following expression:

cars %>% lm(dist ~ speed, data = .) %>% plot

It will give you several summary plots for visualizing the quality of the linear fit.
Many model-fitting algorithms return a fitted object that has specialized plotting functionality like this,

so when you have fitted a model, you can always try to call plot() on it and see if you get something useful
out of that.

Functions like plot() and hist() and a few more creates new plots, but there is also a large number of
functions for annotating a plot. Functions such as lines() or points() add lines and points, respectively, to
the current plot rather than making a new plot.

http://dx.doi.org/10.1007/978-1-4842-2671-1_10

Chapter 4 ■ Visualizing Data

80

You can see them in action if you plot the longley dataset and want to see both the unemployment rate
and people in the armed forces over the years.

data(longley)

Check the documentation for longley (?longley) for a description of the data. The data has
various statistics for each year from 1947 to 1962, including the number of people unemployed (variable
Unemployed) and the number of people in the armed forces (variable Armed.Forces). To plot both of these
on the same plot, you first plot Unemployed against years (variable Year) and then add lines for Armed.
Forces. See Figure 4-5.

longley %>% plot(Unemployed ~ Year, data = ., type = 'l')
longley %>% lines(Armed.Forces ~ Year, data = ., col = "blue")

1950 1955 1960

20
0

30
0

40
0

Year

Un
em

pl
oy
ed

Figure 4-5. Longley data showing Unemployed and Armed.Forces (the rounded line). The y-axis doesn’t cover
all of the Armed.Forces variable.

This almost gets you what you want, but the y-axis is chosen by the plot() function to match the range
of y-values in the call to plot() and Armed.Forces doesn’t quite fit into this range. To fit both, you have to set
the limits of the y-axis, which you do with parameter ylim (see Figure 4-6).

longley %$% plot(Unemployed ~ Year, type = 'l',
 ylim = range(c(Unemployed, Armed.Forces)))
longley %>% lines(Armed.Forces ~ Year, data = ., col = "blue")

Chapter 4 ■ Visualizing Data

81

Like plot(), the other plotting functions are usually generic. This means you can sometimes give them
objects such as fitted models. The abline() function is one such case. It plots lines of the form y = a + bx, but
there is a variant of it that takes a linear model as input and plot the best fitting line defined by the model. So
you can plot the cars data together with the best-fitted line using the combination of the lm() and abline()
functions (see Figure 4-7).

cars %>% plot(dist ~ speed, data = .)
cars %>% lm(dist ~ speed, data = .) %>% abline(col = "red")

1950 1955 1960

15
0

25
0

35
0

45
0

Year

Un
em

pl
oy
ed

Figure 4-6. Longley data showing Unemployed and Armed.Forces. The y-axis is wide enough to hold all the data.

Chapter 4 ■ Visualizing Data

82

Plotting using the basic graphics usually follows this pattern. First, there is a call to plot() that sets up the
canvas to plot on—possibly adjusting the axes to make sure that later points will fit in on it. Then any additional
data points are plotted—like the second time series you saw in the longley data. Finally, there might be some
annotation like adding text labels or margin notes (see the text() and mtext() functions for this).

If you want to select the shape of points or their color according to other data features, e.g., plotting the
iris data with data points in different shapes according to the Species variable, you need to map features to
columns (see Figure 4-8).

shape_map <- c("setosa" = 1,
 "versicolor" = 2,
 "virginica" = 3)
iris %$% plot(Petal.Length ~ Petal.Width,
 pch = shape_map[Species])

Figure 4-7. The cars data points annotated with the best fitting line

Chapter 4 ■ Visualizing Data

83

The basic graphics system has many functions for making publication quality plots, but most of them
work at a relatively low level. You have to map variables to colors or shapes explicitly if you want a variable to
determine how points should be displayed. You have to set the xlim and ylim parameters to have the right x
and y axis if the first points you plot do not cover the entire range of the data you want to plot. If you change
an axis—say log-transform or if you flip the x and y axis—then you will usually need to update several
function calls. If you want to have different subplots—so-called facets—for different subsets of your data, you
have to subset and plot this explicitly.

So while the basic graphics system is powerful for making good-looking final plots, it is not necessarily
optimal for exploring data, when you often want to try different ways of visualizing it.

The Grammar of Graphics and the ggplot2 Package
The ggplot2 package provides an alternative to the basic graphics that is based on what is called the
“grammar of graphics”. The idea here is that the system gives you a small domain-specific language for
creating plots (similar to how dplyr provides a domain-specific language for manipulating data frames).
You construct plots through a list of function calls—similar to how you would do so with basic graphic—but
these function calls do not directly write on a canvas independently of each other. Rather they all manipulate
a plot by either modifying it—scaling axes or splitting data into subsets that are plotted on different facets—
or adding layers of visualization to the plot.

To use it you, of course, need to import the library:

library(ggplot2)

0.5 1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

Petal.Width

Pe
ta
l.L
en
gt
h

Figure 4-8. Iris data plotted with different colors for different species

Chapter 4 ■ Visualizing Data

84

You can get a list of functions it defines using this:

library(help = "ggplot2")

I can only give a very brief tutorial-like introduction to the package here. There are full books written
about ggplot2 if you want to learn more. After reading this chapter, you should be able to construct basic
plots, and you should be able to find information about how to make more intricate plots by searching
online.

We ease into ggplot2 by first introducing the qplot() function (it stands for quick plot). This function
works similarly to plot()—although it handles things a little differently—but creates the same kind of
objects that the other ggplot2 functions operate on and so it can be combined with those.

Using qplot()
The qplot() function can be used to plot simple scatterplots the same way as the plot() function. To plot
the cars data (see Figure 4-9), you can use:

cars %>% qplot(speed, dist, data = .)

Figure 4-9. Plot of the cars data using qplot (ggplot2)

Chapter 4 ■ Visualizing Data

85

What happens is slightly different, though. The qplot() function actually creates a ggplot object rather
than directly plotting. When such objects are printed, the effect of printing is that they are plotted. That
sounds a bit confusing, but it is what happens. The function used for printing R objects is a generic function,
so the effect of printing an object depends on what the object implements for the print() function. For
ggplot objects, this function plots the object. It works well with the kind of code we write, though, because
in the previous code, the result of the entire expression is the return value of qplot() and when this is
evaluated at the outermost level in the R prompt, the result is printed. So the ggplot object is plotted.

The previous code is equivalent to this:

p <- cars %>% qplot(speed, dist, data = .)
p

Which is also equivalent to this:

p <- cars %>% qplot(speed, dist, data = .)
print(p)

The reason that it is the print() function rather than the plot() function—which would otherwise be
more natural—is that the print() function is automatically called when we evaluate an expression at the
R prompt. By using print(), we don’t need to print objects explicitly, we just need the plotting code to be
at the outermost level of the program. If you create a plot inside a function, however, it isn’t automatically
printed, and you do need to do this explicitly.

I mention all these details about objects being created and printed because the typical pattern for using
ggplot2 is to build such a ggplot object, do various operations on it to modify it, and then finally plot it by
printing it.

When you’re using qplot(), some transformations of the plotting object are done before qplot()
returns the object. The quick in quick plot consists of qplot() guessing at what kind of plot you are likely to
want and then doing transformations on a plot to get there. To get the full control of the final plot, we skip
qplot() and do all the transformations explicitly. I personally never use qplot() anymore myself, but to get
started and get familiar with ggplot2 it is not a bad function to use.

With qplot(), you can make the visualization of data points depend on data variables in a simpler way
than you can with plot(). To color the iris data according to Species in plot(), we needed to code up a
mapping and then transform the Species column to get the colors. With qplot(), you just specify that you
want the colors to depend on the Species variable, as shown in Figure 4-10.

iris %>% qplot(Petal.Width, Petal.Length ,
 color = Species, data = .)

Chapter 4 ■ Visualizing Data

86

We get the legend for free when we are mapping the color like this, but we can modify it by doing
operations on the ggplot object that qplot() returns, should we want to.

You can also use qplot() for other types of plots other than scatterplots. If you give it a single variable to
plot, it will assume that you want a histogram instead of a scatterplot (see Figure 4-11).

cars %>% qplot(speed, data = ., bins = 10)

Figure 4-10. Plot of iris data with colors determined by the species. Plotted with qplot (ggplot2).

Chapter 4 ■ Visualizing Data

87

If you want a density plot instead, you simply ask for it (see Figure 4-12):

cars %>% qplot(speed, data = ., geom = "density")

0

3

6

9

10 20

speed

co
un
t

Figure 4-11. Histogram of car speed created using qplot (ggplot2)

Chapter 4 ■ Visualizing Data

88

0.00

0.02

0.04

0.06

5 10 15 20 25

speed

de
ns
ity

Figure 4-12. Density of car speed created using qplot (ggplot2)

Similarly, you can get lines, boxplots, violin plots, etc. by specifying a geometry. Geometries determine
how the underlying data should be visualized. They might involve calculating some summary statistics,
which they do when we create a histogram or a density plot, or they might just visualize the raw data, as
we do with scatterplots, but they all describe how data should be visualized. Building a plot with ggplot2
involves adding geometries to your data, typically more than one geometry. To see how this is done,
though, we leave qplot() and look at how we can create the plots we made previously with qplot() using
geometries instead.

Using Geometries
By stringing together several geometry commands, you can display the same data in different ways—e.g.,
scatterplots combined with smoothed lines—or put several data sources on the same plot. Before you look at
more complex constructions, though, let’s look at how the qplot() plots could be made by explicitly calling
geometry functions.

You start with the scatterplot for cars where we used the following:

cars %>% qplot(speed, dist, data = .)

Chapter 4 ■ Visualizing Data

89

To create this plot using explicit geometries we want a ggplot object, we need to map the speed
parameter from the data frame to the x-axis and the dist parameter to the y-axis, and we need to plot the
data as points.

ggplot(cars) + geom_point(aes(x = speed, y = dist))

We create an object using the ggplot() function. We give it the cars data as input. When we give this
object the data frame, following operations can access the data. It is possible to override which data frame
the data we plot comes from, but unless otherwise specified, we have access to the data we gave ggplot()
when we created the initial object. Next, we do two things in the same function call. We specify that we want
the x- and y-values to be plotted as points by calling geom_point() and we map speed to the x-values and
dist to the y-values using the “aesthetics” function aes(). Aesthetics are responsible for mapping from data
to graphics. With the geom_point() geometry, the plot needs to have x- and y-values. The aesthetics tell the
function which variables in the data should be used for these.

The aes() function defines the mapping from data to graphics just for the geom_point() function.
Sometimes we want to have different mappings for different geometries and sometimes we do not. If we
want to share aesthetics between functions, we can set it in the ggplot() function call instead. Then, like the
data, the following functions can access it, and we don’t have to specify it for each subsequent function call.

ggplot(cars, aes(x = speed, y = dist)) + geom_point()

The ggplot() and geom_point() functions are combined using +. You use + to string together a series of
commands to modify a ggplot object in a way very similar to how we use %>% to string together a sequence
of data manipulations. The only reason that these are two different operators here are historical; if the %>%
operator had been in common use when ggplot2 was developed, it would most likely have used that. As it
is, you use +. Because + works slightly different in ggplot2 than %>% does in magrittr, you cannot just use
a function name when the function doesn’t take any arguments, so you need to include the parentheses in
geom_point().

Since ggplot() takes a data frame as its first argument, it is a typical pattern to first modify data in a
string of %>% operations and then give it to ggplot() and follow that with a series of + operations. Doing that
with cars would provide us with this simple pipeline—in larger applications, more steps are included in
both the %>% pipeline and the + plot composition.

cars %>% ggplot(aes(x = speed, y = dist)) + geom_point()

For the iris data, we used the following qplot() call to create a scatterplot with colors determined by
the Species variable.

iris %>% qplot(Petal.Width, Petal.Length ,
 color = Species, data = .)

The corresponding code using ggplot() and geom_point() looks like this:

iris %>% ggplot +
 geom_point(aes(x = Petal.Width, y = Petal.Length,
 color = Species))

Chapter 4 ■ Visualizing Data

90

Here we could also have put the aesthetics in the ggplot() call instead of in the geom_point() call.
When you specify the color as an aesthetic, you let it depend on another variable in the data. If you

instead want to hard-wire a color—or any graphics parameter in general—you simply have to move the
parameter assignment outside the aes() call. If geom_point() gets assigned a color parameter, it will use
that color for the points; if it doesn’t, it will get the color from the aesthetics. See Figure 4-13.

iris %>% ggplot +
 geom_point(aes(x = Petal.Width, y = Petal.Length),
 color = "red")

Figure 4-13. Iris data where the color of the points is hardwired

The qplot() code for plotting a histogram and a density plot:

cars %>% qplot(speed, data = ., bins = 10)
cars %>% qplot(speed, data = ., geom = "density")

Can be constructed using geom_histogram() and geom_density(), respectively:

cars %>% ggplot + geom_histogram(aes(x = speed), bins = 10)
cars %>% ggplot + geom_density(aes(x = speed))

Chapter 4 ■ Visualizing Data

91

You can combine more geometries to display the data in more than one way. This isn’t always
meaningful and depends on how data is summarized—combining scatterplots and histograms might not
be so useful. However, you can, for example, make a plot showing the car speed both as a histogram and a
density (see Figure 4-14).

cars %>% ggplot(aes(x = speed, y = ..count..)) +
 geom_histogram(bins = 10) +
 geom_density()

0

3

6

9

10 20

speed

co
un
t

Figure 4-14. Combined histogram and density plot for speed from the cars data

It just requires you to call both geom_historam() and geom_density(). You do also need to add an extra
aesthetics option for the y-value. This is because histograms by default will show the counts of how many
observations fall within a bin on the y-axis, while densities integrate to one. By setting y = ..count.., you
tell both geometries to use counts as the y-axis. To get densities instead, you can use y = ..density...

You can also use combinations of geometries to show summary statistics of data together with a
scatterplot. We added the result of a linear fit of the data to the scatterplot we created for the cars data with
plot(). To do the same with ggplot2, you add a geom_smooth() call, as shown in Figure 4-15.

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() + geom_smooth(method = "lm")

Chapter 4 ■ Visualizing Data

92

Figure 4-15. Cars data plotted with a linear model smoothing

You tell the geom_smooth() call to use the linear model method. If you didn’t do this, it would instead
plot a loess smoothing, as illustrated in Figure 4-16.

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() + geom_smooth()
`geom_smooth()` using method = 'loess'

Chapter 4 ■ Visualizing Data

93

You can also use more than one geometry to plot more than one variable. For the longley data, you
could use two different geom_line() to plot the Unemployed and the Armed.Forces data. See Figure 4-17.

longley %>% ggplot(aes(x = Year)) +
 geom_line(aes(y = Unemployed)) +
 geom_line(aes(y = Armed.Forces), color = "blue")

Figure 4-16. Cars data plotted with a loess smoothing

Chapter 4 ■ Visualizing Data

94

Here, we set the x-value aesthetics in the ggplot() function since it is shared by the two geom_line()
geometries, but we set the y-value in the two calls, and we set the color for the Armed.Forces data, hard-
wiring it instead of setting it as an aesthetic. Because we are modifying a plot rather than just drawing on a
canvas with the second geom_line() call, the y-axis is adjusted to fit both lines. You, therefore, do not need
to set the y-axis limit anywhere.

You can also combine geom_line() and geom_point() to get both lines and points for your data, as
shown in Figure 4-18.

longley %>% ggplot(aes(x = Year)) +
 geom_point(aes(y = Unemployed)) +
 geom_point(aes(y = Armed.Forces), color = "blue") +
 geom_line(aes(y = Unemployed)) +
 geom_line(aes(y = Armed.Forces), color = "blue")

200

300

400

1950 1955 1960

Year

Un
em

pl
oy
ed

Figure 4-17. Longley data plotted with ggplot2

Chapter 4 ■ Visualizing Data

95

Figure 4-18. Longley data plotted with ggplot2 using both points and lines

Plotting two variables using different aesthetics like this is fine for most applications, but it is not always
the optimal way to do it. The problem is that we are representing that the two measures, Unemployment and
Armed.Forces, are two different measures we have per year and that we can plot together in the plotting
code. The data is not reflecting this as something we can compute on. Should we want to split the two
measures into subplots instead of plotting them in the same frame, we would need to write new plotting
code. A better way is to reformat the data frame so we have one column telling us whether an observation
is Unemployment or Armed.Forces and another using the values and then setting the color according to the
first column and the y-axis according to the other. You can do this with the gather() function from the tidyr
package, as shown in Figure 4-19.

longley %>% gather(key, value, Unemployed, Armed.Forces) %>%
 ggplot(aes(x = Year, y = value, color = key)) + geom_line()

Chapter 4 ■ Visualizing Data

96

Once you have transformed the data, you can change the plot with little extra code. If, for instance,
you want the two values on different facets, we can simply specify this (instead of setting the colors). See
Figure 4-20.

longley %>% gather(key, value, Unemployed, Armed.Forces) %>%
 ggplot(aes(x = Year, y = value)) + geom_line() +
 facet_grid(key ~ .)

200

300

400

1950 1955 1960
Year

va
lu
e key

Armed.Forces
Unemployed

Figure 4-19. Longley data plotted using tidy data

Chapter 4 ■ Visualizing Data

97

Arm
ed.Forces

Unem
ployed

1950 1955 1960

200

300

400

200

300

400

Year

va
lu
e

Figure 4-20. Longley data plotted using facets

Facets
Facets are subplots showing different subsets of the data. In the previous example, we show the Armed.
Forces variable in one subplot and the Unemployed variable in another. You can specify facets using one
of two functions—facet_grid() creates facets from a formula rows ~ columns and facet_wrap() creates
facets from a formula ~ variables. The former creates a row for the variables on the left side of the formula
and a column for the variables on the right side and builds facets based on this. In the previous example,
we used “key ~ .”, so we get a row per key. Had we used “. ~ key” instead, we would get a column per
key. facet_wrap() doesn’t explicitly set up rows and columns, it simply makes a facet per combination of
variables on the right side of the formula and wraps the facets in a grid to display them.

By default, ggplot2 will try to put values on the same axes when you create facets using facet_grid().
So in the previous example, the Armed.Forces values are shown on the same x- and y-axis as Unemployment
even though the y-values, as we have seen, are not covering the same range. The parameter scales can be
used to change this. Facets within a column will always have the same x-axis, however, and facets within a
row will have the same y-axis.

Chapter 4 ■ Visualizing Data

98

We can see this in action with the iris data. We can plot the four measurements for each species in
different facets, but they are on slightly different scales so we will only get a good look at the range of values
for the largest range. We can fix this by setting the y-axis free. Contrast Figure 4-21 and Figure 4-22.

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value)) +
 geom_boxplot() +
 facet_grid(Measurement ~ .)

Figure 4-21. Iris measures plotted on the same y-axis

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value)) +
 geom_boxplot() +
 facet_grid(Measurement ~ ., scale = "free_y")

Chapter 4 ■ Visualizing Data

99

Figure 4-22. Iris measures plotted on different y-axes

By default, all the facets will have the same size. You can modify this using the space variable. This is
mainly useful for categorical values if one facet has many more levels than another.

The labels used for facets are taken from the factors in the variables used to construct the facet. This is a
good default but for print quality plots, you often want to modify the labels a little. You can do this using the
labeller parameter to facet_grid(). This parameter takes a function as an argument that is responsible
for constructing labels. The easiest way to construct this function is using another function, labeller().
You can give labeller() a named argument and specify a factor to make labels, with lookup tables that map
the levels to the labels. For the iris data, we can use this to remove the dots in the measurement names, as
shown in Figure 4-23.

label_map <- c(Petal.Width = "Petal Width",
 Petal.Length = "Petal Length",
 Sepal.Width = "Sepal Width",
 Sepal.Length = "Sepal Length")

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value)) +
 geom_boxplot() +
 facet_grid(Measurement ~ ., scale = "free_y",
 labeller = labeller(Measurement = label_map))

Chapter 4 ■ Visualizing Data

100

Scaling
Geometries specify part of how data should be visualized and scales another. The geometries tell ggplot2
how you want your data mapped to visual components, like points or densities, and scales tell ggplot2 how
dimensions should be visualized. The simplest scales to think about are the x- and y-axes, where values are
mapped to positions on the plot as you are familiar with, but scales also apply to visual properties such as
colors.

The simplest way to use scales is to put labels on the axes. You can also do this using the xlab() and
ylab() functions, and if setting labels were all you were interested in, you could do this. However, in this
example, you see a different use of scales. To set the labels in the cars scatterplot, you write:

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() + geom_smooth(method = "lm") +
 scale_x_continuous("Speed") +
 scale_y_continuous("Stopping Distance")

Figure 4-23. Iris measures with measure labels adjusted

Chapter 4 ■ Visualizing Data

101

Both the x- and y-axis are showing a continuous value, so we scale like that and give the scale a name as
the parameter. This will then be the name placed on the axes labels. In general, you can use the scale_x/y_
continuous() functions to control the axis graphics. For instance, to set the breakpoints shown, if you
wanted to plot the longley data with a tickmark for every year instead of every five years, you could set the
breakpoints to every year:

longley %>% gather(key, value, Unemployed, Armed.Forces) %>%
 ggplot(aes(x = Year, y = value)) + geom_line() +
 scale_x_continuous(breaks = 1947:1962) +
 facet_grid(key ~ .)

You can also use the scale to modify the labels shown at tickmarks or set limits on the values displayed.
Scales are also the way to transform data shown on an axis. If you want to log-transform the x- or y-axis,

you can use the scale_x/y_log10() functions, for instance. This usually leads to a nicer plot since the
plotting code then knows that you want to show data on a log scale rather than showing transformed data on
a linear scale.

To reverse an axis, use scale_x/y_reverse(). This is better than reversing the data mapped in the
aesthetic since all the plotting code will just be updated to the reversed axis; you don’t need to update x- or
y-values in all the function geometry calls. For instance, to show the speed in the cars data in decreasing
instead of increasing order, you could write:

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() + geom_smooth(method = "lm") +
 scale_x_reverse("Speed") +
 scale_y_continuous("Stopping Distance")

Neither axis has to be continuous, though. If you map a factor to x or y in the aesthetics, you get a
discrete axis. As an example, Figure 4-24 shows the iris data plotted with the factor Species on the x-axis.

iris %>% ggplot(aes(x = Species, y = Petal.Length)) +
 geom_boxplot() + geom_jitter(width = 0.1, height = 0.1)

Chapter 4 ■ Visualizing Data

102

Since Species is a factor, the x-axis will be discrete, and you can show the data as a boxplot and the
individual data points using the jitter geometry. If you want to modify the x-axis, you need to use scale_x_
discrete() instead of scale_x_continuous().

You could, for instance, use this to modify the labels on the axis to put the species in capital letters:

iris %>% ggplot(aes(x = Species, y = Petal.Length)) +
 geom_boxplot() + geom_jitter(width = 0.1, height = 0.1) +
 scale_x_discrete(labels = c("setosa" = "Setosa",
 "versicolor" = "Versicolor",
 "virginica" = "Virginica"))

You just provide a map from the data levels to labels. There is more than one way to set the labels, but
this is by far the easiest.

Scales are also used to control colors. You use the various scale_color_ functions to control the color of
lines and points, and you use the scale_fill_ functions to control the color of filled areas.

Figure 4-24. Iris data plotted with a factor on the x-axis

Chapter 4 ■ Visualizing Data

103

You can plot the iris measurements per species and give them a different color for each species. Since
it is the boxes you want to color, you need to use the fill aesthetics. Otherwise, you would just color the
lines around the boxes. See Figure 4-25.

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value, fill = Species)) +
 geom_boxplot() +
 facet_grid(Measurement ~ ., scale = "free_y",
 labeller = labeller(Measurement = label_map))

There are different ways to modify color scales. There are two classes, as there are for axes—discrete
and continuous. The Species variable in iris is discrete, so to modify the fill color, you need one of the
functions for that. The simplest is just to give a color per species explicitly. You can do that with the scale_
fill_manual() function, as shown in Figure 4-26.

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value, fill = Species)) +
 geom_boxplot() +
 scale_fill_manual(values = c("red", "green", "blue")) +
 facet_grid(Measurement ~ ., scale = "free_y",
 labeller = labeller(Measurement = label_map))

Figure 4-25. Iris data plotted with default fill colors

Chapter 4 ■ Visualizing Data

104

Explicitly setting colors is risky business, though, unless you have a good feeling for how colors
work together and which combinations can be problematic for color-blind people. It is better to use one
of the “brewer” choices. These are methods for constructing good combinations of colors (see http://
colorbrewer2.org) and you can use them with the scale_fill_brewer() function, as shown in Figure 4-27.

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value, fill = Species)) +
 geom_boxplot() +
 scale_fill_brewer(palette = "Greens") +
 facet_grid(Measurement ~ ., scale = "free_y",
 labeller = labeller(Measurement = label_map))

Petal Length
Petal W

idth
Sepal Length

Sepal W
idth

setosa versicolor virginica

2

4

6

0.0
0.5
1.0
1.5
2.0
2.5

5

6

7

8

2.0
2.5
3.0
3.5
4.0
4.5

Species

Va
lu

e

Species
setosa
versicolor
virginica

Figure 4-26. Iris data plotted with custom fill colors

http://colorbrewer2.org/
http://colorbrewer2.org/

Chapter 4 ■ Visualizing Data

105

Themes and Other Graphics Transformations
Most of using ggplot2 consist of specifying geometries and scales to control how data is mapped to visual
components, but you also have control over how the final plot will look through functions that only concern
the final visual result.

Most of this is done by modifying the so-called theme. If you have tried the examples I gave in this
chapter yourself, the results might look different from the figures in this book. This is because I have set up a
default theme for the book using this command:

theme_set(theme_bw())

The theme_bw() sets up the look of the figures you see here. You can add a theme to a plot using + as you
would any other ggplot2 modification or set it as default as I have done here. There are several themes you
can use; look for functions that start with theme_. They all can be modified for more control over a plot.

Besides themes, various other functions also affect the way a plot looks. There is far too much to cover
here on all the things you can do with themes and graphics transformations, but I can show you an example
that will give you an idea of what you can achieve.

You can for instance change coordinate systems using various coord_ functions—the simplest is just
flipping x and y with coord_flip(). This can of course also be achieved just by changing the aesthetics, but
flipping the coordinates of a complex plot can be easier than updating aesthetics several places. For the iris
plot we looked at before, I might want to change the axes.

Figure 4-27. Iris data plotted with a brewer fill color

Chapter 4 ■ Visualizing Data

106

I also want to put the measurement labels on the left instead of on the right. You can control the
placement of facet labels using the switch option to facet_grid(). Giving the switch parameter the value y
will switch the location of that label.

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value, fill = Species)) +
 geom_boxplot() +
 scale_x_discrete(labels = c("setosa" = "Setosa",
 "versicolor" = "Versicolor",
 "virginica" = "Virginica")) +
 scale_fill_brewer(palette = "Greens") +
 facet_grid(Measurement ~ ., switch = "y",
 labeller = labeller(Measurement = label_map)) +
 coord_flip()

Figure 4-28. Iris with flipped coordinates and switched facet labels

Chapter 4 ■ Visualizing Data

107

If I just flip the coordinates the axis labels on the new x-axis will be wrong if I tell the facet_grid()
function to have a free y-axis. With a free y-axis, it would have different ranges for the y-values, which is what
we want, but after flipping the coordinates, we will see the values for only one of the y-axes. The other values
will be plotted as if they were on the same axis, but they won’t be. So I have removed the scale parameter of
facet_grid(). Try to put it back and see what happens.

The result so far is shown in Figure 4-28. We flipped coordinates and moved labels, but the labels look
ugly with the color background. You can remove it by modifying the theme using theme(strip.background
= element_blank()). It just sets the strip.background, which is the graphical property of facet labels, to
a blank element, so in effect it removes the background color. We can also move the legend label using a
theme modification such as theme(legend.position="top").

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value, fill = Species)) +
 geom_boxplot() +
 scale_x_discrete(labels = c("setosa" = "Setosa",
 "versicolor" = "Versicolor",
 "virginica" = "Virginica")) +
 scale_fill_brewer(palette = "Greens") +
 facet_grid(Measurement ~ ., switch = "y",
 labeller = labeller(Measurement = label_map)) +
 coord_flip() +
 theme(strip.background = element_blank()) +
 theme(legend.position="top")

Figure 4-29. Iris data with theme modifications

Chapter 4 ■ Visualizing Data

108

The result is now shown in Figure 4-29. It is pretty close to something we could print. We want the
labeled species to be in capital letters just like the axis labels.

Well, you know how to do that using the labels parameter to a scale, so the final plotting code could
look like this:

label_map <- c(Petal.Width = "Petal Width",
 Petal.Length = "Petal Length",
 Sepal.Width = "Sepal Width",
 Sepal.Length = "Sepal Length")
species_map <- c(setosa = "Setosa",
 versicolor = "Versicolor",
 virginica = "Virginica")

iris %>% gather(Measurement, Value, -Species) %>%
 ggplot(aes(x = Species, y = Value, fill = Species)) +
 geom_boxplot() +
 scale_x_discrete(labels = species_map) +
 scale_fill_brewer(palette = "Greens", labels = species_map) +
 facet_grid(Measurement ~ ., switch = "y",
 labeller = labeller(Measurement = label_map)) +
 coord_flip() +
 theme(strip.background = element_blank()) +
 theme(legend.position="top")

The final result is shown in Figure 4-30.

Chapter 4 ■ Visualizing Data

109

Figure 4-30. Final version of iris plot

Figures with Multiple Plots
Facets cover many situations where you want to have multiple panels in the same plot, but not all. You
use facets when you want to display different subsets of the data in separate panels, but essentially have
the same plot for the subsets. Sometimes you want to combine different types of plots, or plots of different
datasets, as subplots in different panels. For that, you need to combine otherwise independent plots.

The ggplot2 package doesn’t directly support combining multiple plots, but it can be achieved using
the underlying graphics system, grid. Working with basic grid you have many low-level tools for modifying
graphics, but for just combining plots you want more high-level functions, and you can get them from the
gridExtra package.

To combine plots, you first create them as you normally would. So, for example, you could make two
plots of the iris data like this:

petal <- iris %>% ggplot() +
 geom_point(aes(x = Petal.Width, y = Petal.Length,
 color = Species)) +
 theme(legend.position="none")

sepal <- iris %>% ggplot() +
 geom_point(aes(x = Sepal.Width, y = Sepal.Length,
 color = Species)) +
 theme(legend.position="none")

Chapter 4 ■ Visualizing Data

110

You then import the gridExtra package:

library(gridExtra)

You then use the grid.arrange() function to create a grid of plots, putting in the two plots you just
created, as shown in Figure 4-31.

grid.arrange(petal, sepal, ncol = 2)

Figure 4-31. Combining two plots of the iris data using grid.arrange

Another approach I like to use is the plot_grid() function from the cowplot package. This package
contains several functions developed by Claus O. Wilke (where the cow comes from) for his plotting needs.
Loading it will redefine the default ggplot2 theme. You can use the theme_set() function to change it back if
you don’t like the theme that cowplot provides.

Anyway, to create a plot with subplots using cowplot, you have to import the package as follows:

library(cowplot)

If you don’t want the theme it chooses, you need to change it using theme_set(). Otherwise, you can
combine the plots defined before using plot_grid(). See Figure 4-32.

plot_grid(petal, sepal, labels = c("A", "B"))

Chapter 4 ■ Visualizing Data

111

Figure 4-32. Combining two plots of the iris data using cowplot

Exercises
In the previous chapter, you should have imported a dataset and used dplyr and tidyr to explore it
using summary statistics. Now do the same thing using plotting. If you looked at summary statistics, try
representing these as boxplots or smoothed scatterplots. If you have different variables that you gathered
using tidyr, try to plot the data similar to what you saw with iris.

113© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_5

CHAPTER 5

Working with Large Datasets

The concept of Big Data refers to very large datasets, sets of sizes where you need data warehouses to
store the data, where you typically need sophisticated algorithms to handle the data, and distributed
computations to get anywhere with it. At the very least, we talk many gigabytes of data but also are often
dealing with terabytes or exabytes.

Dealing with Big Data is also part of data science, but it is beyond the scope of this book. This chapter
is on large datasets and how to deal with data that slows down your analysis, but it is not about datasets so
large that you cannot analyze them on your own desktop computer.

If we ignore the Big Data issue, what a large dataset is depends very much on what you want to do with
the data. That comes down to the complexity of what you are trying to achieve. Some algorithms are fast
and can scan through data in linear time—meaning that the time it takes to analyze the data is linear in the
number of data points—while others take exponential time and cannot actually be applied to datasets with
more than a few tens or hundreds of data points. The science of what you can do with data in a given amount
of time, or a given amount of space (be it RAM or disk space or whatever you need), is called complexity
theory and is one of the fundamental topics in computer science. In practical terms, though, it usually boils
down to how long you are willing to wait for an analysis to be done and it is a very subjective decision.

In this chapter, we consider several cases I have found in my own work where data gets a bit too large to
do what I want, and I have to deal with it in various ways. Your cases are likely to be different, but maybe you
can get some inspiration, at least, from these cases.

Subsample Your Data Before You Analyze the Full Dataset
The first point I want to make, though, is this: You very rarely need to analyze a complete dataset to get at
least an idea of how the data behaves. Unless you are looking for very rare events, you will get as much a
feeling for the data looking at a few thousands of data points as you would from looking at a few million.

Sometimes you do need very large data to find what you are looking for. This is, for example, the case
when looking for associations between genetic variation and common diseases where the association can
be very weak, and you need lots of data to distinguish between chance associations and true associations.
But for most signals in data that are of practical importance, you will see the signals in smaller datasets. So
before you throw the full power of all your data at an analysis, especially if that analysis turns out to be very
slow, you should explore a smaller sample of your data.

Here it is important that you pick a random sample. There is often structure in data beyond the columns
in a data frame. This could be structure caused by when the data was collected. If the data is ordered by
when the data was collected, then the first data points you have can be different from later data points.
This isn’t explicitly represented in the data, but the structure is there nevertheless. Randomizing your data
alleviates problems that can arise from this. Randomizing might remove a subtle signal, but with the power
of statistics, we can deal with random noise. It is much harder to deal with consistent biases we just don’t
know about.

Chapter 5 ■ Working With Large Datasets

114

If you have a large dataset, and your analysis is being slowed down because of it, don’t be afraid to pick
a random subset and analyze that. It is possible that you will see signals in the subsample that is not present
in the full dataset, but it is much less likely than you might fear. When you are looking for signals in your
data, you always have to worry about false signals. But it is not more liable to pop up in a smaller dataset
than in a larger. And with a larger dataset to check your results against later, you are less likely to stick with
wrong results at the end of your analysis.

Getting spurious results is mostly a concern with traditional hypothesis testing. If you set a threshold
for when a signal is significant at 5% for p-values, you will see spurious results one time out of twenty. If you
don’t correct for multiple testing, you will be almost guaranteed to see false results. These are unlikely to
survive when you later throw the complete data at your models.

In any case, you are more likely to have statistically significant deviations from a null model, which is
completely irrelevant to your analysis, with large datasets. We typically use very simple null models when
analyzing data and any complex dataset is not generated from a simple null model. With enough data, the
chances are that anything you look at will have significant deviations from your simple null model. The real
world does not draw samples from a simple linear model. There is always some extra complexity. You won’t
see it with a few data points but with enough data, you can reject any null model. It doesn’t mean that what
you see has any practical importance.

If you have signals you discover in a smaller subset of your data, and these signals persist when you look
at the full dataset, you can trust them that much more.

So if the data size slows you down, downsample and analyze a subset of it.
You can use the dplyr functions sample_n() and sample_frac() to sample from a data frame. Use

sample_n() to get a fixed number of rows and sample_frac() to get a fraction of the data:

iris %>% sample_n(size = 5)
Sepal.Length Sepal.Width Petal.Length
15 5.8 4.0 1.2
59 6.6 2.9 4.6
52 6.4 3.2 4.5
128 6.1 3.0 4.9
141 6.7 3.1 5.6
Petal.Width Species
15 0.2 setosa
59 1.3 versicolor
52 1.5 versicolor
128 1.8 virginica
141 2.4 virginica
iris %>% sample_frac(size = 0.02)
Sepal.Length Sepal.Width Petal.Length
61 5.0 2.0 3.5
127 6.2 2.8 4.8
48 4.6 3.2 1.4
Petal.Width Species
61 1.0 versicolor
127 1.8 virginica
48 0.2 setosa

Of course, to sample using dplyr, you need your data in a form that dplyr can manipulate, and if the
data is too large even to load into R, then you cannot have it in a data frame to sample from, to begin with.
Luckily, dplyr has support for using data that is stored on disk rather than in RAM, in various backend
formats, as you will see soon. It is, for example, possible to connect a database to dplyr and sample from a
large dataset this way.

Chapter 5 ■ Working With Large Datasets

115

Running Out of Memory During Analysis
R can be very wasteful of RAM. Even if your dataset is small enough to fit in memory and small enough that
the analysis time is not a substantial problem, it is easy to run out of memory because R remembers more
than is immediately obvious.

In R, all objects are immutable,1 so whenever you modify an object, you are actually creating a new
object. The implementation of this is smart enough that you only have independent copies of data when it
actually is different. Having two different variables to refer to the same data frame doesn’t mean that the data
frame is represented twice, but if you modify the data frame in one of the variables, then R will create a copy
with the modifications and you now have the data twice, accessible through the two variables. If you refer to
the data frame through only one variable, then R is smart enough not to make a copy, though.

You can examine memory usage and memory changes using the pryr package:

library(pryr)

For example, you can see what the cost is of creating a new vector:

mem_change(x <- rnorm(10000))
80.5 kB

Modifying this vector—which R doesn’t actually allow, so what happens is that a new copy is made with
the modification—doesn’t significantly increase the memory usage because R is smart about only copying
when more than one variable refers to an object:

mem_change(x[1] <- 0)
1.3 kB

If we assign the vector to another variable, we do not use twice the memory, because both variables will
just refer to the same object:

mem_change(y <- x)
1.36 kB

But if we modify one of the vectors, we will have to make a copy so the other vector remains the same:

mem_change(x[1] <- 0)
81.4 kB

This is another reason, besides polluting the namespace, for using pipelines rather than assigning to
many variables during an analysis. You are fine if you assign back to a variable, though, so the %<>% operator
does not lead to a lot of copying.

Even when using pipelines, you still have to be careful, though. Many functions in R will still copy data.
If a function does any modification to data, it is copied to a local variable. There might be some sharing

so for example just referring to a data frame in a local variable does not create a copy, but if you, for example,
split a data frame into training and test data in a function then you will be copying and now represent all the
data twice. This memory is freed after the function finishes its computations so it is really only a problem if
you are very close to the limit of RAM.

1This is not entirely true; it is possible to make mutable objects, but it requires some work. Unless you go out of your way
to create mutable objects, this statement is true.

Chapter 5 ■ Working With Large Datasets

116

If such copied data is saved in the output of the function, however, it is not freed when the function
returns. It is, for example, not unusual that model fitting functions will save the entire fitting data in the
returned object. The linear regression function, lm(), will store not only the input data frame but also the
response variable and all explanatory variables, essentially making copies so all the data is stored twice
(and it does so in a way that does not reuse memory). You have to tell it explicitly not to, using parameters
model, x, y, and qr if you want to avoid this.

When you have problems with running out of memory in a data analysis in R, it is usually not that you
cannot represent your data initially but that you end up having many copies. You can avoid this to some
extent by not storing temporary data frames in variables and by not implicitly storing data frames in the
output of functions, or you can explicitly remove stored data using the rm() function to free up memory.

Too Large to Plot
The first point where I typically run into problems with large datasets is not that I run out of RAM but when
I am plotting. Especially when making scatterplots; box plots and histograms summarize the data and are
usually not a problem.

There are two problems when making scatterplots with a lot of data. The first is that if you create files
from scatterplots, you will create a plot that contains every single individual point. That can be a very large
file. Worse, it will take forever to plot, since a viewer will have to consider every single point. You can avoid
this problem by creating raster graphics instead of PDFs, but that takes us to the second issue. With too many
points, a scatterplot is just not informative any longer. Points will overlap, and you cannot see how many
individual data points fall on the plot. This usually becomes a problem long before the computational time
becomes an issue.

If, for example, we have a data frame with 10000 points:

d <- data.frame(x = rnorm(10000), y = rnorm(10000))

We can still make a scatterplot, and if the plot is saved as raster graphic instead of PDF, the file will not
be too large to watch or print:

d %>% ggplot(aes(x = x, y = y)) +
 geom_point()

The result will just not be all that informative; see Figure 5-1. The points are shown on top of each other
making it hard to see if the big black cloud of points has different densities.

Chapter 5 ■ Working With Large Datasets

117

The solution is to represent points in a way such that they still visible even when there are many
overlapping points. If the points are overlapping because the actually have the same x- or y-coordinates,
you can jitter them, as you saw in the previous chapter. Another solution to the same problem is plotting the
points with alpha levels so each point is partly transparent. You can see the density of points because they
are partly transparent, but you still end up with a plot with very many points, as shown in Figure 5-2.

d %>% ggplot(aes(x = x, y = y)) +
 geom_point(alpha = 0.2)

Figure 5-1. A scatterplot with too many points

Chapter 5 ■ Working With Large Datasets

118

This doesn’t solve the problem that files will draw every single point and cause printing and file-size
problems. A scatterplot with transparency is just a way of showing the 2D density, though, and you can do
that directly using the geom_density_2d() function, as shown in Figure 5-3.

Figure 5-3. A 2D density plot

Figure 5-2. A scatterplot with alpha values

Chapter 5 ■ Working With Large Datasets

119

d %>% ggplot(aes(x = x, y = y)) +
 geom_density_2d()

Figure 5-3 shows the contour of the density.
An alternative way of showing a 2D density is using a so-called hex-plot. This is the 2D equivalent of

a histogram. The 2D plane is split into hexagonal bins, and the plot shows the count of points falling into
each bin.

To use it, you need to install the package hexbin and use the ggplot2 function geom_hex(), as shown in
Figure 5-4.

d %>% ggplot(aes(x = x, y = y)) +
 geom_hex()

The colors used by geom_hex() are the fill colors, so you can change them using the scale_fill
functions. You can also combine hex and 2D density plots to get both the bins and contours displayed, as
shown in Figure 5-5.

d %>% ggplot(aes(x = x, y = y)) +
 geom_hex() +

Figure 5-4. A hex plot

Chapter 5 ■ Working With Large Datasets

120

 scale_fill_gradient(low = "lightgray", high = "red") +
 geom_density2d(color = "black")

Too Slow to Analyze
When plotting data, the problem is usually only in scatterplots. Otherwise, you don’t have to worry about
having too many points or too large plot files. Even when plotting lots of points, the real problem doesn’t
show up until you create a PDF plot and load it into your viewer or send it to the printer.

With enough data points, though, most analyzes will slow down, and that can be a problem.
The easy solution is again to subsample your data and work with that. It will show you the relevant

signals in your data without slowing down your analysis.
If that is not a solution for you, you need to pick analysis algorithms that work more efficiently. That

typically means linear time algorithms. Unfortunately, many standard algorithms are not linear time, and
even if they are, the implementation does not necessarily make it easy to fit data in batches where the model
parameters can be updated one batch at a time. You often need to find packages specifically written for that,
or make your own.

One package that both provides a memory efficient linear model fitting (it avoids creating a model
matrix that would have rows for each data point and solving equations for that) and functionality for
updating the model in batches is the biglm package:

library(biglm)

Figure 5-5. A plot combining hex and 2D density

Chapter 5 ■ Working With Large Datasets

121

You can use it for linear regression using the biglm() function instead of the lm() function, and you can
use the bigglm() function for generalized linear regression instead of the glm() function, (see Chapter 6 for
details).

If you are using a data frame format that stores the data on disk and has support for biglm (see the next
section), the package will split the data into chunks that it can load into memory and analyze. If you do not
have a package that handles this automatically, you can split the data into chunks yourself. As a toy example,
we can consider the cars dataset and try to fit a linear model of stopping distance as a function of speed, but
do this in batches of 10 data points. Of course, we can easily fit such a small dataset without splitting it into
batches—we don’t even need to use the biglm() function for it—but as an example, it will do.

Defining the slice indices requires some arithmetic and after that we can extract subsets of the data
using the slice() function from dplyr. We can create a linear model from the first slice and then update
using the following code:

slice_size <- 10
n <- nrow(cars)
slice <- cars %>% slice(1:slice_size)
model <- biglm(dist ~ speed, data = slice)
for (i in 1:(n/slice_size-1)) {
 slice <- cars %>% slice((i*slice_size+1):((i+1)*slice_size))
 model <- update(model, moredata = slice)
}
model
Large data regression model: biglm(dist ~ speed, data = slice)
Sample size = 50

Bayesian model fitting methods have a (somewhat justified) reputation for being slow, but Bayesian
models based on conjugate priors are actually ideal for this. Having a conjugate prior means that the
posterior distribution you get out of analyzing one dataset can be used as the prior distribution for the next
dataset. This way you can split the data into slices, fit the first slice with a real prior, and the subsequent
slices with the result of the previous model fits.

The Bayesian linear regression model in project 2 is one such model. There we implement an update()
function that fits a new model based on a dataset and a previously fitted model. Using it on the cars data,
splitting the data into chunks of size 10, would look like very similar to the biglm example.

Even better are models where you can analyze slices independently and then combine the results to
get a model for the full dataset. These can not only be analyzed in batches, but the slices can be handled
in parallel, exploiting multiple cores or multiple computer nodes. For gradient descent optimization
approaches, you can compute gradients for slices independently and then combine them to make a step in
the optimization.

There are no general solutions for dealing with data that is too large to be efficiently analyzed, though. It
requires thinking about the algorithms used and usually also some custom implementation of these unless
you are lucky and can find a package that can handle data in batches.

Too Large to Load
R wants to keep the data it works on in memory. So if your computer doesn’t have the RAM to hold it, you are
out of luck. At least if you work with the default data representations like data.frames. R usually also wants
to use 32-bit integers for indices, and since it uses both positive and negative numbers for indices, you are
limited to indexing around 2 billion data points. Even if you can hold more in memory.

http://dx.doi.org/10.1007/978-1-4842-2671-1_6

Chapter 5 ■ Working With Large Datasets

122

There are different packages for dealing with this. One such is the ff package. It works with the kind of
tables we have used so far but uses memory mapped files to represent the data and load data chunks into
memory as needed.

library(ff)

It essentially creates flat files and has functionality for mapping chunks of these into memory when
analyzing them.

It represents data frames as objects of the class ffdf. These behave just like data frames if you use them
as such and you can translate a data frame into an ffdf object using the as.ffdf() function.

You can, for example, convert the cars data into an ffdf object using the following:

ffcars <- as.ffdf(cars)
summary(ffcars)
Length Class Mode
speed 50 ff_vector list
dist 50 ff_vector list

Of course, if you can already represent a data frame in memory, there is no need for this translation,
but ff also has functions for creating ffdf objects from files. If, for example, you have a large file as comma-
separated values, you can use read.csv.ffdf().

With ff, you get various functions for computing summary statistics efficiently from the memory mapped
flat files. These are implemented as generic functions (generic functions are covered in Chapter 10) and this
means that for most common summaries, you can work efficiently with ffdf objects. Not every function
supports this, however, so sometimes functions will (implicitly) work on an ffdf object as if it were a plain
data.frame object, which can result in the flat file being loaded into memory. This usually doesn’t work if the
data is too large to fit.

To deal with data that you cannot load into memory, you will have to analyze it in batches. This means
that you need special functions for analyzing data, and quite often this means that you have to implement
analysis algorithms yourself.

For linear models and generalized linear models, the biglm package implements them as generic
functions. This means that the code that is actually run depends on the format in which the input data is
provided. If you just give them an ffdf object, they will treat it as a data.frame object and not exploit that
the data can be fitted in chunks. The ffbase package deals with this by implementing a special bigglm()
function that works on ffdf objects. Although this is for generalized linear models, you can still use it for
linear regression, since linear models are special cases of generalized linear models.

To fit a linear model (or generalized linear), just load the package:

library(ffbase)

If the data is represented as an ffdf object ,you use the special function for fitting the data:

model <- bigglm(dist ~ speed, data = ffcars)
summary(model)
Large data regression model: bigglm(dist ~ speed, data = ffcars)
Sample size = 50
Coef (95% CI) SE
(Intercept) -17.5791 -31.0960 -4.0622 6.7584
speed 3.9324 3.1014 4.7634 0.4155
p
(Intercept) 0.0093
speed 0.0000

http://dx.doi.org/10.1007/978-1-4842-2671-1_10

Chapter 5 ■ Working With Large Datasets

123

The function takes a parameter, chunksize, to control how many data points are loaded into memory
at a time. There is a more sensible default than 10 that we used previously, but generally you can just use the
bigglm() function on ffdf objects like you would use lm() or glm() on data.frame objects.

You cannot use ffdf objects together with dplyr, which is the main drawback of using ff to represent
data, but there is a development version of the package ffbase2 that supports this. See the GitHub
repository at https://github.com/edwindj/ffbase2 to learn more.

The dplyr package does provide support for different backends, such as relational databases. If you can
work with data as flat files, there is no benefit to putting it in databases, but large datasets usually are stored
in databases that are accessed through the Structured Query Language (SQL). This is a language that is worth
learning but beyond the scope of this book, and in any case, dplyr can be used to access such databases.
This means that you can write dplyr pipelines of data manipulation function calls. These calls will be
translated into SQL expressions that are then sent to the database system, and you can get the results back.

With dplyr you can access commonly used database systems such as MySQL or PostgreSQL. These
systems require that you set up a server for the data, though, so a simpler solution, if your data is not already
stored in a database, is to use LiteSQL.

LiteSQL works just on your filesystem but provides a file format and ways of accessing it using SQL. You
can open or create a LiteSQL file using the src_sqlite() function:

iris_db <- src_sqlite("iris_db.sqlite3", create = TRUE)

You load a dataset into it using copy_to():

iris_sqlite <- copy_to(iris_db, iris, temporary = FALSE)

Of course, if you can already represent a data frame in RAM, you wouldn’t usually copy it to a database.
It only slows down analysis to go through a database system compared to keeping the data in memory. But
the point is, of course, that you can populate the database outside of R and then access it using dplyr.

The temporary option to the function here ensures that the table you fill into the database survives
between sessions. If you do not set temporary to FALSE, it will exist only as long as you have the database
open; after you close it, it will be deleted. This is useful for many operations, but not what we want here.

Once you have a connection to a database, you can pull out a table using tbl():

iris_sqlite <- tbl(iris_db, "iris")

Then you can use dplyr functions to make a query to it:

iris_sqlite %>% group_by(Species) %>%
 summarise(mean.Petal.Length = mean(Petal.Length))
Source: query [?? x 2]
Database: sqlite 3.8.6 [iris_db.sqlite3]
##
Species mean.Petal.Length
<chr> <dbl>
1 setosa 1.462
2 versicolor 4.260
3 virginica 5.552

Using dplyr with SQL databases is beyond the scope of this book, so I will just refer you to the
documentation for it at https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html.

https://github.com/edwindj/ffbase2
https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html

Chapter 5 ■ Working With Large Datasets

124

Manipulating data using dplyr with a database backend is only useful for doing analysis exclusively
using dplyr, of course. To fit models and such, you still have to batch data, so some custom code is usually
still required.

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Subsampling
Take the dataset you worked on the last two chapters and pick a subset of the data. Summarize it and
compare to the results you get with the full data. Plot the subsamples and compare that to the plots you
created with the full data.

Hex and 2D Density Plots
If you have used any scatterplots to look at your data, translate them into hex or 2D density plots.

125© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_6

CHAPTER 6

Supervised Learning

This chapter and the next concern the mathematical modeling of data that is the essential core of data
science. We can call this statistics, or we can call it machine learning. At its core, it is the same thing. It is all
about extracting information out of data.

Machine Learning
Machine learning is the discipline of developing and applying models and algorithms for learning from
data. Traditional algorithms implement fixed rules for solving particular problems. Like sorting numbers or
finding the shortest route between two cities. To develop algorithms like that, you need a deep understand of
the problem you are trying to solve. A thorough understanding that you can rarely obtain unless the problem
is particularly simple or you have abstracted away all the interesting cases. Far more often, you can collect
examples of good or bad solutions to the problem you want to solve without being able to explain exactly
why a given solution is good or bad. Or you can obtain data that provides examples of relationships between
data you are interested in without necessarily understanding the underlying reasons for these relationships.

This is where machine learning can help. Machine learning concerns learning from data; you do
not explicitly develop an algorithm for solving a particular problem. Instead, you use a generic learning
algorithm that you feed examples of solutions to, and let it learn how to solve the problem from those
examples.

This might sound very abstract, but most statistical modeling is indeed examples of this. Take for
example a linear model y = αx + β + ε where ε is the stochastic noise (usually assumed to be normal
distributed). When you want to model a linear relationship between x and y, you don’t figure out α and β
from first principle. You can write an algorithm for sorting numbers without having studied the numbers
beforehand, but you cannot usually figure out what the linear relationship is between y and x without
looking at data. When you fit the linear model, you are doing machine learning. (Well, I suppose if you do
it by hand it isn’t machine learning, but you are not likely to fit linear models by hand that often.) People
typically do not call simple models like linear regression machine learning, but that is mostly because
the term “machine learning” is much younger than these models. Linear regression is as much machine
learning as neural networks are.

Supervised Learning
Supervised learning is used when you have variables you want to predict using other variables. Situations
like linear regression where you have some input variables, for example, x, and you want a model that
predicts output (or response) variables, y = f (x).

Chapter 6 ■ SuperviSed Learning

126

Unsupervised learning, the topic of Chapter 7, is instead concerned with discovering patterns in data
when you don’t necessarily know what kind of questions you are interested in learning. When you don’t
have x and y values and want to know how they are related, but instead have a collection of data, and you
want to discover what patterns there are in the data.

For the simplest case of supervised learning, we have one response variable, y, and one input variable,
x, and we want to figure out a function, f, mapping input to output, i.e., so that y = f (x). What we have to work
with is example data of matching x and y. We can write that as vectors x = (x

1
, … , x

n
) and y = (y

1
, … , y

n
) where

we want to figure out a function f such that y
i
 = f (x

i
).

We will typically accept that there might be some noise in our observations, so f doesn’t map perfectly
from x to y. So we can chance the setup slightly and assume that the data we have is x = (x

1
, … , x

n
) and

t = (t
1
, … , t

n
), where t is target values and where t

i
 = y

i
 + ε

i
, y

i
 = f (x

i
), and ε

i
 is the error in the observation t

i
.

How we model the error ε
i
 and the function f are choices that are up to us. It is only modelling, after all,

and we can do whatever we want. Not all models are equally good, of course, so we need to be a little careful
with what we choose and how we evaluate if the choice is good or bad, but in principle, we can do anything.

The way most machine learning works is that an algorithm, implicitly or explicitly, defines a class of
parameterized functions f (−; θ), each mapping input to output f (−; θ): x ↦ f (x; θ) =y(θ) (now the value we
get for the output depends on the parameters of the function, θ), and the learning consists of choosing
parameters θ such that we minimize the errors, i.e., so that f (x

i
; θ) is as close to t

i
 as we can get. We want to

get close for all our data points, or at least get close on average, so if we let y(θ) denote the vector (y(θ)
1
, … ,

y(θ)
n
) = (f (x

1
; θ), … , f (x

n
; θ))we want to minimize the distance from y(θ) to t, ∥ y(θ) − t ∥, for some distance

measure ∥·∥.

Regression versus Classification
There are two types of supervised learning: regression and classification. Regression is used when the output
variable we try to target is a number. Classification is used when we try to target categorical variables.

Take linear regression, y = αx + β (or t = αx + β +ε). It is regression because the variable we are trying to
target is a number. The parametrized class of functions, fθ, are all lines. If we let θ = θ

1
, θ

0
 and α = θ

1
, β = θ

0

then y(θ) = f (x; θ) = θ
1
x + θ

0
 Fitting a linear model consists of finding the best θ, where best is defined as the θ

that gets y(θ) closest to t. The distance measure used in linear regression is the squared Euclidean distance

y tθ θ()

=

− = ()−()∑
2

1

2

i

n

i iy t .

The reason it is the squared distance instead of just the distance is mostly mathematical convenience—it
is easier to maximize θ that way—but also related to us interpreting the error term ε as normal distributed.
Whenever you are fitting data in linear regression, you are minimizing this distance; you are finding the
parameters θ that bests fit the data in the sense of:

θ
θ θ

θ θ = + −()
=
∑arg min

,1 0

1 0
1

2

i

n

i ix t

For an example of classification, assume that the targets t
i
 are binary, encoded as 0 and 1, but that the

input variables x
i
 are still real numbers. A common way of defining the mapping function f (−; θ) is to let it

map x to the unit interval [0, 1] and interpret the resulting y(θ) as the probability that t is 1. In a classification
setting, you would then predict 0 if f (x; θ) < 0.5 and predict 1 if f (x; θ) > 0.5 (and have some strategy for
dealing with f (x; θ) < 0.5. In linear classification, the function fθ could look like this:

f x x;θ σ θ θ() = +()1 0

http://dx.doi.org/10.1007/978-1-4842-2671-1_7

Chapter 6 ■ SuperviSed Learning

127

where σ is a sigmoid function (a function mapping R → [0, 1] that is “S-shaped”). A common choice of σ is

the logistic function σ : z
e z

1

1+ − ′ in which case we call the fitting of f (−; θ) logistic regression.

Whether we are doing regression or classification, and whether we have linear models or not, we are
simply trying to find parameters θ so that our predictions y(θ) are as close to our targets t as possible. The
details that differ between different machine learning methods is how the class of prediction functions
f (−; θ) is defined, what kind of parameters θ we have, and how we measure the distance between y(θ) and t.
There are a lot of different choices here and a lot of different machine learning algorithms. Many of them are
already implemented in R, however, so we rarely will have to implement our own. We just need to find the
right package that implements the learning algorithms we need.

Inference versus Prediction
A question always worth considering when we fit parameters of a model is this: do we care about the model
parameters or do we just want to make a function that is good at predicting?

If you were taught statistics the same way I was, your introduction to linear regression was mostly
focused on the model parameters. You inferred the parameters θ

1
 and θ

0
 mostly to figure out if θ

1
 ≠ 0, i.e, to

find out if there was a (linear) relationship between x and y or not. When we fit our function to data to learn
about the parameters, we say we are doing inference, and we are inferring the parameters.

This focus on model parameters makes sense in many situations. In a linear model, the coefficient θ
1

tells us if there is a significant correlation between x and y, meaning we are statistically relatively certain that
the correlation exists, and whether it is substantial, meaning that θ

1
 is large enough to care about in practical

situations.
When we care about model parameters, we usually want to know more than just the best fitting

parameters, θ̂ . We want to know how certain we are that the “true parameters” are close to our estimated
parameters. This usually means estimating not just the best parameters but also confidence intervals or
posterior distributions of parameters. How easy it is to estimate these depends very much on the models and
algorithms used.

I put “true parameters” in quotes, where I talked about how close estimates were to the true parameters,
for a good reason. True parameters only exist if the data you are analzsing were simulated from a function
fθ where some true θ exist. When you are estimating parameters, θ̂ , you are looking for the best choice of
parameters assuming that the data were generated by a function fθ. Outside of statistics textbooks, there is no
reason to think that your data was generated from a function in the class of functions you consider. Unless
we are trying to model causal relationships—modeling how we think the world actually works as forces of
nature—that is usually not an underlying assumption of model fitting. A lot of the theory we have for doing
statistics on inferred parameters does assume that we have the right class of functions, which is where you
get confidence intervals. In practice, data does not come from these sorts of functions so treat the results you
get from theory with some skepticism.

We can get more empirical distributions of parameters directly from data if we have a lot of data–which
we usually do have when doing data science–using sampling methods. I will briefly return to that later in this
chapter.

We don’t always care about the model parameters, though. For linear regression, it is easy to interpret
what the parameters mean but in many machine learning models the parameters aren’t that interpretable,
and we don’t really care about them. All we care about is if the model we have fitted is good at predicting
the target values. To evaluate how well we expect a function to be able to predict is also something that we
sometimes have theoretical results regarding, but as for parameter estimation, we shouldn’t trust these too
much. It is much better to use the actual data to estimate this and as for getting empirical distributions of
model parameters it is something we return to later.

Whether you care about model parameters or not depends on your application and quite often on how
you think your model relates to reality.

Chapter 6 ■ SuperviSed Learning

128

Specifying Models
The general pattern for specifying models in R is using what is called “formulas”. The simplest form is y ~
x, which we should interpret as saying y = f (x). Implicitly there is assumed some class of functions indexed
with model parameters, f (−; θ), and which class of functions we are working with depends on which R
functions we use.

Linear Regression
If we take a simple linear regression, fθ (x) = θ

1
x + θ

0
, we need the function lm().

For an example, we can use the built-in dataset cars, which just contains two variables, speed and
breaking distance, where we can consider speed the x value and breaking distance the y value.

cars %>% head
speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

If we plot the dataset (see Figure 6-1), we see that there is a very clear linear relationship between speed
and distance.

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() +
 geom_smooth(method = "lm")

Figure 6-1. Plot of breaking distance versus speed for cars

Chapter 6 ■ SuperviSed Learning

129

In this plot, I used the method "lm" for the smoothed statistics to see the fit. By default the geom_
smooth() function would have given us a loess curve, but since we are interested in linear fits, we tell it to
use the lm method. By default geom_smooth() will also plot the uncertainty of the fit. This is the gray area in
the plot. This is the area where the line is likely to be (assuming that the data is generated by a linear model).
Do not confuse this with where data points are likely to be, though. If target values are given by t = θ

1
x + θ

0
 + ε

where ε has a very large variance, then even if we knew θ
1
 and θ

0
 with high certainty we still wouldn’t be able

to predict with high accuracy where any individual point would fall. There is a difference between prediction
accuracy and inference accuracy. We might know model parameters with very high accuracy without being
able to predict very well. We might also be able to predict very well without knowing all model parameters
well. If a given model parameter has little influence on where target variables fall, then the training data
gives us little information about that parameter. This usually doesn’t happen unless the model is more
complicated than it needs to be, though, since we often want to remove parameters that do not affect the
data.

To actually fit the data and get information about the fit, we use the lm() function with the model
specification, dist ~ speed, and we can use the summary() function to see information about the fit:

cars %>% lm(dist ~ speed, data = .) %>% summary
##
Call:
lm(formula = dist ~ speed, data = .)
##
Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123
speed 3.9324 0.4155 9.464 1.49e-12
##
(Intercept) *
speed ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Or we can use the coefficients() function to get the point estimates and the confint() function to
confidence intervals for the parameters:

cars %>% lm(dist ~ speed, data = .) %>% coefficients
(Intercept) speed
-17.579095 3.932409
cars %>% lm(dist ~ speed, data = .) %>% confint
2.5 % 97.5 %
(Intercept) -31.167850 -3.990340
speed 3.096964 4.767853

Chapter 6 ■ SuperviSed Learning

130

Here, (Intercept) is θ
0
 and speed is θ

1
.

To illustrate the fitting procedure and drive the point home, we can explicitly draw models with different
parameters, i.e., draw lines with different choices of θ. To simplify matters, I am going to set θ

0
 = 0. Then I can

plot the lines y = θ
1
x for different choices of θ

1
 and visually see the fit; see Figure 6-2.

predict_dist <- function(speed, theta_1)
 data.frame(speed = speed,
 dist = theta_1 * speed,
 theta = as.factor(theta_1))

cars %>% ggplot(aes(x = speed, y = dist, colour = theta)) +
 geom_point(colour = "black") +
 geom_line(data = predict_dist(cars$speed, 2)) +
 geom_line(data = predict_dist(cars$speed, 3)) +
 geom_line(data = predict_dist(cars$speed, 4)) +
 scale_color_discrete(name=expression(theta[1]))

Figure 6-2. Prediction lines for different choices of parameters

In this plot, I want to color the lines according to their θ
1
 parameter but since the cars data frame

doesn’t have a theta column I hardwire that the dots should be plotted in black. The lines are plotted
according to their theta value, which I set in the predict_dist() function.

Chapter 6 ■ SuperviSed Learning

131

Each of the lines shows a choice of model. Given an input value x they all produce an output value.
y(θ) = f (x; θ). So we can fix θ and consider the mapping x ↦ θ

1
x. This is the function we use when predicting

the output for a given value of x. If we fix x instead we can also see it as a function of θ: θ
1
 ↦ θ

1
x. This is what

we use when we fit parameters to the data, because if we keep our dataset fixed this mapping defines an
error function, that is, a function that given parameters gives us a measure of how far our predicted values
are from our target values. If, as before, our input values and target values are vectors x and t, then the error
function is as follows:

E x tx t i
i

n

i i, θ θ() = −()
=
∑

1
1

2

We can plot the errors against different choices of θ
1
 (see Figure 6-3). Where this function is minimized,

we find our best estimate for θ
1
.

thetas <- seq(0, 5, length.out = 50)
fitting_error <- Vectorize(function(theta)
 sum((theta * cars$speed - cars$dist)**2)
)

data.frame(thetas = thetas, errors = fitting_error(thetas)) %>%
 ggplot(aes(x = thetas, y = errors)) +
 geom_line() +
 xlab(expression(theta[1])) + ylab("")

25000

50000

75000

100000

125000

0 1 2 3 4 5
θ1

Figure 6-3. Error values for different choices of parameters

Chapter 6 ■ SuperviSed Learning

132

To wrap up this example, we can also plot and fit the best model where θ
0
 = 0. The formula needed to

remove the intercept is of the form “y ~ x - 1”. It is the “- 1” that removes the intercept.

cars %>% lm(dist ~ speed - 1, data = .) %>% coefficients
speed
2.909132

We can also plot this regression line, together with the confidence interval for where it lies, using geom_
smooth(). See Figure 6-4. Here, though, we need to use the formula y ~ x - 1 rather than dist ~ speed
- 1. This is because the geom_smooth() function works on the ggplot2 layers that have x- and y-coordinates
and not the data in the data frame as such. We map the speed variable to the x-axis and the dist variable to
the y-variable in the aesthetics, but it is x and y that geom_smooth() works on.

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() +
 geom_smooth(method = "lm", formula = y ~ x - 1)

Figure 6-4. Best regression line going through (0,0)

Chapter 6 ■ SuperviSed Learning

133

Logistic Regression (Classification, Really)
Using other statistical models works the same way. We specify the class of functions, fθ, using a formula and
use a function to fit its parameters. Consider binary classification and logistic regression.

Here we can use the breast cancer data from the mlbench library discussed in Chapter 3 and ask if the
clump thickness has an effect on the risk of a tumor being malignant. That is, we want to see if we can predict
the Class variable from the Cl.thickness variable.

library(mlbench)
data("BreastCancer")
BreastCancer %>% head
Id Cl.thickness Cell.size Cell.shape
1 1000025 5 1 1
2 1002945 5 4 4
3 1015425 3 1 1
4 1016277 6 8 8
5 1017023 4 1 1
6 1017122 8 10 10
Marg.adhesion Epith.c.size Bare.nuclei
1 1 2 1
2 5 7 10
3 1 2 2
4 1 3 4
5 3 2 1
6 8 7 10
Bl.cromatin Normal.nucleoli Mitoses Class
1 3 1 1 benign
2 3 2 1 benign
3 3 1 1 benign
4 3 7 1 benign
5 3 1 1 benign
6 9 7 1 malignant

We can plot the data against the fit, as shown in Figure 6-5. Since the malignant status is either 0 or 1,
the points would overlap but if we add a little jitter to the plot we can still see them, and if we make them
slightly transparent, we can see the density of the points.

BreastCancer %>%
 ggplot(aes(x = Cl.thickness, y = Class)) +
 geom_jitter(height = 0.05, width = 0.3, alpha=0.4)

http://dx.doi.org/10.1007/978-1-4842-2671-1_3

Chapter 6 ■ SuperviSed Learning

134

For classification we still specify the prediction function y = f (x) using the formula y ~ x. The outcome
parameter for y ~ x is just binary now. To fit a logistic regression we need to use the glm() function
(generalized linear model) with the family set to "binomial". This specifies that we use the logistic function
to map from the linear space of x and θ to the unit interval. Aside from that, fitting and getting results is very
similar.

We cannot directly fit the breast cancer data with logistic regression, though. There are two problems.
The first is that the breast cancer dataset considers the clump thickness ordered factors, but for logistic
regression we need the input variable to be numeric. While generally, it is not advisable to directly translate
categorical data into numeric data, judging from the plot it seems okay in this case. Using the function as.
numeric() will do this, but remember that this is a risky approach when working with factors! It actually
would work for this dataset, but we will use the safer approach of first translating the factor into strings
and then into numbers. The second problem is that the glm() function expects the response variable to
be numerical, coding the classes like 0 or 1, while the BreastCancer data encodes the classes as a factor.
Generally, it varies a little from algorithm to algorithm whether a factor or a numerical encoding is expected
for classification, so you always need to check the documentation for that, but in any case, it is simple
enough to translate between the two representations.

We can translate the input variable to numerical values and the response variable to 0 and 1 and plot
the data together with a fitted model, as shown in Figure 6-6. For the geom_smooth() function, we specify
that the method is glm and that the family is binomial. To specify the family, we need to pass this argument

benign

malignant

1 2 3 4 5 6 7 8 9 10

Cl.thickness

Cl
as
s

Figure 6-5. Breast cancer class versus clump thickness

Chapter 6 ■ SuperviSed Learning

135

on to the smoothing method, and that is done by giving the method.args parameter a list of named
parameters; here we just give it list(family = "binomial).

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 ggplot(aes(x = Cl.thickness.numeric, y = IsMalignant)) +

 geom_jitter(height = 0.05, width = 0.3, alpha=0.4) +
 geom_smooth(method = "glm",
 method.args = list(family = "binomial"))

To actually get the fitted object, we use glm() like we used lm() for the linear regression.

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 glm(IsMalignant ~ Cl.thickness.numeric,
 family = "binomial",
 data = .)

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0

Cl.thickness.numeric

Is
M
al
ig
na
nt

Figure 6-6. Logistic regression fit to breast cancer data

Chapter 6 ■ SuperviSed Learning

136

##
Call: glm(formula = IsMalignant ~ Cl.thickness.numeric, family = "binomial",
data = .)
##
Coefficients:
(Intercept) Cl.thickness.numeric
-5.1602 0.9355
##
Degrees of Freedom: 698 Total (i.e. Null); 697 Residual
Null Deviance: 900.5
Residual Deviance: 464.1 AIC: 468.1

Model Matrices and Formula
Most statistical models and machine learning algorithms actually creates a map not from a single value,
f(−; θ): x ↦ y, but from a vector, f(−; θ): x ↦ y. When we fit a line for single x and y values we are actually also
working with fitting a vector because we have both the x values and the intercept to fit. That is why the model
has two parameters, θ

0
 and θ

0
. For each x value, we are actually using the vector (1, x) where the 1 is used to

fit the intercept.
We shouldn’t confuse this with the vector we have as input to the model fitting, though. If we have

data (x, t) to fit, then we already have a vector for our input data. But what the linear model actually sees is
a matrix for x, so we’ll call that X. This matrix, know as the model matrix, has a row per value in x and it has
two columns, one for the intercept and one for the x values.

X

x

x

x

xn

=

1

1

1

1

1

2

3

We can see what model matrix R generates for a given dataset and formula using the model.matrix()
function. For the cars data, if we want to fit dist versus speed we get this:

cars %>%
 model.matrix(dist ~ speed, data = .) %>%
 head(5)
(Intercept) speed
1 1 4
2 1 4
3 1 7
4 1 7
5 1 8

If we remove the intercept, we simply get this:

cars %>%
 model.matrix(dist ~ speed - 1, data = .) %>%
 head(5)
speed
1 4

Chapter 6 ■ SuperviSed Learning

137

2 4
3 7
4 7
5 8

Pretty much all learning algorithms work on a model matrix so, in R, they are implemented to take a
formula to specify the model and then build the model matrix from that and the input data.

For linear regression, the map is a pretty simple one. If we let the parameters θ = (θ
0
, θ

1
) then it is just

multiplying that with the model matrix, X.

θ θ θ

θ θ
θ θ
θT

n

X

x

x

x

x

x

x

= ()

=

+
+

0 1

1

2

3

0 1 1

0 1 2

0

1

1

1

1

,

++

+

θ

θ θ

1 3

0 1

x

xn

This combination of formulas and model matrices is a powerful tool for specifying models. Since all the
algorithms we use for fitting data works on model matrices anyway, there is no reason to hold back on how
complex formulas to give them. The formulas will just be translated into model matrices anyhow, and they
can all deal with them.

If you want to fit more than one parameter, no problem. You just give write y ~ x + z and the model
matrix will have three columns.

X

x z

x z

x z

x zn n

=

1

1

1

1

1 1

2 2

3 3

Our model fitting functions are just as happy to fit this model matrix like the one we get from just a
single variable.

So if we wanted to fit the breast cancer data to both cell thickness and cell size, we can do that just by
adding both explanatory variables in the formula.

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness)),
 Cell.size.numeric =
 as.numeric(as.character(Cell.size))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 model.matrix(IsMalignant ~ Cl.thickness.numeric + Cell.size.numeric,
 data = .) %>%
 head(5)
(Intercept) Cl.thickness.numeric
1 1 5
2 1 5
3 1 3
4 1 6
5 1 4
Cell.size.numeric

Chapter 6 ■ SuperviSed Learning

138

1 1
2 4
3 1
4 8
5 1

Then the generalized linear model fitting function will happily work with that:

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness)),
 Cell.size.numeric =
 as.numeric(as.character(Cell.size))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 glm(IsMalignant ~ Cl.thickness.numeric + Cell.size.numeric,
 family = "binomial",
 data = .)
##
Call: glm(formula = IsMalignant ~ Cl.thickness.numeric + Cell.size.numeric,
family = "binomial", data = .)
##
Coefficients:
(Intercept) Cl.thickness.numeric
-7.1517 0.6174
Cell.size.numeric
1.1751
##
Degrees of Freedom: 698 Total (i.e. Null); 696 Residual
Null Deviance: 900.5
Residual Deviance: 212.3 AIC: 218.3

Translating data into model matrices also works for factors, they are just represented as a binary vector
for each level:

BreastCancer %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 model.matrix(IsMalignant ~ Bare.nuclei, data = .) %>%
 head(5)
(Intercept) Bare.nuclei2 Bare.nuclei3
1 1 0 0
2 1 0 0
3 1 1 0
4 1 0 0
5 1 0 0
Bare.nuclei4 Bare.nuclei5 Bare.nuclei6
1 0 0 0
2 0 0 0
3 0 0 0
4 1 0 0
5 0 0 0

Chapter 6 ■ SuperviSed Learning

139

Bare.nuclei7 Bare.nuclei8 Bare.nuclei9
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
Bare.nuclei10
1 0
2 1
3 0
4 0
5 0

The translation for ordered factors gets a little more complicated, but R will happily do it for you:

BreastCancer %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 model.matrix(IsMalignant ~ Cl.thickness, data = .) %>%
 head(5)
(Intercept) Cl.thickness.L Cl.thickness.Q
1 1 -0.05504819 -0.34815531
2 1 -0.05504819 -0.34815531
3 1 -0.27524094 -0.08703883
4 1 0.05504819 -0.34815531
5 1 -0.16514456 -0.26111648
Cl.thickness.C Cl.thickness^4 Cl.thickness^5
1 0.1295501 0.33658092 -0.21483446
2 0.1295501 0.33658092 -0.21483446
3 0.3778543 -0.31788198 -0.03580574
4 -0.1295501 0.33658092 0.21483446
5 0.3346710 0.05609682 -0.39386318
Cl.thickness^6 Cl.thickness^7 Cl.thickness^8
1 -0.3113996 0.3278724 0.2617852
2 -0.3113996 0.3278724 0.2617852
3 0.3892495 -0.5035184 0.3739788
4 -0.3113996 -0.3278724 0.2617852
5 0.2335497 0.2459043 -0.5235703
Cl.thickness^9
1 -0.5714300
2 -0.5714300
3 -0.1632657
4 0.5714300
5 0.3809534

If you want to include interactions between your parameters, you specify that using * instead of +:

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness)),

Chapter 6 ■ SuperviSed Learning

140

 Cell.size.numeric =
 as.numeric(as.character(Cell.size))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 model.matrix(IsMalignant ~ Cl.thickness.numeric * Cell.size.numeric,
 data = .) %>%
 head(5)
(Intercept) Cl.thickness.numeric
1 1 5
2 1 5
3 1 3
4 1 6
5 1 4
Cell.size.numeric
1 1
2 4
3 1
4 8
5 1
Cl.thickness.numeric:Cell.size.numeric
1 5
2 20
3 3
4 48
5 4

How interactions are modeled depends a little bit on whether your parameters are factors or numeric
but for numeric values, the model matrix will just contain a new column with the two values multiplied. For
factors, you will get a new column for each level of the factor:

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 model.matrix(IsMalignant ~ Cl.thickness.numeric * Bare.nuclei, data = .) %>%
 head(3)
(Intercept) Cl.thickness.numeric Bare.nuclei2
1 1 5 0
2 1 5 0
3 1 3 1
Bare.nuclei3 Bare.nuclei4 Bare.nuclei5
1 0 0 0
2 0 0 0
3 0 0 0
Bare.nuclei6 Bare.nuclei7 Bare.nuclei8
1 0 0 0
2 0 0 0
3 0 0 0
Bare.nuclei9 Bare.nuclei10
1 0 0

Chapter 6 ■ SuperviSed Learning

141

2 0 1
3 0 0
Cl.thickness.numeric:Bare.nuclei2
1 0
2 0
3 3
Cl.thickness.numeric:Bare.nuclei3
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei4
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei5
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei6
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei7
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei8
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei9
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei10
1 0
2 5
3 0

The interaction columns all have : in their name, and you can specify an interaction term directly by
writing that in the model formula as well:

BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1)) %>%
 model.matrix(IsMalignant ~ Cl.thickness.numeric : Bare.nuclei, data = .) %>%
 head(3)
(Intercept) Cl.thickness.numeric:Bare.nuclei1
1 1 5

Chapter 6 ■ SuperviSed Learning

142

2 1 0
3 1 0
Cl.thickness.numeric:Bare.nuclei2
1 0
2 0
3 3
Cl.thickness.numeric:Bare.nuclei3
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei4
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei5
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei6
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei7
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei8
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei9
1 0
2 0
3 0
Cl.thickness.numeric:Bare.nuclei10
1 0
2 5
3 0

If you want to use all the variables in your data except the response variable, you can even use the
formula y ~ . where the . will give you all parameters in your data except y.

Using formulas and model matrices also means that we do not have to use are data raw. We can
transform it before we give it to our learning algorithms. In general, we can transform our data using a
function ϕ. It is called phi because we call what it produces features of our data and the point of it is to pull
out the relevant features of the data to give to the learning algorithm. It usually maps from vectors to vectors,
so you can use it to transform each row in your raw data into the rows of the model matrix, which we will
then call Φ instead of X.

Chapter 6 ■ SuperviSed Learning

143

Φ =

− ()−
− ()−
− ()−

…
− ()−

φ
φ
φ

φ

x

x

x

x

1

2

3

n

If this sounds very abstract, perhaps it will help to see some examples. We go back to the cars data but
this time, we want to fit a polynomial to the data instead of a line. If d denotes breaking distance and s the
speed, then we want to fit d = θ

0
 + θ

1
s + θ

2
s2 + … + θ

n
sn. We’ll just do n = 2 so we want to fit a second-degree

polynomial. Don’t be confused about the higher degrees of the polynomial, it is still a linear model. The
linear in linear model refers to the θ parameters, not the data. We just need to map the single s parameter
into a vector with the different polynomial degrees, so 1 for the intercept, s for the linear component, and s2
for the squared component. So ϕ(s) = (1, s, s2).

We can write that as a formula. There we don’t need to specify the intercept term explicitly—it will be
included by default and if we don’t want it we have to remove it explicitly—but we need speed, and we need
speed^2.

cars %>%
 model.matrix(dist ~ speed + speed^2, data = .) %>%
 head
(Intercept) speed
1 1 4
2 1 4
3 1 7
4 1 7
5 1 8
6 1 9

Now this doesn’t quite work, and the reason is that multiplication is interpreted as interaction terms
even if it is interaction with the parameter itself. And interaction with itself doesn’t go into the model matrix
because that would just be silly.

To avoid that problem we need to tell R that the speed^2 term should be interpreted just the way it is.
We do that using the identity function, I():

cars %>%
 model.matrix(dist ~ speed + I(speed^2), data = .) %>%
 head
(Intercept) speed I(speed^2)
1 1 4 16
2 1 4 16
3 1 7 49
4 1 7 49
5 1 8 64
6 1 9 81

Now our model matrix has three columns, which is precisely what we want.
We can fit the polynomial using the linear model function like this:

cars %>% lm(dist ~ speed + I(speed^2), data = .) %>%
 summary
##

Chapter 6 ■ SuperviSed Learning

144

Call:
lm(formula = dist ~ speed + I(speed^2), data = .)
##
Residuals:
Min 1Q Median 3Q Max
-28.720 -9.184 -3.188 4.628 45.152
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.47014 14.81716 0.167 0.868
speed 0.91329 2.03422 0.449 0.656
I(speed^2) 0.09996 0.06597 1.515 0.136
##
Residual standard error: 15.18 on 47 degrees of freedom
Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532

Figure 6-7. The cars data fitted to a second degree polynomial

F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

Or we can plot it like this (see Figure 6-7):

cars %>% ggplot(aes(x = speed, y = dist)) +
 geom_point() +
 geom_smooth(method = "lm", formula = y ~ x + I(x^2))

This is a slightly better fitting model, but that wasn’t the point. You can see how you can transform data
in a formula to have different features to give to your fitting algorithms.

Chapter 6 ■ SuperviSed Learning

145

Validating Models
How did I know the polynomial fit was better than the linear fit? Well, theoretically a second-degree polynomial
should always be a better fit than a line since a line is a special case of a polynomial. We just set θ

2
 to zero. If the

best-fitted polynomial doesn’t have θ
2
 = 0then that is because we can fit the data better if it is not.

The result of fitting the polynomial tells me, in the output from the summary() function, that the
variables are not significant. It tells me that both from the linear and the squared component, though, so it
isn’t that useful. Clearly, the points are on a line so it cannot be correct that there isn’t a linear component.
I cannot use the summary that much because it is only telling me that when I have both components, then
neither of them are statistically significant. That doesn’t mean much.

But should I even care, though? If I know that the more complex model always fits better then shouldn’t
I just always use it? The problem with that idea is that while the most complex model will always fit the
training data better, it will not necessarily generalize better. If I use a high enough degree polynomial—if I
have a degree that is the same as the number of data points—I can fit the data perfectly. But it will be fitting
both the systematic relationship between x and y and also the statistical errors in our targets t. It might be
utterly useless for predicting point number n + 1.

What I really need to know is whether one or the other model is better at predicting the distance from
the speed.

We can fit the two models and get their predictions using the predict() function. It takes the fitted
model as the first argument and data to predict on as the second:

line <- cars %>% lm(dist ~ speed, data = .)
poly <- cars %>% lm(dist ~ speed + I(speed^2), data = .)

predict(line, cars) %>% head
1 2 3 4 5
-1.849460 -1.849460 9.947766 9.947766 13.880175
6
17.812584
predict(poly, cars) %>% head
1 2 3 4 5
7.722637 7.722637 13.761157 13.761157 16.173834
6
18.786430

Evaluating Regression Models
To compare the two models, we need a measure of how well they fit. Since both models are fitting the
squared distances from predictions to targets, a fair measure would be looking at the mean squared error.
The unit of that would be distance squared, though, so we usually use the square root of this mean distance
to measure the quality of the predictions, which would give us the errors in the distance unit.

rmse <- function(x,t) sqrt(mean(sum((t - x)^2)))

rmse(predict(line, cars), cars$dist)
[1] 106.5529
rmse(predict(poly, cars), cars$dist)
[1] 104.0419

Chapter 6 ■ SuperviSed Learning

146

Now clearly the polynomial fits slightly better, which it should based on theory, but there is a bit of
a cheat here. We are looking at how the models work on the data we used to fit them. The more complex
model will always be better at this. That is the problem we are dealing with. The more complex model might
be overfitting the data and capturing the statistical noise we don’t want it to capture. What we really want to
know is how well the models generalizes; how well do they work on data they haven’t already seen and used
to fit their parameters?

We have used all the data we have to fit the models. That is generally a good idea. You want to use all
the data available to get the best-fitted model. But to compare models we need to have data that isn’t used
in the fitting.

We can split the data into two sets, one we use for training and the other we use to test the models.
There are 50 data points so I can take the first 25 to train my models on and the next 25 to test them on.

training_data <- cars[1:25,]
test_data <- cars[26:50,]

line <- training_data %>% lm(dist ~ speed, data = .)
poly <- training_data %>% lm(dist ~ speed + I(speed^2), data = .)

rmse(predict(line, test_data), test_data$dist)
[1] 88.89189
rmse(predict(poly, test_data), test_data$dist)
[1] 83.84263

The second-degree polynomial is still better, but I am also still cheating. There is more structure in my
dataset than just the speed and distances. The data frame is sorted according to the distance so the training
set has all the short distances and the test data all the long distances. The are not similar. That is not good.

In general, you cannot know if there is such structure in your data. In this particular case, it is easy to see
because the structure is that obvious, but sometimes it is subtler. So when you split your data into training
and test data, you will want to sample data points randomly. That gets rid of the structure that is in the order
of the data points.

We can use the sample() function to sample randomly zeros and ones:

sampled_cars <- cars %>%
 mutate(training = sample(0:1, nrow(cars), replace = TRUE))

sampled_cars %>% head
speed dist training
1 4 2 1
2 4 10 0
3 7 4 0
4 7 22 0
5 8 16 1
6 9 10 1

This doesn’t give us 50/50 training and test data since which data point gets into each category will
depend on the random samples, but it will be roughly half the data we get for training:

training_data <- sampled_cars %>% filter(training == 1)
test_data <- sampled_cars %>% filter(training == 0)

Chapter 6 ■ SuperviSed Learning

147

training_data %>% head
speed dist training
1 4 2 1
2 8 16 1
3 9 10 1
4 11 28 1
5 12 20 1
6 13 26 1
test_data %>% head
speed dist training
1 4 10 0
2 7 4 0
3 7 22 0
4 10 18 0
5 10 26 0
6 10 34 0

Now we can get a better estimate of how the functions are working:

line <- training_data %>% lm(dist ~ speed, data = .)
poly <- training_data %>% lm(dist ~ speed + I(speed^2), data = .)

rmse(predict(line, test_data), test_data$dist)
[1] 82.45426
rmse(predict(poly, test_data), test_data$dist)
[1] 81.2045

Now, of course, the accuracy scores depend on the random sampling when we create the training and
test data so you might want to use more samples. We return to that in the next section.

Now, once you have figured out what the best model is you will still want to train it on all the data you
have. Splitting the data is just a tool for evaluating how well different models work. For the final model, you
choose to work with you will always want to fit it with all the data you have.

Evaluating Classification Models
If you want to do classification rather than regression, then the root mean square error is not the function
to use to evaluate your model. With classification, you want to know how many data points are classified
correctly and how many are not.

As an example, we can take the breast cancer data and fit a model:

formatted_data <- BreastCancer %>%
 mutate(Cl.thickness.numeric =
 as.numeric(as.character(Cl.thickness)),
 Cell.size.numeric =
 as.numeric(as.character(Cell.size))) %>%
 mutate(IsMalignant = ifelse(Class == "benign", 0, 1))

fitted_model <- formatted_data %>%
 glm(IsMalignant ~ Cl.thickness.numeric + Cell.size.numeric, data = .)

Chapter 6 ■ SuperviSed Learning

148

To get its prediction, we can again use predict(), but we will see that for this particular model the
predictions are probabilities of a tumor being malignant. By default, the model we created with glm() will be
in “logit” units, but we can use the type parameter to get it in the input unit used with probabilities.

predict(fitted_model, formatted_data, type = "response") %>% head
1 2 3 4
0.05266571 0.65374326 0.01591478 0.99740926
5 6
0.02911157 0.99992795

We would need to translate that into actual predictions. The natural choice here is to split the
probabilities at 50%. If we are more certain that a tumor is malignant than benign, we will classify it as
malignant.

classify <- function(probability) ifelse(probability < 0.5, 0, 1)
classified_malignant <- classify(predict(fitted_model, formatted_data))

Where you want to put the threshold of how to classify depends on your data and the consequences
of the classification. In a clinical situation, maybe you want to examine further a tumor with less than 50%
probability that it is malignant, or maybe you don’t want to tell patients that a tumor might be malignant if it
is only 50% probable. The classification should take into account how sure you are about the classification,
and that depends a lot on the situation you are in. Of course, you don’t want to bet against the best
knowledge you have, so I am not suggesting that you should classify everything below probability 75% as
the “false” class, for instance. The only thing you gain from this is making worse predictions than you could.
But sometimes you want to leave some data unpredicted. So here you can use the probabilities the model
predicts to leave some data points as NA. How you want to use that your prediction gives you probabilities
instead of just classes—assuming it does, it depends on the algorithm used for classifying—is up to you and
the situation you are analyzing.

Confusion Matrix
In any case, if we just put the classification threshold at 50/50 then we can compare the predicted
classification against the actual classification using the table() function, as follows:

table(formatted_data$IsMalignant, classified_malignant)
classified_malignant
0 1
0 450 8
1 42 199

This table, contrasting predictions against true classes, is known as the confusion matrix. The rows
count how many zeros and ones we see in the formatted_data$IsMalignant argument and the columns
how many zeros and ones we see in the classified_malignant argument. So the first row is where the data
says the tumors are not malignant and the second row is where the data says that the tumors are malignant.
The first column is where the predictions say the tumors are not malignant while the second column is
where the predictions say that they are.

This, of course, depends on the order of the arguments to table(), it doesn’t know which argument
contains the data classes and which contains the model predictions. It can be a little hard to remember
which dimension, rows or columns, are the predictions but you can provide a parameter, dnn (dimnames
names), to make the table remember it for you.

Chapter 6 ■ SuperviSed Learning

149

table(formatted_data$IsMalignant, classified_malignant,
 dnn=c("Data", "Predictions"))
Predictions
Data 0 1
0 450 8
1 42 199

The correct predictions are on the diagonal, and the off-diagonal values are where our model predicts
incorrectly.

The first row is where the data says that tumors are not malignant. The first element, where the model
predicts that the tumor is benign, and the data agrees, is called the true negatives. The element to the right of
it, where the model says a tumor is malignant but the data says it is not, is called the false positives.

The second row is where the data says that tumors are malignant. The first column is where the
prediction says that it isn’t a malignant tumor, and these are called the false negatives. The second column is
the cases where both the model and the data says that the tumor is malignant. That is the true positives.

The terms positives and negatives are a bit tricky here. I managed to sneak them past you by having the
classes called zeros and ones that you already associate with true and false and positive and negative, and
by having a dataset where it was more natural to think of malignant tumors as being the ones we want to
predict.

The classes do not have to be zeros and ones. That was just easier in this particular model where I had
to translate the classes into zeros and ones for the logistic classification anyway. But really, the classes are
"benign" and "malignant".

classify <- function(probability)
 ifelse(probability < 0.5, "benign", "malignant")
classified <- classify(predict(fitted_model, formatted_data))

table(formatted_data$Class, classified,
 dnn=c("Data", "Predictions"))
Predictions
Data benign malignant
benign 450 8
malignant 42 199

What is positive and what is negative now depends on whether we want to predict malignant or benign
tumors. Of course, we really want to predict both well, but the terminology considers one class true and the
other false.

The terms carry over into several of the terms used in classification described next, where the classes
and predictions are not so explicitly stated. In the confusion matrix we can always see exactly what the
true classes are and what the predicted classes are, but once we start summarizing it in various ways, this
information is no longer explicitly available. The summaries still will often depend on which class we
consider “positive” and which we consider “negative”, though.

Since which class is which really is arbitrary, so it is always worth a thought deciding which you want to
call which and definitely something you want to make explicit in any documentation of your analysis.

Accuracy
The simplest measure of how well a classification is doing is the accuracy. It measures how many classes it
gets right out of the total, so it is the diagonal values of the confusion matrix divided by the total.

confusion_matrix <- table(formatted_data$Class, classified,

Chapter 6 ■ SuperviSed Learning

150

 dnn=c("Data", "Predictions"))

(accuracy <- sum(diag(confusion_matrix))/sum(confusion_matrix))
[1] 0.9284692

This measure of the classification accuracy is pretty simple to understand, but you have to be careful
in what you consider a good accuracy. Of course “good” is a subjective term, so I’ll get technical and think
in terms of “better than chance”. That means that your baseline for what you consider “good” is randomly
guessing. This, at least, is not subjective.

It is still something you have to consider a bit carefully, though. Because what does randomly guessing
mean? We naturally think of a random guess as one that chooses either class with the same 50% probability.
If the data has the same number of observations for each of the two classes, then that would be a good
strategy and would get the average accuracy of 0.5. So better than chance would, in that case, be better than
0.5. The data doesn’t have to have the same number of instances for each class. The breast cancer data does
not. The breast cancer data has more benign tumors than malignant tumors.

table(BreastCancer$Class)
##
benign malignant
458 241

Here, you would be better off guessing more benign than malignant. If you had to guess and already
knew that you were more than twice as likely to have a benign than a malignant tumor, you would always
guess benign.

tbl <- table(BreastCancer$Class)
tbl["benign"] / sum(tbl)
benign
0.6552217

Always guessing “benign” is a lot better than 50/50. Of course, it is arguable whether this is guessing but
it is a strategy for guessing and you want your model to do better than this simple strategy.

Always guessing the most frequent class–assuming that the frequency of the classes in the dataset is
representative for the frequency in new data as well (which is a strong assumption)—is the best strategy for
guessing.

If you actually want to see “random” guessing, you can get an estimate of this by simply permuting the
classes in the data. The function sample() can do this:

table(BreastCancer$Class, sample(BreastCancer$Class))
##
benign malignant
benign 311 147
malignant 147 94

This gives you an estimate for random guessing, but since it is random, you would want to get more
than one to get a feeling for how much it varies with the guess.

accuracy <- function(confusion_matrix)
 sum(diag(confusion_matrix))/sum(confusion_matrix)

Chapter 6 ■ SuperviSed Learning

151

replicate(8, accuracy(table(BreastCancer$Class,
 sample(BreastCancer$Class))))
[1] 0.5193133 0.5507868 0.5650930 0.5422031
[5] 0.5565093 0.5479256 0.5708155 0.5450644

As you can see, even random permutations do better than 50/50–but the better guess is still just the
most frequent class and at the very least you would want to beat that.

Sensitivity and Specificity
We want a classifier to have a high accuracy, but accuracy isn’t everything. The costs in real life of
misclassifying often have different consequences when you classify something like a benign tumor as
malignant from when you classify a malignant tumor as benign. In a clinical setting, you have to weight the
false positives against the false negatives and the consequences they have. You are interested in more than
pure accuracy.

We usually use two measures of the predictions of a classifier that takes that into account. The specificity
and the sensitivity of the model. The first measure captures how often the model predicts a negative case
correctly. In the breast cancer data, this is how often, when the model predicts a tumor as benign, it actually is.

(specificity <- confusion_matrix[1,1]/
 (confusion_matrix[1,1] + confusion_matrix[1,2]))
[1] 0.9825328

The sensitivity does the same thing but for the positives. It captures how well, when the data has the
positive class, your model predicts this correctly.

(sensitivity <- confusion_matrix[2,2]/
 (confusion_matrix[2,1] + confusion_matrix[2,2]))
[1] 0.8257261

If your accuracy is 100%, then both of these will also be 100%. But there is usually a trade-off between
the two. Using the “best guessing” strategy of always picking the most frequent class will set one of the two to
100% but at the cost of the other. In the breast cancer data the best guess is always benign, the negative case,
and always guessing benign will give us a specificity of 100%

This strategy can always achieve 100% for one of the two measures but at the cost of setting the other to
0%. If you only ever guess at one class, you are perfect when the data is actually from that class, but you are
always wrong when the data is from the other class.

Because of this, we are never interested in optimizing either measure alone. That is trivial. We want to
optimize both. We might consider specificity more important than sensitivity or vice versa, but even if we
want one to be 100% we also want the other to be as good as we can get it.

To evaluate how much better than chance we are doing, we can again compare to random
permutations. This tells us how well we are doing compared to random guesses for both.

specificity <- function(confusion_matrix)
 confusion_matrix[1,1]/(confusion_matrix[1,1]+confusion_matrix[1,2])

sensitivity <- function(confusion_matrix)
 confusion_matrix[2,2]/(confusion_matrix[2,1]+confusion_matrix[2,2])

Chapter 6 ■ SuperviSed Learning

152

prediction_summary <- function(confusion_matrix)
 c("accuracy" = accuracy(confusion_matrix),
 "specificity" = specificity(confusion_matrix),
 "sensitivity" = sensitivity(confusion_matrix))

random_prediction_summary <- function()
 prediction_summary(table(BreastCancer$Class,
 sample(BreastCancer$Class)))

replicate(3, random_prediction_summary())
[,1] [,2] [,3]
accuracy 0.5565093 0.5422031 0.5336195
specificity 0.6615721 0.6506550 0.6441048
sensitivity 0.3568465 0.3360996 0.3236515

Other Measures
The specificity is also known as the true negative rate since it measures how many of the negative
classifications are true. Similarly, the sensitivity is known as the true positive rate. There are analogue
measures for getting thins wrong. The false negative rate is the analogue of the true negative rate, but instead
of dividing the true negatives by all the negatives, it divides the false negatives by all the negatives. The false
positive rate similarly divides the false positives by all the positives. Having these two measures together
with sensitivity and specificity are not really adding much. The true negative rate is just one minus the false
negative rate and similar for the true positive rate and false positive rate. They just focus on when the model
gets things wrong instead of when it gets things right.

All four measures split the confusing matrix into the two rows. They look at when the data says the class
is true and when the data says the class is false. We can also look at the columns instead, and consider when
the predictions are true and when the predictions are false.

When we look at the column where the predictions are false–for the breast cancer when the tumors are
predicted as benign–we have the false omission rate, which is the false negatives divided by all the predicted
negatives:

confusion_matrix[2,1] / sum(confusion_matrix[,1])
[1] 0.08536585

The negative predictive value is instead the true negatives divided by the predicted negatives.

confusion_matrix[1,1] / sum(confusion_matrix[,1])
[1] 0.9146341

These two will always sum to one so we are really only interested in one of them, but which we choose is
determined by which we find more important.

For the predicted positives we have the positive predictive values and false discovery rate.

confusion_matrix[2,2] / sum(confusion_matrix[,2])
[1] 0.9613527
confusion_matrix[1,2] / sum(confusion_matrix[,2])
[1] 0.03864734

The false discovery rate, usually abbreviated FDR, is the one most frequently used. It is closely related to
the threshold used on p-values (the significance thresholds) in classical hypothesis testing. Remember that

Chapter 6 ■ SuperviSed Learning

153

if you have a 5% significance threshold in classical hypothesis testing, it means that when the null hypothesis
is true, you will predict it is false 5% of the time. This means that your false discovery rate is 5%.

The classical approach is to pick an acceptable false discovery rate, by convention this is 5% but there
is nothing magical about that number–it is simply convention–and then that threshold determines how
extreme a test statistic has to be before we switch from predicting a negative to predicting a positive. This
approach entirely ignores the cases where the data is from the positive class. It has its uses, but not for
classification where you have data from both the positive class and the negative class so we will not consider
it more here. You will have seen it in statistics classes, and you can learn more about it in any statistics
textbook.

More Than Two Classes
All of the above considers a situation where we have two classes, one we call positive and one we call
negative. This is a common case, which is the reason we have so many measures for dealing with it, but it is
not the only case. Quite often we need to classify data into more than two classes.

The only measure you can reuse there is the accuracy. The accuracy is always the sum along the
diagonal divided by the total number of observations. Accuracy still isn’t everything in those cases. Some
classes are perhaps more important to get right than others–or just harder to get right than others–so you
have to use a lot of sound judgment when evaluating a classification. There are just fewer rules of thumbs to
use here, so you are more left to your own judgment. Sampling approaches

To validate classifiers I suggested splitting the data into a training dataset and a test dataset. I also
mentioned that there might be hidden structures in your dataset so you always want to make this split a
random split of the data.

Generally, there are a lot of benefits you can get out of randomly splitting your data, or randomly
subsampling from your data. We have mostly considered prediction in this chapter, where splitting the
data into training and a test data lets us evaluate how well a model does at predicting on unseen data. But
randomly splitting or subsampling from data is also very useful for inference. When we do inference, we
can typically get confidence intervals for model parameters, but these are based on theoretical results that
assume that the data is from some (usually) simple distribution. Data is generally not. If you want to know
how a parameter is distributed from the empirical distribution of the data, you will want to subsample and
see what distribution you get.

Random Permutations of Your Data
With the cars data we split the observations into two equally sized datasets. Since this data is ordered
by the stopping distance, splitting it into the first half and the second half makes the datasets different in
distributions.

The simplest approach to avoiding this problem is to reorder your data randomly before you split it.
Using the sample() function we can get a random permutation of any input vector—we saw that earlier—
and we can exploit this to get a random order of your dataset.

Using sample(1:n) we get a random permutation of the numbers from 1 to n. We can select rows in
a data frame by giving it a vector of indices for the rows. Combining these two observations we can get a
random order of cars observations this way:

permuted_cars <- cars[sample(1:nrow(cars)),]
permuted_cars %>% head(3)
speed dist
34 18 76
25 15 26
29 17 32

Chapter 6 ■ SuperviSed Learning

154

The numbers to the left of the data frame are the original row numbers (it really is the row names, but it
is the same in this case).

We can write a simple function for doing this for general data frames:

permute_rows <- function(df) df[sample(1:nrow(df)),]

Using this, we can add it to a data analysis pipeline, where we would write:

permuted_cars <- cars %>% permute_rows

Splitting the data into two sets, training and testing, is one approach to subsampling, but a general
version of this is used in something called cross-validation. Here the idea is to get more than one result out
of the random permutation we use. If we use a single training/test split, we only get one estimate of how a
model performs on a dataset. Using more gives us an idea about the variance of this.

We can split a dataset into n groups like this:

group_data <- function(df, n) {
 groups <- rep(1:n, each = nrow(df)/n)
 split(df, groups)
}

You don’t need to understand the details of this function for now, but it is a good exercise to try to figure
it out, so you are welcome to hit the documentation and see if you can work it out.

The result is a list, a data structure we haven’t explored yet (but feel free to skip ahead to Chapter 8 to
read about it). It is necessary to use a list here since vectors or data frames cannot hold complex data, so if we
combined the result in one of those data structures, they would just be merged back into a single data frame here.

As it is, we get something that contains n data structures that each have a data frame of the same form
as the cars data:

cars %>% permute_rows %>% group_data(5) %>% head(1)
$`1`
speed dist
10 11 17
9 10 34
7 10 18
43 20 64
46 24 70
26 15 54
39 20 32
29 17 32
17 13 34
21 14 36

All you really need to know for now is that to get an entry in a list, you need to use [[]] indexing instead
of [] indexing:

grouped_cars <- cars %>% permute_rows %>% group_data(5)
grouped_cars[[1]]
speed dist
30 17 40
12 12 14

http://dx.doi.org/10.1007/978-1-4842-2671-1_8

Chapter 6 ■ SuperviSed Learning

155

10 11 17
24 15 20
27 16 32
4 7 22
18 13 34
28 16 40
5 8 16
42 20 56

If you use [] you will also get the data, but the result will be a list with one element, which is not what
you want (but is what head() gave you previously):

grouped_cars[1]
$`1`
speed dist
30 17 40
12 12 14
10 11 17
24 15 20
27 16 32
4 7 22
18 13 34
28 16 40
5 8 16
42 20 56

We can use the different groups to get estimates of the model parameters in the linear model for cars:

grouped_cars[[1]] %>%
 lm(dist ~ speed, data = .) %>%
 .$coefficients
(Intercept) speed
-7.004651 2.674419

With a bit of programming, we can get the estimates for each group:

estimates <- grouped_cars[[1]] %>%
 lm(dist ~ speed, data = .) %>%
 .$coefficients

for (i in 2:length(grouped_cars)) {
 group_estimates <- grouped_cars[[i]] %>%
 lm(dist ~ speed, data = .) %>%
 .$coefficients
 estimates <- rbind(estimates, group_estimates)
}

estimates
(Intercept) speed
estimates -7.004651 2.674419
group_estimates -25.709091 4.366234
group_estimates -20.037464 4.741457
group_estimates -18.849797 4.336942

Chapter 6 ■ SuperviSed Learning

156

group_estimates -13.846071 3.207831

Right away, I will stress that this is not the best way to do this, but it shows you how it could be done. We
will get to better approaches shortly. Still, you can see how splitting the data this way lets us get distributions
for model parameters.

There are several reasons why this isn’t the optimal way of coding this. The row names are ugly, but that
is easy to fix. The way we combine the estimates in the data frame is inefficient—although it doesn’t matter
much with such a small dataset—and later in the book, we will see why. The main reason, though, is that
explicit loops like this make it hard to follow the data transformations since it isn’t a pipeline of processing.

The package purrr lets us work on lists using pipelines. You import the package as follows:

library(purrr)

Then you have access to the function map() that lets you apply a function to each element of the list:

estimates <- grouped_cars %>%
 map(. %>% lm(dist ~ speed, data = .) %>% .$coefficients)

estimates
$`1`
(Intercept) speed
-7.004651 2.674419
##
$`2`
(Intercept) speed
-25.709091 4.366234
##
$`3`
(Intercept) speed
-20.037464 4.741457
##
$`4`
(Intercept) speed
-18.849797 4.336942
##
$`5`
(Intercept) speed
-13.846071 3.207831

The result is another list, but we really want a data frame, and we can get that using the piece of magical
invocation called do.call("rbind", .):

estimates <- grouped_cars %>%
 map(. %>% lm(dist ~ speed, data = .) %>% .$coefficients) %>%
 do.call("rbind", .)

estimates

Chapter 6 ■ SuperviSed Learning

157

(Intercept) speed
1 -7.004651 2.674419
2 -25.709091 4.366234
3 -20.037464 4.741457
4 -18.849797 4.336942
5 -13.846071 3.207831

There isn’t much to say about this. It just combines the elements in a list using the rbind() function,
and the result is a data frame. It is not particularly pretty, but it is just the invocation you need here.

Cross-Validation
A problem with splitting the data into many small groups is that we get a large variance in estimates. Instead
of working with each little dataset independently we can remove one of the datasets and work on all the
others. This will mean that our estimates are no longer independent, but the variance goes down. The idea
of removing a subset of the data and then cycle through the groups evaluating a function for each group that
is left out, is called cross-validation. Well, it is called cross-validation when we use it to validate prediction,
but it works equally well for inferring parameters.

If we already have the grouped data frames in a list, we can remove one element from the list using [-i]
indexing—just as we can for vectors—and the result is a list containing all the other elements. We can then
combine the elements in the list into a single data frame using the do.call("rbind", .) magical invocation.

So we can write a function that takes the grouped data frames and gives us another list of data frames
that contains data where a single group is left out.

cross_validation_groups <- function(grouped_df) {
 result <- vector(mode = "list", length = length(grouped_df))
 for (i in seq_along(grouped_df)) {
 result[[i]] <- grouped_df[-i] %>% do.call("rbind", .)
 }
 result
}

The vector(mode = "list", length = length(grouped_df)) is a little misleading here. It doesn’t
actually create a vector but a list. It is not my fault, but just how R creates lists.

The function does have a for loop, something I suggested you avoid in general, but by constructing a
list up front and then assigning to elements of the list, I prevent the performance penalties often seen when
working with loops. By isolating the loop in a function, we can still write data processing pipelines without
using loops.

We could have combined this with the group_data() function, but I prefer to write functions that do
one simple thing and combine them instead using pipelines. We can use this function and all the stuff we
did previously to get estimates using cross-validation.

cars %>%
 permute_rows %>%
 group_data(5) %>%
 cross_validation_groups %>%
 map(. %>% lm(dist ~ speed, data = .) %>% .$coefficients) %>%

Chapter 6 ■ SuperviSed Learning

158

 do.call("rbind", .)
(Intercept) speed
[1,] -16.42502 3.911860
[2,] -17.92765 3.835678
[3,] -17.97865 3.976987
[4,] -17.51737 4.010904
[5,] -17.58658 3.898504

Where cross-validation is typically used is when leaving out a subset of the data for testing and using the
rest for training.

We can write a simple function for splitting the data this way, similar to the cross_validation_
groups() function. It cannot return a list of data frames but needs to return a list of lists, each list containing
a training data frame and a test data frame. It looks like this:

cross_validation_split <- function(grouped_df) {
 result <- vector(mode = "list", length = length(grouped_df))
 for (i in seq_along(grouped_df)) {
 training <- grouped_df[-i] %>% do.call("rbind", .)
 test <- grouped_df[[i]]
 result[[i]] <- list(training = training, test = test)
 }
 result
}

Don’t worry if you don’t understand all the details of it. After reading later programming chapters, you
will. Right now, I hope you just get the gist of it.

I will not show you the result. It is just long and not that pretty, but if you want to see it, you can type:

cars %>%
 permute_rows %>%
 group_data(5) %>%
 cross_validation_split

As we have seen, we can index into a list using [[]]. We can also use the $name indexing like we can
for data frames, so if we have a list lst with a training dataset and a test dataset, we can get them as
lst$training and lst$test:

prediction_accuracy_cars <- function(test_and_training) {
 result <- vector(mode = "numeric",
 length = length(test_and_training))
 for (i in seq_along(test_and_training)) {
 training <- test_and_training[[i]]$training
 test <- test_and_training[[i]]$test
 model <- training %>% lm(dist ~ speed, data = .)
 predictions <- test %>% predict(model, data = .)
 targets <- test$dist
 result[i] <- rmse(targets, predictions)
 }
 result
}

Chapter 6 ■ SuperviSed Learning

159

You should be able to understand most of this function even though we haven’t covered much R
programming yet, but if you do not, then don’t worry.

You can then add this function to your data analysis pipeline to get the cross-validation accuracy for
your different groups:

cars %>%
 permute_rows %>%
 group_data(5) %>%
 cross_validation_split %>%
 prediction_accuracy_cars
[1] 197.0962 244.4090 192.4210 228.2972 179.1443

The prediction accuracy function isn’t general. It is hardwired to use a linear model and to the formula
dist ~ speed. It is possible to make a more general function, but that requires a lot more R programming
skills ,so we will leave the example here.

Selecting Random Training and Testing Data
In the example earlier where I split the data cars into training and test data using sample(0:1, n,
replacement = TRUE). I didn’t permute the data and then deterministically split it afterwards. Instead, I
sampled training and test based on probabilities of picking any given row as training and test.

What I did was adding a column to the data frame where I randomly picked whether an observation
should be used for the training or for the test data. Since it required first adding a new column and then
selecting rows based on it, it doesn’t work well as part of a data analysis pipeline. We can do better, and
slightly generalize the approach at the same time.

To do this, I shamelessly steal two functions from the documentation of the purrr package. They do the
same thing as the grouping function I wrote previously. If you do not quite follow the example, do not worry.
But I suggest you try to read the documentation for any function you do not understand and at least try to
work out what is going on. Follow it as far as you can, but don’t sweat it if there are things you do not fully
understand. After finishing the entire book, you can always return to the example.

The previous grouping function defined groups by splitting the data into n equally sized groups. The
first function here instead samples from groups specified by probabilities. It creates a vector naming the
groups, just as I did previously. It just names the groups based on named values in a probability vector and
creates a group vector based on probabilities given by this vector:

random_group <- function(n, probs) {
 probs <- probs / sum(probs)
 g <- findInterval(seq(0, 1, length = n), c(0, cumsum(probs)),
 rightmost.closed = TRUE)
 names(probs)[sample(g)]
}

If we pull the function apart, we see that it first normalizes a probability vector. This just means that
if we give it a vector that doesn’t sum to one, it will still work. To use it, it makes the code easier to read if it
already sums to one, but the function can deal with it, even if it doesn’t.

The second line, which is where it is hardest to read, just splits the unit interval into n subintervals and
assign a group to each subinterval based on the probability vector. This means that the first chunk of the n

Chapter 6 ■ SuperviSed Learning

160

intervals is assigned to the first group, the second chunk to the second group, and so on. It is not doing any
sampling yet, it just partitions the unit interval into n subinterval and assigns each subinterval to a group.

The third line is where it is sampling. It now takes the n subintervals, permutes them, and returns the
names of the probability vector each one falls into.

We can see it in action by calling it a few times. We give it a probability vector where we call the first
probability “training” and the second “test”:

random_group(8, c(training = 0.5, test = 0.5))
[1] "test" "training" "training" "test"
[5] "training" "test" "test" "training"
random_group(8, c(training = 0.5, test = 0.5))
[1] "training" "training" "test" "training"
[5] "training" "test" "test" "test"

We get different classes out when we sample, but each class is picked with 0.5 probability. We don’t
have to pick them 50/50, though; we can choose more training than test data, for example.

random_group(8, c(training = 0.8, test = 0.2))
[1] "training" "training" "test" "training"
[5] "training" "test" "training" "training"

The second function just uses this random grouping to split the dataset. It works exactly like the cross-
validation splitting we saw earlier.

partition <- function(df, n, probs) {
 replicate(n, split(df, random_group(nrow(df), probs)), FALSE)
}

The function replicates the subsampling n times. Here n is not the number of observations you have in
the data frame, but a parameter to the function. It lets you pick how many subsamples of the data you want.

We can use it to pick four random partitions. Here with training and test select with 50/50 probability.

random_cars <- cars %>% partition(4, c(training = 0.5, test = 0.5))

If you evaluate it on your computer and look at random_cars, you will see that resulting values are a lot
longer now. This is because we are not looking at smaller datasets this time; we have as many observations
as we did before (which is 50), but we have randomly partitioned them.

We can combine this partition() function with the accuracy prediction from before.

random_cars %>% prediction_accuracy_cars
[1] 93.75803 81.01278 70.82501 80.13141

Chapter 6 ■ SuperviSed Learning

161

Examples of Supervised Learning Packages
So far in this chapter, we looked at classical statistical methods for regression (linear models) and
classification (logistic regression) but there are many machine learning algorithms for both, and many are
available as R packages.

They all work similarly to the classical algorithms. You give the algorithms a dataset and a formula
specifying the model matrix. From this, they do their magic. All the ideas presented in this chapter can be
used together with them.

Next I go through a few packages, but there are many more. A Google search should help you find a
package if there is a particular algorithm you are interested in applying.

I present their use with the same two datasets we have used previously, the cars data where we aim at
predicting the stopping distance from the speed and the BreastCancer where we try to predict the class from
the cell thickness. For both these cases, the classical models–a linear model and a logistic regression–are
more ideal solutions and these models will not out-compete them, but for more complex datasets they can
usually be quite powerful.

Decision Trees
Decision trees work by building a tree from the input data, splitting on a parameter in each inner node
according to a variable value. This can be splitting on whether a numerical value is above or below a certain
threshold or which level a factor has.

Decision trees are implemented in the rpart package and models are fitted, just as linear models are:

library(rpart)

model <- cars %>% rpart(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)
[1] 117.1626

Building a classifying model works very similar. We do not need to translate the cell thickness into a
numerical value, though; we can use the data frame as it is (but you can experiment with translating factors
into numbers if you are interested in exploring this).

model <- BreastCancer %>%
 rpart(Class ~ Cl.thickness, data = .)

The predictions when we used the glm() function were probabilities for the tumor being malignant.
The predictions made using the decision tree gives you the probabilities both for being benign and being
malignant:

predict(model, BreastCancer) %>% head
benign malignant
1 0.82815356 0.1718464
2 0.82815356 0.1718464
3 0.82815356 0.1718464
4 0.82815356 0.1718464
5 0.82815356 0.1718464

Chapter 6 ■ SuperviSed Learning

162

6 0.03289474 0.9671053

To get a confusion matrix, we need to translate these probabilities into the corresponding classes. The
output of predict() is not a data frame but a matrix so we first convert it into a data frame using the function
as.data.frame() and then we use the %$% operator in the pipeline to get access to the columns by name in
the next step.

predicted_class <- predict(model, BreastCancer) %>%
 as.data.frame %$%
 ifelse(benign > 0.5, "benign", "malignant")

table(BreastCancer$Class, predicted_class)
predicted_class
benign malignant
benign 453 5
malignant 94 147

Another implementation of decision trees is the ctree() function from the party package:

library(party)
model <- cars %>% ctree(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)
[1] 117.1626
model <- BreastCancer %>%
 ctree(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head
[1] benign benign benign benign
[5] benign malignant
Levels: benign malignant
table(BreastCancer$Class, predict(model, BreastCancer))
##
benign malignant
benign 453 5
malignant 94 147

I like this package slightly more since it can make plots of the fitted models; see Figure 6-8:

cars %>% ctree(dist ~ speed, data = .) %>% plot

Chapter 6 ■ SuperviSed Learning

163

speed
p < 0.001

1

≤ 17 > 17

speed
p < 0.001

2

≤ 12 > 12

0
20
40
60
80

100
120

0
20
40
60
80

100
120

Node 5 (n = 19)

0
20
40
60
80

100
120

Node 3 (n = 15) Node 4 (n = 16)

Figure 6-8. Plot of the cars decision tree

Random Forests
Random forests generalize decision trees by building several of them and combining them. They are
implemented in the randomForest package, as follows:

library(randomForest)
model <- cars %>% randomForest(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)
[1] 83.5496

For classification, the predictions are the actual classes as a factor, so no translation is needed to get a
confusion matrix:

model <- BreastCancer %>%
 randomForest(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head
1 2 3 4 5
benign benign benign malignant benign
6
malignant
Levels: benign malignant
table(BreastCancer$Class, predict(model, BreastCancer))
##
benign malignant

Chapter 6 ■ SuperviSed Learning

164

benign 437 21
malignant 76 165

Neural Networks
You can use a package called nnet to construct neural networks.

library(nnet)

You can use it for both classification and regression. We can see it in action on the cars dataset:

model <- cars %>% nnet(dist ~ speed, data = ., size = 5)
weights: 16
initial value 122462.309952
final value 120655.000000
converged
rmse(predict(model, cars), cars$dist)
[1] 347.3543

The neural networks require a size parameter specifying how many nodes you want in the inner layer
of the network. Here I have used five.

For classification, you use a similar call:

model <- BreastCancer %>%
 nnet(Class ~ Cl.thickness, data = ., size = 5)
weights: 56
initial value 718.232444
iter 10 value 227.662158
iter 20 value 225.222217
iter 30 value 225.099474
iter 40 value 225.098372
final value 225.098275
converged

The output of the predict() function is probabilities for the tumor being malignant:

predict(model, BreastCancer) %>% head
[,1]
1 0.3461458
2 0.3461458
3 0.1111090
4 0.5294166
5 0.1499927
6 0.9130590

We need to translate it into classes and, for this, we can use a lambda expression:

Chapter 6 ■ SuperviSed Learning

165

predicted_class <- predict(model, BreastCancer) %>%
 { ifelse(. < 0.5, "benign", "malignant") }

table(BreastCancer$Class, predicted_class)
predicted_class
benign malignant
benign 437 21
malignant 76 165

Support Vector Machines
Another popular method is support vector machines. These are implemented in the ksvn() function in the
kernlab package:

library(kernlab)
model <- cars %>% ksvm(dist ~ speed, data = .)
rmse(predict(model, cars), cars$dist)
[1] 102.3646

For classification, the output is again a factor we can use directly to get a confusion matrix:

model <- BreastCancer %>%
 ksvm(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head
[1] benign benign benign malignant
[5] benign malignant
Levels: benign malignant
table(BreastCancer$Class, predict(model, BreastCancer))
##
benign malignant
benign 437 21
malignant 76 165

Naive Bayes
Naive Bayes essentially assumes that each explanatory variable is independent of the others and uses the
distribution of these for each category of data to construct the distribution of the response variable given the
explanatory variables.

Naive Bayes is implemented in the e1071 package:

library(e1071)

Chapter 6 ■ SuperviSed Learning

166

The package doesn’t support regression analysis—after all, it needs to look at conditional distributions
for each output variable value—but we can use it for classification. The function we need is naiveBayes()
and we can use the predict() output directly to get a confusion matrix:

model <- BreastCancer %>%
 naiveBayes(Class ~ Cl.thickness, data = .)

predict(model, BreastCancer) %>% head
[1] benign benign benign malignant
[5] benign malignant
Levels: benign malignant
table(BreastCancer$Class, predict(model, BreastCancer))
##
benign malignant
benign 437 21
malignant 76 165

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Fitting Polynomials
Use the cars data to fit higher degree polynomials and use training and test data to explore how they
generalize. At which degree do you get the better generalization?

Evaluating Different Classification Measures
Earlier I wrote functions for computing the accuracy, specificity (true negative rate), and sensitivity (true
positive rate) of a classification. Write similar functions for the other measures described previously.
Combine them in a prediction_summary() function like I did earlier.

Breast Cancer Classification
You saw how to use the glm() function to predict the classes for the breast cancer data. Use it to make
predictions for training and test data, randomly splitting the data in these two classes, and evaluate all the
measures with your predict_summary() function.

If you can, try to make functions similar to the ones I used to split data and evaluate models for the
cars data.

Chapter 6 ■ SuperviSed Learning

167

Leave-One-Out Cross-Validation (Slightly More Difficult)
The code I wrote previously splits the data into n groups and constructs training and test data based on that.
This is called n-fold cross-validation. There is another common approach to cross-validation called leave one
out cross-validation. The idea here is to remove a single data observation and use that for testing and all the
rest of the data for training.

This isn’t used that much if you have a lot of data—leaving out a single data point will not change the
trained model much if you have lots of data points anyway—but for smaller datasets it can be useful.

Try to program a function for constructing subsampled training and test data for this strategy.

Decision Trees
Use the BreastCancer data to predict the tumour class, but try including more of the explanatory variables.
Use cross-validation or sampling of training/test data to explore how it affects the prediction accuracy.

Random Forests
Use the BreastCancer data to predict the tumour class, but try including more of the explanatory variables.
Use cross-validation or sampling of training/test data to explore how it affects the prediction accuracy.

Neural Networks
The size parameter for the nnet function specifies the complexity of the model. Test how the accuracy
depends on this variable for classification on the BreastCancer data.

We only used the cell thickness variable to predict the tumour class. Include the other explanatory
variables and explore if having more information improves the prediction power.

Support Vector Machines
Use the BreastCancer data to predict the tumour class, but try including more of the explanatory variables.
Use cross-validation or sampling of training/test data to explore how it affects the prediction accuracy.

Compare Classification Algorithms
Compare the logistic regression, the neural networks, the decision trees, the random forests, and the support
vector machines in how well they classify tumors in the BreastCancer data. For each, take the best model
you obtained in your experiments.

169© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_7

CHAPTER 7

Unsupervised Learning

For supervised learning, we have one or more targets we want to predict using a set of explanatory variables.
But not all data analysis consists of making prediction models. Sometimes we are just trying to find out
what structure is actually in the data we analyze. There can be several reasons for this. Sometimes unknown
structures can tell us more about the data. Sometimes we want to explicitly avoid an unknown structure
(if we have datasets that are supposed to be similar, we don’t want to discover later that there are systematic
differences). Whatever the reason, unsupervised learning concerns finding unknown structures in data.

Dimensionality Reduction
Dimensionality reduction, as the name hints at, are methods used when you have high-dimensional data
and want to map it down into fewer dimensions. The purpose here is usually to visualize data to try and spot
patterns from plots. The analysis usually just transform the data and doesn’t add anything to it. It possibly
removes some information, but by reducing the number of dimensions it can be easier to analyze.

The type of data where this is necessary is when the data has lots of columns. Not necessarily many
observations, but each observation have very many variables, and there is often little information in any
single column. One example is genetic data where there is often hundreds of thousands, if not millions, of
genetic positions observed in each individual, and at each of these positions we have a count of how many
of a given genetic variant is present at these markers, a number from 0 to 2. There is little information in any
single marker, but combined they can be used to tell a lot about an individual. The first example we shall see
in this chapter, principal component analysis, is frequently used to map thousands of genetic markers into a
few more informative dimensions to reveal relationships between different individuals.

I will not use data with very high dimensionality but illustrate them with smaller datasets where the
methods can still be useful.

Principal Component Analysis
Principal component analysis (PCA) maps your data from one vector space to another of the same
dimensionality as the first. So it doesn’t reduce the number of dimensions as such. However, it chooses the
coordinate system of the new space such that the most information is in the first coordinate, the second
most information in the second coordinate, and so on.

In it simplest form it is just a linear transformation. It changes the basis of your vector space such that
the most variance in the data is along the first basis vector, and each basis vector then has increasingly
less of the variance. The basis of the new vector space is called the components and the name “principal
component” refers to looking at the first few, the most important, the principal components.

Chapter 7 ■ UnsUpervised Learning

170

There might be some transformations of the data first to normalize it, but the final step of the
transformation is always such a linear map. Hence after the transformation there is exactly the same amount
of information in your data, it is just represented along different dimensions.

Because the PCA just transforms your data, your data has to be numerical vectors, to begin with. For
categorical data, you will need to modify the data first. One approach is to represent factors as a binary
vector for each level, as is done with model matrices in supervised learning. If you have a lot of factors in
your data, though, PCA might not be the right tool.

It is beyond the scope of this book to cover the theory of PCA in any detail—but many other textbooks
do—so we will only dig into how it is used in R.

To illustrate this, I will use the iris dataset. It is not high-dimensional, but it will do as a first example.
Remember that this data contains four measurements—sepal length and width and petal length and

width—for flowers from three different species:

iris %>% head
Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
6 5.4 3.9 1.7
Petal.Width Species
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa
5 0.2 setosa
6 0.4 setosa

To see if there is information in the data that would enable us to distinguish between the three species
based on the measurements, we could try to plot some of the measurements against each other. See
Figures 7-1 and 7-2.

iris %>% ggplot() +
 geom_point(aes(x = Sepal.Length, y = Sepal.Width, colour = Species))

Chapter 7 ■ UnsUpervised Learning

171

iris %>% ggplot() +
 geom_point(aes(x = Petal.Length, y = Petal.Width, colour = Species))

Figure 7-1. Plot of iris sepal length versus sepal width

Chapter 7 ■ UnsUpervised Learning

172

It does look as if we should be able to distinguish the species. Setosa stands out on both plots, but
Versicolor and Virginia overlap on the first.

Since this is such a simple dataset, and since there is obviously structure if we just plot a few dimensions
against each other, this is not a case where we would usually pull out the cannon that is PCA, but this is a
section on PCA so we will.

Since PCA only works on numerical data, we need to remove the Species parameter, but after that, we
can do the transformation using the prcomp function:

pca <- iris %>% select(-Species) %>% prcomp
pca
Standard deviations:
[1] 2.0562689 0.4926162 0.2796596 0.1543862
##
Rotation:
PC1 PC2 PC3
Sepal.Length 0.36138659 -0.65658877 0.58202985
Sepal.Width -0.08452251 -0.73016143 -0.59791083
Petal.Length 0.85667061 0.17337266 -0.07623608
Petal.Width 0.35828920 0.07548102 -0.54583143

Figure 7-2. Plot of iris petal length versus petal width

Chapter 7 ■ UnsUpervised Learning

173

PC4
Sepal.Length 0.3154872
Sepal.Width -0.3197231
Petal.Length -0.4798390
Petal.Width 0.7536574

The object that this produces contains different information about the result. The standard deviations tell
us how much variance is in each component and the rotation what the linear transformation is. If we plot the
pca object, we will see how much of the variance in the data is on each component, as shown in Figure 7-3.

.

Va
ria

nc
es

0
1

2
3

4

Figure 7-3. Plot of the variance on each principal component for the iris dataset

pca %>% plot

The first thing you want to look at after making the transformation is how the variance is distributed
along the components. If the first few components do not contain most of the variance, the transformation
has done little for you. When it does, there is some hope that plotting the first few components will tell you
about the data.

To map the data to the new space spanned by the principal components, we use the predict()
function:

mapped_iris <- pca %>% predict(iris)
mapped_iris %>% head
PC1 PC2 PC3
[1,] -2.684126 -0.3193972 0.02791483
[2,] -2.714142 0.1770012 0.21046427
[3,] -2.888991 0.1449494 -0.01790026
[4,] -2.745343 0.3182990 -0.03155937
[5,] -2.728717 -0.3267545 -0.09007924
[6,] -2.280860 -0.7413304 -0.16867766

Chapter 7 ■ UnsUpervised Learning

174

PC4
[1,] 0.002262437
[2,] 0.099026550
[3,] 0.019968390
[4,] -0.075575817
[5,] -0.061258593
[6,] -0.024200858

This can also be used with new data that wasn’t used to create the pca object. Here, we just give it the
same data we used before. We don’t actually have to remove the Species variable; it will figure out which of
the columns to use based on their names. We can now plot the first two components against each other, as
shown in Figure 7-4.

mapped_iris %>%
 as.data.frame %>%
 cbind(Species = iris$Species) %>%
 ggplot() +
 geom_point(aes(x = PC1, y = PC2, colour = Species))

Figure 7-4. Plot of first two principal components for the iris dataset

Chapter 7 ■ UnsUpervised Learning

175

The mapped_iris object returned from the predict() function is not a data frame but a matrix. That won’t
work with ggplot() so we need to transform it back into a data frame, and we do that with as.data.frame.
Since we want to color the plot according to species, we need to add that information again—remember the
pca object does not know about this factor data—so we do that with cbind(). After that, we plot.

We didn’t gain much from this. There was about as much information in the original columns as
there is in the transformed data. But now that we have seen PCA in action we can try it out on a little more
interesting example.

We will look at the HouseVotes84 data from the mlbench package:

library(mlbench)
data(HouseVotes84)
HouseVotes84 %>% head
Class V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 republican n y n y y y n n n y
2 republican n y n y y y n n n n
3 democrat <NA> y y <NA> y y n n n n
4 democrat n y y n <NA> y n n n n
5 democrat y y y n y y n n n n
6 democrat n y y n y y n n n n
V11 V12 V13 V14 V15 V16
1 <NA> y y y n y
2 n y y y n <NA>
3 y n y y n n
4 y n y n n y
5 y <NA> y y y y
6 n n y y y y

The data contains the votes cast for both republicans and democrats on 16 different proposals. The
types of votes are yea, nay, and missing/unknown. Now, since votes are unlikely to be accidentally lost,
missing data here means someone actively decided not to vote, so it isn’t really missing. There is probably
some information in that as well.

Now an interesting question we could ask is whether there are differences in voting patterns between
republicans and democrats. We would expect that, but can we see it from the data?

The individual columns are binary (well, trinary if we consider the missing data as actually informative)
and do not look very different between the two groups, so there is little information in each individual
column. We can try doing a PCA on the data.

HouseVotes84 %>% select(-Class) %>% prcomp
Error in colMeans(x, na.rm = TRUE): 'x' must be numeric

Okay, R is complaining that the data isn’t numeric. We know that PCA needs numeric data, but we are
giving it factors. We need to change that so we can try to map the votes into zeros and ones.

Chapter 7 ■ UnsUpervised Learning

176

We can use the function apply(). This function is used to apply a function to a matrix and what it does
depends on the dimensions we tell it to work on. It can summarize data along rows or along columns, but if
we tell it to work on both dimensions, that is the c(1,2) argument to the function, it will apply the function
to each element in the matrix. The transformation to do is just a function we give apply(). Here you can
use a function defined elsewhere or an anonymous function. I used an anonymous function and instead of
writing it as function(x) {...} I used a lambda expression:

HouseVotes84 %>%
 select(-Class) %>%
 apply(c(1,2), . %>% { ifelse(as.character(.) == "n", 0, 1) }) %>%
 prcomp
Error in svd(x, nu = 0): infinite or missing values in 'x'

That doesn’t work either, but now the problem is the missing data. We have mapped nay to 0 and yea to
1, but missing data remains missing.

We should always think carefully about how we deal with missing data, especially in a case like this
where it might actually be informative. One approach we could take is to translate each column into three
binary columns indicating if a vote was cast as yea, nay, or not cast.

I have left that as an exercise. Here I will just say that if someone abstained from voting, then they are
equally likely to have voted yea or nay and translate missing data into 0.5.

Since I want to map the data onto the principal components afterward, and since I don’t want to write
the data transformations twice, I save it in a variable and then perform the PCA:

vote_patterns <- HouseVotes84 %>%
 select(-Class) %>%
 apply(c(1,2), . %>% { ifelse(as.character(.) == "n", 0, 1) }) %>%
 apply(c(1,2), . %>% { ifelse(is.na(.), 0.5, .) })

pca <- vote_patterns %>% prcomp

Now we can map the vote patterns onto the principal components and plot the first against the second,
as shown in Figure 7-5.

mapped_votes <- pca %>% predict(vote_patterns)
mapped_votes %>%
 as.data.frame %>%
 cbind(Class = HouseVotes84$Class) %>%
 ggplot() +
 geom_point(aes(x = PC1, y = PC2, colour = Class))

Chapter 7 ■ UnsUpervised Learning

177

It looks like there is a clear separation in the voting patterns, at least on the first principal component.
This is not something we could immediately see from the original data.

Multidimensional Scaling
Sometimes it is easier to have a measure of distance between objects than representing them as numerical
vectors. Consider for example strings. You could translate them into numbers based on their encoding,
but the space of possible strings is vast—infinite if you do not restrict their length—so it is not a practical
approach. However, there are many measures of how different two strings are. For strings, at least, it is easier
to define a distance measure than a mapping into numeric values.

When what we have is a distance measure we can represent our data as a distance matrix, one that
contains all pair-wise distances. Obviously, this is not a feasible solution if you have very many data points—
the number of pairs grows proportionally to the number of data points squared—but up to a few thousand
data points, it is not a significant problem. Multidimensional scaling takes such a matrix of all pair-wise
distances and maps each data point into a linear space while preserving the pair-wise distances as well as
possible.

Figure 7-5. Plot of first two principal components for the house votes dataset

Chapter 7 ■ UnsUpervised Learning

178

Consider the iris dataset again. For this dataset, of course, we do have the data points represented as
numerical vectors, but it is a dataset we are familiar with so it is good to see the new method in use on it.

We can create a distance matrix using the dist() function:

iris_dist <- iris %>% select(-Species) %>% dist

To create a representation of these distances in a two-dimensional space we use the function
cmdscale(). It takes a parameter, k, that specifies the dimensionality we want to place the points in. Give it
a high enough k and it can perfectly preserve all pair-wise distances, but we wouldn’t be able to visualize it.
We are best served with low dimensionality and to plot the data we chose two. The result is a matrix with one
row per original data point and one column per dimension we asked for; here, of course, two.

mds_iris <- iris_dist %>% cmdscale(k=2)
mds_iris %>% head
[,1] [,2]
[1,] -2.684126 0.3193972
[2,] -2.714142 -0.1770012
[3,] -2.888991 -0.1449494
[4,] -2.745343 -0.3182990
[5,] -2.728717 0.3267545
[6,] -2.280860 0.7413304

We can translate this matrix into a data frame and plot it (see Figure 7-6).

mds_iris %>%
 as.data.frame %>%
 cbind(Species = iris$Species) %>%
 ggplot() +
 geom_point(aes(x = V1, y = V2, colour = Species))

Chapter 7 ■ UnsUpervised Learning

179

This expression uses names V1 and V2 for the x and y axes. This exploits that a data frame we have not
provided column names for will name them Vn where n is an increasing integer.

The plot looks essentially the same as the PCA plot earlier, which is not a coincidence, except that it is
upside down.

We can do exactly the same thing with the voting data—here we can reuse the cleaned data that has
translated the factors into numbers—and the result is shown in Figure 7-7.

mds_votes <- vote_patterns %>% dist %>% cmdscale(k = 2)

mds_votes %>%
 as.data.frame %>%
 cbind(Class = HouseVotes84$Class) %>%
 ggplot() +
 geom_point(aes(x = V1, y = V2, colour = Class))

Figure 7-6. Multidimensional scaling plot for iris data

Chapter 7 ■ UnsUpervised Learning

180

Should you ever have the need for computing a distance matrix between strings, by the way, you might
want to look at the stringdist package. As an example illustrating this, we can simulate some strings. The
following code first has a function for simulating random strings over the letters “A”, “C”, “G”, and “T” and the
second function then adds a random length to that. We then create 10 strings using these functions:

random_ngram <- function(n)
 sample(c('A','C','G','T'), size = n, replace = TRUE) %>%
 paste0(collapse = "")

random_string <- function(m) {
 n <- max(1, m + sample(c(-1,1), size = 1) * rgeom(1, 1/2))
 random_ngram(n)
}

strings <- replicate(10, random_string(5))

Using the stringdist package, we can compute the all-pairs distance matrix:

library(stringdist)
string_dist <- stringdistmatrix(strings)

Figure 7-7. Multidimensional scaling plot for house voting data

Chapter 7 ■ UnsUpervised Learning

181

We can now plot the strings in two-dimensional space, roughly preserving their distances, as shown in
Figure 7-8.

string_dist %>%
 cmdscale(k = 2) %>%
 as.data.frame %>%
 cbind(String = strings) %>%
 ggplot(aes(x = V1, y = V2)) +
 geom_point() +
 geom_label(aes(label = String),
 hjust = 0, nudge_y = -0.1)

GGCTCCGC

CTCTT

ATTAG

CAATCT

GTCCT

TAGGT

TG

CGCCT AACT

−2

−1

0

1

2

−2.5 0.0 2.5

V1

V2

Figure 7-8. Multidimensionality reduction for random strings

Clustering
Clustering methods seek to find similarities between data points and group data according to these
similarities. Such clusters can either have a hierarchical structure or not; when the structure is hierarchical,
each data point will be associated with several clusters, ordered from the more specific to the more general,
and when the structure is not hierarchical any data point is typically only assigned a single cluster. The next
sections describe two of the most popular clustering algorithms, one of each kind of clustering.

Chapter 7 ■ UnsUpervised Learning

182

k-Means Clustering
In k-means clustering you attempt to separate the data into k clusters, where you determine the number k.
The data usually has to be in the form of numeric vectors. Strictly speaking, the method will work as long as
you have a way of computing the mean of a set of data points and the distance between pairs of data points.
The R function for k-means clustering, kmeans, wants numerical data.

The algorithm essentially works by first guessing at k “centers” of proposed clusters. Then each data
point is assigned to the center it is closest to, creating a grouping of the data, and then all centers are moved
to the mean position of their clusters. This is repeated until an equilibrium is reached. Because the initial
centers are randomly chosen, different calls to the function will not necessarily lead to the same result. At
the very least, expect the labeling of clusters to be different between the various calls.

Let’s see it in action. We use the iris dataset, and we remove the Species column to get a numerical
matrix to give to the function:

clusters <- iris %>%
 select(-Species) %>%
 kmeans(centers = 3)

We need to specify k, the number of centers in the parameters to kmeans(), and we choose three. We
know that there are three species, so this is a natural choice. Life isn’t always that simple, but here it is the
obvious choice.

The function returns an object with information about the clustering. The two most interesting pieces of
information are the centers, the variable centers (excuse the difference in spelling here, it is a UK versus US
thing), and the cluster assignment, the variable cluster.

Let’s look at the center:

clusters$centers
Sepal.Length Sepal.Width Petal.Length
1 5.006000 3.428000 1.462000
2 6.850000 3.073684 5.742105
3 5.901613 2.748387 4.393548
Petal.Width
1 0.246000
2 2.071053
3 1.433871

These are simply vectors of the same form as the input data points. They are the center of mass for each
of the three clusters we have computed.

The cluster assignment is simply an integer vector with a number for each data point specifying which
cluster that data point is assigned to:

clusters$cluster %>% head
[1] 1 1 1 1 1 1
clusters$cluster %>% table
.
1 2 3
50 38 62

There are 50 data points for each species so if the clustering perfectly matched the species we should
see 50 points for each cluster as well. The clustering is not perfect, but we can try plotting the data and see
how well the clustering matches the species class.

Chapter 7 ■ UnsUpervised Learning

183

We can first plot how many data points from each species are assigned to each cluster (see Figure 7-9).

iris %>%
 cbind(Cluster = clusters$cluster) %>%
 ggplot() +
 geom_bar(aes(x = Species, fill = as.factor(Cluster)),
 position = "dodge") +
 scale_fill_discrete("Cluster")

0

10

20

30

40

50

setosa versicolor virginica

Species

co
un
t

Cluster

1

2

3

Figure 7-9. Cluster assignments for the three iris species

We first combine the iris dataset with the cluster association from clusters and then make a bar
plot. The position argument is "dodge" so the cluster assignments are plotted next to each other instead of
stacked on top of each other.

Not unexpectedly, from what we have learned of the data by plotting it earlier, Setosa seems clearly
distinct from the other two species, which, according to the four measurements we have available at least,
overlap in features.

There is a bit of luck involved here as well. A different starting point for where kmeans() placed the first
centers will affect the final result, and had it put two clusters inside the cloud of the Setosa data points it
would have split those points into two clusters and merged the Versicolor and Virginia points into a single
cluster, for instance.

Chapter 7 ■ UnsUpervised Learning

184

It is always a good idea to visually examine how the clustering result matches where the actual data
points fall. We can do this by plotting the individual data points and see how the classification and clustering
looks. We could plot the points for any pair of features, but we have seen how to map the data onto principal
components, so we could try to plot the data on the first two of these. As you remember, we can map data
points from the four features to the principal components using the predict() function. This works both for
the original data used to make the PCA, as well as the centers we get from the k-means clustering:

pca <- iris %>%
 select(-Species) %>%
 prcomp

mapped_iris <- pca %>%
 predict(iris)

mapped_centers <- pca %>%
 predict(clusters$centers)

We can plot the mapped data points, PC1, against PC2 (see Figure 7-10). To display the principal
components together with the species information, we need to add a Species column. We also need to add
the cluster information since that isn’t included in the mapped vectors. This is a numeric vector, but we want
to treat it as categorical, so we need to translate it using as.factor():

mapped_iris %>%
 as.data.frame %>%
 cbind(Species = iris$Species,
 Clusters = as.factor(clusters$cluster)) %>%
 ggplot() +
 geom_point(aes(x = PC1, y = PC2,
 colour = Species, shape = Clusters)) +
 geom_point(aes(x = PC1, y = PC2),
 size = 5, shape = "X",
 data = as.data.frame(mapped_centers))

Chapter 7 ■ UnsUpervised Learning

185

In the plot, I also show the centers. I use the data argument to geom_point() to give it this data, and I
set the size to 5 and set the shape to "X".

As mentioned, there is some luck involved in getting a good clustering like this. The result of a second
run of the kmeans() function is shown in Figures 7-11 and 7-12.

Figure 7-10. Clusters and species for iris

Chapter 7 ■ UnsUpervised Learning

186

0

10

20

30

40

50

setosa versicolor virginica

Species

co
un
t

Cluster

1

2

3

Figure 7-11. A bad cluster assignment for the three iris species

Chapter 7 ■ UnsUpervised Learning

187

If you go back and look at Figure 7-10 and think that some of the square points are closer to the center
of the “triangular cluster” than the center of the “square cluster”, or vice versa, you are right. Don’t be too
disturbed by this; two things are deceptive here. One is that the axes are not on the same scale, so distances
along the x-axis are farther than distances along the y-axis. A second is that the distances used to group data
points are in the four-dimensional space of the original features, while the plot is a projection onto the two-
dimensional plane of the first two principal components.

There is something to worry about, though, concerning distances. The algorithm is based on the
distance from cluster centers to data points, but if you have one axis in centimeters and another in meters,
a distance along one axis is numerically a hundred times farther than along the other. This is not merely
solved by representing all features in the same unit. First of all, that isn’t always possible. There is no
meaningful way of translating time or weight into a distance. Even if it was, what is being measured is also
relevant for the unit we consider. The height of a person is meaningfully measured in meters, but you do not
want something like cell size to be measured in meters.

This is also an issue for principal component analysis. Obviously, a method that tries to create a vector
space basis based on the variance in the data is going to be affected by the units used in the input data.
The usual solution is to rescale all input features so they are centered at zero and have variance one. You
subtract from each data point the mean of the feature and divide by the standard deviation. This means that
measured in standard deviations, all dimensions have the same variation.

The prcomp() function takes parameters to do the scaling. Parameter center, which defaults to TRUE,
translates the data points to mean zero, and parameter scale. (notice the .), which defaults to FALSE, scales
the data points to have variance one at all dimensions.

Figure 7-12. Clusters and species for iris for a bad clustering

Chapter 7 ■ UnsUpervised Learning

188

The kmeans() functions do not take these parameters, but you can explicitly rescale a numerical data
frame using the scale() function. I have left this as an exercise.

Now let’s consider how the clustering does at predicting the species more formally. This returns us to
familiar territory: We can build a confusion matrix between species and clusters.

table(iris$Species, clusters$cluster)
##
1 2 3
setosa 50 0 0
versicolor 0 2 48
virginica 0 36 14

One problem here is that the clustering doesn’t know about the species, so even if there were a one-to-
one corresponding between clusters and species, the confusion matrix would only be diagonal if the clusters
and species were in the same order.

We can associate each species to the cluster most of its members are assigned to. This isn’t a perfect
solution—two species could be assigned to the same cluster this way, and we still wouldn’t be able to
construct a confusion matrix—but it will work for us in the case we consider here. We can count how many
observations from each cluster is seen in each species like this:

tbl <- table(iris$Species, clusters$cluster)
(counts <- apply(tbl, 1, which.max))
setosa versicolor virginica
1 3 2

Build a table mapping species of clusters to get the confusion matrix like this:

map <- rep(NA, each = 3)
map[counts] <- names(counts)
table(iris$Species, map[clusters$cluster])
##
setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 14 36

A final word on k-means is this: Since k is a parameter that needs to be specified, how do you pick it? Here
we knew that there were three species so we picked three for k as well. But when we don’t know if there is any
clustering in the data, to begin with, or if there is a lot, how do we choose k? Unfortunately, there isn’t a general
answer to this. There are several rules of thumbs, but there is no perfect solution you can always apply.

Hierarchical Clustering
Hierarchical clustering is a technique you can use when you have a distance matrix of your data. Here the
idea is that you build up a tree structure of nested clusters by iteratively merging clusters. You start with
putting each data point in their own singleton clusters. Then iteratively you find two clusters that are close
together and merge them into a new cluster. You continue this until all data points are in the same large
cluster. Different algorithms exist, and they mainly vary in how they choose which cluster to merge next

Chapter 7 ■ UnsUpervised Learning

189

and how they compute the distance between clusters. In R the function hclust() implements several
algorithms—the parameter method determines which is used—and we can see it in use with the iris
dataset. We first need a distance matrix. This time, I first scale the data.

iris_dist <- iris %>% select(-Species) %>% scale %>% dist

Now the clustering is constructed by calling hclust() on the distance matrix.

clustering <- hclust(iris_dist)

We can plot the result using the generic plot() function, as shown in Figure 7-13. There is not much
control over how the clustering is displayed using this function, but if you are interested in plotting trees, you
should look at the ape package.

plot(clustering)

10
1

13
7

14
9

14
5

14
1

12
1

14
4 12

5
11

1
11

6
14

2
14

6
10

3
11

3
14

0
10

4
14

8
11

7
13

8
10

5
12

9
13

3 11
4

11
5

12
2

10
2

14
3 1

09 73 14
7 84 13
5 55 13
4

11
2

12
4

12
7 66 87 5
1 53 7
8 77 59 76 7
1

15
0

12
8

13
9 8

6
52 57 67 85 6

5
97 89 96 6

2
92 64 79 75 98 7

2 74 1
10

11
8

13
2

11
9

12
3

12
6

13
0

10
8

13
1

10
6

13
6

42
61

99 58 94 8
8

69 12
0 6

3
54 81 82

10
7

91 70 90 8
0

68 83 93
60

95 56 10
0

16
33 34 1

5
19 6 17 3
7

21 32 27 8 40 41 1 18 2
8 29 2
4 44 23 5 38 11 49 2
2 45 20 47 4
3 4

30 3 48 3
6 50
7

12 25
9

14 39 31 10 35
2 26 1
3 46

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
iris_dist

He
ig

ht

Figure 7-13. Hierarchical clustering of iris data

Chapter 7 ■ UnsUpervised Learning

190

To create plots that work well with ggplot2 graphics, you want the ggdendro package (see Figure 7-14).

library(ggdendro)
ggdendrogram(clustering) + theme_dendro()

Figure 7-14. Hierarchical clustering of iris data plotted with ggdendro

Using ggdendro, you can get access to the raw plotting segments, which gives you control over much of
the visualization of the tree.

Only visualizing the clustering is rarely enough, so to work with the result we need to be able to extract
the actual groupings. The cutree() function—it stands for cut tree but there is only one t—lets you do this.
You can give it a parameter h to cut the tree into clusters by splitting the tree at height h, or you can give it
parameter k to cut the tree at the level where there is exactly k clusters.

Since we are working with the iris data, it is natural to want to split the data into three clusters:

clusters <- clustering %>% cutree(k = 3)

Chapter 7 ■ UnsUpervised Learning

191

The result is in the same format as we had for k-means clustering, i.e., a vector with integers specifying
which cluster each data point belongs to. Since we have the information in the familiar format, we can try
plotting the clustering information as a barplot (see Figure 7-15):

iris %>%
 cbind(Cluster = clusters) %>%
 ggplot() +
 geom_bar(aes(x = Species, fill = as.factor(Cluster)),
 position = "dodge") +
 scale_fill_discrete("Cluster")

0

10

20

30

40

50

setosa versicolor virginica

Species

co
un
t

Cluster

1

2

3

Figure 7-15. Iris clustering as a barplot

Or we can plot the individual plots together with species and cluster information (see Figure 7-16).

mapped_iris %>%
 as.data.frame %>%
 cbind(Species = iris$Species,
 Clusters = as.factor(clusters)) %>%
 ggplot() +
 geom_point(aes(x = PC1, y = PC2,
 shape = Species, colour = Clusters))

Chapter 7 ■ UnsUpervised Learning

192

Constructing a confusion matrix if we want to use the clustering for a form of classification is of course
done similarly, but hierarchical clustering lends itself much less to classification than k-means clustering
does. With k-means clustering it is simple to take a new data point and see which cluster center it is nearest.
With hierarchical clustering, you would need to rebuild the entire tree to see where it falls.

Association Rules
The last unsupervised learning method we will see is aimed at categorical data, ordered or unordered. Just
like you have to translate factors into numerical data to use methods such as PCA, you will need to translate
numerical data into factors to use association rules. This typically isn’t a problem, and you can use the
function cut() to split a numerical vector into a factor and combine it with ordered() if you want it ordered.

Association rules searches for patterns in your data by picking out subsets of the data, X and Y, based on
predicates on the input variables and evaluate rules X YÞ . Picking X and Y is a brute force choice (which is
why you need to break the numerical vectors into discrete classes).1

Figure 7-16. Iris points plotted with species and hierarchical clustering information

1The algorithm could do it for you by considering each point between two input values, but it doesn’t, so you have to
break the data.

Chapter 7 ■ UnsUpervised Learning

193

Any statement X YÞ is called a rule and the algorithm evaluates all rules (at least up to a certain size)
to figure out how good each rule is.

The association rules algorithm is implemented in the arules package:

library(arules)

To see it in action, we use the income dataset from the kernlab package:

library(kernlab)
data(income)
income %>% head
INCOME SEX MARITAL.STATUS AGE
1 [75.000- F Married 45-54
2 [75.000- M Married 45-54
3 [75.000- F Married 25-34
4 -10.000) F Single 14-17
5 -10.000) F Single 14-17
6 [50.000-75.000) M Married 55-64
EDUCATION OCCUPATION
1 1 to 3 years of college Homemaker
2 College graduate Homemaker
3 College graduate Professional/Managerial
4 Grades 9 to 11 Student, HS or College
5 Grades 9 to 11 Student, HS or College
6 1 to 3 years of college Retired
AREA DUAL.INCOMES HOUSEHOLD.SIZE UNDER18
1 10+ years No Three None
2 10+ years No Five Two
3 10+ years Yes Three One
4 10+ years Not Married Four Two
5 4-6 years Not Married Four Two
6 10+ years No Two None
HOUSEHOLDER HOME.TYPE ETHNIC.CLASS LANGUAGE
1 Own House White <NA>
2 Own House White English
3 Rent Apartment White English
4 Family House White English
5 Family House White English
6 Own House White English

This data contains income information together with several explanatory variables and is already in a
form the arules can deal with: all columns are factorial.

The same data is actually also available in the arules package as the Income dataset, but here it is
representing in a different format than a data frame so we will use this version of the data.

data(Income)
Income %>% head
transactions in sparse format with
6 transactions (rows) and
50 items (columns)

Chapter 7 ■ UnsUpervised Learning

194

To construct the rules, we use the apriori() function. It takes various arguments for controlling which
rules the function will return, but we can use it with all default parameters:

rules <- income %>% apriori
Apriori
##
Parameter specification:
confidence minval smax arem aval
0.8 0.1 1 none FALSE
originalSupport maxtime support minlen maxlen
TRUE 5 0.1 1 10
target ext
rules FALSE
##
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
Absolute minimum support count: 899
##
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[84 item(s), 8993 transaction(s)] done [0.00s].
sorting and recoding items ... [42 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 6 done [0.02s].
writing ... [785 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

The rules object we create this way is not a simple object like a data frame, but it will let us take the
head() of it and we can use the function inspect() to see the individual rules:

rules %>% head %>% inspect(linebreak = FALSE)
lhs
[1] {} =>
[2] {EDUCATION=Grad Study} =>
[3] {OCCUPATION=Clerical/Service Worker} =>
[4] {INCOME=[30.000-40.000)} =>
[5] {UNDER18=Two} =>
[6] {INCOME=[50.000-75.000)} =>
rhs support confidence
[1] {LANGUAGE=English} 0.8666741 0.8666741
[2] {LANGUAGE=English} 0.1000778 0.9316770
[3] {LANGUAGE=English} 0.1046369 0.8860640
[4] {LANGUAGE=English} 0.1111976 0.9009009
[5] {LANGUAGE=English} 0.1073057 0.8405923
[6] {LANGUAGE=English} 0.1329923 0.9143731
lift
[1] 1.0000000
[2] 1.0750027
[3] 1.0223728
[4] 1.0394921
[5] 0.9699059
[6] 1.0550368

Chapter 7 ■ UnsUpervised Learning

195

The linebreak = FALSE here splits the rules over several lines. I find it confusing that to break the lines
you have to set linebreak to FALSE, but that is how it is.

Each rule has a right side, rhs, and a left side, lhs. For a rule X YÞ , X is the rhs and Y the lhs. The
quality of a rule is measured by the following three columns:

•	 support: The fraction of the data where both X and Y holds true. Think of it as
Pr(X,Y).

•	 confidence: The fraction of times where X is true that Y is also true. Think of it as
Pr(Y|X).

•	 lift: How much better than random is the rule, in the sense that how much better is
it compared to X and Y being independent. Think Pr(X,Y)/Pr(X)Pr(Y).

Good rules should have high enough support to be interesting—if a rule only affects a tiny number of
data points out of the whole data it isn’t that important—so you want both support and confidence to be
high. It should also tell you more than what you would expect by random chance, which is captured by lift.

You can use the sort() function to rearrange the data according to the quality measures:

rules %>% sort(by = "lift") %>%
 head %>% inspect(linebreak = FALSE)
lhs
[1] {MARITAL.STATUS=Married,OCCUPATION=Professional/Managerial,LANGUAGE=English}
[2] {MARITAL.STATUS=Married,OCCUPATION=Professional/Managerial}
[3] {DUAL.INCOMES=No,HOUSEHOLDER=Own}
[4] {AREA=10+ years,DUAL.INCOMES=Yes,HOME.TYPE=House}
[5] {DUAL.INCOMES=Yes,HOUSEHOLDER=Own,HOME.TYPE=House,LANGUAGE=English}
[6] {DUAL.INCOMES=Yes,HOUSEHOLDER=Own,HOME.TYPE=House}
rhs support
[1] => {DUAL.INCOMES=Yes} 0.1091960
[2] => {DUAL.INCOMES=Yes} 0.1176471
[3] => {MARITAL.STATUS=Married} 0.1016346
[4] => {MARITAL.STATUS=Married} 0.1003002
[5] => {MARITAL.STATUS=Married} 0.1098632
[6] => {MARITAL.STATUS=Married} 0.1209830
confidence lift
[1] 0.8069022 3.281986
[2] 0.8033409 3.267501
[3] 0.9713071 2.619965
[4] 0.9605964 2.591075
[5] 0.9601555 2.589886
[6] 0.9594356 2.587944

You can combine this with the subset() function to filter the rules:

rules %>% subset(support > 0.5) %>% sort(by = "lift") %>%
 head %>% inspect(linebreak = FALSE)
lhs
[1] {ETHNIC.CLASS=White} =>
[2] {AREA=10+ years} =>
[3] {UNDER18=None} =>
[4] {} =>
[5] {DUAL.INCOMES=Not Married} =>

Chapter 7 ■ UnsUpervised Learning

196

rhs support confidence
[1] {LANGUAGE=English} 0.6110308 0.9456204
[2] {LANGUAGE=English} 0.5098410 0.8847935
[3] {LANGUAGE=English} 0.5609919 0.8813767
[4] {LANGUAGE=English} 0.8666741 0.8666741
[5] {LANGUAGE=English} 0.5207384 0.8611622
lift
[1] 1.0910911
[2] 1.0209069
[3] 1.0169644
[4] 1.0000000
[5] 0.9936402

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Dealing with Missing Data in the HouseVotes84 Data
In the PCA analysis, we translated missing data into 0.5. This was to move things along but probably not an
appropriate decision. People who do not cast a vote are not necessarily undecided and therefore equally
likely to vote yea or nay; there can be conflicts of interests or other reasons. So we should instead translate
each column into three binary columns.

You can use the transmute() function from dplyr to add new columns and remove old ones—it is a bit
of typing since you have to do it 16 times, but it will get the job done.

If you feel more like trying to code your way out of this transformation, you should look at the mutate_
at() function from dplyr. You can combine it with column name matches and multiple functions to build
the three binary vectors (for the ifelse() calls you have to remember that comparing with NA always gives
you NA so you need always to check for that first). After you have created the new columns, you can remove
the old ones using select() combined with match().

Try to do the transformation and then the PCA again. Does anything change?

Rescaling for k-Means Clustering
Use the scale() function to rescale the iris dataset, then redo the k-means clustering analysis.

Varying k
Analyze the iris data with kmeans() with k ranging from 1 to 10. Plot the clusters for each k, coloring the
data points according to the clustering.

Project 1
To see a data analysis in action, I use an analysis that my student, Dan Søndergaard, did the first year I held
the data science class. I am redoing his analysis here with his permission.

The data contains physicochemical features measured from Portuguese Vinho Verde wines, and the
goal was to try to predict wine quality from these measurements. The data is available from https://
archive.ics.uci.edu/ml/datasets/Wine+Quality.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Chapter 7 ■ UnsUpervised Learning

197

Importing Data
If we go to the data folder, we can see that the data is split into three files. The measurements from red wine,
white wine, and a description of the data (the file winequality.names). To avoid showing large URLs, I will
not list the code for reading the files, but it is in this form:

read.table(URL, header=TRUE, sep=';')

That there is a header that describes the columns, and that fields are separated by semicolons we get
from looking at the files.

We load the red and white wine data into separate data frames called red and white.
We can combine the two data frames using this:

wines <- rbind(data.frame(type = "red", red),
 data.frame(type = "white", white))

Then we’ll see the summary:

summary(wines)
type fixed.acidity volatile.acidity
red :1599 Min. : 3.800 Min. :0.0800
white:4898 1st Qu.: 6.400 1st Qu.:0.2300
Median : 7.000 Median :0.2900
Mean : 7.215 Mean :0.3397
3rd Qu.: 7.700 3rd Qu.:0.4000
Max. :15.900 Max. :1.5800
citric.acid residual.sugar
Min. :0.0000 Min. : 0.600
1st Qu.:0.2500 1st Qu.: 1.800
Median :0.3100 Median : 3.000
Mean :0.3186 Mean : 5.443
3rd Qu.:0.3900 3rd Qu.: 8.100
Max. :1.6600 Max. :65.800
chlorides free.sulfur.dioxide
Min. :0.00900 Min. : 1.00
1st Qu.:0.03800 1st Qu.: 17.00
Median :0.04700 Median : 29.00
Mean :0.05603 Mean : 30.53
3rd Qu.:0.06500 3rd Qu.: 41.00
Max. :0.61100 Max. :289.00
total.sulfur.dioxide density
Min. : 6.0 Min. :0.9871
1st Qu.: 77.0 1st Qu.:0.9923
Median :118.0 Median :0.9949
Mean :115.7 Mean :0.9947
3rd Qu.:156.0 3rd Qu.:0.9970
Max. :440.0 Max. :1.0390

Chapter 7 ■ UnsUpervised Learning

198

pH sulfates alcohol
Min. :2.720 Min. :0.2200 Min. : 8.00
1st Qu.:3.110 1st Qu.:0.4300 1st Qu.: 9.50
Median :3.210 Median :0.5100 Median :10.30
Mean :3.219 Mean :0.5313 Mean :10.49
3rd Qu.:3.320 3rd Qu.:0.6000 3rd Qu.:11.30
Max. :4.010 Max. :2.0000 Max. :14.90
quality
Min. :3.000
1st Qu.:5.000
Median :6.000
Mean :5.818
3rd Qu.:6.000
Max. :9.000

There are 11 measurements for each wine, and each wine has an associated quality score based on
sensory data. At least three wine experts judged and scored the wine on a scale between 0 and 10. No wine
achieved a score below 3 or above 9. There are no missing values. There is not really any measurement
that we want to translate into categorical data. The quality scores are given as discrete values, but they are
ordered categories, and we might as well consider them as numerical values for now.

Exploring the Data
With the data loaded, we first want to do some exploratory analysis to get a feeling for it.

Distribution of Quality Scores
The first thing Dan did was look at the distribution of quality scores for both types of wine, as shown in
Figure 7-17.

ggplot(wines) +
 geom_bar(aes(x = factor(quality), fill = type),
 position = 'dodge') +
 xlab('Quality') + ylab('Frequency')

Chapter 7 ■ UnsUpervised Learning

199

There are very few wines with extremely low or high scores. The quality scores also seem normal-distributed,
if we ignore that they are discrete. This might make the analysis easier.

Is This Wine Red or White?
The dataset has two types of wine: red and white. As Dan noticed, these types are typically described by very
different words by wine experts, but several experiments have shown that even the best wine experts cannot
distinguish red from white if the color is obscured or the experts blindfolded (see http://io9.com/wine-
tasting-is-bullshit-heres-why-496098276). It is, therefore, interesting to see if the physicochemical
features available in the data can help decide whether a wine is red or white.

Dan used the Naive Bayes method to explore this, so we need the e1071 package.

library(e1071)

He used a five-fold cross-validation to study this, but I will just use the partition() function from Chapter 6.

random_group <- function(n, probs) {
 probs <- probs / sum(probs)
 g <- findInterval(seq(0, 1, length = n), c(0, cumsum(probs)),
 rightmost.closed = TRUE)
 names(probs)[sample(g)]
}

0

500

1000

1500

2000

3 4 5 6 7 8 9

Quality

Fr
eq
ue
nc
y type

red

white

Figure 7-17. Distribution of wine qualities

http://io9.com/wine-tasting-is-bullshit-heres-why-496098276
http://io9.com/wine-tasting-is-bullshit-heres-why-496098276
http://dx.doi.org/10.1007/978-1-4842-2671-1_6

Chapter 7 ■ UnsUpervised Learning

200

partition <- function(df, n, probs) {
 replicate(n, split(df, random_group(nrow(df), probs)), FALSE)
}

I will use a variation of the prediction accuracy function we wrote there for cars but using wines and the
accuracy() function instead of rmse():

accuracy <- function(confusion_matrix)
 sum(diag(confusion_matrix))/sum(confusion_matrix)

prediction_accuracy_wines <- function(test_and_training) {
 result <- vector(mode = "numeric",
 length = length(test_and_training))
 for (i in seq_along(test_and_training)) {
 training <- test_and_training[[i]]$training
 test <- test_and_training[[i]]$test
 model <- training %>% naiveBayes(type ~ ., data = .)
 predictions <- test %>% predict(model, newdata = .)
 targets <- test$type
 confusion_matrix <- table(targets, predictions)
 result[i] <- accuracy(confusion_matrix)
 }
 result
}

We get the following accuracy when we split the data randomly into training and test data 50/50:

random_wines <- wines %>%
 partition(4, c(training = 0.5, test = 0.5))
random_wines %>% prediction_accuracy_wines
[1] 0.9747615 0.9726070 0.9756848 0.9729147

This is a pretty good accuracy, so this raises the question of why experts cannot tell red and white wine
apart.

Dan looked into this by determining the most significant features that divide red and white wines by
building a decision tree:

library('party')
tree <- ctree(type ~ ., data = wines,
 control = ctree_control(minsplit = 4420))

The plot of the tree is too large for me to show here in the book with the size limit for figures, but try to
plot it yourself.

He limited the number of splits made to get only the most important features. From the tree, we see
that the total amount of sulfur dioxide, a chemical compound often added to wines to prevent oxidation and
bacterial activity, which may ruin the wine, is chosen as the root split.

Chapter 7 ■ UnsUpervised Learning

201

Sulfur dioxide is also naturally present in wine in moderate amounts. In the EU the quantity of sulfur
dioxide is restricted to 160 ppm for red wine and 210 ppm for white wines, so by law, we actually expect a
significant difference of sulfur dioxide in the two types of wine. So he looked into that:

wines %>%
 group_by(type) %>%
 summarise(total.mean = mean(total.sulfur.dioxide),
 total.sd = sd(total.sulfur.dioxide),
 free.mean = mean(free.sulfur.dioxide),
 free.sd = sd(free.sulfur.dioxide))
A tibble: 2 × 5
type total.mean total.sd free.mean free.sd
<fctr> <dbl> <dbl> <dbl> <dbl>
1 red 46.46779 32.89532 15.87492 10.46016
2 white 138.36066 42.49806 35.30808 17.00714

The average amount of total sulfur dioxide is indeed lower in red wines, and thus it makes sense that
this feature is picked as a significant feature in the tree. If the amount of total sulfur dioxide in a wine is less
than or equal to 67 ppm, we can say that it is a red wine with high certainty, which also fits with the summary
statistics.

Another significant feature suggested by the tree is the volatile acidity, also known as the vinegar taint.
In finished (bottled) wine a high volatile acidity is often caused by malicious bacterial activity, which can be
limited by the use of sulfur dioxide, as described earlier. Therefore we expect a strong relationship between
these features (see Figure 7-18).

qplot(total.sulfur.dioxide, volatile.acidity, data=wines,
 color = type,
 xlab = 'Total sulfur dioxide',
 ylab = 'Volatile acidity (VA)')

Chapter 7 ■ UnsUpervised Learning

202

Figure 7-18. Sulfur dioxide versus volatile acidity

The plot shows that the amount of volatile acidity as a function of the amount of sulfur dioxide. It also
shows that, especially for red wines, the volatile acidity is low for wines with a high amount of sulfur dioxide.
The pattern for white wine is not as clear. However, Dan observed, as you can clearly see in the plot, a clear
difference between red and white wines when considering the total.sulfur.dioxide and volatile.
acidity features together.

So why can humans not taste the difference between red and white wines? It turns out that sulfur
dioxide cannot be detected by humans in free concentrations of less than 50 ppm. Although the difference in
total sulfur dioxide is very significant between the two types of wine, the free amount is on average below the
detection threshold, and thus humans cannot use it to distinguish between red and white.

wines %>%
 group_by(type) %>%
 summarise(mean = mean(volatile.acidity),
 sd = sd(volatile.acidity))
A tibble: 2 × 3
type mean sd
<fctr> <dbl> <dbl>
1 red 0.5278205 0.1790597
2 white 0.2782411 0.1007945

Chapter 7 ■ UnsUpervised Learning

203

Similarly, acetic acid (which causes volatile acidity) has a detection threshold of 0.7 g/L, and again we
see that the average amount is below this threshold and thus is undetectable by the human taste buds.

So Dan concluded that some of the most significant features which we have found to tell the types apart
only appear in small concentrations in wine that cannot be tasted by humans.

Fitting Models
Regardless of whether we can tell red wine and white wine apart, the real question we want to explore is
whether the measurements will let us predict quality. Some of the measures might be below human tasting
ability, but the quality is based on human tasters, so can we predict the quality based on the measurements?

Before we build a model, though, we need something to compare the accuracy against that can be our
null-model. If we are not doing better than a simplistic model, then the model construction is not worth it.

Of course, first, we need to decide whether we want to predict the precise quality as categories or
whether we consider it a regression problem. Dan looked at both options, but since we should mostly look at
the quality as a number, I will only look at the latter.

For regression, the quality measure should be the root mean square error and the simplest model we
can think of is just to predict the mean quality for all wines.

rmse <- function(x,t) sqrt(mean(sum((t - x)^2)))

null_prediction <- function(df) {
 rep(mean(wines$quality), each = nrow(df))
}

rmse(null_prediction(wines), wines$quality)
[1] 70.38242

This is what we have to beat to have any model worth considering.
We do want to compare models with training and test datasets, though, so not use the mean for the

entire data. So we need a function for comparing the results with split data.
To compare different models using rmse() as the quality measure we need to modify our prediction

accuracy function. We can give it as parameter the function used to create a model that works with
predictions. It could look like this:

prediction_accuracy_wines <- function(test_and_training,
 model_function) {
 result <- vector(mode = "numeric",
 length = length(test_and_training))
 for (i in seq_along(test_and_training)) {
 training <- test_and_training[[i]]$training
 test <- test_and_training[[i]]$test
 model <- training %>% model_function(quality ~ ., data = .)
 predictions <- test %>% predict(model, newdata = .)
 targets <- test$quality
 result[i] <- rmse(predictions, targets)
 }
 result
}

Here we are hardwiring the formula to include all variables except for quality which is potentially
leading to overfitting, but we are not worried about that right now.

Chapter 7 ■ UnsUpervised Learning

204

To get this to work we need a model_function() that returns an object that works with predict(). To
get this to work, we need to use generic functions, something we will not cover until Chapter 10, but it mostly
involves creating a “class” and defining what predict() will do on objects of that class.

null_model <- function(formula, data) {
 structure(list(mean = mean(data$quality)),
 class = "null_model")
}

predict.null_model <- function(model, newdata) {
 rep(model$mean, each = nrow(newdata))
}

This null_model() function creates an object of class null_model and defines what the predict()
function should do on objects of this class. We can use it to test how well the null model will perform on data:

test_and_training <- wines %>%
 partition(4, c(training = 0.5, test = 0.5))
test_and_training %>% prediction_accuracy_wines(null_model)
[1] 49.77236 50.16679 50.11079 49.59682

Don’t be too confused about these numbers being much better than the one we get if we use the entire
dataset. That is simply because the rmse() function will always give a larger value if there is more data and
we are giving it only half the data that we did when we looked at the entire dataset.

We can instead compare it with a simple linear model:

test_and_training %>% prediction_accuracy_wines(lm)
[1] 42.30591 41.96099 41.72510 41.61227

Dan also tried different models for testing the prediction accuracy, but I have left that as an exercise.

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Exploring Other Formulas
The prediction_accuracy_wines() function is hardwired to use the formula quality ~ . that uses all
explanatory variables. Using all variables can lead to over-fitting so it is possible that using fewer variables
can give better results on the test data. Add a parameter to the function for the formula and explore using
different formulas.

Exploring Different Models
Try using different models than the null model and the linear model. Any model that can do regression and
defines a predict() function should be applicable. Try it out.

Analyzing Your Own Dataset
Find a dataset you are interested in investigating and go for it. To learn how to interpret data, you must use
your intuition on what is worth exploring and the only way to build that intuition is to analyze data.

http://dx.doi.org/10.1007/978-1-4842-2671-1_10

205© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_8

CHAPTER 8

More R Programming

In this chapter, we leave data analysis and return to programming and software development, topics that are
the focus of the remaining chapters of the book. Chapter 1 gave a tutorial introduction to R programming but
left out a lot of details. This chapter covers many of those details while the next two chapters will cover more
advanced aspects of R programming: functional programming and object oriented programming.

Expressions
We begin the chapter by going back to expressions. Everything we do in R involves evaluating expressions.
Most expressions we evaluate to do a computation and get the result, but some expressions have side-
effects—like assignments—and those we usually evaluate because of the side-effects.

Arithmetic Expressions
We saw the arithmetic expressions in Chapter 1, so we will just give a very short reminder here. The
arithmetic expressions are operators that involve numbers and consist of the unary operators + and -:

+ x
- x

where + doesn’t really do anything, while - changes the sign of its operand. Then there are the infix operators
for addition, subtraction, multiplication, and division:

x + y
x - y
x * y
x / y

Division will return a floating-point number even if both its operands are integers, so if you want to do
integer division, you need the special operator for that:

x %/% y

If you want the remainder of integer division, you need this infix operator instead:

x %% y

http://dx.doi.org/10.1007/978-1-4842-2671-1_1
http://dx.doi.org/10.1007/978-1-4842-2671-1_1

Chapter 8 ■ More r prograMMing

206

Finally, there are operators for exponentiation. To compute xy, you can use either of these two operators:

x ^ y
x ** y

In all these examples, x and y can be numbers or variables referring to numbers (actually, vectors of
numbers since R always works on vectors), or they can be other expressions evaluating to numbers. If you
compose expressions from infix operators, you have the same precedence rules you know from arithmetic.
Exponentiation goes before multiplication that goes before addition, for example. This means that you will
need to use parentheses if you need to evaluate the expressions in another order.

Since the rules are the ones you are used to, this is not likely to cause you troubles, except if you
combine these expressions with the operator :. This isn’t really an arithmetic operator but it is an infix
operator for generating sequences, and it has a higher precedence than multiplication but lower than
exponentiation. This means that 1:2**2 will evaluate the 2**2 expression first to get 1:4 and then construct
the sequence:

1:2**2
[1] 1 2 3 4

The expression 1:2*2 will evaluate the : expression first to create a vector containing 1 and 2 and then
multiply this vector with 2:

1:2*2
[1] 2 4

Since the unary - operator has higher precedence than : it also means that -1:2 will give you the
sequence from -1 to 2 and not the sequence containing -1 and -2. For that, you need parentheses:

-1:2
[1] -1 0 1 2
-(1:2)
[1] -1 -2

Functions are evaluated before the operators:

1:sqrt(4)
[1] 1 2

Boolean Expressions
For Boolean values—those that are either TRUE or FALSE—you also have logical operators. The operator !
negates a value:

!TRUE
[1] FALSE
!FALSE
[1] TRUE

Chapter 8 ■ More r prograMMing

207

The | and || are logical “or” operators while & and && are logical “and” operators. The difference
between | and || or & and && are how they deal with vectors. The one-character version will apply the
operator element-wise and create a vector while the two-character version will only look at the first value in
vectors.

TRUE | FALSE
[1] TRUE
FALSE | FALSE
[1] FALSE
TRUE || FALSE
[1] TRUE
FALSE || FALSE
[1] FALSE
x <- c(TRUE, FALSE, TRUE, FALSE)
y <- c(TRUE, TRUE, FALSE, FALSE)

x | y
[1] TRUE TRUE TRUE FALSE
x || y
[1] TRUE
x & y
[1] TRUE FALSE FALSE FALSE
x && y
[1] TRUE

We typically use the two-character version in control structures like if—since these do not operate
on vectors in any case—while we use the one-character version when we need to compute with Boolean
arithmetic, when we want our expressions to work as vectorized expressions.

Incidentally, all the arithmetic operators work like the | and & operators when operating on more than
one value, i.e., they operate element-wise on vectors. We saw that in Chapter 1 when we talked about vector
expressions.

Basic Data Types
There are a few basic types in R: numeric, integer, complex, logical, and character.

The Numeric Type
The numeric type is what you get any time you write a number into R. You can test if an object is numeric
using the is.numeric function or by getting the class object.

is.numeric(2)
[1] TRUE
class(2)
[1] "numeric"

http://dx.doi.org/10.1007/978-1-4842-2671-1_1

Chapter 8 ■ More r prograMMing

208

The Integer Type
The integer type is used for, well, integers. Surprisingly, the 2 is not an integer in R. It is a numeric type
which is the larger type that contains all floating-point numbers as well as integers. To get an integer you
have to make the value explicitly an integer, and you can do that using the function as.integer or writing
L after the literal.

is.integer(2)
[1] FALSE
is.integer(2L)
[1] TRUE
x <- as.integer(2)
is.integer(x)
[1] TRUE
class(x)
[1] "integer"

If you translate a non-integer into an integer, you just get the integer part.

as.integer(3.2)
[1] 3
as.integer(9.9)
[1] 9

The Complex Type
If you ever find that you need to work with complex numbers, R has those as well. You construct them by
adding an imaginary number—a number followed by i—to any number or explicitly using the function as.
complex. The imaginary number can be zero, 0i, which creates a complex number that only has a non-zero
real part.

1 + 0i
[1] 1+0i
is.complex(1 + 0i)
[1] TRUE
class(1 + 0i)
[1] "complex"
sqrt(as.complex(-1))
[1] 0+1i

The Logical Type
Logical values are what you get if you explicitly type in TRUE or FALSE, but it is also what you get if you make,
for example, a comparison.

x <- 5 > 4
x
[1] TRUE
class(x)
[1] "logical"

Chapter 8 ■ More r prograMMing

209

is.logical(x)
[1] TRUE

The Character Type
Finally, characters are what you get when you type in a string such as "hello, world".

x <- "hello, world"
class(x)
[1] "character"
is.character(x)
[1] TRUE

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in C
or Java where you have single character types, 'c', and multi-character strings, "string", they are both just
characters.

You can, similar to the other types, explicitly convert a value into a character (string) using as.
character:

as.character(3.14)
[1] "3.14"

I will not go further into string handling in R here. There are of course lots of functions for manipulating
strings—and even though there are all those functions I still find it a lot harder to manipulate strings in R
than in scripting languages such as Python—but those are beyond the scope of this book.

Data Structures
From the basic types, you can construct other data structures, essentially by concatenating simpler types
into more complex ones. The basic building blocks here are vectors, which are sequences of values all of the
same type, and lists, which are sequences where the values can have different types.

Vectors
We have already seen vectors many times in this book, so you should be familiar with them. Whenever we
have seen expressions involving single numbers, we have actually seen vectors containing a single value, so
we have never seen anything that wasn’t a vector. But we now consider more technical aspects of vectors.

What I have called vectors up till now is technically known as “atomic sequences”. Those are any
sequences of the basic types described previously. You create these by concatenating basic values using the
c function.

v <- c(1, 2, 3)

or through some other operator or function, e.g., the : operator or the rep function

1:3
[1] 1 2 3
rep("foo", 3)
[1] "foo" "foo" "foo"

Chapter 8 ■ More r prograMMing

210

We can test if something is this kind of vector using the is.atomic function:

v <- 1:3
is.atomic(v)
[1] TRUE

The reason I mention that “atomic sequences” is the technically correct term for what we have called
vectors until now is that there is also something in R that is explicitly called a vector. In practice, there is no
confusion because all the atomic sequences I have called vectors are also vectors.

v <- 1:3
is.vector(v)
[1] TRUE

It is just that R only consider such a sequence a vector—in the sense that is.vector returns TRUE—if the
object doesn’t have any attributes (except for one, names, which it is allowed to have).

Attributes are meta-information associated with an object, and not something we will deal with much
here, but you just have to know that is.vector will be FALSE if something that is a perfectly good vector gets
an attribute.

v <- 1:3
is.vector(v)
[1] TRUE
attr(v, "foo") <- "bar"
v
[1] 1 2 3
attr(,"foo")
[1] "bar"
is.vector(v)
[1] FALSE

So if you want to test if something is the kind of vector I am talking about here, use is.atomic instead.
When you concatenate (atomic) vectors, you always get another vector back. So when you combine

several c() calls you don’t get any kind of tree structure if you do something like this:

c(1, 2, c(3, 4), c(5, 6, 7))
[1] 1 2 3 4 5 6 7

The type might change, if you try to concatenate vectors of different types, R will try to translate the type
into the most general type of the vectors.

c(1, 2, 3, "foo")
[1] "1" "2" "3" "foo"

Matrix
If you want a matrix instead of a vector, what you really want is just a two-dimensional vector. You can set
the dimensions of a vector using the dim function—it sets one of those attributes we talked about
previously—where you specify the number of rows and the number of columns you want the matrix to have.

Chapter 8 ■ More r prograMMing

211

v <- 1:6
attributes(v)
NULL
dim(v) <- c(2, 3)
attributes(v)
$dim
[1] 2 3
dim(v)
[1] 2 3
v
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

When you do this, the values in the vector will go in the matrix column-wise, i.e., the values in the vector
will go down the first column first and then on to the next column and so forth.

You can use the convenience function matrix to create matrices and there you can specify if you want
the values to go by column or by row using the byrow parameter.

v <- 1:6
matrix(data = v, nrow = 2, ncol = 3, byrow = FALSE)
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
matrix(data = v, nrow = 2, ncol = 3, byrow = TRUE)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Once you have a matrix, there is a lot of support for doing linear algebra in R, but there are a few things
you need to know. First, the * operator will not do matrix multiplication. You use * if you want to make
element-wise multiplication; for matrix multiplication you need the operator %*% instead.

(A <- matrix(1:4, nrow = 2))
[,1] [,2]
[1,] 1 3
[2,] 2 4
(B <- matrix(5:8, nrow = 2))
[,1] [,2]
[1,] 5 7
[2,] 6 8
A * B
[,1] [,2]
[1,] 5 21
[2,] 12 32
A %*% B
[,1] [,2]
[1,] 23 31
[2,] 34 46

Chapter 8 ■ More r prograMMing

212

If you want to transpose a matrix, you use the t function and, if you want to invert it, you use the solve
function.

t(A)
[,1] [,2]
[1,] 1 2
[2,] 3 4
solve(A)
[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5
solve(A) %*% A
[,1] [,2]
[1,] 1 0
[2,] 0 1

The solve function is really aimed at solving a set of linear equations, and it does that if it gets a vector
argument as well, but you can check the documentation for the function to see how this is done.

You can also get higher dimensional vectors, called arrays, by setting the dimension attribute with more
than two dimensions as arguments or you can use the array function.

Lists
Lists, like vectors, are sequences, but unlike vectors, the elements of a list can be any kind of objects, and
they do not have to be the same type of objects. This means that you can construct more complex data
structures out of lists.

For example, we can make a list of two vectors:

list(1:3, 5:8)
[[1]]
[1] 1 2 3
##
[[2]]
[1] 5 6 7 8

Notice how the vectors do not get concatenated like they would if we combined them with c(). The
result of this command is a list of two elements that happens to be both vectors.

They didn’t have to have the same type either, we could make a list like this, which also consist of two
vectors but vectors of different types:

list(1:3, c(TRUE, FALSE))
[[1]]
[1] 1 2 3
##
[[2]]
[1] TRUE FALSE

Chapter 8 ■ More r prograMMing

213

Since lists can contain other lists, you can build tree-like data structures quite naturally.

list(list(), list(list(), list()))
[[1]]
list()
##
[[2]]
[[2]][[1]]
list()
##
[[2]][[2]]
list()

You can flatten a list into a vector using the function unlist(). This will force the elements in the list to
be converted into the same type, of course, since that is required of vectors.

unlist(list(1:4, 5:7))
[1] 1 2 3 4 5 6 7

Indexing
We saw basic indexing in Chapter 1, but there is much more to indexing in R that that. Type ?`[[` into the R
prompt and prepare to be amazed.

We have already seen the basic indexing. If you want the nth element of a vector v, you use v[n]:

v <- 1:4
v[2]
[1] 2

But this you already knew. You also know that you can get a subsequence out of the vector using a range
of indices:

v[2:3]
[1] 2 3

This is really just a special case of using a vector of indices:

v[c(1,1,4,3,2)]
[1] 1 1 4 3 2

Here we are indexing with positive numbers, which makes sense since the elements in the vector have positive
indices, but it is also possible to use negative numbers to index in R. If you do that it is interpreted as specifying the
complement of the values you want. So if you want all elements except the first element, you can use:

v[-1]
[1] 2 3 4

You can also use multiple negative indices to remove some values:

v[-(1:2)]
[1] 3 4

http://dx.doi.org/10.1007/978-1-4842-2671-1_1

Chapter 8 ■ More r prograMMing

214

You cannot combine positive and negative indices. I don’t even know how that would even make sense,
but in any case, you just can’t.

Another way to index is to use a Boolean vector. This vector should be the same length as the vector you
index into, and it will pick out the elements where the Boolean vector is true.

v[v %% 2 == 0]
[1] 2 4

If you want to assign to a vector you just assign to elements you index; as long as the vector to the right
of the assignment operator has the same length as the elements the indexing pulls out you will be assigning
to the vector.

v[v %% 2 == 0] <- 13
v
[1] 1 13 3 13

If the vector has more than one dimension—remember that matrices and arrays are really just vectors
with more dimensions—then you subset them by subsetting each dimension. If you leave out a dimension,
you will get whole range of values in that dimension, which is a simple way to of getting rows and columns of
a matrix:

 m <- matrix(1:6, nrow = 2, byrow = TRUE)
 m
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
 m[1,]
[1] 1 2 3
 m[,1]
[1] 1 4

You can also index out a submatrix this way by providing ranges in one or more dimensions:

m[1:2,1:2]
[,1] [,2]
[1,] 1 2
[2,] 4 5

When you pull out a one-dimensional submatrix—as we did with m[1,]—the result is a vector, not a
matrix. Sometimes that is what you want; sometimes you don’t really care if you get a matrix or a vector, but
sometimes you want to do linear algebra, and then you definitely want that the submatrix you pull out is a
matrix. You can tell R that it shouldn’t reduce a one-dimensional matrix to a row by giving the indexing an
option drop=FALSE:

m[1,,drop=FALSE]
[,1] [,2] [,3]
[1,] 1 2 3
m[,1,drop=FALSE]
[,1]
[1,] 1
[2,] 4

Chapter 8 ■ More r prograMMing

215

If this looks weird to you (giving indexing an option) then what you need to know is that everything in
R involves function calls. Indexing into a matrix is just another function call, and functions can take named
arguments. That is all that is happening here.

When you subset a list using [] the result is always another list. If this surprises you, just remember that
when you subset a vector you also always get a vector back. You just don’t think so much about it because
the way we see single values are always as vectors of length one, so we are more used to that.

Anyway, you will always get a list out of subsetting a list with []. Even if you are subsetting a single
element you are not getting that element; you are getting a list containing that one element.

L <- list(1,2,3)
L[1]
[[1]]
[1] 1
L[2:3]
[[1]]
[1] 2
##
[[2]]
[1] 3

If you want to get to the actual element in there, you need to use the [[]] operator instead.

L <- list(1,2,3)
L[[1]]
[1] 1

Named Values
The elements in a vector or a list can have names. These are attributes that do not affect the values of the
elements but can be used to refer to them.

You can set these names when you create the vector or list:

v <- c(a = 1, b = 2, c = 3, d = 4)
v
a b c d
1 2 3 4
L <- list(a = 1:5, b = c(TRUE, FALSE))
L
$a
[1] 1 2 3 4 5
##
$b
[1] TRUE FALSE

Or you can set the names using the names<- function. That weird name, by the way, means that you are
dealing with the names() function combined with assignment:

names(v) <- LETTERS[1:4]
v
A B C D
1 2 3 4

Chapter 8 ■ More r prograMMing

216

You can use names to index vectors and lists (where the [] and [[]] returns either a list or the element
of the list, as before):

v["A"]
A
1
L["a"]
$a
[1] 1 2 3 4 5
L[["a"]]
[1] 1 2 3 4 5

When you have named values, you can also use a third indexing operator, the $ operator. It essentially
works like [[]] except that you don’t have to put the name in quotes:

L$a
[1] 1 2 3 4 5

There is never really any good time to introduce the [[]] operator for vectors but here goes: if you use
the [[]] operator on a vector it will only let you extract a single element, and if the vector has names, it will
remove the name.

Factors
The factor type we saw in Chapter 1 is technically also a vector type, but it isn’t a primitive type in the same
sense as the previous types. It is stored as a vector of integers—the levels in the factor—and has associated
attributes such as the levels. It is implemented using the class system we return to in Chapter 10, and we will
not discuss if further here.

Formulas
Another data type is the formula. We saw these in Chapter 6 and we can create them using the ~ operator.
Like factors, the result is an object defined using a class. You will see how you can use formulas to implement
your own statistical models via model matrices in Project 2.

Control Structures
Control structures determine the flow of execution of a program. You can get far by just having one
statement or expression after another, but eventually you will have to do one thing instead of another
depending on the results of a calculation, and this is where control structures come in.

Like many other programming languages you have two kinds of control structures in R: select (if
statements) and loops (for, while, or repeat statements).

Selection Statements
If statements look like this:

if (boolean) {
 # do something
}

http://dx.doi.org/10.1007/978-1-4842-2671-1_1
http://dx.doi.org/10.1007/978-1-4842-2671-1_10
http://dx.doi.org/10.1007/978-1-4842-2671-1_6

Chapter 8 ■ More r prograMMing

217

Or like this:

if (boolean) {
 # do one thing
} else {
 # do another thing
}

You can string them together like this:

if (x < 0) {
 # handle negative x
} else if (x > 0) {
 # handle positive x
} else {
 # handle if x is zero
}

In all the examples here, I put the statements you do if the condition is true or if it is false in curly
brackets. Strictly speaking, this isn’t necessary if we are talking about a single statement. This would work
just fine:

if (x > 0) "positive" else if (x < 0) "negative" else "zero"

But it would fail if you put newlines in between the statements; the R parser would be confused about
that and there you do need curly brackets. This would be a syntax error:

if (x > 0)
 print("positive")
else if (x < 0)
 print("negative")
else
 print("zero")

While this would be okay:

if (x > 0) {
 print("positive")
} else if (x < 0) {
 print("negative")
} else {
 print("zero")
}

I recommend always using curly brackets since they work fine when you only have a single statement so
you are not doing anything wrong in that case, and they are the only thing that works when you have more
than one statement or when you have newlines in the if statement.

Chapter 8 ■ More r prograMMing

218

Loops
The most common looping construction you will use is probably the for loop. You use the for loop to iterate
through the elements of a sequence; the construction works like this:

for (i in 1:4) {
 print(i)
}
[1] 1
[1] 2
[1] 3
[1] 4

Keep in mind, though, that it is the elements in the sequence you are iterating through, so the variable
you assign to the iteration variable are the elements in the sequence and not the index into the sequence. If
you want to loop through the indices into the sequence, you can use the seq_along function:

x <- c("foo", "bar", "baz")
for (i in seq_along(x)) {
 print(i)
 print(x[i])
}
[1] 1
[1] "foo"
[1] 2
[1] "bar"
[1] 3
[1] "baz"

You will sometimes see code that uses this construction:

for (i in 1:length(x)) {
 # do stuff
}

Don’t do that. It won’t work if the sequence x is empty.

x <- c()
1:length(x)
[1] 1 0

If you want to jump to the next iteration of a loop, you can use the next keyword. For example, the
following will only print every second element of x:

for (i in seq_along(x)) {
 if (i %% 2 == 0) {
 next
 }
 print(x[i])
}

Chapter 8 ■ More r prograMMing

219

If you want to terminate the loop completely, you can use break.

for (i in 1:100) {
 if (i %% 2 == 0) {
 next
 }
 if (i > 5) {
 break
 }
 print(i)
}
[1] 1
[1] 3
[1] 5

The two other loop constructs you won’t use as often. They are the while and repeat loops.
The while loop iterates as long as a Boolean expression is true and looks like this:

i <- 1
while (i < 5) {
 print(i)
 i <- i + 1
}
[1] 1
[1] 2
[1] 3
[1] 4

The repeat look simply goes on forever, at least until you break out of the loop.

i <- 1
repeat {
 print(i)
 i <- i + 1
 if (i > 5) break
}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

A Word of Warning About Looping
If you read more about R you will soon run into the statement that loops are slow in R. It isn’t really as bad as
some make it out to be, but it is somewhat justified. Because R is an extremely dynamic language—functions
and variables can change at any time during program execution—it is hard for the interpreter to optimize
code before it runs it, unlike in some other languages (but not that different from other dynamic languages
such as Python). There haven’t been many attempts at optimizing loops either, though, because there are
typically better solutions in R than to use an explicit loop statement.

Chapter 8 ■ More r prograMMing

220

R is a so-called functional language (among other things) and in functional languages, you typically
don’t use loops. The way looping constructions work, you need to change the value of a looping variable or
a Boolean expression while you execute the code and changing variables is considered “impure” in function
languages (so, obviously, R is not a pure functional language). Instead, recursive functions are used for
looping. Most functional languages don’t even have looping constructions—and pure functional languages
certainly do not. R is a bit more pragmatic, but you are typically better off with using alternatives to loops.

We get more into that in the next chapter.

Functions
You define functions this way:

name <- function(arguments) expression

Where name can be any variable name, arguments is a list of formal arguments to the function, and
expression is what the function will do when you call it. It says expression because you might as well think
about the body of a function as an expression, but typically it is a sequence of statements enclosed by curly
brackets:

name <- function(arguments) { statements }

It is just that such a sequence of statements is also an expression; the result of executing a series of
statements is the value of the last statement.

The following function will print a statement and return 5 because the statements in the function body
are first a print statement and then just the value 5 that will be the return value of the function:

f <- function() {
 print("hello, world")
 5
}
f()
[1] "hello, world"
[1] 5

We usually don’t write functions without arguments—like I just did previously—but have one or more
formal arguments. The arguments, in their simplest form, are just variable names. They are assigned values
when you call the function, and these can then be used inside the function’s body1:

plus <- function(x, y) {
 print(paste(x, "+", y, "is", x + y))
 x + y
}

div <- function(x, y) {
 print(paste(x, "/", y, "is", x / y))
 x / y
}

1I am actually lying here because the arguments to a function are not assigned values but expressions that haven’t been
evaluated yet. See the Lazy Evaluation section later.

Chapter 8 ■ More r prograMMing

221

plus(2, 2)
[1] "2 + 2 is 4"
[1] 4
div(6, 2)
[1] "6 / 2 is 3"
[1] 3

Named Arguments
The order of arguments matters when you call a function because it determines which argument gets set to
which value:

div(6,2)
[1] "6 / 2 is 3"
[1] 3
div(2,6)
[1] "2 / 6 is 0.333333333333333"
[1] 0.3333333

If a function has many arguments, though, it can be hard always to remember the order, so there is an
alternative way to specify which variable is given which values: named arguments. It means that when you
call a function, you can make explicit which parameter each argument should be set to.

div(x = 6, y = 2)
[1] "6 / 2 is 3"
[1] 3
div(y = 2, x = 6)
[1] "6 / 2 is 3"
[1] 3

This makes explicit which parameter gets assigned which value, and you can think of it as an
assignment operator. You shouldn’t, though, because although you can use = as an assignment operator you
cannot use <- for specifying named variables. It looks like you can, but it doesn’t do what you want it to do
(unless you want something really weird):

div(x <- 6, y <- 2)
[1] "6 / 2 is 3"
[1] 3
div(y <- 2, x <- 6)
[1] "2 / 6 is 0.333333333333333"
[1] 0.3333333

The assignment operator <- returns a value and that is passed along to the function as positional
arguments. So in the second function call above you are assigning 2 to y and 6 to x in the scope outside the
function, but the values you pass to the function are positional so inside the function you have given 2 to x
and 6 to y.

Don’t confuse the two assignment operators: the code most likely will run, but it is unlikely to do what
you want it to do!

Chapter 8 ■ More r prograMMing

222

Default Parameters
When you define a function, you can provide default values to parameters like this:

pow <- function(x, y = 2) x^y
pow(2)
[1] 4
pow(3)
[1] 9
pow(2, 3)
[1] 8
pow(3, 3)
[1] 27

Default parameter values will be used whenever you do not provide the parameter at the function call.

Return Values
The return value of a function is the last expression in the statements executed in the function body. If the
function is a sequence of statements, this is just the last statement in the sequence, but by using control
structures, you can have different statements as the last statement:

safer_div <- function(x, y) {
 if (y == 0) {
 NA
 } else {
 x / y
 }
}
safer_div(4, 2)
[1] 2
safer_div(4, 0)
[1] NA

It is also possible to return explicitly from a function—similarly to breaking from a loop—using the
return() statement.

safer_div <- function(x, y) {
 if (y == 0) {
 return(NA)
 }
 x / y
}
safer_div(4, 2)
[1] 2
safer_div(4, 0)
[1] NA

Chapter 8 ■ More r prograMMing

223

Notice that the return() statement has the return value in parentheses. Many programming languages
would allow you to write this:

safer_div <- function(x, y) {
 if (y == 0) {
 return NA
 }
 x / y
}

But this is an error in R.

Lazy Evaluation
Several places I have written about providing values to the function parameters when we call a function.
In many programming languages this is exactly how function calls work—the expressions provided for
each parameter are evaluated, and the results are assigned to the function parameters so the function
can use them in the function body—but in R it is actually the expressions that are assigned to the function
parameters. And the expressions are not evaluated until they are needed; something called lazy evaluation.

There are some benefits to this way of handling function parameters and some weird consequences as
well.

The first benefit is that it makes default parameters more flexible. We can write a function like this:

f <- function(x, y = x^2) y + x

Where y has a default value that depends on the other parameter x. At the time where the function is
declared the value of x is not know but y is not evaluated there so it doesn’t matter. Whenever we call the
function, x is known inside the body of the function, and that is where we need the value of y so that is where
the expression will be evaluated.

f(2)
[1] 6

Since y isn’t evaluated before it is used, it does also mean that if you assign a different value to x before
you use y then y evaluates to a value that depends on the new value of x. Not the value of x at the time the
function was called!

g <- function(x, y = x^2) { x <- 0; y + x }
g(2)
[1] 0

If, on the other hand, y is evaluated before we assign to x then it will evaluate to the value that depends
on x at the time we evaluate it and remain that value. It is evaluated the first time it is needed, and the result
is then remembered for any later time we refer to y.

h <- function(x, y = x^2) { y; x <- 0; y + x }
h(2)
[1] 4

Chapter 8 ■ More r prograMMing

224

So lazy evaluation lets you specify default parameters that depend on other parameters in a context
where those parameters are unknown, but it comes at the prize of the value of the parameter depending on
the context at the first time it gets evaluated.

If it was just to be able to specify variables this way we could, of course, have a solution that doesn’t
involve the weirdness that we pay for it. This is what most programming languages have done, after all, but
there are other benefits of lazy evaluation: you only evaluate an expression if you actually need it.

Scoping
Scope in R is lexical. This means that if a variable is used in a function but not defined in the function or
part of the function’s parameters, then R will start searching outward in the code from where the function
was created. This essentially means searching outward and upward from the point in the code where the
function is specified, since a function is created when the code is executed where the function is defined.

Consider this code:

x <- "x"
f <- function(y) {
 g <- function() c(x, y)
 g()
}
f("y")
[1] "x" "y"

Here we have a global variable x and a function f that takes a parameter argument y. Inside f, we define
the function g that neither defines nor take as formal arguments variables x and y but does return them. We
evaluate g as the last statement in f so that becomes the result of calling f at the last line.

Inside g, we have not defined x or y, so to find their values R will search outward from where g is
created. It will find y as the argument of the function f so get it from there and continue outward to find x at
the global level.

The variables that g refers to are the variables and not the values at the time that g is created, so if we
update the variables after we create g, we also change the value that g will return:

x <- "x"
f <- function(y) {
 g <- function() c(x, y)
 y <- "z"
 g()
}
f("y")
[1] "x" "z"

This isn’t just the lazy evaluation madness—it is not that g hasn’t evaluated y yet and it, therefore, can
be changed. It does look up the value of y when it needs it:

x <- "x"
f <- function(y) {
 g <- function() c(x, y)
 g()
 y <- "z"
 g()
}
f("y")
[1] "x" "z"

Chapter 8 ■ More r prograMMing

225

If we return the function g from f rather than the result of evaluating it, we see another feature of R’s
scoping—something called closures. R remembers the values of variables inside a function that we have
returned from and that is no longer an active part of our computation. In the example below, we returned
the function g at which point there is no longer an active f function. So there is not really an active instance
of the parameter y any longer. Yet g refers to a y, so the parameter we gave to f is actually remembered.

x <- "x"
f <- function(y) {
 g <- function() c(x, y)
 g
}
g <- f("y")
g()
[1] "x" "y"

We can see how this works if we invoke f twice, with different values for parameter y:

x <- "x"
f <- function(y) {
 g <- function() c(x, y)
 g
}
g <- f("y")
h <- f("z")
g()
[1] "x" "y"
h()
[1] "x" "z"

This creates two different functions. Inside f they are both called g, but they are two different functions
because they are created in two different calls to f, and they remember two different y parameters because
the two instances of f were invoked with different values for y.

When looking outward from the point where a function is defined, it is looking for the values of
variables at the time a function is invoked, not the values at the time where the function is created. Variables
do not necessarily have to be defined at the time the function is created; they just need to be defined when
the function is eventually invoked.

Consider this code:

f <- function() {
 g <- function() c(y, z)
 y <- "y"
 g
}
h <- f()
h()
Error in h(): object 'z' not found
z <- "z"
h()
[1] "y" "z"

Chapter 8 ■ More r prograMMing

226

Where the function g is defined—inside function f—it refers to variables y and z that are not defined
yet. This doesn’t matter because we only create the function g; we do not invoke it. We then set the variable y
inside the context of the invocation of f and return g. Outside of the function call, we name the return value
of f() h. If we call h at this point it will remember that y was defined inside f—and it will remember its value
at the point in time where we returned from f. There still isn’t a value set for z so calling h results in an error.
Since z isn’t defined in the enclosing scopes of where the inner function refers to it, it must be defined at
the outermost global scope, but it isn’t. If we do set it there, the error goes away because now R can find the
variable by searching outward from where the function was created.

I shouldn’t really be telling you this because the feature I am about to tell you about is dangerous. I will
show you a way of making functions have even more side-effects than they otherwise have, and functions
really shouldn’t have side-effects at all. Anyway, this is a feature of the language—and if you are very careful
with how you use it—it can be very useful when you just feel the need to make functions have side-effects.

This is the problem: what if you want to assign to a variable in a scope outside the function where you
want the assignment to be made? You cannot just assign to the variable because if you assign to a variable
that isn’t found in the current scope, then you create that variable in the current scope.

f <- function() {
 x <- NULL
 set <- function(val) { x <- val }
 get <- function() x
 list(set = set, get = get)
}

x <- f()
x$get()
NULL
x$set(5)
x$get()
NULL

In this code—that I urge you to read carefully because there are a few neat ideas in it—we have created a
getter and setter function; the getter tells us what the variable x is, and the setter is supposed to update it. But
setting x in the body of set creates a local variable inside that function; it doesn’t assign to the x one level up.

There is a separate assignment operator, <<-, you can use for that. It will not create a new local
variable but instead search outward to find an existing variable and assign to that. If it gets all the way to the
outermost global scope, though, it will create the variable there if it doesn’t already exist.

If we use that assignment operator in the previous example, we get the behavior we were aiming for.

f <- function() {
 x <- NULL
 set <- function(val) { x <<- val }
 get <- function() x
 list(set = set, get = get)
}

x <- f()
x$get()
NULL
x$set(5)
x$get()
[1] 5

Chapter 8 ■ More r prograMMing

227

If we hadn’t set the variable x inside the body of f in this example, both the getter and setter would be
referring to a global variable, in case you are wondering, and the first call to get would cause an error if there
was no global variable. While this example shows you have to create an object where functions have side-
effects, it is quite a bit better to let functions modify variables that are hidden away in a closure like this than
it is to work with global variables.

Function Names Are Different from Variable Names
One final note on scopes—which I am not sure should be considered a feature or a bug—is that if R sees
something that looks like a function call, it is going to go searching for a function, even if searching outward
from a function creation would get to a non-function first.

n <- function(x) x
f <- function(n) n(n)
f(5)
[1] 5

Under the scoping rule that says that you should search outward, the n inside the f function should refer
to the parameter to f. But it is clear that the first n is a function call and the second is its argument, so when
we call f it sees that the parameter isn’t a function so it searches further outward and finds the function n. It
calls that function with its argument. So the two n’s inside f actually refers to different things.

Of course, if we call f with something that is actually a function, then it recognizes that n is a function
and it calls that function with itself as the argument.

f(function(x) 15)
[1] 15

Interesting, right?

Recursive Functions
The final topic we will cover in this chapter before we get to the exercises is recursive functions. Some people
find this a difficult topic, but in a functional programming language, it is one of the most basic building
blocks so it is really worth spending some time wrapping your head around, even though you are much less
likely to need recursions in R than you are in most pure functional languages.

At the most basic level, though, it is just that we can define a function’s computations in terms of calls to
the same function—we allow a function to call itself, just with new parameters.

Consider the factorial operator n! = n × (n − 1) × … × 3 × 2 × 1. We can rewrite the factorial of n in terms
of n and a smaller factorial, the factorial of n − 1 and get n! = n × (n − 1)!. This is a classical case of where
recursion is useful: we define the value for some n in terms of the calculations on some smaller value. As a
function, we would write factorial(n) equals n * factorial(n-1).

There are two aspects to a recursive function, though. Solving a problem for size n involves breaking
down the problem into something you can do right away and combine that with calls of the function with a
smaller size, here n − 1. This part we call the “step” of the recursion. We cannot keep reducing the problem
into smaller and smaller bits forever—that would be an infinite recursion which is as bad as an infinite loop
in that we never get anywhere—at some point we need to have reduced the problem to a size small enough
that we can handle it directly. That is called the basis of the recursion.

Chapter 8 ■ More r prograMMing

228

For factorial, we have a natural basis in 1 since 1! = 1. So we can write a recursive implementation of the
factorial function like this:

factorial <- function(n) {
 if (n == 1) {
 1
 } else {
 n * factorial(n - 1)
 }
}

It is actually a general algorithmic strategy, called divide and conquer, to break down a problem into
sub-problems that you can handle recursively and then combining the results some way.

Consider sorting a sequence of numbers. We could sort a sequence using this strategy by first noticing
that we have a simple basis—it is easy to sort an empty sequence or a sequence with a single element since
we don’t have to do anything there. For the step, we can break the sequence into two equally sized pieces
and sort them recursively. Now we have two sorted sequences and if we merge these two we have combined
them into a single sorted sequence.

Let’s get started.
We need to be able to merge two sequences so we can solve that problem first. This is something we

should be able to do with a recursive function because if either sequence is empty, we have a basis case
where we can just return the other sequence. If there are elements in both sequences, we can pick the
sequence whose first element is smallest, pick that out as the first element we need in our final result and
just concatenate the merging of the remaining numbers.

merge <- function(x, y) {
 if (length(x) == 0) return(y)
 if (length(y) == 0) return(x)

 if (x[1] < y[1]) {
 c(x[1], merge(x[-1], y))
 } else {
 c(y[1], merge(x, y[-1]))
 }
}

A quick disclaimer here: normally this algorithm would run in linear time but because of the way we
call recursively we are actually copying vectors whenever we are removing the first element, making it a
quadratic time algorithm. Implementing a linear time merge function is left as an exercise.

Using this function, we can implement a sorting function. This algorithm is called merge sort so that is
what we call the function:

merge_sort <- function(x) {
 if (length(x) < 2) return(x)

 n <- length(x)
 m <- n %/% 2

 merge(merge_sort(x[1:m]), merge_sort(x[(m+1):n]))
}

Chapter 8 ■ More r prograMMing

229

So here, using two simple recursive functions, we solved a real algorithmic problem in a few lines of
code. This is typically the way to go in a functional programming language like R. Of course, when things
are easier done using loops you shouldn’t stick to the pure functional recursions. Use what is easiest in any
situation you are in, unless you find that it is too slow. Only then do you start getting clever.

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Fibonacci Numbers
The Fibonacci numbers are defined as follows: The first two Fibonacci numbers are 1, F

1
 = F

2
 = 1. For larger

Fibonacci numbers, they are defined as F
i
 = F

i−1
 + F

i−2
.

Implement a recursive function that computes the n’th Fibonacci number.
The recursive function for Fibonacci numbers is usually quite inefficient because you are recomputing

the same numbers several times in the recursive calls. So implement another version that computes the
n’th Fibonacci number iteratively (that is, start from the bottom and compute the numbers up to n, without
calling recursively).

Outer Product
The outer product of two vectors, v and w, is a matrix defined as follows:

v w=vwÄ =
é

ë

ê
ê
ê

ù

û

ú
ú
ú
éë ùû =

T

v

v

v

w w w w

v w v w v w v w

v w v
1

2

3

1 2 3 4

1 1 1 2 1 3 1 4

2 1 22 2 2 3 2 4

3 1 3 2 3 3 3 4

w v w v w

v w v w v w v w

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Write a function that computes the outer product of two vectors.
There actually is a built-in function, outer, that you are overwriting here. You can get to it using the

name base::outer even after you have overwritten it. You can use it to check that your own function is doing
the right thing.

Linear Time Merge
The merge function we used copies vectors in its recursive calls. This makes it slower than it has to be.
Implement a linear time merge function.

Before you start, though, you should be aware of something. If you plan to append to a vector by writing
something like this:

v <- c(v, element)

You will end up with a quadratic time algorithm again. This is because when you do this, you are
actually creating a new vector where you first copy all the elements in the old v vector into the first elements
and then add the element at the end. If you do this n times, you have spent on average order n2 per
operation. It is because people do something like this in loops, more than the R interpreter, that has given R
its reputation for slow loops. You should never append to vectors unless there is no way to avoid it.

Chapter 8 ■ More r prograMMing

230

In the case of the merge function, we already know how long the result should be, so you can pre-
allocate a result vector and copy single elements into it. You can create a vector of length n like this:

n <- 5
v <- vector(length = n)

Should you ever need it, you can make a list of length n like this:

vector("list", length = n)

Binary Search
Binary search is a classical algorithm for finding out if an element is contained in a sorted sequence. It is
a simple recursive function. The basic case handles a sequence of one element. There you can directly
compare the element you are searching for with the element in the sequence to determine if they are the
same. If you have more than one element in the sequence, pick the middle one. If it is the element you are
searching for, you are done and can return that the element is contained in the sequence. If it is smaller than
the element you are searching for then, you know that if the element is in the list then it has to be in the last
half of the sequence, and you can search there. If it is larger than the element you are searching for, then you
know that if it is in the sequence, it must be in the first half of the sequence, and you search recursively there.

If you implement this exactly as described, you have to call recursively with a subsequence. This
involves copying that subsequence for the function call which makes the implementation much less efficient
than it needs to be. Try to implement binary search without this.

More Sorting
In the merge sort we implemented, we solve the sorting problem by splitting a sequence in two, sorting each
subsequence, and then merging them. If implemented correctly this algorithm will run in time O(nlogn),
which is optimal for sorting algorithms if we assume that the only operations we can do on the elements we
sort are comparing them.

If the elements we have are all integers between 1 and n and we have m of them, we can sort them in
time O(n + m) using bucket sort instead. This algorithm first creates a vector of counts for each number
between 1 and n. This takes time O(n). It then runs through the m elements in our sequence, updating the
counter for number i each time it sees i. This runs in time O(m). Finally, it runs through these numbers from
1 up to n and outputting each number, the number of times indicated by the counters, in time O(n + m).

Implement bucket sort.
Another algorithm that works by recursion, and that runs in expected time O(nlogn), is quick sort. Its

worst case complexity is actual O(n2) but on average it runs in time O(nlogn) and with a smaller overhead
than merge sort (if you implement it correctly).

It works as follows: the basis case—a single element—is the same as merge sort. When you have more
than one element you pick one of the elements in the sequence at random; call it the pivot. Now split the
sequence into those elements that are smaller than the pivot, those that are equal to the pivot, and those that
are larger. Sort the sequences of smaller and larger elements recursively. Then output all the sorted smaller
elements, then the elements equal to the pivot, and then the sorted larger elements.

Implement quick sort.

Chapter 8 ■ More r prograMMing

231

Selecting the k Smallest Element
If you have n elements, and you want the k smallest, an easy solution is to sort the elements and then pick
number k. This works well and in most cases is easily fast enough, but it is actually possible to do it faster.
See, we don’t actually need to sort the elements completely, we just need to have the k smallest element
moved to position k in the sequence.

The quick sort algorithm from the previous exercise can be modified to solve this problem. Whenever
we split a sequence into those smaller than, equal to, and larger than the pivot, we sort the smaller and
larger elements recursively. If we are only interested in finding the element that would eventually end up at
position k in the sorted lists we don’t need to sort the sequence that doesn’t overlap this index. If we have m
< k elements smaller than the pivot, we can just put them at the front of the sequence without sorting them.
We need them there to make sure that the k’th smallest element ends up at the right index, but we don’t
need them sorted. Similar, if k < m we don’t need to sort the larger elements. If we sorted them, they would
all end up at indices larger than k and we don’t really care about those. Of course, if there are m < k elements
smaller than the pivot and l equal to the pivot, with m + l ≥ k, then the k smallest element is equal to the
pivot, and we can return that.

Implement this algorithm.

233© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_9

CHAPTER 9

Advanced R Programming

This chapter gets into more details of some aspects of R. This chapter is called “Advanced R Programming”
only because it is additional elements on top of the quick introduction you got in the last chapter. Except,
perhaps, for the functional programming toward the end, we will not cover anything that is conceptually
more complex that we did in the previous chapter. It is just a few more technical details we will dig into.

I stole the title from Hadley Wickham’s excellent book of the same name (see http://adv-r.had.co.nz)
and most of what I cover here, he does in his book as well. He does cover a lot more, though, so this is a book
you should get if you want really to drill into the advanced aspects of R programming.

Working with Vectors and Vectorizing Functions
We start out by returning to expressions. In the previous chapter, you saw expressions on single (scalar)
values, but you also saw that R doesn’t really have scalar values; all the primitive data you have is actually
vectors of data. What this means is that the expressions you use in R are actually operating on vectors, not on
single values.

When you write this:

(x <- 2 / 3)
[1] 0.6666667
(y <- x ** 2)
[1] 0.4444444

The expressions you write are, of course, working on single values—the vectors x and y have length 1,
but it is really just a special case of working on vectors.

(x <- 1:4 / 3)
[1] 0.3333333 0.6666667 1.0000000 1.3333333
(y <- x ** 2)
[1] 0.1111111 0.4444444 1.0000000 1.7777778

R works on vectors using two rules: operations are done element-wise, and vectors are repeated as
needed.

When you write an expression such as x + y, you are really saying that you want to create a new vector
that consists of the element-wise sum of the elements in vectors x and y. So for x and y like this:

x <- 1:5
y <- 6:10

http://adv-r.had.co.nz/

Chapter 9 ■ advanCed r programming

234

Writing this:

(z <- x + y)
[1] 7 9 11 13 15

Amounts to writing this:

z <- vector(length = length(x))
for (i in seq_along(x)) {
 z[i] <- x[i] + y[i]
}
z
[1] 7 9 11 13 15

This is the case for all arithmetic expressions or for logical expressions involving | or & (but not || or
&&; these do not operate on vectors element-wise). It is also the case for most functions you can call, such as
sqrt or sin:

sqrt((1:5)**2)
[1] 1 2 3 4 5
sin(sqrt((1:5)**2))
[1] 0.8414710 0.9092974 0.1411200 -0.7568025
[5] -0.9589243

When you have an expression that involves vectors of different lengths, you cannot directly evaluate
expressions element-wise. When this is the case, R will try to repeat the shorter vector(s) to create vectors
of the same length. For this to work, the shorter vector(s) should have a length divisible in the length of the
longest vector, i.e., you should be able to repeat the shorter vector(s) an integer number of times to get the
length of the longest vector. If this is possible, R repeats vectors as necessary to make all vectors the same
length as the longest and then does operations element-wise:

x <- 1:10
y <- 1:2
x + y
[1] 2 4 4 6 6 8 8 10 10 12
z <- 1:3
x + z
Warning in x + z: longer object length is not a
multiple of shorter object length
[1] 2 4 6 5 7 9 8 10 12 11

If the shorter vector(s) cannot be repeated an integer number of times to match up, R will still repeat as
many times as needed to match the longest vector, but you will get a warning. Most of the time something
like this happens, it is caused by buggy code.

z <- 1:3
x + z
Warning in x + z: longer object length is not a
multiple of shorter object length
[1] 2 4 6 5 7 9 8 10 12 11

Chapter 9 ■ advanCed r programming

235

In the expression you saw a while back, different vectors are repeated:

(x <- 1:4 / 3)
[1] 0.3333333 0.6666667 1.0000000 1.3333333
(y <- x ** 2)
[1] 0.1111111 0.4444444 1.0000000 1.7777778

When we divide 1:4 by 3 we need to repeat the (length one) vector 3 four times to be able to divide the
1:4 vector with the 3 vector. When we compute x ** 2, we must repeat 2 four times as well.

Whenever you consider writing a loop over vectors to do some calculations for each element, you
should always consider using such vectorized expressions instead. It is typically much less error prone and
since it involves implicit looping handled by the R runtime system, it is almost guaranteed to be faster than
an explicit loop.

ifelse
Control structures are not vectorized. For example, if statements are not. If you want to compute a vector y
from vector x such that y[i] == 5 if x[i] is even and y[i] == 15 if x[i] is odd—for example—you cannot
write this as a vector expression:

x <- 1:10
if (x %% 2 == 0) 5 else 15
Warning in if (x%%2 == 0) 5 else 15: the condition
has length > 1 and only the first element will be
used
[1] 15

Instead, you can use the ifelse function that works like a vectorized selection; if the condition in its
first element is true, it returns the value in its second argument; otherwise, it returns the value in its third
argument. It does this as vector operations:

x <- 1:10
ifelse(x %% 2 == 0, 5, 15)
[1] 15 5 15 5 15 5 15 5 15 5

Vectorizing Functions
When you write your own functions, you can write them so that they can also be used to work on vectors,
that is, you can write them so that they can take vectors as input and return vectors as output. If you write
them this way, then they can be used in vectorized expressions the same way as built-in functions such as
sqrt and sin.

The easiest way to make your function work on vectors is to write the body of the function using
expressions that work on vectors.

f <- function(x, y) sqrt(x ** y)
f(1:6, 2)
[1] 1 2 3 4 5 6
f(1:6, 1:2)
[1] 1.000000 2.000000 1.732051 4.000000 2.236068
[6] 6.000000

Chapter 9 ■ advanCed r programming

236

If you write a function where you cannot write the body this way, but where you still want to be able to
use it in vector expressions, you can typically get there using the Vectorize function.

As an example, say we have a table mapping keys to some values. We can imagine that we want to map
names in a class to the roles the participants in the class have. In R, we would use a list to implement that
kind of tables, and we can easily write a function that uses such a table to map names to roles.

role_table <- list("Thomas" = "Instructor",
 "Henrik" = "Student",
 "Kristian" = "Student",
 "Randi" = "Student",
 "Heidi" = "Student",
 "Manfred" = "Student")

map_to_role <- function(name) role_table[[name]]

This works the way it is supposed to when we call it with a single name:

map_to_role("Thomas")
[1] "Instructor"
map_to_role("Henrik")
[1] "Student"

But it fails when we call the function with a vector because we cannot index the list with a vector in this
way.

x <- c("Thomas", "Henrik", "Randi")
map_to_role(x)
Error in role_table[[name]]: recursive indexing failed at level 2

So we have a function that maps a single value to a single value but doesn’t work for a vector. The easy
way to make such a function work on vectors is to use the Vectorize function. This function will wrap your
function so it can work on vectors and what it will do on those vectors is what you would expect: it will
calculate its value for each of the elements in the vector, and the result will be the vector of all the results.

map_to_role <- Vectorize(map_to_role)
map_to_role(x)
Thomas Henrik Randi
"Instructor" "Student" "Student"

In this particular example with a table, the reason it fails is that we are using the [[index operator. Had
we used the [operator, we would be fine (except that the result would be a list rather than a vector).

role_table[c("Thomas", "Henrik", "Randi")]
$Thomas
[1] "Instructor"
##
$Henrik
[1] "Student"
##
$Randi
[1] "Student"

Chapter 9 ■ advanCed r programming

237

So we could also have handled vector input directly by indexing differently and then flattening the list

map_to_role_2 <- function(names) unlist(role_table[names])

x <- c("Thomas", "Henrik", "Randi")
map_to_role_2(x)
Thomas Henrik Randi
"Instructor" "Student" "Student"

It’s not always that easy to rewrite a function to work on vector input, though, and when we cannot
readily do that then, the Vectorize function can be very helpful.

As a side note, the issue with using [[with a vector of values isn’t just that it this doesn’t work. It
actually does work, but it does something else than what we are trying to do here. If you give [[a vector of
indices it is used to do what is called recursive indexing. It is a shortcut for looking up in the list using the
first variable and pulling out the vector or list found there. It then takes that sequence and looks up using the
next index and so on. Take as an example the following code:

x <- list("first" = list("second" = "foo"), "third" = "bar")
x[[c("first", "second")]]
[1] "foo"

Here we have a list of two elements, the first of which is a list with a single element. You can look up
the index “first” in the first list and get the list stored at that index. This list we can then index with the
“second” index to get “foo” out.

The result is analogous to this:

x[["first"]][["second"]]
[1] "foo"

This can be a useful feature—although, to be honest, I haven’t found much use for it in my own
programming—but it is not the effect we wanted in our mapping to roles example.

The apply Family
Vectorizing a function makes it possible to use it implicitly on vectors. We simply give it a vector as input,
and we get a vector back as output. Notice though that it isn’t really a vectorized function just because it
takes a vector as input— many functions take vectors as input and return a single value as output, e.g., sum
and mean—but we use those differently than vectorized functions. If you want that kind of function, you do
have to handle explicitly how it deals with a sequence as input.

Vectorized functions can be used on vectors of data exactly the same way as on single values with
exactly the same syntax. It is an implicit way of operating on vectors. But you can also make it more explicit
when calling a function on all the elements in a vector, which gives you a bit more control of exactly how it is
called. This, in turn, lets you work with those functions that do not just map from vectors to vectors but also
from vectors to single values.

There are many ways of doing this—because it is a common thing to do in R—and you will see some
general functions for working on sequences and calling functions on them in various ways later. In most of
the code you will read, though, the functions that do this are named something with apply in their name and
those functions are what we will look at here.

Let’s start with apply. This is a function for operating on vectors, matrices (two-dimensional vectors), or
arrays (higher-order dimensional vectors).

Chapter 9 ■ advanCed r programming

238

apply
This function is easiest explained with a matrix, I think, so let’s make one.

m <- matrix(1:6, nrow=2, byrow=TRUE)
m
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

The apply function takes (at least) three parameters. The first is the vector/matrix/array, the second
which dimension(s) we should marginalize along, and the third the function we should apply.

What is meant by marginalization here is that you fix an index in some subset of the dimensions and
pull out all values with that index. If we are marginalizing over rows, we will extract all the rows, so for each
row, we will have a vector with an element per column, which is what we will pass the function.

We can illustrate this using the paste function that creates a string of its input by concatenating it.1

If you marginalize on rows, it will be called on each of the two rows and will produce two strings:

apply(m, 1, function(x) paste(x, collapse = ":"))
[1] "1:2:3" "4:5:6"

If you marginalize on columns, it will be called on each of the three columns and produce three strings:

apply(m, 2, function(x) paste(x, collapse = ":"))
[1] "1:4" "2:5" "3:6"

If you marginalize on both rows and columns, it will be called on each single element instead:

apply(m, c(1, 2), function(x) paste(x, collapse = ":"))
[,1] [,2] [,3]
[1,] "1" "2" "3"
[2,] "4" "5" "6"

The output here is two-dimensional. That is of course because we are marginalizing over two
dimensions, so we get an output that corresponds to the margins.

We can get higher-dimensional output in other ways. If the function produces vectors (or higher
dimensional vectors) as output then the output of apply will also be higher dimensional. Consider a
function that takes a vector as input and duplicates it by concatenating it with itself. If we apply it to rows or
columns, we get a vector for each row/column so the output has to be two-dimensional.

apply(m, 1, function(x) c(x,x))
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
[4,] 1 4
[5,] 2 5
[6,] 3 6

1So this is a case of a function that takes a vector as input but outputs a single value; it is not a vectorized function as
those we talked about previously.

Chapter 9 ■ advanCed r programming

239

apply(m, 2, function(x) c(x,x))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 1 2 3
[4,] 4 5 6

What apply does here is that it creates a matrix as its result, where the results of applying the function
are collected as columns from left to right. The result of calling the function on the two rows is a matrix with
two columns, the first column containing the result of applying the function to the first row and the second
column the result of applying it to the second row. Likewise, for columns, the result is a vector with three
columns, one for each column in the input matrix.

If you marginalize over more than one dimension and get multidimensional output through that—
and at the same time produce more than one value—the two effects combine and you get even higher
dimensional output:

apply(m, c(1,2), function(x) c(x,x))
, , 1
##
[,1] [,2]
[1,] 1 4
[2,] 1 4
##
, , 2
##
[,1] [,2]
[1,] 2 5
[2,] 2 5
##
, , 3
##
[,1] [,2]
[1,] 3 6
[2,] 3 6

I admit that this output looks rather confusing. What happens, though, is the same thing as you saw
when you marginalized on rows or columns. You get output for each margin you call the function on—in
this case, each of the six cells in the input—and it gets collected “column-wise,” except that this is at higher
dimensions so it gets collected at the highest dimension (which is the columns for two-dimensional
matrices). So to get to the result of the six values the function was called with, you need to index these the
same way they were indexed in the input matrix—that is what the margins were—but you need to do it in the
highest dimensions. So you can get the six concatenations of input values this way:

x <- apply(m, c(1,2), function(x) c(x,x))
k <- dim(x)[3]
n <- dim(x)[2]
for (i in 1:n) {
 for (j in 1:k) {
 print(x[,i,j])
 }
}

Chapter 9 ■ advanCed r programming

240

[1] 1 1
[1] 2 2
[1] 3 3
[1] 4 4
[1] 5 5
[1] 6 6

So what happens if the function to apply takes arguments besides those you get from the matrix?

sumpow <- function(x, n) sum(x) ** n
apply(m, 1, sumpow)
Error in FUN(newX[, i], ...): argument "n" is missing, with no default

If it does, you can give these arguments as additional arguments to apply; they will be passed on to the
function in the order you give them to apply.

apply(m, 1, sumpow, 2)
[1] 36 225

It helps readability a lot, though, to explicitly name such parameters.

apply(m, 1, sumpow, n = 2)
[1] 36 225

lapply
The lapply function is used for mapping over a list. Given a list as input, it will apply the function to each
element in the list and output a list of the same length as the input containing the results of applying the
function.

(l <- list(1, 2, 3))
[[1]]
[1] 1
##
[[2]]
[1] 2
##
[[3]]
[1] 3
lapply(l, function(x) x**2)
[[1]]
[1] 1
##
[[2]]
[1] 4
##
[[3]]
[1] 9

If the elements in the input list have names, these are preserved in the output vector.

Chapter 9 ■ advanCed r programming

241

l <- list(a=1, b=2, c=3)
lapply(l, function(x) x**2)
$a
[1] 1
##
$b
[1] 4
##
$c
[1] 9

If the input you provide is a vector instead of a list, it will just convert it into a list, and you will always get
a list as output.

lapply(1:3, function(x) x**2)
[[1]]
[1] 1
##
[[2]]
[1] 4
##
[[3]]
[1] 9

Of course, if the elements of the list are more complex than a single number, you will still just apply the
function to the elements.

lapply(list(a=1:3, b=4:6), function(x) x**2)
$a
[1] 1 4 9
##
$b
[1] 16 25 36

sapply and vapply
The sapply function does the same as lapply, but tries to simplify the output. Essentially, it attempts to
convert the list returned from lapply into a vector of some sort. It uses some heuristics for this and guesses
as to what you want as output, simplifies when it can, but gives you a list when it cannot figure it out.

sapply(1:3, function(x) x**2)
[1] 1 4 9

The guessing is great for interactive work, but can be unsafe when writing programs. It isn’t a problem
that it guesses and can produce different types of output when you can see what it creates, but that is not safe
deep in the guts of a program.

The function vapply essentially does the same as sapply but without the guessing. You have to tell it
what you want as output, and if it cannot produce that, it will give you an error rather than produce output
that your program may or may not know what to do with.

Chapter 9 ■ advanCed r programming

242

The difference in interface between the two functions is just that vapply expects a third parameter that
should be a value of the type the output should be.

vapply(1:3, function(x) x**2, 1)
[1] 1 4 9

Advanced Functions
We now get to some special cases for functions. I call the section “Advanced Functions,” but not because
they really are that advanced, only that they require a little bit more than the basic functions you have
already seen.

Special Names
But first a word on names. Functions can have the same kind of names that variables have—after all, when
we name a function, we are really just naming a variable that happens to hold a function—but we cannot
have all kinds of names to the right of the assignment operator. For example, if is a function in R, but you
cannot write if to the left of an assignment.

Functions with special names, that is names that you couldn’t normally put before an assignment, can
be referred to by putting them in backticks, so the function if we can refer to as if.

Any function can be referred to by its name in backticks and furthermore you can use backticks to refer
to a function in a context where you usually couldn’t use its name. This works for calling functions where
you can use for example infix operators as normal function calls:

2 + 2
[1] 4
`+`(2, 2)
[1] 4

Or when assigning to a variable name for a function:

`%or die%` <- function(test, msg) if (!test) stop(msg)

x <- 5
(x != 0) %or die% "x should not be zero"

x <- 0
(x != 0) %or die% "x should not be zero"
Error in (x != 0) %or die% "x should not be zero": x should not be zero

Infix Operators
If the last example looks weird to you, it may just be because you don’t know about R’s infix operators. In
R, any variable that starts and ends with % is considered an infix operator, so calling x %foo% y amounts to
calling `%foo%`(x,y). Several built-in infix operators do not have this type of name, + and * are two, but this
naming convention makes it possible to create your own infix operators. You saw this come to good use in
the dplyr package with the %>% pipe operator.

Chapter 9 ■ advanCed r programming

243

Replacement Functions
Replacement functions are functions that pretend to be modifying variables. You saw one early when you
assigned names to a vector.

v <- 1:4
names(v) <- c("a", "b", "c", "d")
v
a b c d
1 2 3 4

What happens here is that R recognizes that you are assigning to a function call and goes looking for a
function named names<-. It calls this function with the vector v and the vector of names and the result of the
function call gets assigned back to the variable v.

So what I just wrote means that this:

names(v) <- c("a", "b", "c", "d")

Is short for this:

v <- `names<-`(v, c("a", "b", "c", "d"))

Replacement functions are generally used to modify various attributes of an object, and you can write
your own just by using the convention that their names must end with <-:

`foo<-` <- function(x, value) {
 x$foo <- value
 x
}

`bar<-` <- function(x, value) {
 x$bar <- value
 x
}

x <- list(foo=1, bar=2)

x$foo
[1] 1
foo(x) <- 3
x$foo
[1] 3
x$bar
[1] 2
bar(x) <- 3
x$bar
[1] 3

Chapter 9 ■ advanCed r programming

244

Keep in mind that it is just shorthand for calling a function and then reassigning the result to a variable.
It is not actually modifying any data. This means that if you have two variables referring to the same object,
only the one you call the replacement function on will be affected. The replacement function returns a copy
that is assigned the first variable and the other variable still refers to the old object.

y <- x
foo(x) <- 5
x
$foo
[1] 5
##
$bar
[1] 3
y
$foo
[1] 3
##
$bar
[1] 3

Because replacement functions are just syntactic sugar on a function call and then a reassignment, you
cannot give a replacement function as its first argument, some expression that cannot be assigned to.

There are a few more rules regarding replacement functions. First, the parameter for the value you are
assigning has to be called value. You cannot give it another name.

`foo<-` <- function(x, val) {
 x$foo <- val
 x
}

x <- list(foo=1, bar=2)
foo(x) <- 3
Error in `foo<-`(`*tmp*`, value = 3): unused argument (value = 3)

The way R rewrites the expression assumes that you called the value parameter value, so do that.
You don’t have to call the first parameter x, though:

`foo<-` <- function(y, value) {
 y$foo <- value
 y
}

x <- list(foo=1, bar=2)
foo(x) <- 3
x$foo
[1] 3

Chapter 9 ■ advanCed r programming

245

You should also have the value parameter as the last parameter if you have more than two parameters. And
you are allowed to do so, as long as the object you are modifying is the first and the value parameter is the last:

`modify<-` <- function(x, variable, value) {
 x[variable] <- value
 x
}

x <- list(foo=1, bar=2)
modify(x, "foo") <- 3
modify(x, "bar") <- 4
x$foo
[1] 3
x$bar
[1] 4

How Mutable Is Data Anyway?
We just saw that a replacement function creates a new copy so if we use it to modify an object, we are not
actually changing it at all. Other variables that refer to the same object will see the old value and not the
updated one. So we can reasonably ask: what does it take actually to modify an object?

The short, and almost always correct, answer, is that you cannot modify objects ever.2 Whenever you
“modify” an object, you are creating a new copy and assigning that new copy back to the variable you used to
refer to the old value.

This is also the case for assigning to an index in a vector or list. You will be creating a copy, and while
it looks like you are modifying it, if you look at the old object through another reference, you will find that it
hasn’t changed.

x <- 1:4
f <- function(x) {
 x[2] <- 5
 x
}
x
[1] 1 2 3 4
f(x)
[1] 1 5 3 4
x
[1] 1 2 3 4

Unless you changed the [function (which I urge you not to do), it is a so-called primitive function. This
means that it is written in C and from C you actually can modify an object. This is important for efficiency
reasons. If there is only one reference to a vector then assigning to it will not make a new copy and you will
modify the vector in place as a constant time operation. If you have two references to the vector, then when
you assign to it the first time, a copy is created that you can then modify in place. This approach to have
immutable objects and still have some efficiency is called copy on write.

2It is possible to do depending on what you consider an object. You can modify a closure by assigning to local variables
inside a function scope, as you saw last week. This is because namespaces are objects that can be changed. One of the
object orientation systems in R—RC—also allows for mutable objects, but we won’t look at RC in this book. In general,
you are better off thinking that every object is immutable, and any modification you are doing is actually creating a new
object because generally, that is what is happening.

Chapter 9 ■ advanCed r programming

246

To write correct programs, always keep in mind that you are not modifying objects but creating copies—
other references to the value you “modify” will still see the old value. To write efficient programs, also keep
in mind that for primitive functions you can do efficient updates (updates in constant time instead of time
proportional to the size of the object you are modifying) as long as you only have one reference to that object.

Functional Programming
There are many definitions of what it means for a language to be a functional programming language,
and there have been many language wars over whether any given feature is “pure” or not. I won’t go into
such discussions, but some features, I think everyone would agree, are needed. You should be able to pass
functions along as parameters to other functions, you should be able to create anonymous functions, and
you should have closures.

Anonymous Functions
In R it is pretty easy to create anonymous functions: just don’t assign the function definition to a variable name.

Instead of doing this:

square <- function(x) x^2

You simply do this:

function(x) x^2

In other languages where function definitions have a different syntax than variable assignment, you will
have a different syntax for anonymous functions, but in R it is really as simple as this.

Why would you want an anonymous function?
There are two common cases:

•	 You want to use a one-off function and don’t need to give it a name

•	 You want to create a closure

Both cases are typically used when a function is passed as an argument to anther function or when returned
from a function. The first case is something you would use together with functions like apply. If you want to
compute the sum of squares over the rows of a matrix, you can create a named function and apply it, as follows:

m <- matrix(1:6, nrow=3)
sum_of_squares <- function(x) sum(x^2)
apply(m, 1, sum_of_squares)
[1] 17 29 45

If this is the only time you need this sum of squares function, there isn’t really any need to assign it a
variable; you can just use the function definition direction:

apply(m, 1, function(x) sum(x^2))
[1] 17 29 45

Of course, in this example, you could do even better by just exploiting that ^ is vectorized and write this:

apply(m^2, 1, sum)
[1] 17 29 45

Chapter 9 ■ advanCed r programming

247

Using anonymous functions to create closures is what you do when you write a function that returns a
function (more about that next). You could name the function as follows:

f <- function(x) {
 g <- function(y) x + y
 g
}

But there really isn’t much point if you just want to return it:

f <- function(x) function(y) x + y

Functions Taking Functions as Arguments
You already saw this in all the apply examples. You give as an argument to apply a function to be called
across dimensions. In general, if some sub-computation of a function should be parameterized then you do
this by taking a function as one of its parameters.

Say you want to write a function that works like (s/v)apply but only apply an input function on elements
that satisfy a predicate. You can implement such a function by taking the vector and two functions as input:

apply_if <- function(x, p, f) {
 result <- vector(length=length(x))
 n <- 0
 for (i in seq_along(x)) {
 if (p(x[i])) {
 n <- n + 1
 result[n] <- f(x[i])
 }
 }
 head(result, n)
}
apply_if(1:8, function(x) x %% 2 == 0, function(x) x^2)
[1] 4 16 36 64

This isn’t the most elegant way to solve this particular problem—we get back to the example in the
exercises—but it illustrates the use of functions as parameters.

Functions Returning Functions (and Closures)
You create closures when you create a function inside another function and return it. Because this inner
function can refer to the parameters and local variables inside the surrounding function even after you have
returned from it, you can use such inner functions to specialize generic functions. It can work as a template
mechanism for describing a family of functions.

Chapter 9 ■ advanCed r programming

248

You can, for instance, write a generic power function and specialize it for squaring or cubing numbers:

power <- function(n) function(x) x^n
square <- power(2)
cube <- power(3)
x <- 1:4
square(x)
[1] 1 4 9 16
cube(x)
[1] 1 8 27 64

This works because the functions returned by power(2) and power(3) live in a context—the closure—
where n is known to be 2 and 3, respectively. We have fixed that part of the function we return.

Filter, Map, and Reduce
Three patterns are used again and again in functional programming: filtering, mapping, and reducing. In R,
all three are implemented in different functions, but you can write all your programs using the Filter, Map,
and Reduce functions.

The Filter function takes a predicate and a vector or list and returns all the elements that satisfy the
predicate.

is_even <- function(x) x %% 2 == 0
Filter(is_even, 1:8)
[1] 2 4 6 8
Filter(is_even, as.list(1:8))
[[1]]
[1] 2
##
[[2]]
[1] 4
##
[[3]]
[1] 6
##
[[4]]
[1] 8

The Map function works like lapply: it applies a function to every element of a vector or list and returns
a list of the result. Use unlist to convert it into a vector if that is what you want.

square <- function(x) x^2
Map(square, 1:4)
[[1]]
[1] 1
##
[[2]]
[1] 4
##
[[3]]
[1] 9

Chapter 9 ■ advanCed r programming

249

##
[[4]]
[1] 16
unlist(Map(square, 1:4))
[1] 1 4 9 16

You can do slightly more with Map, though, since Map can be applied to more than one sequence. If you
give Map more arguments then these are applied to the function calls as well.

plus <- function(x, y) x + y
unlist(Map(plus, 0:3, 3:0))
[1] 3 3 3 3

These constructions should be very familiar to you by now so we will leave it at that.
The Reduce function might look less familiar. You can describe what it does in terms of adding or

multiplying numbers, and it is in a way a generalization of this. When you write an expression like this:

a + b + c

or

a * b * c

You can think of this as a series of function calls:

`+`(`+`(a, b), c)

or

`*`(`*`(a, b), c)

The Reduce function generalizes this.

Reduce(f, c(a, b, c))

It’s evaluated as follows:

f(f(a, b), c)

You can see this by constructing a function that captures how it is called:

add_parenthesis <- function(a, b) paste("(", a, ", ", b, ")", sep = "")
Reduce(add_parenthesis, 1:4)
[1] "(((1, 2), 3), 4)"

Using Reduce, you could thus easily write your own sum function:

mysum <- function(x) Reduce(`+`, x)
sum(1:4)
[1] 10
mysum(1:4)
[1] 10

Chapter 9 ■ advanCed r programming

250

There are a few additional parameters to the Reduce function—to give it an additional initial value
instead of just the leftmost elements in the first function call, or to make it apply the function from right to
left instead of left to right—but you can check its documentation for details.

Function Operations: Functions as Input and Output
Functions can, of course, take functions as input and return functions as output.

This lets you modify functions and create new functions from existing functions.
First, consider two old friends, the factorial and the Fibonacci numbers. You have computed those

recursively and using tables. What if you could build a generic function for caching results?
Here is an attempt:

cached <- function(f) {
 force(f)
 table <- list()

 function(n) {
 key <- as.character(n)
 if (key %in% names(table)) {
 print(paste("I have already computed the value for", n))
 table[[key]]

 } else {
 print(paste("Going to compute the value for", n))
 res <- f(n)
 print(paste("That turned out to be", res))
 table[key] <<- res
 print(table)
 res
 }
 }
}

I added some output so it is easier to see what it does below.
It takes a function f and will give you another function back that works like f but remembers functions

it has already computed. First, it remembers what the input function was by forcing it. This is necessary for
the way we intend to use this cached function. The plan is to replace the function in the global scope with a
cached version so the function out there will refer to the cached version. If you don’t force f here, the lazy
evaluation means that when you eventually evaluate f, you are referring to the cached version and will end
up in an infinite recursion. You can try removing the force(f) call and see what happens.

Next, we create a table—we are using a list, which is the best choice for tables in R in general. A list lets
us use strings for indices, and doing that you don’t need to have all values between 1 and n stored to have an
element with key n in the table.

The rest of the code builds a function that first looks in the table to see if the key is there. If it is, you have
already computed the value you want and can get it from the table. If the key is not there, you compute it, put
it in the table, and return.

Chapter 9 ■ advanCed r programming

251

You can try it out on the factorial function:

factorial <- function(n) {
 if (n == 1) {
 1
 } else {
 n * factorial(n - 1)
 }
}

factorial <- cached(factorial)
factorial(4)
[1] "Going to compute the value for 4"
[1] "Going to compute the value for 3"
[1] "Going to compute the value for 2"
[1] "Going to compute the value for 1"
[1] "That turned out to be 1"
$`1`
[1] 1
##
[1] "That turned out to be 2"
$`1`
[1] 1
##
$`2`
[1] 2
##
[1] "That turned out to be 6"
$`1`
[1] 1
##
$`2`
[1] 2
##
$`3`
[1] 6
##
[1] "That turned out to be 24"
$`1`
[1] 1
##
$`2`
[1] 2
##
$`3`
[1] 6
##
$`4`
[1] 24
[1] 24

Chapter 9 ■ advanCed r programming

252

factorial(1)
[1] "I have already computed the value for 1"
[1] 1
factorial(2)
[1] "I have already computed the value for 2"
[1] 2
factorial(3)
[1] "I have already computed the value for 3"
[1] 6
factorial(4)
[1] "I have already computed the value for 4"
[1] 24

And on fibonacci:

fibonacci <- function(n) {
 if (n == 1 || n == 2) {
 1
 } else {
 fibonacci(n-1) + fibonacci(n-2)
 }
}

fibonacci <- cached(fibonacci)
fibonacci(4)
[1] "Going to compute the value for 4"
[1] "Going to compute the value for 3"
[1] "Going to compute the value for 2"
[1] "That turned out to be 1"
$`2`
[1] 1
##
[1] "Going to compute the value for 1"
[1] "That turned out to be 1"
$`2`
[1] 1
##
$`1`
[1] 1
##
[1] "That turned out to be 2"
$`2`
[1] 1
##
$`1`
[1] 1
##
$`3`
[1] 2
##
[1] "I have already computed the value for 2"

Chapter 9 ■ advanCed r programming

253

[1] "That turned out to be 3"
$`2`
[1] 1
##
$`1`
[1] 1
##
$`3`
[1] 2
##
$`4`
[1] 3
[1] 3
fibonacci(1)
[1] "I have already computed the value for 1"
[1] 1
fibonacci(2)
[1] "I have already computed the value for 2"
[1] 1
fibonacci(3)
[1] "I have already computed the value for 3"
[1] 2
fibonacci(4)
[1] "I have already computed the value for 4"
[1] 3

Ellipsis Parameters
Before you see any more examples of function operations, you need to know about a special function
parameter, the ellipsis or “three-dots” parameter.

This is a magical parameter that lets you write a function that can take any number of named arguments
and pass them on to other functions.

Without it, you would get an error if you provided a parameter to a function that it doesn’t know about.

f <- function(a, b) NULL
f(a = 1, b = 2, c = 3)
Error in f(a = 1, b = 2, c = 3): unused argument (c = 3)

With it, you can provide any named parameter you want.

g <- function(a, b, ...) NULL
g(a = 1, b = 2, c = 3)
NULL

Of course, it isn’t much of a feature to allow a function to take arguments that it doesn’t know what to do
with. But you can pass those arguments to other functions that maybe do know what to do with them, and
that is the purpose of the ... parameter.

Chapter 9 ■ advanCed r programming

254

You can see this in effect with a very simple function that just passes the ... parameter on to list. This
works exactly like calling list directly with the same parameters, so nothing magical is going on here, but it
shows how the named parameters are being passed along.

tolist <- function(...) list(...)

tolist()
list()
tolist(a = 1)
$a
[1] 1
tolist(a = 1, b = 2)
$a
[1] 1
##
$b
[1] 2

This parameter has some uses in itself because it lets you write a function that calls other functions,
and you can provide those functions parameters without explicitly passing them along. It is particularly
important for generic functions (a topic we cover in the next chapter) and for modifying functions in
function operators.

Most of what you can do with function operators is beyond the scope of this book, so if you are
interested in learning more, you should check out the chapter about them in Hadley Wickham’s Advanced R
Programming book (see http://adv-r.had.co.nz/Function-operators.html).

Here we will just have a quick second example, taken from Advanced R Programming, that modifies a
function. It wraps a function to time how long it takes to run.

The following function wraps the function f into a function that times it and returns the time usage
rather than the result of the function. It will work for any function since it just passes all parameters from
the closure we create to the function we wrap (although the error profile will be different since the wrapping
function will accept any named parameter while the original function f might not allow that).

time_it <- function(f) {
 force(f)
 function(...) {
 system.time(f(...))
 }
}

You can try it out like this:

ti_mean <- time_it(mean)
ti_mean(runif(1e6))
user system elapsed
0.025 0.002 0.026

http://adv-r.had.co.nz/Function-operators.html

Chapter 9 ■ advanCed r programming

255

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

between
Write a vectorized function that takes a vector x and two numbers, lower and upper, and replaces all
elements in x smaller than lower or greater than upper with NA.

apply_if
Consider the function apply_if you implemented in this chapter. There we use a loop. Implement it using
Filter and Map instead.

For the specific instance we used in the example:

apply_if(v, function(x) x %% 2 == 0, function(x) x^2)

We only have vectorized functions. Rewrite this function call using a vectorized expression.

power
We previously defined the generic power function and the instances square and cube this way:

power <- function(n) function(x) x^n
square <- power(2)
cube <- power(3)

If you instead defined this:

power <- function(x, n) x^n

How would you then define square and cube?

Row and Column Sums
Using apply, write the rowsum and colsum functions to compute the row sums and column sums,
respectively, of a matrix.

Factorial Again
Write a vectorized factorial function. It should take a vector as input and compute the factorial of each
element in the vector.

Try to make a version that remembers factorials it has already computed so you don’t need to
recompute them (without using the cached function, of course).

Chapter 9 ■ advanCed r programming

256

Function Composition
For two functions f and g, the function composition creats a new function f ∘ g such that (f ∘ g)(x) = f(g(x)).

There isn’t an operator for this in R, but you can make your own. To avoid clashing with the outer
product operator, %o%, call it %.%.

Implement this operator.
Using this operator, you should, for example, be able to combine Map and unlist once and for all to get

a function for the unlist(Map(...)) pattern

uMap <- unlist %.% Map

So this function works exactly like first calling Map and then unlist:

plus <- function(x, y) x + y
unlist(Map(plus, 0:3, 3:0))
[1] 3 3 3 3
uMap(plus, 0:3, 3:0)
[1] 3 3 3 3

With it, you can build functions by stringing together other functions (not unlike how you can create pipelines
in magrittr—see https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html).

For example, you can compute the root mean square error function like this:

error <- function(truth) function(x) x - truth
square <- function(x) x^2

rmse <- function(truth)
 sqrt %.% mean %.% square %.% error(truth)

mu <- 0.4
x <- rnorm(10, mean = 0.4)
rmse(mu)(x)
[1] 0.8976526

Combining a sequence of functions like this requires that you read the operations from right to left, so I
personally prefer the approach in magrittr, but you can see the similarity.

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

257© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_10

CHAPTER 10

Object Oriented Programming

This chapter looks at R’s flavor of object oriented programming. Actually, R has three different systems for
object oriented programming: S3, S4, and RC. We will only look at S3, which is the simplest and (I believe)
the most widely used.

Immutable Objects and Polymorphic Functions
Object orientation in S3 is quite different from what you might have seen in Java or Python. Naturally so,
since data in R is immutable and the underlying model in OO in languages such as Java and Python is that
you have objects with states that you can call methods to change the state. You don’t have a state as such in
S3; you have immutable objects. Just like all other data in R.

What’s the point then, of having object orientation if we don’t have object states? What we get from the
S3 system is polymorphic functions, called “generic” functions in R. These are functions whose functionality
depends on the class of an object—similar to methods in Java or Python where methods defined in a class
can be changed in a subclass to refine behavior.

You can define a function foo to be polymorphic and then define specialized functions, say foo.A and
foo.B. Then calling foo(x) on an object x from class A will actually call foo.A(x) and for an object from class
B will actually call foo.B(x). The names foo.A and foo.B were not chosen at random here, as you will see,
since it is precisely how you name functions that determine which function is called.

We do not have objects with states; we simply have a mechanism for enabling a function to depend on
the class an object has. This is often called “dynamic dispatch” or “polymorphic methods”. Here of course,
since we don’t have states, we can call it polymorphic functions.

Data Structures
Before we get to making actual classes and objects, though, we should look at data structures. We discussed
the various built-in data structures in R in Chapters 1 and 8. Those built-in data types are the basic building
blocks of data in R, but we never discussed how we can build something more complex from them.

More important than any object oriented system is the idea of keeping related data together so we can treat it
as a whole. If we are working on several pieces of data that somehow belongs together, we don’t want it scattered
out in several different variables, perhaps in different scopes, where we have little chance of keeping it consistent.
Even with immutable data, keeping the data that different variables refer to would be a nightmare.

For data we analyze, we therefore typically keep it in a data frame. This is a simple idea for keeping
data together. All the data we are working on is in the same data frame, and we can call functions with the
data frame and know that they are getting all the data in a consistent state. At least as consistent as we can
guarantee with data frames; we cannot promise that the data itself is not messed up somehow, but we can
write functions under the assumption that data frames behave a certain way.

http://dx.doi.org/10.1007/978-1-4842-2671-1_1
http://dx.doi.org/10.1007/978-1-4842-2671-1_8

Chapter 10 ■ ObjeCt Oriented prOgramming

258

What about something like a fitted model? If we fit a model to some data, that fit is stored variables
capturing the fit. We certainly would like to keep those together when we do work with the model because
we would not like accidentally to use a mix of variables fitted to two different models. We might also want to
keep other data together with the fitted model—e.g., some information about what was actually fitted—if we
want to check that in the R shell later. Or the data it was fitted to.

The only option we have for collecting heterogeneous data together as a single object is a list. And that
is how you do it in R.

Example: Bayesian Linear Model Fitting
Project two, described in the last chapter of the book, concerns Bayesian linear models. To represent such,
we would wrap data for a model in a list. For fitting data, assume that you have a function like the one
described here (refer to Chapter 9 for details of the mathematics).

It takes the model specification in the form of a formula as its parameter model and the prior precision
alpha and the “precision” of the data beta. It then computes the mean and the covariance matrix for the
model fitted to the data. The mathematics behind the code is explained in Chapter 9. It then wraps up the
fitted model together with some related data—the formula used to fit the model and the data used in the
model fit (here assumed to be in the variable frame)—and puts them in a list, which the function returns.

blm <- function(model, alpha = 1, beta = 1, ...) {

 # Here goes the mathematics for computing the fit.
 frame <- model.frame(model, ...)
 phi <- model.matrix(frame)
 no_params <- ncol(phi)
 target <- model.response(frame)

 covar <- solve(diag(alpha, no_params) +
 beta * t(phi) %*% phi)
 mean <- beta * covar %*% t(phi) %*% target

 list(formula = model,
 frame = frame,
 mean = mean,
 covar = covar)
}

You can see it in action by simulating some data and calling the function:

fake some data for our linear model
x <- rnorm(10)
a <- 1 ; b <- 1.3
w0 <- 0.2 ; w1 <- 3
y <- rnorm(10, mean = w0 + w1 * x, sd = sqrt(1/b))

fit a model
model <- blm(y ~ x, alpha = a, beta = b)
model
$formula
y ~ x
##

http://dx.doi.org/10.1007/978-1-4842-2671-1_9
http://dx.doi.org/10.1007/978-1-4842-2671-1_9

Chapter 10 ■ ObjeCt Oriented prOgramming

259

$frame
y x
1 5.9784195 1.73343698
2 0.5044947 -0.45442222
3 -3.6050449 -1.47534377
4 1.7420036 0.81883381
5 -0.9105827 0.03838943
6 -3.1266983 -1.14989951
7 5.9018405 1.78225548
8 2.2878459 1.29476972
9 1.0121812 0.39513461
10 -1.7562905 -0.72161442
##
$mean
[,1]
(Intercept) 0.2063805
x 2.5671043
##
$covar
(Intercept) x
(Intercept) 0.07399730 -0.01223202
x -0.01223202 0.05824769

It collects the relevant data of a model fit like this together in a list, so we always know we are working
on the values that belong together. This makes further analysis of the fitted model much easier to program.

Classes
The output we got when we wrote:

model

is what we get if we call the print function on a list. It just shows us everything that is contained in the
list. The print function is an example of a polymorphic function, however, so when you call print(x) on an
object x, the behavior depends on the class of the object x.

If you want to know what class an object has, you can use the class function:

class(model)
[1] "list"

If you want to change it, you can use the class<- replacement function:

class(model) <- "blm"

You can use any name for a class; here I’ve used blm for Bayesian linear model.
By convention, we usually call the class and the function that creates elements of that class the same

name, so since we are creating this type of object with the blm function, convention demands that we call the
class of the object blm as well. It is just a convention, though, and you can call the class anything.

Chapter 10 ■ ObjeCt Oriented prOgramming

260

We can always assign a class to an object in this way, but changing the class of an existing object is
considered bad style. We keep the data that belongs together in a list to make sure that the data is consistent,
but the functionality we want to provide for a class is as much a part of the class as the data, so we also need
to make sure that the functions that operate on objects of a given class always get data that is consistent with
that class. We cannot do that if we go around changing the class of objects willy-nilly.

The function that creates the object should assign the class and then we should leave the class of the
object alone. We can set the class with the class<- function and then return it using the blm function.

blm <- function(model, alpha = 1, beta = 1, ...) {

 # stuff happens here...

 object <- list(formula = model,
 frame = frame,
 mean = mean,
 covar = covar)
 class(object) <- "blm"
 object
}

The class is represented by an attribute of the object; however, and there is a function that sets these for
us, called structure, and using that we can create the object and set the class at the same time, which is a
little better.

blm <- function(model, alpha = 1, beta = 1, ...) {

 # stuff happens here...

 structure(list(formula = model,
 frame = frame,
 mean = mean,
 covar = covar),
 class = "blm")
}

Now that we gave the model object a class, let’s try printing it again.

model
$formula
y ~ x
##
$frame
y x
1 5.9784195 1.73343698
2 0.5044947 -0.45442222
3 -3.6050449 -1.47534377
4 1.7420036 0.81883381
5 -0.9105827 0.03838943
6 -3.1266983 -1.14989951
7 5.9018405 1.78225548
8 2.2878459 1.29476972

Chapter 10 ■ ObjeCt Oriented prOgramming

261

9 1.0121812 0.39513461
10 -1.7562905 -0.72161442
##
$mean
[,1]
(Intercept) 0.2063805
x 2.5671043
##
$covar
(Intercept) x
(Intercept) 0.07399730 -0.01223202
x -0.01223202 0.05824769
##
attr(,"class")
[1] "blm"

The only difference from before is that it has added information about the "class" attribute toward the
end. It still just prints everything that is contained in the object. This is because we haven’t told it to treat any
object of class blm any differently yet.

Polymorphic Functions
The print function is a polymorphic function. This means that what happens when it is called depends on
the class of its first parameter. When we call print, R will get the class of the object, let’s say it is blm as in
our case, and see if it can find a function named print.blm. If it can, then it will call this function with the
parameters you called print with. If it cannot, it will instead try to find the function print.default and call
that.

We haven’t defined a print function for the class blm, so we saw the output of the default print
function instead.

Let’s try to define a blm-specific print function.

print.blm <- function(x, ...) {
 print(x$formula)
}

Here, we just tell it to print the formula we used for specifying the model rather than the full collection
of data we put in the list.

If we print the model now, this is what happens:

model
y ~ x

That is how easy it is to provide your own class-specific print function. And that is how easy it is to
define your own class-specific polymorphic function in general. You just take the function name and append
.classname to it, and if you define a function with that name, then that function will be called when you call
a polymorphic function on an object with that class.

One thing you do have to be careful about, though, is the interface to the function. By that I mean the
parameters the function takes (and their order). Each polymorphic function takes some arguments. You can
see which by checking the function documentation.

?print

Chapter 10 ■ ObjeCt Oriented prOgramming

262

When you define your specialized function, you can add more parameters to your function, but you
should define it such that you at least take the same parameters as the generic function does. R will not
complain if you do not define it that way, but it is bound to lead to problems later when someone calls the
function with assumptions about which parameters it takes based on the generic interface and then runs
into your implementation of a specialized function that behaves a different way. Don’t do that. Implement
your function so it takes the same parameters as the generic function. This includes using the same names
for parameters. Someone might provide named parameters to the generic function, and that will work
only if you call the parameters the same names as the generic function. That is why we used x as the input
parameter for the print.blm function.

Defining Your Own Polymorphic Functions
To define a class-specific version of a polymorphic function, you just need to write a function with the
right name. There is a little bit more to do if you want to define your very own polymorphic function. Then
you also need to write the generic function—the function you will actually call with objects, and that is
responsible for dispatching the function call to class-specific functions.

You do this using the UseMethod function. The generic function typically just does this and looks like this:

foo <- function(x, ...) UseMethod("foo")

You specify a function with the parameters the generic function should accept and then just call
UseMethod with the name of the function to dispatch to. Then it does it magic and finds out which class-
specific function to call and forwards the parameters to there.

When you write the generic function, it is also good style to define the default function as well.

foo.default <- function(x, ...) print("default foo")

With that, we can call the function with all types of objects. If you don’t want that to be possible, a safe
default function would be one that throws an error.

foo("a string")
[1] "default foo"
foo(12)
[1] "default foo"

And of course, with the generic function in place, we can define class-specific functions just like before.

foo.blm <- function(x, ...) print("blm foo")
foo(model)
[1] "blm foo"

You can add more parameters to more specialized functions when the generic function takes … as an
argument. The generic function will just ignore the extra parameters, but the concrete function that is called
might be able to do something about it.

foo.blm <- function(x, upper = FALSE, ...) {
 if (upper) {
 print("BLM FOO")
 } else {
 print("blm foo")
 }
}

Chapter 10 ■ ObjeCt Oriented prOgramming

263

foo("a string")
[1] "default foo"
foo(model)
[1] "blm foo"
foo("a string", upper = TRUE)
[1] "default foo"
foo(model, upper = TRUE)
[1] "BLM FOO"

Class Hierarchies
Polymorphic functions are one aspect of object oriented programming, another is inheritance. This is the
mechanism used to build more specialized classes out of more general classes.

The best way to think about this is as levels of specialization. You have some general class of objects, say
furniture, and within that class are more specific categories, say chairs, and within that class even more
specific types of objects, say kitchen chairs. A kitchen chair is also a chair, and a chair is also furniture. If
there is something you can do to all furniture, then you can definitely also do it to chairs. For example, you
can set furniture on fire; you can set a chair on fire. It is not the case, however, that everything you can do to
chairs you can do to all furniture. You can throw a chair at unwelcome guests, but you cannot throw a piano
at them.

The way specialization like this works is that there are some operations you can do for the general
classes. Those operations can be done on all instances of those classes, including those that are really
objects of more specialized classes.

The operations might not do exactly the same thing—like we can specialize print, an operation we can
call on all objects, to do something special for blm objects—but there is some meaningful way of doing the
operation. Quite often the way a class is specialized is exactly by doing an operation that can be done by all
objects from the general class, but just in a more specialized way.

The specialized classes, however, can potentially do more so they might have more operations that are
meaningful to do to them. That is fine. As long as we can treat all objects of a specialized class the same as we
can treat objects of the more general class.

This kind of specialization is partly interface and partly implementation.

Specialization as Interface
The interface is which functions we can call on objects of a given class. It is a kind of protocol for how we
interact with objects of the class. If we imagine some general class of “fitted models,” we might specify that
for all models we should be able to get the fitted parameters and for all models we should be able to make
predictions for new values. In R, such functions exist, called coef and predict, and any model is expected to
implement them.

This means that I can write code that interacts with a fitted model through these general model
functions, and as long as I stick to the interface they provide, I could be working on any kind of model. If, at
some point, I find out that I want to replace a linear regression model with a decision tree regression model,
I can just plug in a different fitted model and communicate with it through the same polymorphic functions.
The actual functions that will be called when I call the generic functions coef and predict will, of course, be
different, but the interface is the same.

R will not enforce such interfaces for you. Classes in R are not typed in the same way as they are in, for
example, Java, where it would be a type error to declare something as an object satisfying a certain interface
if it does in fact not. R doesn’t care. Not until you call a function that isn’t there; then you might be in trouble,
of course. But it is up to you to implement an interface to fit the kind of class or protocol you think your class
should match.

Chapter 10 ■ ObjeCt Oriented prOgramming

264

If you implement the functions that a certain interface expects (and these functions actually do
something resembling what the interface expects the functions to do and are not just named the same
things),1 you have a specialization of that interface. You can do the same operations as every other class that
implements the interface, but of course, your operations are uniquely fitted to your actual class.

You might implement more functions, making your class capable of more than the more general class
of objects, but that is just fine. Other classes might implement those operations as well, so now you have
more than one class with the more specialized operations—a new category that is more general and can be
specialized further.

You have a hierarchy of classes defined by which functions they provide implementations of.

Specialization in Implementations
Specialization by providing general or more specialized interfaces—in the case of R by providing
implementations of polymorphic functions—is the essential feature of the concept of class hierarchies in
object oriented programming. It is what lets you treat objects of different kinds as a more general class.

There is another aspect of class hierarchies, though, that has to do with code reuse. You already get a
lot of this just by providing interfaces to work with objects, of course, since you can write code that works on
a general interface and then reuse it on all objects that implement this interface. But there is another type
of reuse you get when you build a hierarchy of classes where you go from abstract, general classes to more
specialized and concrete classes. When you are specializing a class, you are taking functionality that exists
for the more abstract class and defining a new class that implements the same interface except for a few
differences here and there.

When you refine a class in this way, you don’t want to implement new versions of all the polymorphic
functions in its interface. Many of them will do exactly the same as the implementation for their more
general class.

Let’s say you want to have a class of objects where you can call functions foo and bar. You can call that
class A and define it as follows:

foo <- function(object, ...) UseMethod("foo")
foo.default <- function(object, ...) stop("foo not implemented")

bar <- function(object, ...) UseMethod("bar")
bar.default <- function(object, ...) stop("bar not implemented")

A <- function(f, b) structure(list(foo = f, bar = b), class = "A")
foo.A <- function(object, ...) paste("A::foo ->", object$foo)
bar.A <- function(object, ...) paste("A::bar ->", object$bar)

a <- A("qux", "qax")
foo(a)
[1] "A::foo -> qux"
bar(a)
[1] "A::bar -> qax"

For a refinement of that, you might want to change how bar works and add another function called baz:

baz <- function(object, ...) UseMethod("baz")
baz.default <- function(object, ...) stop("baz not implemented")

1To draw means something very different when you are a gunslinger compared to when you are an artist, after all.

Chapter 10 ■ ObjeCt Oriented prOgramming

265

B <- function(f, b, bb) {
 a <- A(f, b)
 a$baz <- bb
 class(a) <- "B"
 a
}

bar.B <- function(object, ...) paste("B::bar ->", object$bar)
baz.B <- function(object, ...) paste("B::baz ->", object$baz)

We want to leave the foo function just the way it is, but if we define the class B as shown, calling foo on a
B object gives us an error because it will be calling the foo.default function.

b <- B("qux", "qax", "quux")
foo(b)
Error in foo.default(b): foo not implemented

This is because we haven’t told R that we consider the class B a specialization of class A. We wrote the
constructor function—the function where we make the object, the function B—such that all B objects contain
the data that is also found in an A object. We never told R that we intended B objects also to be A objects.

We could, of course, make sure that foo called on a B object behaves the same way as when called on an
A object by defining foo.B such that it calls foo.A. This wouldn’t be too much work for a single function, but
if there are many polymorphic functions that work on A objects, we would have to implement B versions for
all of them. Tedious and error-prone work.

If only there were a way of telling R that the class B is really an extension of the class A. And there is. The
class attribute of an object doesn’t have to be a string. It can be a vector of strings. If, for B objects, we say that
the class is B first and A second, like this,

B <- function(f, b, bb) {
 a <- A(f, b)
 a$baz <- bb
 class(a) <- c("B", "A")
 a
}

Then calling foo on a B object—where foo.B is not defined—will call foo.A as its second choice and
before defaulting to foo.default:

b <- B("qux", "qax", "quux")
foo(b)
[1] "A::foo -> qux"
bar(b)
[1] "B::bar -> qax"
baz(b)
[1] "B::baz -> quux"

The way the class attribute is used with polymorphic functions is that R will look for functions with the
class names appended in the order of the class attributes. The first it finds will be the one that is called, and if
it finds no specialized version, it will go for the .default version. When we set the class of B objects to be the
vector c("B", "A"), we are saying that R should call .B functions first, if it can find one, but otherwise call
the .A function.

Chapter 10 ■ ObjeCt Oriented prOgramming

266

This is a very flexible system that lets you implement multiple inheritances from classes that are
otherwise not related, but you do so at your own peril. The semantics of how this works—functions are
searched for in the order of the class names in the vector—the actual code that will be run can be hard to
work out if these vectors get too complicated.

Another quick word of caution is this: if you give an object a list of classes, you should include the
classes all the way up the class hierarchy. If you define a new class, C, intended as a specialization of B, we
cannot just say that it is an object of class c("C", "B") if we also want it to behave like an A object.

C <- function(f, b, bb) {
 b <- B(f, b, bb)
 class(b) <- c("C", "B")
 b
}

c <- C("foo", "bar", "baz")
foo(c)
Error in foo.default(c): foo not implemented

When we call foo(c) here, R will try the functions, in turn: foo.C, foo.B, and foo.default. The only
one that is defined is the last, and that throws an error if called.

So what we have defined here is an object that can behave like B but only in cases where B differs from
A’s behavior! Our intention is that B is a special type of A, so every object that is a B object we should also be
able to treat as an A object. Well, with C objects that doesn’t work.

We don’t have a real class hierarchy here like we would find in languages like Python, C++, or Java. We
just have a mechanism for calling polymorphic functions, and the semantic here is just to look for them by
appending the names of the classes found in the class attribute vector. Your intentions might very well be
that you have a class hierarchy with A being the most general class, B a specialization of that, and C the most
specialized class, but that is not what you are telling R. Because you cannot. You are telling R how it should
look for dynamic functions, and with the code, you told it to look for .C functions first, then .B functions, and
you didn’t tell it any more, so the next step it will take is to look for .default functions. Not .A functions. It
doesn’t know that this is where you want it to look.

If you add this to the class attribute it will work, though:

C <- function(f, b, bb) {
 b <- B(f, b, bb)
 class(b) <- c("C", "B", "A")
 b
}

c <- C("foo", "bar", "baz")
foo(c)
[1] "A::foo -> foo"
bar(c)
[1] "B::bar -> bar"
baz(c)
[1] "B::baz -> baz"

Chapter 10 ■ ObjeCt Oriented prOgramming

267

You are slightly better off getting the class attribute from the object you create in the constructor,
though. If, at some point, you changed the class attribute of the object returned from the B() constructor,
you don’t want to have to change the class vector in all classes that are extending the class.

C <- function(f, b, bb) {
 b <- B(f, b, bb)
 class(b) <- c("C", class(b))
 b
}

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Shapes
Imagine that we need to handle some geometric shapes for a program. These could be circles, squares,
triangles, etc. We need to know the shapes’ circumferences and areas. These properties can be calculated
from properties of the shapes, but the calculations are different for each shape.

So for our shapes, we want (at least) an interface that gives us two functions: circumference and area.
The default functions, where we have no additional information about an object aside from the fact that it
is a shape, are meaningless so should raise an error (check the stop function for this), but each specialized
shape should implement these two functions.

Implement this protocol/interface and the two functions for at least circles and rectangles; by all means,
more shapes if you want to.

Polynomials
Write a class that lets you represent polynomial objects. An n-degree polynomial is on the form c

0
+c

1
 x+c

2

x2+...+c
n
 xn and can be represented by the n+1 coefficients (c

0
,c

1
,…,c

n
). Write the interface such that you can

evaluate polynomials in any point x, i.e. with a function evaluate_polynomial(poly, x) that gives you the
value of the polynomial at the point x.

The function uniroot (built into R) lets you find the roots of a general function. Use it to write a function
that finds the roots of your polynomials. This function works by numerically finding the points where the
polynomial is zero. For lines and quadratic polynomials, though, there are analytical solutions. Write special
cases for polynomials such that calling the root finding function on the special cases exploits that solutions
are known there.

269© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_11

CHAPTER 11

Building an R Package

You now know how to write functions and create classes in R, but neither functions nor classes is the unit
you use for collecting and distributing R code. That unit is the package. It is packages that you load and
import into your namespace when you write this:

library(something)

And it is packages you download when you write this:

install.packages("something")

The topic of this chapter is how to make your own packages. In the space available, I can only give a very
broad overview of the structure of R packages, but it should be enough to get you started. If you want to read
more, I warmly recommend Hadley Wickham’s book R Packages.

Creating an R Package
I am going to assume that you use RStudio for this. If you don’t, you can look at the devtools package. It
provides functions for doing everything you can do through the GUI in RStudio.

To create a new package, choose File ➤ New Project and you should get a dialog box that asks you
whether your new project should be in a new director, in an existing directory, or checked out of a version
control repository. Pick the New Directory.

After that, you get the choice between an empty project, a package, or a shiny application. Not
surprisingly, you want to pick R Package.

Now you get to a dialog box where you can set the details of the package. You can choose the Type of the
package (where you can choose between a plain package or one that uses Rcpp to make C++ extensions);
you can specify the Name of the package; and you can provide existing source files to include in the package.
Further, you need to choose a location to put the new package and whether you want to use a git repository
for the package.

Choose a plain package and click Yes to create a git repository (we return to git later). You now just
need to pick a name and a place to put your package. Where you put it is up to you, but there are some
guidelines for package names, discussed next.

Package Names
A package name can consist of letters, numbers, and ., but must start with a letter and must not have . as the
last character. You cannot use other characters, such as underscores or dashes.

Chapter 11 ■ Building an r paCkage

270

Whenever you build software that you intend for other people to be able to use, be careful with the
name you give it. Give it a name that is easy to remember and easy to Google.

For experimenting with packages, you can just create one called test. Create it and have a look at the
result.

The Structure of an R Package
In the directory that RStudio built for you, you should have two directories, R and man, three text files,
.Rbuildignore, DESCRIPTION, and NAMESPACE, and one project file (its name will be the name of your
package followed by .Rproj).

The last of these files is used by RStudio, and all you need to know about it is that if you open this file in
RStudio, you get an open version of the state of the project you had last time you worked on it.

Inside the R directory you have an example file, called R/hello.R, and inside the man directory, you have
an example documentation1 file, called man/hello.Rd.

The text files and the two directories are part of what an R package looks like, and they must always be
there with exactly those names. There are a few more directories that also have standard names,2 but they
are not required, and we don’t have them here for now.

.Rbuildignore
The directory you created contains the source code for the package, but it isn’t the actual package. The
package is something you need to build and install from this source code. We will get to how to do that
shortly.

The .Buildignore file tells R what not to include when it builds a package. Files that are not mentioned
here will automatically be included. This isn’t a disaster as such, but it does lead to messy packages for
others to use, and if you upload a package to CRAN,3 the filters there enforce a strict directory and file
structure and you will not be allowed to include files or directories that do not follow that structure.

The automatically generated .Buildignore file looks like this:

^.*\.Rproj$
^\.Rproj\.user$

These are two regular expressions that prevent R from including the RStudio files in compiled packages.
The ^ character here matches the beginning of a filename, while $ matches the end. A non-escaped .

matches any character, while an escaped \. matches an actual dot. The * specifies that the previous symbol
can be repeated any number of times. So the first regular expression specifies any filename that ends in
.Rproj and the second expression specifies any filename that ends in .Rproj.user.

1man stands for manual and the abbreviation man is a legacy from UNIX.
2e.g., vignettes/ for documentation vignettes, data/ for data you want to include with your package, and src/ for C/
C++ extensions.
3CRAN is the official depository for R package and the place where the install.packages function finds them.

Chapter 11 ■ Building an r paCkage

271

Description
This file contains meta-information about your package. If you called your package test and created it the
same day I did (November 11 2015), it should now look like this:

Package: test
Type: Package
Title: What the Package Does (Title Case)
Version: 0.1
Date: 2015-11-22
Author: Who wrote it
Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?
LazyData: TRUE

You need to update it to describe your new package.
I give a short description of the metadata next, but you can also read more about it in Hadley Wickham’s

R Packages book.

Title
The title field is pretty self-explanatory. You need to give your package a title. Here, (Title Case) means
that you need to use capital first letters in the words there like you would for the title of a book.

If you read the documentation for a package on CRAN, it will look like this: packagename: This is
the Title. Don’t include the package name in your title here, because that is automatically added to the
documentation page. You just want the title.

Version
This is just a number to track which version of your package people have installed. Whenever you make
changes to your package and release them, this number should go up.

The version numbers are not only used to indicate that you have updated a version, but they are also
necessary for specifying dependencies between packages sometimes. If a feature was introduced in version
1.2 but didn’t exist in version 1.1, then other packages that use this feature need to know whether they have
access to version 1.2 or higher. We return to dependencies later in this chapter.

There are some conventions for version numbers but nothing that is strictly enforced. The convention
here is that a released version has the numbering scheme major.minor.patch, so the version 1.2.3 means
that the major version number is 1, the minor 2, and that this is patched version 3. Patches are smaller
changes, typically bug fixes and such, while minor revisions usually include some new functionality. The
difference between what is considered minor and major is subjective, but any time the interface changes—
you change the way a function is called such that the old types of calls are now incorrect—you definitely
should increase the major version number.

If you have a development version of your package that you are distributing for those adventurous
enough to work with a beta release, the convention is to add a development release number as well. Then
the version number looks like major.minor.patch.develop-number, where by convention the last number
starts at 9000 and is increased with every new release.

You are just beginning developing your new package, so change the version number to 0.0.0.9000.

Chapter 11 ■ Building an r paCkage

272

Description
This field should describe the package. It is typically a one-paragraph short description. To make R parse the
DESCRIPTION file correctly, you must indent the lines following Description: if the description spans over
multiple lines.

Author and Maintainer
Delete these two fields. There is a better way to specify the same information that makes sure that it is
provided in a more structured form. You should use a new field called Authors@R: instead.

This field takes an R expression specifying one or more authors, where the author information is
provided by a call to the function person—which is how we make sure that it is structured appropriately.
Check the documentation for the function (?person) for more details.

You are single author, so you should use something like this:

Authors@R: person("First Name", "Last Name",
 email = "your.email@your.domain.com",
 role = c("aut", "cre"))

The roles here means author and creator. The documentation for the person function lists other
options.

If there is more than one person involved as author or maintainer or another sort of contributor, you
can list a sequence of persons by concatenating them with the c function.

License
This specifies the software license the package is released under. It can really be anything, but if you want to
put your package on CRAN, you have to pick one of the licenses that CRAN accepts from https://cran.r-
project.org/web/licenses/.

You specify which of the recognized licenses by their abbreviation, so to specify that your package is
released under the GPL version 2 license, you write:

License: GPL-2

Type, Date, LazyData
The Type and LazyData fields are not essential. You can delete them if you want. Type is just saying that you
have a package but we sort of know that already. LazyData tells R that if you include data in your package, it
should load it lazily. Again, this is not something that is of particular importance (unless you plan to include
extremely large datasets with your package; if you do that, Google for the documentation of LazyData).

The Date of course includes the date. This should be the last time you modified the package, i.e., the last
time you updated the version.

URL and BugReports
If you have a web page for the package and a URL for reporting bugs, these are the fields you want to use.
They are not required for a package, but are of course very helpful for the users to have.

https://cran.r-project.org/web/licenses/
https://cran.r-project.org/web/licenses/

Chapter 11 ■ Building an r paCkage

273

Dependencies
If your package has dependencies, you have three fields you can specify them in: Depends, Imports, and
Suggests.4

With Depends, you can specify both packages that need to be installed for your package to work and
which version of R is required for your package to work. For packages, though, it is better to use Imports and
Suggests than Depends, so use Depends only to specify which version of R you need.

You specify it this like:

Depends: R (>= 2.10)

This is saying that you need R to work (not surprisingly, but the syntax is the same for packages) and it
has to be at least version 2.10.

The syntax for dependencies is a comma-separated list of package names (or R as shown previously)
with optional version number requirements in parentheses after the package name.

Imports and Suggests fields could look like this:

Imports:
 ggplot2,
 dplyr (>= 0.4.3),
 pracma
Suggests:
 testthat,
 knitr

This specifies that you import three packages—ggplot2, dplyr, and pracma—and use testthat and
knitr in some functions if these packages are available. We require that dplyr has at least version 0.4.3 but
do not place any demands on the versions of the other packages.

The difference between Imports and Suggests is that requirements in Imports must be installed
for your package to be installed (or they will be installed if you tell R to install with dependencies), while
requirements in Suggests do not.

Using an Imported Package
Packages in the Imports or Suggests lists are not imported into your namespace the way they would be if
you call library(package). This is to avoid contaminating your package namespace, and you shouldn’t
break that by calling library yourself. If you want to use functions from other packages, you must do so
by explicitly accessing them through their package namespace or by explicitly importing them at a single-
function level.

The way to access a function from another package without importing the package namespace is using
the :: notation. If you want to get to the filter function in dplyr without importing dplyr, you can get the
function using the name dplyr::filter.

If you access names from a package that you have listed in your Imports field, you know that it exists
even if it isn’t imported into your namespace, so you just need to use the long name.

An alternative way of importing functions is using Roxygen—which we will discuss later in the
chapter—where you can import the namespace of another package or just the name of a single function in
another package for a single function at a time.

4There are a few more fields, such as for linking to external C/C++ code, but these three fields are the most important
ones.

Chapter 11 ■ Building an r paCkage

274

Using a Suggested Package
You access functions in a suggested package—the packages named in the Suggests field—using the ::
notation, just as you do for imported packages. There is just one more complication: the package might not
be installed on the computer where your package is installed. That is the difference between suggesting a
dependency and requiring it by putting it in the Imports field.

The purpose of suggesting packages instead of importing them is that the functionality your package
provides doesn’t strictly depend on the other package, but you can do more, or do things more efficiently, if
a suggested package is there.

So you need a way of checking if a package is installed before you use it and that way is the function
requireNamespace. It returns TRUE if the namespace (package) you ask for is installed and FALSE otherwise.
You can use it like this:

if (requireNamespace("package", quietly = TRUE)) {
 # use package functionality
} else {
 # do something that doesn't involve the package
 # or give up and throw an exception with stop()
}

The quietly option is to prevent it from printing warnings. You are handling the cases where the
package is not installed, so there is no need for it to print warnings.

NAMESPACE
The NAMESPACE file provides information about which of the functions you implement in your package
should be exported to the namespace of the users when they write library(test).

Each package has its own namespace. It is similar to how each function has a namespace in its body
where we can define and access local variables. Functions you write in a package will look for other
functions first in the package namespace and then in the global namespace.

Users who want to use your package can access your functions by loading them into their namespace
using this:

library(test)

Or they can explicitly ask for a function in your namespace, as follows:

test::function_name()

But they can only get access to functions (and other objects) explicitly exported.5 If a function is not
explicitly exported, it is considered an implementation detail of the package that code outside the package
should not be able to be accessed.

The NAMESPACE file is where you specify what should be exported from the package.6

The auto-generated file looks like this:

exportPattern("^[[:alpha:]]+")

5Strictly speaking, this is not true. You can actually get to internal functions if you use the ::: operator instead of the ::
operator. So if function_name is not exported but still implemented in the test package, you can access it with
test:::function_name. But you shouldn’t. You should keep your damned dirty paws away from internal functions!
6It is also used to import selected functions or packages, but using Roxygen’s @import and @importFrom functions are
better solutions for that.

Chapter 11 ■ Building an r paCkage

275

It is just exporting anything that has an alphanumeric name. This is definitely too much but we ignore
it for now. We are not going to edit this file manually since we can export functions (and all other objects)
much easier using Roxygen, as described shortly.

R/ and man/
The R/ directory is where you should put all your R code, and the man/ directory is where the package
documentation goes. There is one example file in both directories just after RStudio generates your new
package. You can look at them and then delete them afterward.

All the R code you write for a package should go in files in the R/ directory to be loaded into the
package. All documentation will go in man/, but we are not going to write the documentation there manually.
Instead, we will use Roxygen to document functions, and then Roxygen will automatically make the files that
go in man/.

Roxygen
Roxygen is a system for writing documentation for your packages, and if you are familiar with Javadoc, you
will recognize its syntax. It does a few things more, however, including handling your namespace import and
export, as we will see.

To use it, you first have to install it, so run the following:

install.packages("roxygen2")

Now go into the Build menu and select Configure Build Tools. Pick Build Tools and check Generate
Documentation with Roxygen. In the dialog box that pops up, check Build & Reload. This ensures that
Roxygen is used to generate documentation and that the documentation is generated when you build the
package. This will also ensure that Roxygen handles the import and export of namespaces.

Documenting Functions
You can see how Roxygen works through an example:

#' Add two numbers
#'
#' This function adds two numbers together.
#'
#' @param x A number
#' @param y Another number
#' @return The sum of x and y
#'
#' @export
add <- function(x, y) x + y

The documentation for this function, add, is provided in comments above the function, but comments
starting with the characters #' instead of just #. This is what tells Roxygen that these comments are part of
the documentation that it should process.

The first line becomes the title of the documentation for the function. It should be followed by an empty
line (still in #' comments).

Chapter 11 ■ Building an r paCkage

276

The text that follows is a description of the function. It is a bit silly with the documentation for this
simple function, but normally you will have a few paragraphs describing what the function does and how it
is supposed to be used. You can write as much documentation here as you think is necessary.

The lines that start with an @ tag—e.g., @param and @return—contain information for Roxygen. They
provide information that is used to make individual sections in the documentation.

The @param tags are used for describing parameters. That tag is followed by the name of a parameter
and then a short description of the parameter.

The @return tag provides a description of what the function returns.
After you have written some comments in Roxygen, you can build it by choosing Build ➤ Document.

After you build the documentation, take a look at the NAMESPACE file and the man/ directory. In the NAMESPACE
file, you should see that the function has been exported; in the man/ directory, there should be a file
documenting the function.

Import and Export
In the NAMESPACE file, you should see that your documented function is explicitly exported. That is because
we provided the @export tag with the documentation. It tells Roxygen to export it from the package
namespace.

This is the easiest way to handle the namespace export so, if, for nothing else, you should use Roxygen
for this rather than manually editing the NAMESPACE file.

Roxygen will also ensure that polymorphic functions and other kinds of objects are correctly exported if
you use the @export tag. This requires different kinds of commands in the NAMESPACE file. You don’t have to
worry about it as long as you use Roxygen.

Roxygen can also handle import of namespaces. Remember that the packages you list in your Imports
field in the DESCRIPTION file are guaranteed to be installed on the computer where your package is installed
but that the namespaces of these packages are not imported. You have to use the :: notation to access them.

Well, with Roxygen you can use the @importFrom package object tag to import object (typically a
function) into your namespace in a function that you give that tag to. For normal functions, I don’t really see
the point of using this feature since it isn’t shorter than just using the :: notation. For infix functions, though,
it makes them easier to use since then you can actually use the infix function as an infix operator.

So in the following function, you can use the %>% operator from dplyr because you import it explicitly.
You cannot really get to infix operators otherwise.

#' Example of using dplyr
#'
#' @param data A data frame containing a column named A
#' @param p A predicate function
#' @return The data frame filtered to those rows where p is true on A
#'
#' @importFrom dplyr filter
#' @importFrom dplyr %>%
#' @export
filter_on_A <- function(data, p) {
 data %>% filter(p(A))
}

Chapter 11 ■ Building an r paCkage

277

If you write a function that uses a lot of functionality from a package, you can also import the entire
namespace of that package. That is similar to using library(package) and is done with the @import tag.

#' @import dplyr
#' @export
filter_on_A <- function(data, p) {
 data %>% filter(p(A))
}

Package Scope Versus Global Scope
A quick comment is in order about the namespace of a package when you load it with library(package).
I mentioned it already, but I just want to make it entirely clear. A package has its own namespace where its
functions live. Functions that are called from other functions written inside a package are first looked for in
the package namespace before they are looked for in the global namespace.

If you write a function that uses another function from your package and someone redefines the
function in the global namespace after loading your package, it doesn’t change what function is found inside
your package.

It doesn’t matter if a function is exported or local to a package for this to work. R will always look in a
package namespace before looking in the global namespace.

Internal Functions
You might not want to export all functions you write in a package. If there are some functions, you consider
implementation details of your package design, you shouldn’t export them. If you do, people might start
to use them, and you don’t want that if it is functionality you might change later on when you refine your
package.

Making functions local, though, is pretty easy. You just don’t use the @export tag. Then they are not
exported from the package namespace when the package is loaded and then they cannot be accessed from
outside the package.7

File Load Order
Usually, it shouldn’t matter in how many files you write your package functionality. It is usually easiest
to find the right file to edit if you have one file for each (major) function or class, but it is mostly a
matter of taste.

It also shouldn’t matter in which files you place various functions—whether internal or exported—since
they will all be present in the package namespace. And if you stick to using functions (and S3 polymorphic
functions), the order in which files are processed when building packages shouldn’t matter.

It does matter for S4 classes and such and in case you ever run into it being an issue, I will just quickly
mention that package files are processed in alphabetical order. Alphabetical for the environment you are
in, though, since alphabetical order actually depends on which language you are in, so you shouldn’t rely
on this.

7Except through the ::: operator, of course, but people who use this to access the internals of your package knows – or
should know – that they are accessing implementation details that could change in the future so it is their own fault if
their code is broken sometime down the line.

Chapter 11 ■ Building an r paCkage

278

Instead, you can use Roxygen. It can also make sure that one file is processed before another. You can
use the @include field to create a dependency between a function and another file.

#' @import otherfile.R

I have never had the need for this myself and you probably won’t either, but now you know.

Adding Data to Your Package
It is not uncommon for packages to include some data, either data used by the package implementation or
more commonly data used for example purposes.

This data goes in the data/ directory. You don’t have this directory in your freshly made package, but it
is where data should go if you want to include data in your package.

You cannot use any old format for your data. It has to be in a file that R can read, typically .RData files.
The easiest way to add data files, though, is using functionality from the devtools package. If you don’t have
it installed then type this:

install.packages("devtools")

Then you can then use the use_data function to create a data file.
For example, I have a small test dataset in my admixturegraph package (see https://github.com/

mailund/admixture_graph) that I made using this command:

bears <- read.table("bears.txt")
devtools::use_data(bears)

This data won’t be directly available once a package is loaded, but you can get it using the data
function:

library(admixturegraph)
data(bears)
bears
W X Y Z D Z.value
1 BLK PB Sweden Adm1 0.1258 12.8
2 BLK PB Kenai Adm1 0.0685 5.9
3 BLK PB Denali Adm1 0.0160 1.3
4 BLK PB Sweden Adm2 0.1231 12.2
5 BLK PB Kenai Adm2 0.0669 6.1
6 BLK PB Denali Adm2 0.0139 1.1
7 BLK PB Sweden Bar 0.1613 14.7
8 BLK PB Kenai Bar 0.1091 8.9
9 BLK PB Denali Bar 0.0573 4.3
10 BLK PB Sweden Chi1 0.1786 17.7
11 BLK PB Kenai Chi1 0.1278 11.3
12 BLK PB Denali Chi1 0.0777 6.4
13 BLK PB Sweden Chi2 0.1819 18.3
14 BLK PB Kenai Chi2 0.1323 12.1
15 BLK PB Denali Chi2 0.0819 6.7
16 BLK PB Sweden Denali 0.1267 14.3
17 BLK PB Kenai Denali 0.0571 5.6
18 BLK PB Sweden Kenai 0.0719 9.6

https://github.com/mailund/admixture_graph
https://github.com/mailund/admixture_graph

Chapter 11 ■ Building an r paCkage

279

You cannot add documentation for data directly in the data file, so you need to put it in an R file in the
R/ directory. I usually have a file called data.R that I use for documenting my package data.

For the bears data, my documentation looks like this:

#' Statistics for populations of bears
#'
#' Computed $f_4(W,X;Y,Z)$ statistics for different
#' populations of bears.
#'
#' @format A data frame with 19 rows and 6 variables:
#' \describe{
#' \item{W}{The W population}
#' \item{X}{The X population}
#' \item{Y}{The Y population}
#' \item{Z}{The Z population}
#' \item{D}{The D ($f_4(W,X;Y,Z)$) statistics}
#' \item{Z.value}{The blocked jacknife Z values}
#' }
#'
#' @source \url{http://onlinelibrary.wiley.com/doi/10.1111/mec.13038/abstract}
#' @name bears
#' @docType data
#' @keywords data
NULL

The NULL after the documentation is needed because Roxygen wants an object after documentation
comments, but it is the @name tag that tells it that this documentation is actually for the bears object.
The @docType tells it that this is data that we are documenting.

The @source tag tells us where the data is from; if you have generated it yourself for your package, you
don’t need this tag.

The @format tag is the only complicated tag here. It describes the data, which is a data frame, and it uses
markup that looks very different from Roxygen markup text. The documentation used by R is actually closer
to LaTeX than the formatting we have been using, and the data description reflects this.

You have to put your description inside curly brackets marked up with \description{} and inside it,
you have an item per data frame column. This has the format \item{column name}{column description}.

Building an R Package
In the frame to the upper right in RStudio, you should have a tab that says Build. Select it.

Inside the tab there are three choices in the toolbar—Build & Reload, Check, and More. They all do just
what they say: the first builds and (re)loads your package, the second checks it, meaning it runs unit tests if
you have written any and then checks for consistency with CRAN rules, and the third gives you various other
options in a drop-down menu.

You use Build & Reload to recompile your package when you make changes to it. It loads all your R code
(and various other things) to build the package and then it installs it and reloads it into your terminal so you
can test the new functionality.

A package you have built and installed this way can also be used in other projects afterward.
When you have to send a package to someone, you can make a source package in the More drop-down

menu. It creates an archive file (.tar.gz).

Chapter 11 ■ Building an r paCkage

280

Exercises
In the last chapter, you wrote functions for working with shapes and polynomials. Now try to make a package
for each with documentation and correct exporting of the functions. If you haven’t implemented all the
functionality for those exercises, this is your chance to do so.

281© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_12

CHAPTER 12

Testing and Package Checking

Without testing, there is little guarantee that your code will work at all. You probably test your code when
you write it by calling your functions with a couple of chosen parameters, but to build robust software you
need to approach testing more rigorously. And to prevent bugs from creeping into your code over time, you
should test often. Ideally, you should check all your code anytime you make any changes to it.

There are different ways of testing software—software testing is almost a science in itself—but the kind
of testing we do when we want to make sure that the code we just wrote is working as intended is called unit
testing. The testing we do when we want to ensure that changes to the code do not break anything is called
regression testing.

Unit Testing
Unit testing is called that because it tests functional units—in R, that essentially means single functions or
a few related functions. Whenever you write a new functional unit, you should write test code for that unit
as well. The test code is used to check that the new code is actually working as intended and if you write the
tests such that they can be run automatically later on you have also made regression tests for the unit at the
same time. Whenever you make any changes to your code, you can run all your automated tests, and that
will check each unit and make sure that everything works as it did before.

Most programmers do not like to write tests. It is exciting to write new functionality but to probe new
features for errors is a lot less interesting. However, you really do need the tests, and you will be happy that
you have them in the long run. Don’t delay writing tests until after you have written all your functions.
That is leaving the worst for last, and that is not the way to motivate you to write the tests. Instead, you can
write your unit tests while you write your functions; some even suggest writing them before you write your
functions, something called test-driven programming. The idea here is that you write the tests that specify
how your function should work, and you know that your function works as intended when it passes the tests
you wrote for it.

I have never found test-driven programming that useful for myself. It doesn’t match the way I work,
because I like to explore different interfaces and uses of a function while I am implementing it, but some
prefer to work that way. I do, however, combine my testing with my programming in the sense that I write
small scripts calling my functions and fitting them together while I experiment with the functions. I write
that code in a way that makes it easy for me to take the experiments, and then use them as automated
tests later.

Chapter 12 ■ testing and paCkage CheCking

282

Take for example the shapes exercise we had earlier, where you had to write functions for computing the
area and circumference of different shapes. I have written a version where I specify rectangles by width and
height.1 A test of the two functions could then look like this:

area <- function(x) UseMethod("area")
circumference <- function(x) UseMethod("circumference")

rectangle <- function(width, height) {
 structure(list(width = width, height = height),
 class = c("rectangle", "shape"))
}
area.rectangle <- function(x) x$height * x$width
circumference.rectangle <- function(x) 2 * x$height + 2 * x$width
r <- rectangle(width = 2, height = 4)
area(r)
[1] 8
circumference(r)
[1] 12

The area is 2×4 and the circumference is 2×2+2×4, so this looks fine. But I am testing the code by calling
the functions and looking at the printed output. I don’t want to test the functions that way forever—I cannot
automate my testing this way because I then have to sit and look at the output of my tests. But they are okay
tests. I just need to automate them.

Automating Testing
All it takes to automate the test is to check the result of the functions in code rather than looking at it, so code
that resembles the following would be an automated test:

r <- rectangle(width = 2, height = 4)
if (area(r) != 2*4) {
 stop("Area not computed correctly!")
}
if (circumference(r) != 2*2 + 2*4) {
 stop("Circumference not computed correctly!")
}

It is a little more code, yes, but it is essentially the same test, and this is something I can run
automatically later on. If it doesn’t complain about an error, then the tests are passed, and all is good.

You can write your own test this way. Put them in a directory called tests/ (which is where R expect
tests to live) and then run these tests whenever you want to check the status of your code, i.e., whenever you
make modifications to it.

Scripts in the tests/ directory will also be automatically run whenever you do a consistency check of
the package (something we return to shortly). That is what happens when you click Check in the Build tab
on the right in RStudio or select Check Package in the Build menu, but it does a lot more than just run tests
so it is not the most efficient way of running the tests.

There are some frameworks for formalizing this type of testing in R. I use a framework called testthat.
Using this framework it is easy to run tests (without the full package check) and easy to write tests in a more
structured manner—of course at the cost of having a bit more code to write for each test.

1I know that a rectangle doesn’t have to have sides parallel with those two dimensions, but there is no need to make the
example more complicated than it has to be.

Chapter 12 ■ testing and paCkage CheCking

283

Using testthat
The testthat framework (see https://github.com/hadley/testthat) provides functions for writing unit
tests and makes sure that each test is run in a clean environment (so you don’t have functions defined in one
test leak into another because of typos and such). It needs a few modifications to your DESCRIPTION file and
your directory structure, but you can automatically make these adjustments by running the following:

devtools::use_testthat()

This adds testthat to the Suggests packages, makes the directory tests/testthat and the file tests/
testthat.R. You can have a look at the file, but it isn’t that interesting. Its purpose is to make sure that the
package testing—that runs all scripts in the tests/ directory—will also run all the testthat tests.

The testthat tests should all go in the tests/thestthat directory and in files whose names start with
test. Otherwise, testthat cannot find them. The tests are organized in contexts and tests to make the
output of running the tests more readable—if a test fails, you don’t just want to know that some test failed
somewhere, but you want some information about which test failed and where, and that is provided by the
contexts.

At the top of your test files, you set a context using the context function. It just gives a name to the
following batch of tests. This context is printed during testing so you can see how the tests are progressing
and if you keep to one context per file, you can see in which files tests are failing.

The next level of tests is wrapped in calls to the test_that function. This function takes a string as its
first argument, which should describe what is being tested. Its second argument is a statement that will
be the test. The statement is typically more than one single statement, and in that case, it is wrapped in {}
brackets.

At the beginning of the test statements you can create some objects or whatever you need for the
tests and after that you can do the actual tests. Here, testthat also provides a whole suite of functions for
testing if values are equal, almost equal, if an expression raises a working, triggers an error, and much more.
All these functions start with expect_ and you can check the documentation for them in the testthat
documentation.

The test for computing the area and circumference of rectangles would look like this in a testthat test:

context("Testing area and circumference")

test_that("we compute the correct area and circumference", {
 r <- rectangle(width = 2, height = 4)

 expect_equal(area(r), 2*4)
 expect_equal(circumference(r), 2*2 + 2*4)
})

Try to add this test to your shapes packet from last chapter’s exercises and see how it works. Try
modifying it to trigger an error and see how that works.

You should always worry a little bit when testing equality of numbers, especially if they are floating-
point numbers. Computers do not treat floating-point numbers the way mathematics treat real numbers.
Because floating-point numbers have to be represented in finite memory, the exact number you get depends
on how you compute it, even if mathematically two expressions should be identical.

For the tests we do with the rectangle, this is unlikely to be a problem. There aren’t really that many
ways to compute the two quantities we test for and we would expect to get exactly these numbers. But how
about the quantities for circles?

https://github.com/hadley/testthat

Chapter 12 ■ testing and paCkage CheCking

284

circle <- function(radius) {
 structure(list(r = radius),
 class = c("circle", "shape"))
}
area.circle <- function(x) pi * x$r**2
circumference.circle <- function(x) 2 * pi * x$r
test_that("we compute the correct area and circumference", {
 radius <- 2
 circ <- circle(radius = radius)

 expect_equal(area(circ), pi * radius^2)
 expect_equal(circumference(circ), 2 * radius * pi)
})

Here I use the built-in pi but what if the implementation used something else? Here we are definitely
working with floating-point numbers, and we shouldn’t ever test for exact equality. Well, the good news is
that expect_equal doesn’t. It tests for equality within some tolerance of floating-point uncertainty—that
can be modified using an additional parameter to the function—so all is good. To check exact equality, you
should instead use the function expect_identical, but it is usually expect_equal that you want.

Writing Good Tests
The easiest way to get some tests written for your code is to take the experiments you make when developing
the code and translate them into unit tests like this right away—or even put your checks in a unit test file, to
begin with. By writing the tests at the same time as you write the functions—or at least immediately after—you
don’t build a backlog of untested functionality (and it can be very hard to force yourself to go and spend hours
just writing tests later on). Also, it doesn’t really take that much longer to take the informal testing you write to
check your functions while you write them and put them into a testthat file and get a formal unit test.

If this is all you do, at least you know that the functionality that was tested when you developed your
code is still there in the future, or you will be warned if it breaks at some point because the tests will start
to fail.

If you are writing tests anyway, you might as well be a little more systematic about it. We always tend
to check for the common cases—the cases we have in mind when we write the function—and forget about
special cases. Special cases are frequently where bugs hide, however, so it is always a good idea to put them
in your unit tests as well.

Special cases are situations such as empty vectors and lists or NULL as a list. If you implement a function
that takes a vector as input, make sure that it also works if that vector is empty. If it is not a meaningful value
for the function to take, and you cannot think of a reasonable value to return if the input is empty, make sure
the function throws an error rather than just do something that it wasn’t designed to do.

For numbers, exceptional cases are often zero or negative numbers. If your functions can handle these
cases, excellent (but make sure you test it!); if they cannot handle these special situations, throw an error.

For the shapes, it isn’t meaningful to have non-positive dimensions, so in my implementation I raise an
error if I get that and a test for it, for rectangles, could look like this:

test_that("Dimensions are positive", {
 expect_error(rectangle(width = -1, height = 4))
 expect_error(rectangle(width = 2, height = -1))
 expect_error(rectangle(width = -1, height = -1))

Chapter 12 ■ testing and paCkage CheCking

285

 expect_error(rectangle(width = 0, height = 4))
 expect_error(rectangle(width = 2, height = 0))
 expect_error(rectangle(width = 0, height = 0))
})

When you are developing your code and corresponding unit tests, it is always a good idea to think a
little bit about what the special cases could be and make sure that you have tests for how you choose to
handle them.

Using Random Numbers in Tests
Another good approach to testing is to use random data. With tests we manually set up, we have a tendency
to avoid pathological cases because we simply cannot think them up. Random data doesn’t have this
problem. Using random data in tests can, therefore, be more efficient, but of course, it makes the tests
non-reproducible which makes debugging extremely hard.

You can, of course, set the random number generator seed. That makes the test deterministic and
reproducible, but defeats the purpose of having random tests to begin with.

I don’t really have a good solution to this, but I sometimes use this trick: I pick a random seed and
remember it and set the seed. Since I now know what the random seed was, I can set it again if the test fails
and debug from there.

You can save the seed by putting it in the name of the test. Then if the test fails, you can get the seed
from the error message.

seed <- as.integer(1000 * rnorm(1))
test_that(paste("The test works with seed", seed), {
 set.seed(seed)
 # test code that uses random numbers
})

Testing Random Results
Another issue that pops up when we are working with random numbers is what the expected value that a
function returns should be. If the function is not deterministic but depends on random numbers, we don’t
necessarily have an expected output.

If all we can do to test the result in such cases is statistical, then that is what we must do. If a function is
doing something useful, it probably isn’t completely random and that means that we can do some testing on
it, even if that test can sometimes fail.

As a toy example, we can consider estimating the mean of a set of data by sampling from it. It is a silly
example since it is probably much faster to just compute the mean in the first place in this example, but let’s
consider it for fun anyway.

If we sample n elements, the standard error of the mean should be s n/ , where s is the sample

standard error. This means that the difference between the true mean and the sample mean should be
distributed as N s n0, /() .

Chapter 12 ■ testing and paCkage CheCking

286

In the following code, I normalize the distance between the two means by dividing it with s n/ , which

should make it distributed as Z∼N(0,1). I then pick a threshold for significance that should only be reached
one time in a thousand. I actually pick one that is only reached one in two thousand, but I am only testing the
positive value for Z, so there is another implicit one in two thousand at the negative end of the distribution.

seed <- as.integer(1000 * rnorm(1))
test_that(paste("Sample mean is close to true, seed", seed), {
 set.seed(seed)

 data <- rnorm(10000)
 sample_size <- 100
 samples <- sample(data, size = sample_size, replace = TRUE)

 true_mean <- mean(data)
 sample_mean <- mean(samples)

 standard_error <- sd(samples) / sqrt(sample_size)
 Z <- (true_mean - sample_mean) / standard_error
 threshold <- qnorm(1 - 1/2000)

 expect_less_than(abs(Z), threshold)
})

This test is expected to fail one time in a thousand, but we cannot get absolute certainty when the
results are actually random. If this test failed a single time, I wouldn’t worry about it, but if I see it fail a
couple of times, it becomes less likely that it is just a fluke, so then I would explore what is going on.

Checking a Package for Consistency
The package check you can do by clicking Check in the Build tab on the right in RStudio, or the Check
Package in the Build menu, runs your unit tests and does a whole lot more.

It calls a script that runs a large number of consistency checks to make sure that your package is in
tiptop shape. It verifies that all your functions are documented, that your code follows certain standards,
that your files are in the right directories (and that there aren’t files where there shouldn’t be2), that all the
necessary meta-information is provided, and many many more things. You can check for a longer list of the
tests done when a package is being checked at http://r-pkgs.had.co.nz/check.html.

You should try to run a check for your packages. It will write a lot of output and, in the end, it will inform
you about how many errors, warnings, and notes it found.

In the output, every test that isn’t declared to be OK is something you should look into. It might not be an
error, but if the check raises any flags, you will not be allowed to put it on CRAN. At least not without a very
good excuse.

Exercise
You have written two packages—for shapes and for polynomials—and your exercise now is to write unit tests
for these and get them to a point where they can pass a package check.

2If there are, you should have a look at .Rbuildignore. If you have a file just the place you want it but the check is
complaining, you can just add the filename to .Rbuildignore and it will stop complaining. If you have a README.Rmd
file, for example, it will probably complain, but then you can add a line to .Rbuildignore that says ^README.Rmd$.

http://r-pkgs.had.co.nz/check.html

287© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_13

CHAPTER 13

Version Control

Version control, in its simplest form, is used to track changes to your software. It is also an efficient way of
collaborating on software development since it allows several developers to make changes to the software
and merge them with changes from other developers. RStudio supports two version control systems,
Subversion and git. Of these, git is the most widely used, and although these things are very subjective of
course, I think that it is also the better system. It is certainly the system we use here.

Version Control and Repositories
There are two main purposes of using a version control system when you develop software. One is simply to
keep track of changes, so that you can later check when which modifications were made to your source code,
and if you discover that they were in error, revert to earlier versions to try a different approach. It provides a
log for your software development that allows you to go back in time and try again when you find that what
you have done so far leads to some place you don’t want to go.

The other job a version control system typically does is that it makes it easier for you to collaborate with
others. Here the idea is that you share some global repository of all code and code changes—the log that the
version control system keeps of all changes—and each developer works on a copy when modifying the code
and submits that code to the repository when he or she is done changing the code. In early version control
systems, it was necessary to lock files when you wanted to modify them to prevent conflicts with other
developers who might also be editing the same files. These days, version control systems are more lenient
when it comes to the concurrent editing of the same files, and they will typically just merge changes as long
as there are not changes in overlapping lines (in which case you will have to resolve conflicts manually).

With this type of version control, different developers can work concurrently on different parts of the
code without worrying about conflicts. Should there be conflicts, these will be recognized when you attempt
to push changes to the global repository, and you will be told to resolve the conflicts.

The version control system git allows even more concurrent and independent development than
this, by not even having a single global repository as such. At least in theory. In practice, having a global
repository for the official version of your software is a good idea, and people do have that. The system just
doesn’t enforce a single global repository, but instead, is built around having many repositories that can
communicate changes to each other.

Whenever you are working with git, you will have a local repository together with your source code.
You can use this repository as the log system or create branches for different features or releases, as you
will see later. You make changes to your source code like normal and can then commit them to your local
repository without any conflict with other people’s changes. However, you can’t see their changes and
they can’t see yours because you are working on different local repositories. To make changes to another
repository, you have to push your changes there and to get changes from another repository, you have to
pull them from there.

Chapter 13 ■ Version Control

288

This is where you typically use a global repository. You make changes to your local repository while
developing a feature but when you are done you push those changes to the global repository. Or if you do
not have permission to make changes to the global repository—perhaps because you cloned someone else’s
code and made changes to that—ask someone who does have permission to pull your changes into the
repository. This is known as a “pull request”.

Using git in RStudio
This is all very theoretical and, if it is hard for me to write, it is probably also hard for you to understand.
Instead, let’s see git in practice.

RStudio has some rudimentary tools for interacting with git: it lets you create repositories, commit to
them, and push changes to other repositories. It does not support the full range of what you can do with git—
for that, you need other tools or to use the command-line version of git—but for day-to-day version control,
it suffices for most tasks.

Installing git
If you haven’t installed git already on your computer, you can download it from http://git-scm.com.
There should be versions for Windows, OS X, and Linux, although your platform might have better ways of
installing it. For example, on a Debian/Ubuntu system, you should be able to use the following:

sudo apt-get install git-core

On a Red Hat/Fedora system, you should be able to use the following:

sudo yum install git-core

You have to Google around to check how best to install git on other systems.
Once git is installed, you want to tell it who you are. It needs this to be able to tag changes to your code

with your name. It isn’t frightfully important if you are the only one working on the code, but if more people
are collaborating on the software development, it is necessary to identify who made which changes. You tell
git who you are by running the following commands in a terminal1:

git config --global user.name "YOUR FULL NAME" git config --global user.email "YOUR EMAIL
ADDRESS"

You also might have to tell RStudio where the git command you installed can be found. You do that by
choosing Tools ➤ Global Options. In the window that pops up you should find, on the icons on the left, a
panel with Git/SVN and in there you can tell RStudio where the git command can be found.

The git you have installed is a command-line tool. RStudio has some GUI to work with git, but you can’t
do everything from the GUI. There are a few GUI tools that allow you to do a lot more with git than RStudio,
and I recommend getting one of those. I find it easier using them than the command lines myself since I am
getting old and forget the exact commands.

1Not the R terminal. You need to run this in an actual shell terminal for it to work. How you open a terminal depends on
your platform. I can’t help you there. If you don’t know how to, it is time to fire up Google once again.

http://git-scm.com/

Chapter 13 ■ Version Control

289

Some good choices are:

•	 SourceTree (https://www.sourcetreeapp.com), for Windows and OS X

•	 GitHub Desktop (https://desktop.github.com), for Linux, Windows, and OS X (for
working with GitHub repositories)

•	 GitG (https://wiki.gnome.org/Apps/Gitg/), for Linux

Sometimes, though, you do need to use the command-line version. There is a very nice interactive web
tutorial for the command-line git program here: try.github.io.

Making Changes to Files, Staging Files, and Committing Changes
If you checked that your project should use git when you created your package, you should have a Git tab on
the top-right of RStudio, next to the Build tab (see Figure 13-1). Click on it.

In the main part of this panel, there is a list of files. There are three columns—Staged, Status, and Path—
the latter contains the names of modified files (or directories).

Figure 13-1. Git panel showing modified files

If this is the first time you have accessed this panel, the status will contain a yellow question mark for all
files you have modified since you created the object (including files that RStudio made during the package
creation). This status means that git doesn’t know about these files yet. It can see that the files are there, but
you have never told it what to do about them. We will do something about that now.

The Staged column has check boxes for all the files. If you click one, the status for that file changes to a
green “A”. This means that you have staged the file to be added to the git repository. Do this for all of the files.
When you do it for a directory, all the files in that directory will also be staged for adding. This is also what we
want for now.

The process of committing changes to git involves staging changes to be committed before we actually
commit them. What we just did was tell git that next time we commit changes, we want these files added.
Generally, committing will only affect changes we have staged. This lets you commit only some of the changes
you have made to your source code, which can be helpful at times. You might have made several changes to
many files but at some point, you only want to commit a particular bug fix and not changes for a new feature
that you are not quite done with yet. Staging only the changes you want to commit allows for this.

https://www.sourcetreeapp.com/
https://desktop.github.com/
https://wiki.gnome.org/Apps/Gitg/
https://try.github.io/levels/1/challenges/1

Chapter 13 ■ Version Control

290

Anyway, we have staged everything and to commit the changes you now have to click the Commit
button in the toolbar. This opens a new window that shows you the changes you are about to commit and
lets you write a commit message (on the upper right). This message is what goes into the change log. Give
a short and meaningful description of your changes here. You will want it if you need to find the changes in
your log at some later time. Then click Commit and close the window. The Git panel should now be empty.
This is because there are no more changes since the last commit, and the panel only shows the files that have
changed between your current version of your software and the version that is committed to git.

To do what you just did in the terminal instead, you would stage files using the git add command
as follows:

git add filename

You would then commit staged changes using the git commit command:

git commit -m "message"

Now try modifying a file. After you have done that, you should see the file displayed in the Git panel
again, but this time with a status that is a blue M, as shown in Figure 13-2. This, not surprisingly, stands for
modified.

Figure 13-2. Modified files in the Git panel

If you stage a file for commit here, the status is still M, but RStudio indicates that it is now staged by
moving the M to the left a little (see Figure 13-3). Not that you really need that feedback, because you can
also see that it is staged from the checked staged button of course.

Chapter 13 ■ Version Control

291

Committing modified files works exactly like committing added files.
In the terminal, you use git add for staging modified files as well. You don’t have a separate command

for staging adding new files and staging modified files. It is git add for both.

Adding git to an Existing Project
If you didn’t create your project with a git repository associated with it—and you have just learned about
git now, so unless you have always just clicked the git button when creating projects you probably have
many projects without git associated—you can still set up git for an existing directory. Simply choose
Build ➤ Configure Build Tools and then click the Git/SVN option in the dialog box. If you choose Git as
the version control, RStudio will configure git for you.

You can also do this from the command line. Go to the directory where the project is and run this
command:

git init

This sets up an empty repository. You can then add the files already in the directory, just as you saw
previously.

Bare Repositories and Cloning Repositories
Most of the material in this section is not something you will ever have to worry about if you use a repository
server such as GitHub. There, creating a repository and interacting with it is handled through a web interface
and you won’t have to worry about the details, except for “cloning” a repository. We will create a so-called
“bare” repository manually here and see how we can communicate changes in different local repositories
through this.

The repositories we made when we created R projects or used git init in a directory are used for
version control of the source code in the project directory. They are not really set up for collaboration
between developers. While it is technically possible to merge changes in one repository to another, it is a bit
cumbersome and not something you want to deal with on a daily basis.

To synchronize changes between different repositories, we want a bare repository. This is a repository
that doesn’t include the local source code; it isn’t really special, but it prevents you from making local
changes to it. You can only update it with changes from other repositories.

Figure 13-3. Modified files with one file staged for commit

Chapter 13 ■ Version Control

292

To create a bare repository, you need to use the command-line version of git. Create a directory where
you want the repository, and then go in there and type:

git --bare init

The repository now contains the various files that git needs to work with. Your local repositories also
include these files; they are just hidden in a subdirectory called .git/ when you have the local source code
as well.

We are not going to do anything with this repository directly. We just need it to see how we work with
other repositories connected to it.

Go to a directory where you want the working source code version of the repository and make a copy of
the bare repository by writing the following:

git clone /path/to/bare/repository

You will get a warning that you have cloned an empty repository. We already know that so don’t worry
about it. We are going to add to it soon.

To see how to communicate between repositories, though, you need to make another working copy.
You can either go to another directory and repeat the clone command or clone the repository with another
name, as follows:

git clone /path/to/bare/repository name

You now have two clones of the bare repository. You’ll see how to push changes from a clone to the
cloned repository and how to pull updates in the cloned repository into the clone.

As mentioned, going through a bare repository is not the only way to move changes from one repository
to another, but it is the easiest way to work with git and the one you will be using if you use a server such
as GitHub. If you do, and you’ll see later how to do this, then GitHub will make the bare repository for you.
You’ll just need to clone it somewhere on your own computer to work with it.

Pushing Local Changes and Fetching and Pulling Remote Changes
Go into one of the clones you just made. It will look like an empty directory because you haven’t made any
changes to it yet. In fact, it does contain a hidden directory, .git/, where git keeps its magic, but you do not
need to know about that.

Try to make some files, add them to git, and commit the changes.

touch foo bar
git add foo bar
git commit -m "added foo and bar"

If you now check the log as follows:

git log

You will see that you have made changes. If you look in the other clone of the bare repository, though,
you don’t see those changes.

There are two reasons for this: 1) we have only made changes to the cloned repository but never pushed
them to the bare repository the two clones are connected to, and 2) even if we had done that, we haven’t
pulled the changes down into the other clone.

Chapter 13 ■ Version Control

293

The first of these operations is done using git push. This will push the changes you made in your local
repository up to the repository you cloned it from.2

git push

You don’t need to push changes up to the global (bare) repository after each commit; you probably
don’t want to do that, in fact. The idea with this workflow is that you make frequent commits to your local
code to make the version control fine grained, but you push these changes up when you have finished a
feature—or at least gotten it to a stage where it is meaningful for others to work on your code. It isn’t a major
issue if you commit code that doesn’t quite work to your local repository—although generally, you would
want to avoid that—but it will not be popular if you push code that doesn’t work onto others.

After pushing the changes in the first cloned repository, they are still not visible in the second
repository. You need to pull them down.

The following command makes changes to the global repository and makes it possible for you to check
them out before merging them with your own code:

git fetch

This can be useful because you can then check out the changes and make sure they aren’t breaking
anything before you merge them with your code. After running the fetch command, you can check out
branches from the global repository, make changes there, and merge them into your own code using the
branching mechanism described next. In most cases, however, you just want to merge the changes made to
the global repository into your current code, and you don’t really want to modify it before you do so. In that
case, this command is sufficient:

git pull

It will both fetch the latest changes and merge them into your local repository in a single operation.
This is by far the most common operation for merging changes others have made and pushed to the global
repository with your own changes.

Go to the repository clone without the changes and run the command. Check that you now have the
changes there.

The general workflow for collaborating with others on a project is to make changes and commit them
to your own repository. You use this repository to make changes you are not ready to share yet, and you are
the only one who can see them. Then, when you are ready to share with your collaborators, you can push the
changes to the shared repository, and when you need changes others have made, you can pull them.

If you try to push to the global repository, and someone else has pushed changes that you haven’t
pulled yet, you will get an error. Don’t worry about that. Just pull the changes; after that, you can push your
changes.

If you pull changes into your repository, and you have committed changes there that haven’t been
pushed yet, it becomes a merge operation, which requires a commit message. There is a default message for
this that you can use.

You have your two repositories to experiment with, so try to make variations of pushing and pulling and
pulling changes into a repository where you have committed changes. This explanation will hopefully make
a lot more sense after you have experimented a bit on your own.

RStudio has some basic support for pushing and pulling. If you make a new RStudio project and choose
to put it in an existing directory, you can try to make one that sits in your cloned repositories. If you do this,
you will find that the Git panel now has two new buttons: Push and Pull.

2If you didn’t have a bare repository, you could still have connected the clones to see changes made to them, but pushing
changes would be much more complicated. With a bare repository that both are cloned from, pushing changes upward is
as easy as git push.

Chapter 13 ■ Version Control

294

Handling Conflicts
If it happens that someone has pushed changes to the global repository that overlaps lines that you have
been editing in your local repository, you will get a so-called conflict when you pull changes.

git will inform you about this, whether you pull from RStudio or use the command line. It will tell you
which files are involved, and if you open a file with a conflict, you will see that git has marked the conflict
with text that looks like this:

<<<<<<< HEAD
your version of the code
=======
the remote version of the code
>>>>>>> 9a0e21ccd38f7598c05fe1e21e2b32091bb0839b

It shows you the version of the changes you have made and the version of the changes that are in
the global repository. Because there are changes both places, git doesn’t know how to merge the remote
repository into your repository in the pull command.

You have to go into the file and edit it so it contains the version you want, which could be a merge of the
two revisions. Get rid of the <<<</====/>>>> markup lines when you are done making the changes.

Once you have edited the file with conflicts, you need to stage it—by running the git add filename on
the command line or clicking the file in the Staged column in the Git panel in RStudio—and commit it. This
tells git that you handled the conflict and will let you push your own changes if you want to do this.

Working with Branches
Branches are a feature of most version control systems, which allow you to work on different versions of your
code at the same time. A typical example is having a branch for developing new features and another branch
for the stable version of your software. When you are working on implementing new features, the code is in
a state of flux, the implementation of the new feature might be buggy, and the interface could be changing
between different designs. You don’t your users to use such a version of your software—at least not without
being aware that the package they are using is unstable and that the interface could change at a moment’s
notice. So you want the development code to be separate from the released code.

If you just made releases at certain times and then implemented new features between making releases
that wouldn’t be much of an issue. People should be using the version you have released and not the
commits that fall between released versions. But the world is not that simple if you make a release with a
bug in it—and let’s face it, that is not impossible—and you want to fix that bug when it is discovered. You
probably don’t want to wait with fixing the bug until you are done with all the new features you are working.
So you want to make changes to the code in the release. If there are more bugs, you will commit more bug
fixes onto the release code. And all this while you are still making changes to your development code. Of
course, those bug fixes you make to the released code will also need to be merged into the development
code. After all, you don’t want the next release to reintroduce bugs you already fixed.

This is where branches come in. RStudio has very limited support for branches, and it doesn’t help you
create them.3 For that, you need to use the command line.

To create a branch, you use the git branch name command. To create a development branch called
develop, for lack of imagination, you would use this command:

git branch develop

3Some of the other GUIs that work with git have excellent support for working with branches. You should check them out.

Chapter 13 ■ Version Control

295

This simply creates the branch. You are not magically moved to the branch or anything. It just tells git
that you have a new branch (and it branches off your current position in the list of commits done to the
repository).

In RStudio, you can see which branch you are on in the Git panel. In the project you have experimented
on so far—and any project you made where you created a git repository with git init or clicked the git
selection in the dialog box when you created the project—you will be on the master branch (see Figure 13-4).
This is the default branch and is typically used for released versions.

Figure 13-4. Git panel when the code is on the master branch

Figure 13-5. Selecting a branch to switch to

If you click on the branch drop-down in the Git panel, you get a list of the branches in your repository,
as shown in Figure 13-5. You will have a branch called origin/master. This is the master branch on the
central repository and the one you merge with when pulling data. Ignore it, it is not important here. If you
ran the git branch develop command, you should also have a develop branch (see Figure 13-6). If you
select it, you move to that branch.

Chapter 13 ■ Version Control

296

You can also get a list of branches on the command line with the following:

git branch

You can also switch to a branch using this command4:

git checkout branchname

If you switch to the develop branch, you will see that the Pull and Push buttons are greyed out. You can
make changes to your code and commit them when you’re on a given branch, but you cannot (yet) push and
pull. We will get to that shortly.

If you make some changes to your code and commit it while on the develop branch and then switch
to the master branch, you will see that those changes are not there. You can see both by looking at the files
and by looking at the git history (using git log or clicking the History button in the Git panel). Similarly,
changes you make in master will not show up in develop. This is exactly what you want. The two branches
are independent, and you can switch between working on the development branch and the release version
of your software by switching branches.

When you make changes to one branch and you want those changes to be added to another, you need
to merge branches. Actually, you need to merge one branch into another, it is not a symmetric operation.
To do this, check out the branch you want to modify and run this command to merge the changes in
otherbranch with the current branch:

git merge otherbranch

So for example, if you fix a bug in the master branch and want to merge it into the develop branch, you
would use this command:

git checkout develop
git merge master

If a merge causes conflicts, you resolve them the same was as if a pull causes conflicts. Not surprisingly
since a pull command is actually just a shortcut for fetching and merging.

Figure 13-6. After switching to the develop branch

4You can also combine creating and checking out a branch using git checkout -b branchname if you want. That
command creates the branch first and then checks it out. To change between branches later, though, use the checkout
command without the -b option.

Chapter 13 ■ Version Control

297

Typical Workflows Involve Lots of Branches
Git is optimized for working with lots of branches (unlike some version control systems, where creating and
merging branches can be rather slow operations). This is reflected in how many people use branches when
working with git: you create many branches and work on a graph of different versions of your code and
merge them together whenever you need to.

Having a development branch and a master branch is a typical core of the repository structure, but it
is also very common to make a branch for each new feature you implement. Typically, you branch these off
the develop branch when you start working on the feature and merge them back into develop when you
are done. It is also common to have a separate branch for each bug fix—typically branched off master when
you start implementing the fix and then branched back into the master as well as into develop when you are
done. See Atlassian’s Git Tutorial at https://www.atlassian.com/git/tutorials/comparing-workflows for
different workflows that exploit various branches.

If you create a lot of branches for each feature or bug fix, you don’t want to keep them around after you
are done with them—unlike with the develop and master branches, which you probably will want to keep
around forever. To delete a branch, use this command:

git branch -d branchname

Pushing Branches to the Global Repository
You can work on as many branches as you like in your local repository but they are not automatically found
in the global repository. The develop branch you made earlier exists only in the local repository and you
cannot push changes made to it to the global repository—you can see this in RStudio since the push (and
pull) buttons are greyed out.

If you want a branch to exist on the global repository as well—so you can push to it, and so collaborators
can check it out—you need to create a branch in that repository and set up a link between your local
repository and the global repository.

You can do that for the develop branch by checking it out and running this command:

git push --set-upstream origin develop

This pushes the changes and also remembers that the branch is linked to the develop branch in origin.
The name origin refers to the repository you cloned when you created this repository.5

Whether you want a branch you are working on, also to be found in the global repository is a matter
of taste. If you are working on a feature that you want to share when it is completed but not before, you
probably don’t want to push that branch to the global repository. For the develop and master branches,
though, you definitely want those to be in the global repository.

GitHub
GitHub (https://github.com) is a server for hosting git repositories. Open projects are hosted for free,
closed projects for a fee. You can think of it as a place to have your bare/global repository with some extra
benefits. There are ways for automatically installing packages that are hosted on GitHub; there is web
support for tracking bugs and feature requests, and there is support for sharing fixes and features in hosted
projects through a web interface.

5It is slightly more complex than this; you can have links to other repositories and pull from them or push to them (if they
are bare repositories), and origin is just a default link to the one you cloned for. It is beyond the scope of these notes,
however, to go into more details. If you always work with a single global repository that you push to and pull from, then
you don’t need to know any more about links to remote repositories.

https://www.atlassian.com/git/tutorials/comparing-workflows
https://github.com/

Chapter 13 ■ Version Control

298

To use it, you first need to go to the home page and sign up. This is free, and you just need to pick a
username and a password.

Once you have created an account on GitHub, you can create new repositories by clicking the big + in
the upper-right corner of the home page, as shown in Figure 13-7.

Figure 13-7. The button to create a new repository at the GitHub home page is found on the upper right of the
home page

Clicking it, you get to a page where you can choose the name of the repository, create a short
description, pick a license, and decide whether you want to add a README.md file to the repository. I
recommend that you always have a README.md file—it works as the documentation for your package since
it is displayed on the home page for the repository at GitHub. You probably want to set up a README.rmd file
to generate it, though, as you saw in Chapter 11. For now, though, you might as well just say yes to have one
generated.

Once you have generated the repository, you go to a page with an overview of the code in the repository,
as shown in Figure 13-8.

Figure 13-8. New GitHub repository containing only a README.md file

http://dx.doi.org/10.1007/978-1-4842-2671-1_11

Chapter 13 ■ Version Control

299

You can explore the web page and the features implemented there later—it is a good idea to know
what it supports—but for now you can just use the repository here as a remote global repository. To clone
it, you need the address in the field next to the button that says SSH. In my test repository, it is git@github.
com:mailund/test.git. This is an address you can use to clone the repository using the SSH protocol.

git clone git@github.com:mailund/test.git

This is a protocol that you will have access to on many machines, but it involves you having to deal
with a public/private key protocol. Check the documentation at https://help.github.com/articles/
generating-ssh-keys/ for setting up the SSH key at GitHub for learning more about this. It is mostly
automated by now, and you should be able to set it up just by making a push and answering yes to the
question you get there.

It is not the easiest protocol to work with, though, if you are on a machine that has HTTPS, which is
the protocol used by your web browser for secure communication. You will almost certainly have that on
your own machine, but depending on how firewalls are set up, you might not have access to it on computer
clusters and such and then you need to use the SSH protocol. To use HTTPS instead of SSH, just click the
SSH drop-down and choose HTTPS instead. This gives you a slightly different address, which you can use to
clone. In my repository, I get https://github.com/mailund/test.git.

git clone https://github.com/mailund/test.git

If nothing goes wrong, you should be able to use the cloned repository just as the repositories you
looked at previously, when you made your own bare/global repository.

You can also check out the repository and make an RStudio project at the same time by choosing
File ➤ New Project in RStudio and selecting Version Control (the third option) in the dialog box that pops
up. In the next window, choose Git and then use the HTTPS address as the Repository URL.

Moving an Existing Repository to GitHub
If you have already used git locally in a project and want to move it to GitHub, there is a little more you must
do—t least if you want to move your repository including all the history stored in it and not just the current
version of the source code in it.

First, you need to make a bare version of your repository. This is, as you saw a while ago, just a version of
the repository without the source code associated.

If your repository is called repo, you can make a bare version of it, called repo.git, by cloning it:

git clone --bare repo repo.git

To move this to GitHub, create an empty repository there and get the HTTPS address of it. Then go into
the bare repository we just made and run the following command:

cd repo.git
git push --mirror <https address at github>

Now just delete the bare repository used to move the code to GitHub and clone the version from
GitHub. Now you have a version from there that you can work on.

rm -rf repo.git
git clone <https address at github>

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/
https://github.com/mailund/test.git

Chapter 13 ■ Version Control

300

Installing Packages from GitHub
A very nice extra benefit you get from having your R packages on GitHub—in addition to having version
control—is that other people can install your package directly from there. The requirements for putting
packages on CRAN are much stricter than for putting R packages on GitHub, and you are not allowed to
upload new versions to CRAN very often, so for development versions of your R package, GitHub is an
excellent alternative.

To install a package from GitHub, you need to have the devtools package installed, as follows:

install.packages("devtools")

After that, you can install a package named packagename written by the GitHub user username with this
command:

devtools::install_github("username/packagename")

Collaborating on GitHub
The repositories you make on GitHub are by default only editable by yourself. Anyone can clone them to
get the source code, but only you can push changes to the repository. This is, of course, useful to prevent
random people from messing with your code but prevents collaborations.

One way to collaborate with others is to give them write permissions to the repository. On the repository
home page, you must select the Settings entry in the toolbar and then pick Collaborators in the menu on the
left. After that, you get to a page where you can add collaborators identified by their user account on GitHub.
Collaborators can push changes to the repository just as you can yourself. To avoid too much confusion,
when different collaborators are updating the code, it is useful to have some discipline in how changes are
merged into the master (and/or the develop) branch. One approach that is recommended and supported
by GitHub is to make changes in separate branches and then use so-called pull requests to discuss changes
before they are merged into the main branches.

Pull Requests
The workflow for making pull requests is to implement your new features or bug fixes or whatever you are
implementing on separate branches from develop or master. Then, instead of merging them directly, you
create what is called a pull request. You can start a pull request by switching to the branch on the repository
home page and clicking the big green New Pull request button, or if you just made changes, you should also
see a green Compare & Pull Request button that lets you start a pull request.

Clicking the button takes you to a page where you can name the pull request and write a description
of what the changes in the code are doing. You also decide which branch you want to merge the pull into.
Above the title you give the pull request, you can select two branches—the one you want to merge into
(Base) and the branch you have your new changes on (Compare). You should pick the one you branched out
of when you made the new branch. After that, you can create the pull request.

This simply creates a web interface for having a discussion about the changes you made. It is possible
to see the changes on the web page and comment on them and make comments to the branch in general.
At the same time, anyone can check out the branch and make their own modifications. As long as the pull
request is open, the discussion is going, and people can improve on the branch.

When you are done, you can merge the pull request (using the big green Merge Pull Request button on
the web page that contains the discussion about the pull request).

Chapter 13 ■ Version Control

301

Forking Repositories Instead of Cloning
Making changes to separate branches and then making pull requests to merge in the changes still requires
writing access to the repository. This is excellent for collaborating with a few friends, but not ideal for
getting fixes from random strangers—or for making fixes to packages other people write; people who won’t
necessarily want to give you full write access to their software.

Not to worry, it is still possible to collaborate with people on GitHub without having write access to each
other’s repositories. The way that pull-requests work, there is actually no need for branches to be merged to
be part of the same base repository. You can merge branches from anywhere if you want to.

If you want to make changes to a repository that you do not have write access to, you can clone it
and make changes to the repository you get as the clone, but you cannot push those changes back to the
repository you cloned it from. And other users on GitHub can’t see the local changes you made (they are
on your personal computer, not on the GitHub server). What you want is a repository on GitHub that is a
clone of the repository you want to modify and that is a bare repository so you can push changes into it. You
then want to clone that repository to your own computer. Changes you make to your own computer can be
pushed to the bare repository you have on GitHub—because it is a bare repository and because you have
writing access to it—and other users on GitHub can see the repository you have there.

Making such a repository on GitHub is called forking the repository. Technically, forking isn’t different
from cloning—except that you’re making a bare repository—and the terminology is taken from open source
software where forking a project means making your own version and developing it independently of
previous versions.

Anyway, whenever you go to a repository home page on GitHub, you should see the Fork button at the
top right—to the right of the name and branch of the repository you are looking at. Clicking the Fork button
will make a copy of the repository that you have writing access to. You cannot fork your own repositories,
although I’m not sure why you are not allowed to and, in most cases, you don’t want to do that anyway. You
can also fork any repository at other user’s accounts.

Once you have made the copy, you can clone it to your computer and make changes to it, as you can
with any other repositories. The only way this repository is different from a repository you made yourself,
is that when you make pull requests, GitHub knows that you forked it off another repository. So when you
make a pull request, you can choose not only the Base and Compare branches, but also the base fork and
the head fork—the former being the repository you want to merge changes into, and the latter the repository
where you made your changes. If someone forks your project and you make a pull request in the original
repository, you won’t see the base fork and head fork choices by default, but clicking on the Compare Across
Forks link when you make pull requests will enable them there as well.

If you make a pull request with your changes to someone else’s repository, the procedure is exactly the
same as when you make a pull request to your own projects, except that you cannot merge the pull request
after the discussion about the changes. Only someone with permission to write to the repository can do that.

The same goes if someone else wants to make changes to your code. They can start a pull request
with their changes to your code but only you can decide to merge the changes into the repository (or not)
following the pull discussion.

This is a very flexible way of collaborating—even with strangers—on source code development and one
of the great strengths of git and GitHub.

Exercises
Take any of the packages you wrote earlier and create a repository on GitHub to host it. Push your code there.

303© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1_14

CHAPTER 14

Profiling and Optimizing

In this last chapter, we briefly consider what to do when you find that your code is running too slow, and, in
particular, how to figure out why it is running too slow.

Before you start worrying about your code’s performance, though, it is important to consider if it is
worth speeding it up. It takes you time to improve performance, and it is only worth it if the improved
performance saves you time when this extra programming is included. For an analysis you can run in a day,
there is no point in spending one day making it faster, even much faster, because you still end up spending
the same time, or more, to finally get the analysis done.

Any code you just need to run a few times during an analysis is usually not worth optimizing. We
rarely need to run an analysis just once—optimistically we might hope to, but in reality, we usually have to
run it again and again when data or ideas change—but we don’t expect to run it hundreds or thousands of
times. So even if it will take a few hours to rerun an analysis, your time is probably better spent working on
something else while it runs. It is rarely worth it to spend a lot of time making it faster. The CPU time is cheap
compared to your own.

If you are developing a package, though, you often do have to consider performance to some extent.
A package, if it is worth developing, will have more users and the total time spend on running your code
makes it worthwhile, up to a point, to make that code fast.

Profiling
Before you can make your code faster, you need to figure out why it is slow, to begin with. You might have
a few ideas about where the code is slow, but it is actually surprisingly hard to guess at this. Quite often, I
have found, it is nowhere near where I thought it would be, that most of the time is actually spend. On two
separate occasions, I have tried working really hard on speeding up an algorithm only to find out later that
the reason my program was slow was the code used for reading the program’s input. The parser was slow.
The algorithm was lightning fast in comparison. That was in C, where the abstractions are pretty low-level
and where it is usually pretty easy to glance from the code how much time it will take to run. In R, where
the abstractions are very high-level, it can be very hard to guess how much time a single line of code will
take to run.

The point is, if you find that your code is slow, you shouldn’t be guessing at where it is slow. You should
measure the running time and get to know for sure. You need to profile your code to know which parts of
it is taking up most of the running time. Otherwise, you might end up optimizing code that uses only a few
percentages of the total running time and leaving the real time-wasters alone.

In common code, there are only a few real bottlenecks. If you can identify these and improve their
performance, your work will be done. The rest will run fast enough. Figuring out where those bottlenecks are
requires profiling.

Chapter 14 ■ profiling and optimizing

304

We are going to use the profvis package for profiling. In the most recent versions of RStudio, there is
support for this, if your version has it you should have a Profile item in the main menu. We will just use the
package in our R code here.

A Graph-Flow Algorithm
For an example of some code, imagine you want to profile a small graph algorithm. It is an algorithm for
smoothing out weights put on nodes in a graph. It is part of a method used for propagating weights of
evidence for nodes in a graph and has been used to boost searching for disease-gene associations using
gene-gene interaction networks. The idea is, that if a gene is a neighbor to another gene in this interaction
network, then it is more likely to have a similar association with a disease as the other gene. So genes with
known association are given an initial weight, and other genes get a higher weight if they are connected to
such genes than if they are not.

The details of what the algorithm is used for is not so important, though. All it does is to smooth out
weights between nodes. Initially all nodes, n, are assigned a weight w(n). Then in one iteration of smoothing,

this weight is updated as ′() = ()+ −() () ()
∈ ()

∑w n w n
N n

w v
v N n

α α1
1

, where α is a number between zero and

one and N(n) denotes the neighbors of node n. If this is iterated enough times, the weights in a graph
become equal for all connected nodes in the graph, but if stopped earlier, it is just a slight smoothing,
depending on the value of α.

To implement this, we need both a representation of graphs and the smoothing algorithm. We start with
representing the graph. There are many ways to do this, but a simple format is a so-called incidence matrix.
This is a matrix that has entry M

i, j
 = 0 if nodes i and j are not directly connected and M

i, j
 = 1 if they are. Since

we want to work on a non-directed graph in this algorithm, we will have M
i, j

 = M
j, i

.
We can implement this representation using a constructor function that looks like this:

graph <- function(n, edges) {
 m <- matrix(0, nrow = n, ncol = n)

 no_edges <- length(edges)
 if (no_edges >= 1) {
 for (i in seq(1, no_edges, by = 2)) {
 m[edges[i], edges[i+1]] <- m[edges[i+1], edges[i]] <- 1
 }
 }

 structure(m, class = "graph")
}

Here I require that the number of nodes is given as an argument n and that edges are specified as a
vector where each pair corresponds to an edge. This is not an optimal way of representing edges if graphs
should be coded by hand, but since this algorithm is supposed to be used for very large graphs, I assume we
can write code elsewhere for reading in a graph representation and creating such an edge vector.

There is not much to the function. It just creates the incidence matrix and then iterates through the
edges to set it up. There is a special case to handle if the edges vector is empty. Then the seq() call will
return a list going from one to zero. So we avoid this. We might also want to check that the length of the edge
vector is a multiple of two, but I haven’t bothered. I am going to assume that the code that generates the
vector will take care of that.

Even though the graph representation is just a matrix, I give it a class in case I want to write generic
functions for it later.

https://rstudio.github.io/profvis/

Chapter 14 ■ profiling and optimizing

305

With this graph representation, the smoothing function can look like this:

smooth_weights <- function(graph, node_weights, alpha) {
 if (length(node_weights) != nrow(graph))
 stop("Incorrect number of nodes")

 no_nodes <- length(node_weights)
 new_weights <- vector("numeric", no_nodes)

 for (i in 1:no_nodes) {
 neighbour_weights <- 0
 n <- 0
 for (j in 1:no_nodes) {
 if (i != j && graph[i, j] == 1) {
 neighbour_weights <- neighbour_weights + node_weights[j]
 n <- n + 1
 }
 }

 if (n > 0) {
 new_weights[i] <-
 alpha * node_weights[i] +
 (1 - alpha) * neighbour_weights / n
 } else {
 new_weights[i] <- node_weights[i]
 }

 }
 new_weights
}

It creates the new weights vector we should return and then iterate through the matrix in nested loops.
If the incidence matrix says that there is a connection between i and j, and i ≠ j –, we don’t want to add a
node’s own weight if there is a self-loop—we use it to calculate the mean. If there is something to update—
which there will be if there are any neighbors to node i, we do the update.

The code is not particularly elegant, but it is a straightforward implementation of the idea.
To profile this code, we use the profvis() function from profvis. It takes an expression as its single

argument so to profile more than a single function call we give it a code block, translating the sequence of
statements into an expression.

I just generate a random graph with 1000 nodes and 300 edges and random weights. We are not testing
the code here, only profiling it. While if this was real code and not just an example we should, of course, have
unit tests—this is especially important if you start rewriting code to optimize it. Otherwise, you might end up
getting faster but incorrect code for all your efforts.

profvis::profvis({
 n <- 1000
 nodes <- 1:n
 edges <- sample(nodes, 600, replace = TRUE)
 weights <- rnorm(n)
 g <- graph(n, edges)
 smooth_weights(g, weights, 0.8)
})

Chapter 14 ■ profiling and optimizing

306

Running this code will open a new tab showing the results, as shown in Figure 14-1. The top half of the
tab shows your code with annotations showing memory usage first and time usage second as horizontal
bars. The bottom half of the window shows the time usage plus callstack.

We can see that the total execution took about 1800 ms. The way to read the graph is that, from left to
right, you can see what was executed at any point in the run with functions called directly in the code block
we gave profvis() at the bottom and code they called directly above that and further function calls stacked
even higher.

We can also see that by far the most time was spent in the smooth_weights() function since that
stretches almost all the way from the leftmost part of the graph and all the way to the rightmost.

If you move your mouse pointer into the window, either in the code or in the bottom graph, it will
highlight what you are pointing at, as shown in Figure 14-2. You can use this to figure out where the time is
being spent.

Figure 14-1. Window showing profile results

Chapter 14 ■ profiling and optimizing

307

In this particular case, it looks like most of the time is spent in the inner loop, checking if an edge exists.
Since this is the inner part of a double loop, this might not be so surprising. The reason that it is not all the
body of the inner loop, but the if statement is probably that we check the if expression in each iteration but
we do not execute its body unless it is true. And with 1000 nodes and 300 edges it is only true with probability
around 300/(1000*1000) = 3 × 10-4 (it can be less since some edges could be identical or self-loops).

Now if we had a performance problem with this code, this is where we should concentrate our
optimization efforts. With 1000 nodes we don’t really have a problem. 1800 ms is not a long time, after all.
But the application I have in mind has around 30,000 nodes so it might be worth optimizing a little bit.

If you need to optimize something, the first you should be thinking is—is there a better algorithm or
a better data structure? Algorithmic improvements are much more likely to give substantial performance
improvements compared to just changing details of an implementation.

In this case, if the graphs we are working on are sparse, meaning they have few actual edges compared
to all possible edges, then an incidence matrix is not a good representation. We could speed the code up by
using vector expressions to replace the inner loop and hacks like that, but we are much better off considering
another representation of the graph.

Here, of course, we should first figure out if the simulated data we have used is representative of the
actual data we need to analyze. If the actual data is a dense graph and we do performance profiling on a
sparse graph, we are not getting the right impression of where the time is being spent and where we can
reasonably optimize. But the application I have in mind, I claim, is one that uses sparse graphs.

Figure 14-2. Highlighting executing code from the profiling window

Chapter 14 ■ profiling and optimizing

308

With sparse graphs, we should represent edges in a different format. Instead of a matrix, we will
represent the edges as a list where, for each node, we have a vector of that node’s neighbors.

We can implement that representation like this:

graph <- function(n, edges) {
 neighbours <- vector("list", length = n)

 for (i in seq_along(neighbours)) {
 neighbours[[i]] <- vector("integer", length = 0)
 }

 no_edges <- length(edges)
 if (no_edges >= 1) {
 for (i in seq(1, no_edges, by = 2)) {
 n1 <- edges[i]
 n2 <- edges[i+1]
 neighbours[[n1]] <- c(n2, neighbours[[n1]])
 neighbours[[n2]] <- c(n1, neighbours[[n2]])
 }
 }

 for (i in seq_along(neighbours)) {
 neighbours[[i]] <- unique(neighbours[[i]])
 }

 structure(neighbours, class = "graph")
}

We first generate the list of edge vectors, then we initialize them all as empty integer vectors. We then
iterate through the input edges and updating the edge vectors. The way we update the vectors is potentially
computationally slow since we force a copy of the previous vector in each update, but we don’t know the
length of these vectors a priori, so this is the easy solution, and we can worry about it later if the profiling
says it is a problem.

Now, if the edges we get as input contains the same pair of nodes twice, we will get the same edge
represented twice. This means that the same neighbor to a node will be used twice when calculating the
mean of the neighbor weights. If we want to allow such multi-edges in the application that is fine, but we
don’t, so we explicitly make sure that the same neighbor is only represented once by calling the unique()
function on all the vectors at the end.

With this graph representation, we can update the smoothing function to this:

smooth_weights <- function(graph, node_weights, alpha) {
 if (length(node_weights) != length(graph))
 stop("Incorrect number of nodes")

 no_nodes <- length(node_weights)
 new_weights <- vector("numeric", no_nodes)

 for (i in 1:no_nodes) {
 neighbour_weights <- 0
 n <- 0
 for (j in graph[[i]]) {
 if (i != j) {

Chapter 14 ■ profiling and optimizing

309

 neighbour_weights <- neighbour_weights + node_weights[j]
 n <- n + 1
 }
 }

 if (n > 0) {
 new_weights[i] <-
 alpha * node_weights[i] +
 (1 - alpha) * neighbour_weights / n
 } else {
 new_weights[i] <- node_weights[i]
 }

 }
 new_weights
}

Very little changes. We just make sure that j only iterates through the nodes we know to be neighbors of
node i.

The profiling code is the same as before, and if we run it, we get the results shown in Figure 14-3.

Figure 14-3. Profiling results after the first change

Chapter 14 ■ profiling and optimizing

310

We see that we got a substantial performance improvement. The execution time is now 20 ms instead
of 1800 ms. We can also see that half the time is spent on constructing the graph and only half on smoothing
it. In the construction, nearly all the time is spent in unique() while in the smoothing function, the time is
spent in actually computing the mean of the neighbors.

It should be said here, though, that the profiler works by sampling what code is executing at certain time
points. It doesn’t have an infinite resolution, it samples every 10 ms as it says at the bottom left, so in fact, it has
only sampled twice in this run. The result we see is just because the samples happened to hit those two places
in the graph construction and the smoothing, respectively. We are not actually seeing fine details here.

To get more details, and get closer to the size the actual input is expected to be, we can try increasing
the size of the graph to 10,000 nodes and 600 edges.

profvis::profvis({
 n <- 10000
 nodes <- 1:n
 edges <- sample(nodes, 1200, replace = TRUE)
 weights <- rnorm(n)
 g <- graph(n, edges)
 smooth_weights(g, weights, 0.8)
})

The result of this profiling is shown in Figure 14-4.

Figure 14-4. Profiling results with a larger graph

Chapter 14 ■ profiling and optimizing

311

To our surprise, we see that for the larger graph we are actually spending more time constructing the
graph than smoothing it. We also see that this time is spent calling the unique() function.

Now, these calls are necessary to avoid duplicated edges, but they are not necessarily going to be
something we often see—in the random graph they will be very unlikely, at least—so most of these calls are
not really doing anything.

If we could remove all the duplicated edges in a single call to unique() we should save some time. We
can do this, but it requires a little more work in the construction function.

We want to make the edges unique, and there are two issues here. One is that we don’t actually
represent them as pairs we can call unique() on, and calling unique() on the edges vector is certainly not a
solution. The other issue is that the same edge can be represented in two different ways: (i, j) and (j, i).

We can solve the first problem by translating the vector into a matrix. If we call unique() on a matrix we
get the unique rows, so we just represent the pairs in that way. The second issue we can solve by making sure
that edges are represented in a canonical form, say requiring that i < j for edges (i, j).

graph <- function(n, edges) {
 neighbours <- vector("list", length = n)

 for (i in seq_along(neighbours)) {
 neighbours[[i]] <- vector("integer", length = 0)
 }

 no_edges <- length(edges)
 if (no_edges >= 1) {
 sources <- seq(1, no_edges, by = 2)
 destinations <- seq(2, no_edges, by = 2)

 edge_matrix <- matrix(NA, nrow = length(sources), ncol = 2)
 edge_matrix[,1] <- edges[sources]
 edge_matrix[,2] <- edges[destinations]

 for (i in 1:nrow(edge_matrix)) {
 if (edge_matrix[i,1] > edge_matrix[i,2]) {
 edge_matrix[i,] <- c(edge_matrix[i,2], edge_matrix[i,1])
 }
 }

 edge_matrix <- unique(edge_matrix)

 for (i in seq(1, nrow(edge_matrix))) {
 n1 <- edge_matrix[i, 1]
 n2 <- edge_matrix[i, 2]
 neighbours[[n1]] <- c(n2, neighbours[[n1]])
 neighbours[[n2]] <- c(n1, neighbours[[n2]])
 }
 }

 structure(neighbours, class = "graph")
}

Chapter 14 ■ profiling and optimizing

312

The running time is cut in half and relatively less time is spent constructing the graph compared to
before. The time spent in executing the code is also so short again that we cannot be too certain about the
profiling samples to say much more.

The graph size is not quite at the expected size for the application I had in mind when I wrote this code.
We can boost it up to the full size of around 20,000 nodes and 50,000 edges and profile for that size. Results
are shown in Figure 14-5.

On a full-size graph, we still spend most of the time in constructing the graph and not in smoothing
it—and about half of the constructing time in the unique() function—but this is a little misleading. We don’t
expect to call the smoothing function just once on a graph. Each call to the smoothing function will smooth
the weights out a little more, and we expect to run it around ten times, say, in the real application.

We can rename the function to flow_weights_iteration() and then write a smooth_weights()
function that runs it for a number of iterations:

flow_weights_iteration <- function(graph, node_weights, alpha) {
 if (length(node_weights) != length(graph))
 stop("Incorrect number of nodes")

Figure 14-5. Profiling results on a full-time graph

Chapter 14 ■ profiling and optimizing

313

 no_nodes <- length(node_weights)
 new_weights <- vector("numeric", n)

 for (i in 1:no_nodes) {
 neighbour_weights <- 0
 n <- 0
 for (j in graph[[i]]) {
 if (i != j) {
 neighbour_weights <- neighbour_weights + node_weights[j]
 n <- n + 1
 }
 }

 if (n > 0) {
 new_weights[i] <- (alpha * node_weights[i] + (1 - alpha)
 * neighbour_weights / n)
 } else {
 new_weights[i] <- node_weights[i]
 }

 }
 new_weights
}
smooth_weights <- function(graph, node_weights, alpha, no_iterations) {
 new_weights <- node_weights
 replicate(no_iterations, {
 new_weights <- flow_weights_iteration(graph, new_weights, alpha)
 })
 new_weights
}

We can then profile with 10 iterations:

profvis::profvis({
 n <- 20000
 nodes <- 1:n
 edges <- sample(nodes, 100000, replace = TRUE)
 weights <- rnorm(n)
 g <- graph(n, edges)
 smooth_weights(g, weights, 0.8, 10)
})

The results are shown in Figure 14-6. Obviously, if we run the smoothing function more times the
smoothing is going to take up more of the total time, so there are no real surprises here. There aren’t really
any obvious hotspots any longer to dig into. I used the replicate() function for the iterations, and it does
have a little overhead because it does more than just loop—it creates a vector of the results—and I can gain a
few more milliseconds by replacing it with an explicit loop:

smooth_weights <- function(graph, node_weights,
 alpha, no_iterations) {
 new_weights <- node_weights

Chapter 14 ■ profiling and optimizing

314

 for (i in 1:no_iterations) {
 new_weights <-
 smooth_weights_iteration(graph, new_weights, alpha)
 }
 new_weights
}

I haven’t shown the results, so you have to trust me on that. There is nothing major to attack any longer,
now, however.

If you are in that situation where there is nothing more obvious to try to speed up, you have to consider
if any more optimization is really necessary. From this point an onwards, unless you can come up with a
better algorithm, which is hard, further optimizations are going to be very hard and unlikely to be worth the
effort. You are probably better off spending your time on something else while the computations run than
wasting days on trying to squeeze a little more performance out of it.

Of course, in some cases, you really have to improve performance more to do your analysis in
reasonable time, and there are some last resorts you can go to such as parallelizing your code or moving
time-critical parts of it to C++. But for now, we can analyze full graphs in fewer than two seconds so we
definitely should not spend more time on optimizing this particular code.

Figure 14-6. Profiling results with multiple smoothing iterations

Chapter 14 ■ profiling and optimizing

315

Speeding Up Your Code
If you really do have a performance problem, what do you do? I will assume that you are not working on
a problem that other people have already solved—if there is already a package available you could have
used then you should have used it instead of writing your own code, of course. But there might be similar
problems you can adapt to your needs, so before you do anything else, do a little bit of research to find
out if anyone else has solved a similar problem, and if so, how they did it. There are very few really unique
problems in life, and it is silly not to learn from others’ experiences.

It can take a little time to figure out what to search for, though, since similar problems pop up in very
different fields. There might be a solution out there that you just don’t know how to search for because it
is described in terms entirely different from your own field. It might help to ask on mailing lists or stack
overflow (see http://stackoverflow.com), but don’t burn your Karma by asking help with every little thing
you should be able to figure out yourself with a little bit of work.

If you really cannot find an existing solution you can adapt, the next step is to start thinking about
algorithms and data structures. Improving these usually have much more of an impact on performance than
micro-optimizations ever can. Your first attempts at any optimization should be to figure out if you could use
better data structures or better algorithms.

It is, of course, a more daunting task to reimplement complex data structures or algorithms—and
you shouldn’t if you can find solutions already implemented—but it is usually where you gain the most
performance. Of course, there is always a trade-off between how much time you spend on reimplementing
an algorithm versus how much you gain, but with experience, you will get better at judging this. Well, slightly
better. If in doubt, it is probably better to live with slow code than spend a lot of time trying to improve it.

And before you do anything make sure you have unit tests that ensure that new implementations do not
break old functionality! Your new code can be as fast as lightning, and it is worthless if it isn’t correct.

If you have explored existing packages and new algorithms and data structures and there still is a
performance problem you reach the level of micro-optimizations. This is where you use slightly different
functions and expressions to try to improve the performance, and you are not likely to get massive
improvements at this level of changes. But if you have code that is executed thousands or millions of times,
those small gains can still stack up. So if your profiling highlights a few hotspots for performance you can try
to rewrite code there.

The sampling profiler is not terribly useful at this level of optimization. It samples at the level of
milliseconds, and that is typically a much coarser grained measurement than what you need here.
Instead, you can use the microbenchmark package that lets you evaluate and compare expressions. The
microbenchmark() function runs a sequence of expressions several times and computes statistics on the
execution time in units down to nanoseconds. If you want to gain some performance through micro-
optimization, you can use it to evaluate different alternatives to your computations.

For example, we can use it to compare an R implementation of sum() against the built-in sum()
function:

library(microbenchmark)
mysum <- function(sequence) {
 s <- 0
 for (x in sequence) s <- s + x
 s
}

microbenchmark(
 sum(1:10),
 mysum(1:10)
)
Unit: nanoseconds

http://stackoverflow.com/

Chapter 14 ■ profiling and optimizing

316

expr min lq mean median uq
sum(1:10) 194 202 300.10 233.5 349.5
mysum(1:10) 1396 1592 2280.47 1750.0 1966.5
max neval cld
2107 100 a
11511 100 b

The first column in the output is the expressions evaluated, then you have the minimum, lower quarter,
mean, median, upper quarter, and maximum time observed when evaluating it, and then the number of
evaluations used. The last column ranks the performance, here showing that sum() is a and mysum() is b so
the first is faster. This ranking takes the variation in evaluation time into account and does not just rank by
the mean.

There are a few rules of thumbs for speeding up the code in micro-optimization, but you should always
measure. Intuition is often a quite bad substitute for measurement.

One rule of thumb is to use built-in functions when you can. Functions such as sum() are actually
implemented in C and highly optimized, so your own implementation will have a hard time competing with
it, as you saw previously.

Another rule of thumb is to use the simplest functions that get the work done. More general functions
introduce various overheads that simpler functions avoid.

You can add together all numbers in a sequence using Reduce(), but using such a general function is
going to be relatively slow compared to specialized functions.

microbenchmark(
 sum(1:10),
 mysum(1:10),
 Reduce(`+`, 1:10, 0)
)
Unit: nanoseconds
expr min lq mean median
sum(1:10) 207 258 356.03 324.5
mysum(1:10) 1611 1892 2667.25 2111.0
Reduce(`+`, 1:10, 0) 4485 5285 6593.07 6092.0
uq max neval cld
409.0 1643 100 a
2369.0 11455 100 b
6662.5 15497 100 c

We use such general functions for programming convenience. They give us abstract building blocks. We
rarely get performance boosts out of them and sometimes they can slow things down.

Thirdly, do as little as you can get away with. Many functions in R have more functionality than we
necessarily think about. A function such as read.table() not only reads in data, it also figures out what type
each column should have. If you tell it what the types of each column are using the colClasses argument,
it gets much faster because it doesn’t have to figure it out itself. For factor() you can give it the allowed
categories using the levels argument so it doesn’t have to work it out itself.

x <- sample(LETTERS, 1000, replace = TRUE)
microbenchmark(
 factor(x, levels = LETTERS),
 factor(x)
)
Unit: microseconds

Chapter 14 ■ profiling and optimizing

317

expr min lq
factor(x, levels = LETTERS) 19.211 20.8975
factor(x) 59.458 61.9575
mean median uq max neval cld
22.03447 21.6175 22.610 32.981 100 a
66.70901 62.9135 67.946 132.306 100 b

It is not just when providing input, to help functions avoid figuring something out, this is in effect.
Functions often also return more than you are necessarily interested in. Functions like unlist(), for
instance, will preserve the names of a list into the resulting vector. Unless you really need those names, you
should get rid of them since it is expensive dragging those names along with you. If you are just interested in
a numerical vector, you should use use.names = FALSE:

x <- rnorm(1000)
names(x) <- paste("n", 1:1000)
microbenchmark(
 unlist(Map(function(x) x**2, x), use.names = FALSE),
 unlist(Map(function(x) x**2, x))
)
Unit: microseconds
expr
unlist(Map(function(x) x^2, x), use.names = FALSE)
unlist(Map(function(x) x^2, x))
min lq mean median uq
484.866 574.248 704.2379 660.3140 716.2325
659.355 722.974 825.7712 813.3855 891.4630
max neval cld
3141.598 100 a
1477.028 100 b

Fourthly, when you can, use vector expressions instead of loops. Not just because this makes the code
easier to read but because the implicit loop in vector expressions is handled much faster by the runtime
system of R than your explicit loops will.

Most importantly, though, is to always measure when you try to improve performance and only replace
simple code with more complex code if there is a substantial improvement that makes this worthwhile.

Parallel Execution
Sometimes you can speed things up, not by doing them faster, but by doing many things in parallel. Most
computers today have more than one core, which means that you should be able to run more computations
in parallel.

These are usually based on some variation of lapply() or Map() or similar, see the parallel package
as an example, but also check the foreach package, which provides a higher level looping construct that can
also be used to run code in parallel.

If we consider our graph smoothing, we could think that since each node is an independent
computation we should be able to speed the function up by running these calculations in parallel. If we
move the inner loop into a local function, we can replace the outer look with a call to Map():

smooth_weights_iteration_map <- function(graph, node_weights, alpha) {
 if (length(node_weights) != length(graph))
 stop("Incorrect number of nodes")

Chapter 14 ■ profiling and optimizing

318

 handle_i <- function(i) {
 neighbour_weights <- 0
 n <- 0
 for (j in graph[[i]]) {
 if (i != j) {
 neighbour_weights <- neighbour_weights + node_weights[j]
 n <- n + 1
 }
 }

 if (n > 0) {
 alpha * node_weights[i] + (1 - alpha) * neighbour_weights / n
 } else {
 node_weights[i]
 }
 }

 unlist(Map(handle_i, 1:length(node_weights)))
}

This is not likely to speed anything up—the extra overhead in the high-level Map() function will do
the opposite if anything—but it lets us replace Map() with one of the functions from parallel, for example
clusterMap():

 unlist(clusterMap(cl, inner_loop, 1:length(node_weights)))

Here cl is the “cluster” that just consists of two cores I have on my laptop:

cl <- makeCluster(2, type = "FORK")
microbenchmark(
 original_smooth(),
 using_map(),
 using_cluster_map(),
 times = 5
)

Where the three functions refer to the three different versions of the algorithm, gave me these result. On
my two-core laptop, we could expect the parallel version to run up to two times faster. In fact, it runs several
orders of magnitude slower:

Unit: milliseconds
 expr min lq
 original_smooth() 33.58665 33.73139
 using_map() 33.12904 34.84107
 using_cluster_map() 14261.97728 14442.85032
 mean median uq max
 35.88307 34.25118 36.62977 41.21634
 38.31528 40.50315 41.28726 41.81587
 15198.55138 14556.09176 14913.24566 17818.59187
 neval cld
 5 a
 5 a
 5 b

Chapter 14 ■ profiling and optimizing

319

Using type FORK for setting up the cluster only works on UNIX machines, so on Windows you will have
to use another type. Using the default parameter, PSOCK, you can set up parallelization but the different cores
that run your computations will not be aware of libraries you have imported or functions you have defined in
the main script. If you cannot use the type FORK you will need to explicitly inform the cores of which values
and functions they should be aware of. Check the documentation for the functions clusterExport and
clusterCall.

I am not entirely sure what the problem we are seeing here is, but most likely the individual tasks are
very short, and the communication overhead between threads (which are actually processes here) ends up
taking much more time than the actual computation. At least my profiling seems to indicate that. With really
lightweight threads some of the communication could be avoided, but that is not what we have here.

Parallelization works better when each task runs longer so the threads don’t have to communicate so
often.

For an example where parallelization works better, we can consider fitting a model on training data and
testing its accuracy on test data. We can use the cars data we have looked at before and the partition()
function from Chapter 6.

We write a function that evaluates a single train/test partition and then calls it n times, either
sequentially or in parallel.

test_rmse <- function(data) {
 model <- data$training %>% lm(dist ~ speed, data = .)
 predictions <- data$test %>% predict(model, data = .)
 rmse(data$test$dist, predictions)
}

sample_rmse <- function (n) {
 random_cars <- cars %>%
 partition(n, c(training = 0.5, test = 0.5))
 unlist(Map(test_rmse, random_cars))
}

sample_rmse_parallel <- function (n) {
 random_cars <- cars %>%
 partition(n, c(training = 0.5, test = 0.5))
 unlist(clusterMap(cl, test_rmse, random_cars))
}

When I do this for 10 training/test partitions, the two functions take roughly the same time. Maybe the
parallel version is a little slower, but it is not much overhead this time.

microbenchmark(
 sample_rmse(10),
 sample_rmse_parallel(10),
 times = 5
)
Unit: milliseconds
 expr min lq
 sample_rmse(10) 28.72092 29.62857
 sample_rmse_parallel(10) 26.08682 27.15047
 mean median uq max neval cld
 31.57316 33.05759 33.21979 33.23894 5 a
 34.75991 28.17528 29.37144 63.01556 5 a

http://dx.doi.org/10.1007/978-1-4842-2671-1_6

Chapter 14 ■ profiling and optimizing

320

If I create 1000 train/test partitions instead, however, the parallel version starts running faster than the
sequential version.

microbenchmark(
 sample_rmse(1000),
 sample_rmse_parallel(1000),
 times = 5
)
Unit: seconds
 expr min lq
 sample_rmse(1000) 3.229113 3.277292
 sample_rmse_parallel(1000) 2.570328 2.595402
 mean median uq max neval cld
 3.459333 3.508533 3.536792 3.744934 5 b
 2.921574 2.721095 3.185070 3.535977 5 a

Since my laptop only has two cores it will never be able to run more than twice as fast and reaching the
possible optimal speed-up from parallelization is rarely possible. The communication overhead between
threads adds to the time used for the parallel version, and there are parts of the code that just has to be
sequential such as preparing data that all threads should work on.

If you have a machine with many cores, and you can split your analysis into reasonably large
independent chunks, though, there is often something to be gained.

Switching to C++
This is a drastic step, but by switching to a language such as C++, you have more fine-grained control over
the computer, just because you can program at a much lower level, and you do not have the overhead from
the runtime system that R does. Of course, this also means that you don’t have many of the features that R
does either, so you don’t want to program an entire analysis in C++, but you might want to translate the time-
critical code to C++.

Luckily, the Rcpp package makes integrating R and C++ pretty straightforward. Assuming that you can
program in both languages, of course. The only thing to really be careful about is that C++ index from 0 and R
from 1. Rcpp takes care of converting this so a 1 indexed vector from R can be accessed as a 0 indexed vector
in C++, but when translating code you have to keep it in mind.

A full description of this framework for communicating between C++ and R is far beyond the scope of
this book. For that, I will refer you to the excellent book, Seamless R and C++ Integration with Rcpp by Dirk
Eddelbuettel. Here I will just give you a taste of how Rcpp can be used to speed up a function.

We will focus on the smoothing function again. It is a relatively simple function that is not using any of
R’s advanced features so it is ideal to translate into C++. We can do so almost verbatim, just remembering
that we should index from zero instead of one.

NumericVector
smooth_weights_iteration_cpp(List g,
 NumericVector node_weights,
 double alpha)
{
 NumericVector new_weights(g.length());

 for (int i = 0; i < g.length(); ++i) {

Chapter 14 ■ profiling and optimizing

321

 IntegerVector neighbours = g[i];
 double neighbour_sum = 0.0;
 int n = 0;

 for (int j = 0; j < neighbours.length(); ++j) {
 neighbour_sum += node_weights[j];
 ++n;
 }

 if (n > 0) {
 new_weights[i] = alpha * node_weights[i] +
 (1-alpha) * (neighbour_sum / n);
 } else {
 new_weights[i] = node_weights[i];
 }
 }

 return new_weights;
}

The types List, NumericVector, and IntegerVector correspond to the R types and except for how we
create the new_weights vector the code very closely follows the R code.

There are several ways you can compile this function and wrap it into an R function, but the easiest is
just to put it in a string and give it to the function cppFunction():

cppFunction("
NumericVector
smooth_weights_iteration_cpp(List g,
 NumericVector node_weights,
 double alpha)
{
 NumericVector new_weights(g.length());

 for (int i = 0; i < g.length(); ++i) {

 // The body here is just the C++ code
 // shown above...

 }

 return new_weights;
}
")

That creates a function with the same name as the C++ function that can be called directly from R and
Rcpp will take care of converting types as needed.

smooth_weights_cpp <- function(graph, node_weights,
 alpha, no_iterations) {
 new_weights <- node_weights
 for (i in 1:no_iterations) {

Chapter 14 ■ profiling and optimizing

322

 new_weights <-
 smooth_weights_iteration_cpp(graph, new_weights, alpha)
 }
 new_weights
}

If we compare the R and C++ function, we see that we get a substantial performance boost from this.

microbenchmark(
 smooth_weights(g, weights, 0.8, 10),
 smooth_weights_cpp(g, weights, 0.8, 10),
 times = 5
)
Unit: milliseconds
 expr
 smooth_weights(g, weights, 0.8, 10)
 smooth_weights_cpp(g, weights, 0.8, 10)
 min lq mean median
 1561.78635 1570.23346 1629.12784 1572.3979
 32.77344 33.38822 35.57017 36.5103
 uq max neval cld
 1694.31571 1746.90573 5 b
 37.29083 37.88803 5 a

To translate a function into C++, you are not necessarily prevented from using R’s more advanced
features. You can call R functions from C++ just as easily as you can call C++ functions from R. Using R types
translated into C++ can in many cases be used with vector expressions just like in R. Be aware, though, that
the runtime overhead of using advanced features are the same when you use them in C++ as in R. You will
likely not gain much performance from translating such functions. Translating low-level code like nested
loops often gives you substantial performance boosts, though. If you have a few performance hotspots in
your code that are relatively simple, just very time-consuming because they do a lot of work, it is worth
considering translating these to C++ and Rcpp makes it easy.

Don’t go overboard, though. It is harder to profile and debug code in C++, and it is harder to refactor
your code if it is a mix of C++ and R. Use it, but use it only when you really need it.

Exercises
Find some code you have written and try to profile it. If there are performance hotspots you can identify,
then try to optimize them. First, think algorithmic changes, then changes to the R expressions—checked
using microbenchmark()—and if everything else fails try parallelizing or implementing them in C++.

Project 2
The project for this chapter is building an R package for Bayesian linear regression. The model we will work
with is somewhat a toy example of what we could imagine we could build an R package for, and the goal is
not to develop all the bells and whistles of Bayesian linear regression. We will just build enough to see the
various aspects that go into building a real R package.

Chapter 14 ■ profiling and optimizing

323

Bayesian Linear Regression
In linear regression we assume that we have predictor variables x and target variables y where y = w

0
 + w

1
x

+ ε where ε ~ N(0, σ2). That is, we have a line with intercept w
0
 and incline w

1
 such that the target variables

are normally distributed around the point given by the line. We sometimes write σ 2 as 1/β and call β the
precision. I will do this here and assume that β is a know quantity; we are going to consider a Bayesian
approach to estimating the weights wT = (w

0
, w

1
).

Since we assume that we know the precision parameter β, if we knew the true weights of the model then
whenever we had an x value we would know the distribution of y values: y ~ N(w

0
 + w

1
x, 1/β).

For notational purposes I am going to define a function that maps x to a vector: ϕ : x ↦ (1, x)T. Then we
have wTϕ(x) = w

0
 + w

1
x and y ~ N(wTϕ(x), 1/β).

Of course, we do not know the values of the weights but have to estimate them. In a Bayesian approach,
we do not consider the weights as fixed but unknown values; we consider them as random variables from
some distribution we have partial knowledge about. Learning about the weights means estimating the
posterior distribution for the vector w conditional on observed x and y values.

We will assume some prior distribution for w, p(w). If we observe a sequence of matching x and y
values, xT = (x

1
, x

2
, …, x

n
) and yT = (y

1
, y

2
, …, y

n
), we want to update this prior distribution for the weights w to

the posterior distribution p(w | x, y)
We will assume that the prior distribution of w is a normal distribution with mean zero and diagonal

covariance matrix with some (known hyperparameter) precision α, such as:

p Nw Iα α() = ()−0, 1

For reasons that I don’t have time or space to go into here, this is a good choice of prior for a linear
model since it means that the posterior will also be a normal distribution. It also means that, given x and y,
we can compute the mean and covariance matrix for the posterior with some simple matrix arithmetic.

But first, we need to define our model matrix. This is a matrix that captures that the linear model we are
trying to find is a line, i.e., that y = w

0
 + w

1
x. We define the model matrix for the observed vector x as such:

φx

n

x

x

x

x

=

1

1

1

1

1

2

3

In general, we would have a row per observation with the various features of the observation we want to
include in the model, but for a simple line it is the incline and intercept, so for observation i it is 1 and x

i
.

The posterior distribution for the weights, p(w | x, y, α, β), is then given by

p N x y x yw| x y m S, , , , ,α β() = (),

where

m S yx y x y x, ,= β Φ T

and

Sx, y x x
− = +1 α Ι βΦ ΦT

Chapter 14 ■ profiling and optimizing

324

Exercises: Priors and Posteriors
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Sample from a Multivariate Normal Distribution
If you want to sample from a multivariate normal distribution, the mvrnorm function from the MASS package
is what you want.

library(MASS)
mvrnorm(n = 5, mu = c(0,0), Sigma = diag(1, nrow = 2))
[,1] [,2]
[1,] 0.6420163 -0.9853573
[2,] 0.2112605 1.0362092
[3,] 2.2689703 -0.1181916
[4,] -0.9177489 0.6836801
[5,] -0.8123927 0.7117685

You need to provide it with a mean vector, mu, and a covariance matrix, Sigma.
The prior distribution for our weight vectors is N(0, S

0
) with

0 = ()00

and

S0

1
1 0

0 1
= =

α

Ι α

α

You can use the diag function to create the diagonal covariance matrix.
Write a function called make_prior(alpha) that constructs this prior distribution and another function

sample_from_prior(n, alpha) that samples n weight vectors w
i
 from it. My version returns the samples as a

data frame with a column for the w
1
 samples and another for the corresponding w

0
 samples. You can return

the samples in any form that is convenient for you.
If you can sample from the prior you can plot the results, both as points in w space and as lines in (x, y)

space, as shown in Figures 14-7 and 14-8.

Chapter 14 ■ profiling and optimizing

325

Figure 14-7. Weight vectors sampled from the prior distribution

−1.0 −0.5 0.0 0.5 1.0

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

x

y

Figure 14-8. Weight vectors sampled from the prior distribution represented as lines

Chapter 14 ■ profiling and optimizing

326

Computing the Posterior Distribution
If we fix the parameters of the model, β and w = (w

0
, w

1
)T, we can simulate (x, y) values. We can pick some

random x values first and then simulate corresponding y values (see Figure 14-9).

w0 <- 0.3 ; w1 <- 1.1 ; beta <- 1.3
x <- rnorm(50)
y <- rnorm(50, w1 * x + w0, 1/beta)

Write a function, make_posterior(x, y, alpha, beta), that computes the posterior distribution for
the weights and a function sample_from_posterior that lets you sample from the posterior.

Using this sampling function we can see how the posterior distribution gets centered around the real
value as the number of (x, y) points increases. In the plots here, I have sampled 10 weights from the posterior
in each case but increased the number of (x, y) points the posterior is based on. See Figures 14-10 and 14-11.

Figure 14-9. Randomly sampled (x, y) values

Chapter 14 ■ profiling and optimizing

327

−0.5 0.0 0.5 1.0

0.
5

1.
0

1.
5

2.
0

5 points

w0

w
1

−0.5 0.0 0.5 1.0

0.
5

1.
0

1.
5

2.
0

10 points

w0
w

1

−0.5 0.0 0.5 1.0

0.
5

1.
0

1.
5

2.
0

20 points

w0

w
1

−0.5 0.0 0.5 1.0

0.
5

1.
0

1.
5

2.
0

50 points

w0

w
1

Figure 14-10. Samples from the posterior. The true value is shown as a cross.

Figure 14-11. Lines drawn from the posterior. The true line is shown in red.

Chapter 14 ■ profiling and optimizing

328

Predicting Target Variables for New Predictor Values
Given a new value x, we want to make predictions about the corresponding y. For a fixed w, again, we have
p(y | x, w, β) = N(wTϕ(x), 1/β), but since we don’t know w we have to integrate over all w. The way the training
data improves our prediction is that we integrate over w weighted by the posterior distribution of w rather
than the prior:

p y x p y x p d| , , , , | , , | , , ,x y w w x y wα β β α β() = () ()∫

This kind of integral over the product of two normal distributions gives us another normal distribution,
and one can show that it is:

p y x N m x xT| , , , , ,, ,x y x y x yα β φ σ() = () ()()2

where mx,y is the mean from the posterior distribution of w and where

σ
β

φ φx y x yS, ,
2 1

x x x
T() = + () ()

where Sx,y is the covariance matrix from the posterior distribution of w.
With the full distribution for the target value, y, given the predictor value, x, we can, of course, make

predictions. The point prediction for y is, of course, the mean of this normal distribution, so mx,y
Tϕ(x). But we

can do more than just predict the most likely value, we can of course also get confidence values because we
know the distribution.

Write a function that predicts the most likely y value for a given x value. Use it to plot the inferred model
against (x, y) points. See Figure 14-12.

Figure 14-12. True linear model in red and predicted values in blue

Chapter 14 ■ profiling and optimizing

329

Use the fact that you also have the predicted distribution for y to write a function that gives you
quantiles for this distribution and uses it to plot 95% intervals around the predictions. See Figure 14-13.

Just plotting the lines with 95% support intervals doesn’t directly show how the uncertainty around a
point depends on the uncertainty in the weights of the model if we just plot the line around the points used
to train the model. There the support is roughly the same for all the points. We will see a difference, though,
if we are far away from the points used for training. There small uncertainties in the weights—the lines
through the points—magnifies and spreads the interval. See Figure 14-14.

Figure 14-13. Prediction with 95% support interval

Chapter 14 ■ profiling and optimizing

330

Formulas and Their Model Matrix
We continuing working with our Bayesian linear regression and we will generalize the kind of formulas we
can fit.

Recall from Chapter 6, that when fitting our models to data we did this using a so-called model matrix
(or design matrix) of this form:

Φx =

1

1

1

1

1

2

3

x

x

x

xn

Row i in this matrix contains the vector (1, x
i
) = ϕ(x

i
)T capturing the predictor variable for the i’th

observation, x
i
. It actually has two predictor variables, it is just that one is a constant 1. So what it captures is

the input we need to predict where the target parameter will be for at a given point for the predictor variable
and because we have a model with both an y-axis intercept and an incline it needs two variables. To predict
the target, we use the inner product of this row and the weights of our fitted model:

y x w w xi
T

i i= ()+ = ⋅ + ⋅ +w φ ∈ ∈0 11 .

We call ϕ(x) the feature vector for a point x and the model matrix contains a row for each data point we
want to fit or make predictions on, such that row i is ϕ(x

i
)T. With the feature vector on the form we have used

here, ϕ(x)T = (1, x), we are fitting a line, but the feature doesn’t have to have this form. We can make more
complicated feature vectors.

Figure 14-14. Prediction with 95% support interval, wider range

http://dx.doi.org/10.1007/978-1-4842-2671-1_6

Chapter 14 ■ profiling and optimizing

331

If we instead used the feature vector ϕ(x)T = (1, x, x2) and added another weight to w so it now had three
dimensions, (w

0,
 w

1
, w

2
), we could be predicting the target in the same way, y = wTϕ(x

i
) + ε, except now of

course wTϕ(x
i
) = w

0
 + w

1
x + w

2
x2, so we would be fitting a quadratic polynomial.

If you are thinking now “hey, that is no longer a linear model!” you are wrong. The linearity in the model
was never actually related to the linearity in x. It is a linearity in w that makes the model linear, and as long as
we are getting the predicted value as the inner product of a weight vector like this and some feature vector, it
is a linear model we are working with. You can make the feature vector ϕ(x) as crazy as you like.

If you construct the model matrix the same way:

Φx

T

T

T

n

T

x

x

x

x

=

()
()
()

()

φ

φ

φ

φ

1

2

3

the mathematics for fitting weights and predicting new target values works the same, except of course that
the weight vector w has the number of dimensions that reflects the dimensions in the feature vectors.

The feature vector doesn’t have to be a function of a single variable, x, either. If you want to fit a linear
model in two variables—such as a plane—then you can just let the feature vector depend on two variables:
ϕ(x, z)T = (1, x, z). The linear combination with the weight vector would be wTϕ(x, z) = w

0
 + w

1
x + w

2
z, which

would exactly be a linear model in two variables.

Working with Model Matrices in R
The way we specify both feature vectors and model matrices in R is a formula. A Formula is created as
an expression containing the tilde symbol, ~, and the target variable should be put to the left and the
explanatory variables on the right.

R has quite a rich syntax for specifying formula, and if you are interested, you should read the
documentation by writing this in the R shell:

?formula

For the linear model, we would write y ~ x. The intercept variable is implicitly there; you don’t need
to tell R that you want the feature vector to include the “-1”, instead, you would have to remove it explicitly.
You can also specify polynomial feature vectors, but R interprets multiplication, *, as something involving
interaction between variables.1 To specify that you want the second order polynomial of x, you need to
write y ~ I(x^2) + x. The function I is the identity function and using it here makes R interpret the x^2 as
squaring the number x instead of trying to interpret it as part of the formula specification. If you only want
to fit the square of x, you would just write y ~ I(x^2). For a general n degree polynomial you can use y ~
poly(x,n, raw=TRUE).

To fit our linear model we need data for two things. In the model we have already implemented we had
vectors x and y, but in the general case the prediction variable x should be replaced with the model matrix
Φ. From Φ and y, we can fit the model.

1In formulas, x*z means x + z + x:z whereas x:z is the interaction between x and z—in practice the product of their
numbers—so y ~ x*z means ϕ(x, z) = (1, x, z, x ⋅ z)).

Chapter 14 ■ profiling and optimizing

332

R has functions for getting both from a formula and data. It isn’t quite straightforward, though, because
of scoping rules. If you write a formula somewhere in your code, you want the variables in the formula to
refer to the variables in the scope where you are. Not somewhere else where the code might look at the
formula. So the formula needs to capture the current scope—similar to how a closure captures the scope
around it. On the other hand, you also want to be able to provide data directly to models via data frames.
Quite often, the data you want to fit is found as columns in a data frame, not as individual variables in scope.
Sometimes it is even a mix.

The function model.frame lets you capture what you need for collecting data relevant for a formula. It
will know about the scope of the formula, but you can add data through a data frame as well. Think of it as a
data.frame, just with a bit more information about the data that it gets from analyzing the formula.

We can see all of this in action in this small example:

predictors <- data.frame(x = rnorm(5), z = rnorm(5))
y <- with(predictors, rnorm(5, mean = 3*x + 5*z + 2))

model <- y ~ x + z

model.frame(model, data = predictors)
y x z
1 0.9532092 0.02035145 -0.11778756
2 -2.7934758 -1.06963074 0.03347605
3 3.3926486 1.11133916 -0.43176349
4 10.8303077 1.68233471 1.27280461
5 -2.0380722 -0.32349845 -0.59252024

Here we have two predictor variables, x and z, in a data frame, and we simulated the response variable,
y, in the global scope. The model we create using the formula y ~ x + z (which means ϕ(x, z)T = (1, x, z))
and we construct a model frame from this that contains the data for all the variables used in the formula.

The way the model frame gets created, R first looks in the data frame it gets for a variable, and if it is
there it uses that data, if it is not, it uses the data it can find in the scope of the formula. If it cannot find it at
all, it will, of course, report an error.

The data frame is also used to construct expressions from variables. In the scope you might have the
variable x but not the variable x2, where the latter is needed for constructing a model matrix. The model.
frame function will construct it for you.

x <- runif(10)
model.frame(~ x + I(x^2))
x I(x^2)
1 0.35846214 0.128495....
2 0.76297492 0.582130....
3 0.42375496 0.179568....
4 0.09579368 0.009176....
5 0.48314622 0.233430....
6 0.56738521 0.321925....
7 0.89860842 0.807497....
8 0.51414054 0.264340....
9 0.15684623 0.024600....
10 0.30248554 0.091497....

Chapter 14 ■ profiling and optimizing

333

In this example, we don’t have a response variable for the formula; you don’t necessarily need one.
You need it to be able to extract the vector y of course, so we do need one for our linear model fitting, but R
doesn’t necessarily need one.

Once you have a model frame, you can get the model matrix using the function model.matrix. It needs
to know the formula and the model frame (the former to know the feature function ϕ and the latter to know
the data we are fitting).

Next, we build two models, one where we fit a line that goes through y = 0 and the second where we
allow the line to intersect the y-axis at an arbitrary point.

Notice how the data frames are the same—the variables used in both models are the same—but the
model matrices differ.

x <- runif(10)
y <- rnorm(10, mean=x)

model.no.intercept <- y ~ x + 0
(frame.no.intercept <- model.frame(model.no.intercept))
y x
1 -0.6475994 0.2170210
2 2.3601909 0.7161212
3 0.2708529 0.7415493
4 1.3094623 0.5982522
5 1.6820729 0.7725481
6 -0.3574741 0.3912436
7 0.5509808 0.4675246
8 0.8465933 0.6210651
9 1.6873893 0.7360315
10 1.3658199 0.8070293
model.matrix(model.no.intercept, frame.no.intercept)
x
1 0.2170210
2 0.7161212
3 0.7415493
4 0.5982522
5 0.7725481
6 0.3912436
7 0.4675246
8 0.6210651
9 0.7360315
10 0.8070293
attr(,"assign")
[1] 1
model.with.intercept <- y ~ x
(frame.with.intercept <- model.frame(model.with.intercept))
y x
1 -0.6475994 0.2170210
2 2.3601909 0.7161212
3 0.2708529 0.7415493
4 1.3094623 0.5982522
5 1.6820729 0.7725481
6 -0.3574741 0.3912436
7 0.5509808 0.4675246

Chapter 14 ■ profiling and optimizing

334

8 0.8465933 0.6210651
9 1.6873893 0.7360315
10 1.3658199 0.8070293
model.matrix(model.with.intercept, frame.with.intercept)
(Intercept) x
1 1 0.2170210
2 1 0.7161212
3 1 0.7415493
4 1 0.5982522
5 1 0.7725481
6 1 0.3912436
7 1 0.4675246
8 1 0.6210651
9 1 0.7360315
10 1 0.8070293
attr(,"assign")
[1] 0 1

The target vector, or response variable, y, can be extracted from the data frame as well. You don’t need
the formula this time because the data frame actually remembers which variable is the response variable.
You can get it from the model frame using the function model.response:

model.response(frame.with.intercept)
1 2 3 4
-0.6475994 2.3601909 0.2708529 1.3094623
5 6 7 8
1.6820729 -0.3574741 0.5509808 0.8465933
9 10
1.6873893 1.3658199

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Building Model Matrices
Build a function that takes as input a formula and optionally, through the … variable, a data frame and build
the model matrix from the formula and optional data.

Fitting General Models
Extend the function you wrote earlier for fitting lines to a function that can fit any formula.

Model Matrices Without Response Variables
Building model matrices this way is all good and well when you have all the variables needed for the
model frame, but what happens when you don’t have the target value? You need the target value to fit the
parameters of your model, of course, but later on, you want to predict targets for new data points where you
do not know the target, so how do you build the model matrix then?

Chapter 14 ■ profiling and optimizing

335

With some obviously fake data, the situation could look like this:

training.data <- data.frame(x = runif(5), y = runif(5))
frame <- model.frame(y ~ x, training.data)
model.matrix(y ~ x, frame)
(Intercept) x
1 1 0.6983229
2 1 0.2849977
3 1 0.1836589
4 1 0.2277518
5 1 0.2773418
attr(,"assign")
[1] 0 1
predict.data <- data.frame(x = runif(5))
frame <- model.frame(y ~ x, predict.data)
Error in model.frame.default(y ~ x, predict.data): variable lengths differ (found for
'x')

Of course, we get a problem when trying to build the frame without knowing the target variable y.
If only there were a way to remove the response variable from the formula! And there is.
The function delete.response does just that. You cannot call it directly on a formula. R first needs

to collect some information for this function to work, unlike the other functions you’ve seen. But you can
combine it with the function terms to get a formula without the response variable that you can then use to
build a model matrix for data where you don’t know the target values.

responseless.formula <- delete.response(terms(y ~ x))
frame <- model.frame(responseless.formula, predict.data)
model.matrix(responseless.formula, frame)
(Intercept) x
1 1 0.05530272
2 1 0.34011728
3 1 0.23095021
4 1 0.29074418
5 1 0.37240380
attr(,"assign")
[1] 0 1

Exercises
Try the following exercises to become more comfortable with the concepts discussed in this chapter.

Model Matrices for New Data
Write a function that takes as input a formula and a data frame as input that does not contain the response
variable and build the model matrix for that.

Predicting New Targets
Update the function you wrote earlier for predicting the values for new variables to work on models fitted to
general formula. If it doesn’t already permit this, you should also extend it so it can take more than one such
data point. Make the input for new data points come in the form of a data frame.

Chapter 14 ■ profiling and optimizing

336

Interface to a blm Class
By now we have an implementation of Bayesian linear regression but not necessarily in a form that makes
it easy to reuse. Wrapping the data relevant for a fitted model into a class and providing various methods to
access it is what makes it easy to reuse a model/class.

Generally, you want to access objects through functions as much as you can. If you know which
$fields the class has it is easy to write code that just accesses this, but that makes it hard to change the
implementation of the class later. A lot of code that makes assumptions about how objects look like will
break. It will also make it hard at some later point to change the model/class in an analysis because different
classes generally do not look the same in their internals.

To make it easier for others—and your future self—to use the Bayesian linear regression model, we will
make a class for it and provide functions for working with it.

This involves both writing functions specific to your own class and writing polymorphic functions that
people, in general, expect a fitted model to implement. It is the latter that will make it possible to replace
another fitted model with your blm class.

How you go about designing your class and implementing the functions—and choosing which
functions to implement, in general—is up to you. Except, of course, when you implement blm specific
versions of already existing polymorphic functions; in that case you need to obey the existing interface.

How you choose to represent objects of your class and which functions you choose to implement for it
is generally up to you. There is a general convention in R, though, that you create objects of a given class by
calling a function with the same name as the class. So I suggest that you write a constructor called blm.

There isn’t really any obvious classes to inherit from, so the class of blm objects should probably only
be "blm" and not a vector of classes. If you want to make a class hierarchy in your implementation or
implement more than one class to deal with different aspects of your model interface, you should knock
yourself out.

Constructor
A constructor is what we call a function that creates an object of a given class. In some programming
languages, there is a distinction between creating and initializing an object. This is mostly relevant when
you have to worry about memory management, and such and can get quite complicated and it is not
something we worry about in R. It is the reason, though, that in Python the constructor is called __init__
and it is actually the initialization it handles. The same is the case for Java, which enforces the rule that the
constructor must have the same name as the class, where for R it is just a convention. In Java you have a
special syntax for creating new objects: new ClassName(). In Python you have to use the name of the class
to create the object—ClassName()—but the syntax looks just like a function call. In R it is only convention
that says that the class name and the constructor should be the same. The syntax for creating an object looks
like a function call because it is a function call and nothing special is going on in that function except that it
returns an object where we have set the class attribute.

So you should write a function called blm that returns an object where you have set the class attribute
to "blm". You can do this with the class<- replacement function or the structure function when you create
the object. The object is a list—that is the only way you have of storing complex data, after all—and what
you put in it depends on what you need for the functions that will be the interface of your class. You might
have to go back and change what data is stored in the object from time to time as you develop the interface
for your function. That is okay. Try to use functions to access the internals of the object as much as you can,
though, since that tends to minimize how much code you need to rewrite when you change the data stored
in the object.

Chapter 14 ■ profiling and optimizing

337

Updating Distributions: An Example Interface
Let’s consider a case of something we could have as an interface to Bayesian linear models. This is not
something you have to implement, but it is a good exercise to try.

The thing we do when we fit models in Bayesian statistics is that we take a prior distribution of our
model parameters, P(θ), and update them to a posterior distribution, P(θ | D), when observing data D. Think
of it this way: the prior distribution is what we just know about the parameters. Okay, typically we just make
the prior up based on mathematical convenience, but you should think about it as what we know about the
parameters from our understanding of how the universe works and what prior experience has taught us.
Then when you observe more, you add information about the world that changes the conditional probability
of how the parameters look given the observations you have made.

There is nothing really magical about what we call prior and posterior here. Both are just distributions
for our model parameters. If the prior is based on previous experience, then it is really a posterior for those
experiences. We just haven’t modeled it that way.

Let’s say we have observed data D
1
 and obtained a posterior P(θ | D

1
). If we then later observe more data, D

2
,

we obtain even more information about our parameters and can update the distribution for them to P(θ | D
1
, D

2
).

We can of course always compute this distribution by taking all the old data and all the new and push it
through our fitting code. But if we have chosen the prior distribution carefully with respect to the likelihood
of the model—and by carefully I mean that we have a so-called conjugate prior—then we can just fit the new
data but with a different prior: the old posterior.

What a conjugate prior is, is a prior distribution that is chosen such that both prior and posterior are
from the same class of distributions (just with different parameters). In our Bayesian linear model, both prior
and posterior are normal distributions so we have a conjugate prior. This means that we can, in principle,
update our fitted model with more observations just by using the same fitting code but with a different prior.

I hinted a bit at this in the exercises earlier, but now you can deal with it more formally. You need a way
of representing multivariate normal distributions—but you need this anyway to represent your blm objects—
and a way of getting to a fitted one inside your blm objects to extract a posterior.

There are many ways to implement this feature so you have something to experiment with. You can
have an update function that takes prior and new observations as parameters and outputs the (updated)
posterior. Here you need to include the formula as well somehow, to build the model matrix. Or you can let
update take a fitted object together with new data and get the formula and prior info from the fitted object.
Of course, if you do this you need to treat the prior without any observations as a special case—and that
prior will not know anything about formulas or model matrices.

We can try with an interface like this:

update <- function(model, data, prior) { ... }

where model is the formula, data a new dataset and prior the prior to use for fitting. This is roughly the
interface you have for the constructor, except there you don’t necessarily have data as an explicit parameter (you
want to be able to fit models without data in a data frame, after all), and you don’t have prior as a parameter at all.

Thinking about it a few seconds and realizing that whatever model fitting we put in here is going to be
exactly the same as in blm, we can change the interface to get rid of the explicit data parameter. If we let that
parameter go through ... instead, we can use exactly the same code as in blm (and later remove the code
from blm by calling update there instead).

update <- function(model, prior, ...) { ... }
blm <- function(model, ...) {
 # some code here...
 prior <- make_a_prior_distribution_somehow()
 posterior <- update(model, prior, ...)
 # some code that returns an object here...
}

Chapter 14 ■ profiling and optimizing

338

To get this version of blm to work you need to get the prior in a form you can pass along to update but
if you did the exercises earlier you should already have a function that does this (although you might want
to create a class for these distributions and return them as such so you can manipulate them through an
interface if you want to take it a bit further).

Of course, instead of getting rid of the model fitting code in the body of blm you could also get rid
of update and put that functionality in blm by letting that function take a prior parameter. If you do that,
though, you want to give it a default so you can use the original one if it isn’t specified.

blm <- function(model, prior = NULL, ...) {
 # some code here...
 if (is.null(prior)) {
 prior <- make_a_prior_distribution_somehow()
 }
 posterior <- update(model, prior, ...)
 # some code that returns an object here...
}

Let’s stick with having update for now, though. How would we use update with a fitted model?

fit1 <- blm(y ~ x)
fit2 <- update(y ~ x, new_data, fit1)

This doesn’t work because fit1 is a blm object and not a normal distribution. You need to extract the
distribution from the fitted model.

If you have stored the distribution in the object—and you should because otherwise, you cannot use the
object for anything since the fit is the posterior distribution—you should be able to get at it. What you don’t
want to do, however, is access the posterior directly from the object as fit1$posterior or something like
that. It would work, yes, accessing the internals of the object makes it harder to change the representation
later. I know I am repeating myself here, but it bears repeating. You don’t want to access the internals of an
object more than you have to because it makes it harder to change the representation.

Instead, write a function posterior that gives you the posterior.

posterior <- function(fit) fit$posterior

This function has to access the internals—eventually you will have to to get the information, after all—
but if this is the only function that does it, and every other function uses this function, then you only need to
change this one function if you change the representation of the object.

With that function in hand you can do this:

fit2 <- update(y ~ x, new_data, posterior(fit1))

You can also write update such that it can take both fitted models as well as distributions as its input.
Then you just need a way of getting to the prior object (that might be a distribution or might be a fitted
model’s posterior distribution) that works either way.

One approach is to test the class of the prior parameter directly.

update <- function(model, prior, ...) {
 if (class(prior) == "blm") {
 prior <- posterior(prior)
 }
 # fitting code here
}

Chapter 14 ■ profiling and optimizing

339

This is a terrible solution, though, for various reasons. First of all, it only works if you either get a prior
distribution or an object with class "blm". What if someone, later on, writes a class that extends your blm?
Their class attribute might be c("myblm","blm"), which is different from "blm" and so this test will fail, and
so will the following code because there you assume that you have a distribution but what you have is an
object of a very different class.

To get around that problem, you can use the function inherits. It tests if a given class name is in the
class attribute, so it would work if someone gives your update function a class that specializes your blm class.

update <- function(model, prior, ...) {
 if (inherits(prior, "blm")) {
 prior <- posterior(prior)
 }
 # fitting code here
}

This is a decent solution—and one you will see in a lot of code if you start reading object oriented
code—but it still has some drawbacks. It assumes that the only objects that can provide a distribution you
can use as a prior is either the way you have implemented priors by default (and you are not testing that
above) or an object of class "blm" (or specializations thereof).

You could, of course, make a test for whether the prior, if it isn’t a fitted object, is of a class you define for
your distributions, which would solve the first problem. But how do you deal with other kinds of objects that
might also be able to give you a prior/posterior distribution?

Whenever you write such a class that can provide it, you can also update your update function, but
other people cannot provide a distribution for you this way (unless they change your code). Explicitly testing
for the type of an object in this way is not a good code design. The solution to fixing it is the same as for
accessing object internals: you access stuff through functions.

If we require that any object we give to update as the prior parameter can give us a distribution if we
ask for it, we can update the code to be just

update <- function(model, prior, ...) {
 prior <- posterior(prior)
 # fitting code here
}

This requires that we make a polymorphic function for posterior and possibly that we write a version
for distribution objects as well. I will take a shortcut here and make the default implementation the identity
function.

posterior <- function(x) UseMethod("posterior")
posterior.default <- function(x) x
posterior.blm <- function(x) x$posterior

The only annoyance now is that we call it posterior. It is the posterior distribution when we have a
fitted object but it isn’t really otherwise. Let’s change it to distribution:

distribution <- function(x) UseMethod("distribution")
distribution.default <- function(x) x
distribution.blm <- function(x) x$posterior

Chapter 14 ■ profiling and optimizing

340

Then update update accordingly:

update <- function(model, prior, ...) {
 prior <- distribution(prior)
 # fitting code here
}

This way it looks even nicer in the update function.

Designing Your blm Class
As you play around with implementing your blm class, think about the interface you are creating, how
various functions fit together, and how you think other people will be able to reuse your model. Keep in
mind that “future you” is also “other people,” so you are helping yourself when you do this.

The update function we developed is an example of what functionality we could put in the class design
and how we made it reusable. You should think about other functions for accessing your objects and design
them.

One example could be extracting the distribution for a given input point. You implemented a function
for predicting the response variable from predictor variables already, and next you will do it in the predict
function again, but if you want to gain the full benefits of having a distribution for the response at a given
input you want to have the distribution. How would you provide that to users? How could you use this
functionality in your own functions?

Play around with it as you develop your class. Whenever you change something, think about whether
this could make other functions simpler or if things could be generalized to make your code more reusable.

Model Methods
There are some polymorphic functions that are generally provided by classes that represent fitted models.
Not all models implement all of them, but the more you implement, the more existing code can manipulate
your new class; another reason for providing interfaces to objects through functions only.

The following sections include a list of functions that I think your blm class should implement. The
functions are listed in alphabetical order, but many of them are easier to implement by using one or more
of the others. So read through the list before you start programming. If you think that one function can be
implemented simpler by calling one of the others, then implement it that way.

In all cases, read the R documentation for the generic function first. You need the documentation to
implement the right interface for each function anyway so you might at least read the whole thing. The
description in this note is just an overview of what the functions should do.

coefficients
This function should return fitted parameters of the model. It is not entirely straightforward to interpret what
that means with our Bayesian models where a fitted model is a distribution and not a single point parameter.
We could let the function return the fitted distribution, but the way this function is typically used that would
make it useless for existing code to access the fitted parameters for this model as a drop in replacement for
the corresponding parameters from a lm model, for example. Instead, it is probably better to return the point
estimates of the parameters which would be the mean of the posterior you compute when fitting.

Return the result as a numeric vector with the parameters named. That would fit what you get from lm.

Chapter 14 ■ profiling and optimizing

341

confint
The function confint gives you confidence intervals for the fitted parameters. Here we have the same issue
as with coefficients: we infer an entire distribution and not a parameter (and in any case, our parameters
do not have confidence intervals; they have a joint distribution). Nevertheless, we can compute the analogue
to confidence intervals from the distribution we have inferred.

If our posterior is distributed as w ~ N(m, S), then component i of the weight vector is distributed as
w

i
 ~ N(m

i
, S

i, i
). From this, and the desired fraction of density you want, you can pull out the thresholds that

match the quantiles you need.
You take the level parameter of the function and get the threshold quantiles by exploiting that a

normal distribution is symmetric. So you want the quantiles to be c(level/2, 1-level/2). From that, you
can get the thresholds using the function qnorm.

deviance
This function just computes the sum of squared distances from the predicted response variables to the
observed. This should be easy enough to compute if you could get the squared distances, or even if you only
had the distances and had to square them yourself. Perhaps there is a function that gives you that?

fitted
This function should give you the fitted response variables. This is not the response variables in the data you
fitted the model to, but instead the predictions that the model makes.

plot
This function plots your model. You are pretty free to decide how you want to plot it, but I could imagine
that it would be useful to see an x-y plot with a line going through it for the fit. If there are more than one
predictor variable, though, I am not sure what would be a good way to visualize the fitted model. There are
no explicit rules for what the plot function should do, except for plotting something so you can use your
imagination.

predict
This function should make predictions based on the fitted model. Its interface is

predict(object, ...)

but the convention is that you give it new data in a variable newdata. If you do not provide new data, it
instead gives you the predictions on the data used to fit the model.

print
This function is what gets called if you explicitly print an object or if you just write an expression that
evaluates to an object of the class in the R terminal. Typically it prints a very short description of the object.

For fitted objects, it customarily prints how the fitting function was called and perhaps what the fitted
coefficients were or how good the fit was. You can check out how lm objects are printed to see an example.

Chapter 14 ■ profiling and optimizing

342

If you want to print how the fitting function was called you need to get that from when you fit the object
in the blm constructor. It is how the constructor was called that is of interest, after all. Inside that function,
you can get the way it was called by using the function sys.call.

residuals
This function returns the residuals of the fit. That is the difference between predicted values and observed
values for the response variable.

summary
This function is usually used as a longer version of print. It gives you more information about the fitted
model.

It does more than this, however. It returns an object with summary information. What that actually
means is up to the model implementation so do what you like here.

Building an R Package for blm
We have most of the pieces put together now for our Bayesian linear regression software, and it is the time
we collect it in an R package. That is the next step in our project.

You already have an implementation of Bayesian linear regression with a class, blm, and various
functions for accessing objects of this type. Now it is time to collect these functions in a package.

Deciding on the Package Interface
When you designed your class functionality and interface, you had to decide on what functionality should
be available for objects of your class and how all your functions would fit together to make the code easy to
extend and use. There is a similar process of design involved with making a package.

Everything you did for designing the class, of course, is the same for a package but for the package you
have to decide on which functions should be exported and which should be kept internal.

Only exported functions can be used by someone else who loads your package so you might be tempted
to export everything you can. This, however, is a poor choice. The interface of your package is the exported
functions, and if you export too much, you have a huge interface that you need to maintain. If you make
changes to the interface of a package, then everyone using your package will have to update his or her code
to adapt to the changing interface. You want to keep changes to the package interface at a minimum.

You should figure out which functionality you consider essential parts of the package functionality
and what you consider internal helper functions and only export the functions that are part of the package
interface.

Organization of Source Files
R doesn’t really care how many files you use to have your source code in or how the source code is
organized, but you might. At some point in the future, you will need to be able to find relevant functions to
fix bugs or extend the functionality of your package.

Decide how you want to organize your source code. Do you want one function per file? Is there instead
some logical way of splitting the functionality of your code into categories where you can have a file per
category?

Chapter 14 ■ profiling and optimizing

343

Document Your Package Interface Well
At the very least, the functions you export from your package should be documented. Without
documentation a user (and that could be you in the future) won’t know how a function is supposed to be
used.

This documentation is mostly useful for online help—the kind of help you get using ?—so it shouldn’t
be too long but should give you a good idea of how a function is supposed to be used.

To give an overall description of the entire package and how various functions fit together and how they
should be used, you can write documentation for the package as a whole.

Like with package data, there isn’t a place for doing this, really, but you can use the same trick as for
data. Put the documentation in a source code file in the R/ directory.

Here is my documentation for the admixturegraph package:

#' admixturegraph: Visualising and analysing admixture graphs.
#'
#' The package provides functionality to analyse and test admixture graphs
#' against the \eqn{f} statistics described in the paper
#' \href{http://tinyurl.com/o5a4kr4}{Ancient Admixture in Human History},
#' Patternson \emph{et al.}, Genetics, Vol. 192, 1065--1093, 2012.
#'
#' The \eqn{f} statistics -- \eqn{f_2}, \eqn{f_3}, and \eqn{f_4} -- extract
#' information about correlations between gene frequencies in different
#' populations (or single diploid genome samples), which can be informative
#' about patterns of gene flow between these populations in form of admixture
#' events. If a graph is constructed as a hypothesis for the relationship
#' between the populations, equations for the expected values of the \eqn{f}
#' statistics can be extracted, as functions of edge lengths -- representing
#' genetic drift -- and admixture proportions.
#'
#' This package provides functions for extracting these equations and for
#' fitting them against computed \eqn{f} statistics. It does not currently
#' provide functions for computing the \eqn{f} statistics -- for that we refer
#' to the \href{https://github.com/DReichLab/AdmixTools}{ADMIXTOOLS} software
#' package.
#'
#' @docType package
#' @name admixturegraph
NULL

The @docType and @name tags tell Roxygen that I am writing documentation for the entire package.

Adding README and NEWS Files to Your Package
It is customary to also have a README and a NEWS file in your package. The README file describes what your
package does and how and can be thought of as a short advertisement for the package, while the NEWS file
describes which changes you have made to your package over time.

Many developers prefer to use “markdown” as the format for these files—in which case they are
typically named README.md and NEWS.md—and especially if you put your package on GitHub, it is a good idea
to have the README.md file since it will be prominently displayed when people go to the package home page
on GitHub.

Chapter 14 ■ profiling and optimizing

344

README
What you write in your README file is up to you, but it is customary to have it briefly describe what the
package does and maybe give an example or two on how it is used.

If you write it in markdown—in a file called README.md—it will be the home page if you put your
package on GitHub.

You might want to write it in R markdown instead to get all the benefits of knitr to go with the file. In
that case, you should just name the file README.Rmd and put this in the header:

output:
 md_document:
 variant: markdown_github

This tells knitr that it should make a markdown file as output—it will be called README.md.

NEWS
This file should simply contain a list of changes you have made to your package over time. To make it easier
for people to see which changes go with which versions of the package, you can split it into sections with
each section corresponding to a version.

Testing
In the package, we should now make sure that all of our functions are tested by at least one unit test and that
our package can make it through a package test.

GitHub
Sign up to GitHub and create a repository for the project. Move the code there.

Conclusions
Well, this is the end of the book but hopefully not the end of your data science career. I have said all I wanted
to say in this book. There are many things I have left out. Text processing for instance. R is not my favorite
language for processing text so I don’t use it, but it does have functionality for it. It just goes beyond the
kind of data we have looked at here. If you want to process text, like genomes or natural languages, you
need different tools than the ones I have covered in this book. I have assumed that you are just working on
data frames. It made the book easier to write. But it doesn’t cover all that data science is about. For more
specialized data analysis you will need to look elsewhere. There are many good books, and I might even
write about it at some later time. It just wasn’t within the scope of this book.

Chapter 14 ■ profiling and optimizing

345

It is the end of this book, but I would like to leave you with some pointers for where to learn more about
data science and about R. There are different directions you might want to go in depending on whether you
are more interested in analyzing data or more about developing methods. R is a good choice for either. In the
long run, you probably will want to do both. The books listed next will get you started in the direction you
want to go.

Data Science
•	 The art of data science by Roger Peng and Elizabeth Matsui

This is a general overview of the steps and philosophies underlying data science. It describes the
various stages a project goes through—exploratory analysis, fitting models, etc.—and while it doesn’t cover
any technical details, it is a good overview.

Machine Learning
•	 Pattern matching and machine learning by Christopher Bishop

This is a book I have been using to teach a machine learning class for many years now. It covers a lot
of different algorithms for both supervised and unsupervised learning—also types of analysis not covered
in this book. It is rather mathematical and focused on methods, but if you are interested in the underlying
machine learning, it is a great introduction to that.

Data Analysis
•	 Linear models in R by Julian J. Faraway

•	 Extending the Linear Model with R: Generalized Linear, Mixed Effects and
Nonparametric Regression Models by Julian J. Faraway

Linear models and generalized linear models are the first things I try. Pretty much always. These great
books for seeing how those models are used in R.

•	 R graphics by Paul Murrell

•	 ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

The first book describes the basic graphics package and the grid system that underlies ggplot2. The
second book, obviously, is the go-to book for learning more about ggplot2.

R Programming
•	 Advanced R by Hadley Wickham

•	 R Packages by Hadley Wickham

These are great books if you want to learn more about more advanced R programming and package
development.

•	 Seamless R and C++ Integration with Rcpp by Dirk Eddelbuettel

If you are interested in integrating C++ and R, then Rcpp is the way to go, and this is an excellent
introduction to Rcpp.

Chapter 14 ■ profiling and optimizing

346

The End
This is where I leave you. I hope you have found the book useful, and if you want to leave me any comments
and criticism, please do. It will help me improve it for future versions. If there are things you think should be
added, let me know, and I will add a chapter or two to cover it. And definitely, let me know if you find any
mistakes in the book. I will be particularly grateful if you spot any mistakes in the code included in the book.

Acknowledgements
I would like to thank Asger Hobolth for many useful comments on earlier versions of this manuscript that
helped me improve the writing and the presentation of the material.

347© Thomas Mailund 2017
T. Mailund, Beginning Data Science in R, DOI 10.1007/978-1-4842-2671-1

��������� A
Accuracy, 149

alidating models, 152
measures, 152
sensitivity and specificity, 151
true negative rate, 152
two classes, 153

Advanced R programming, 233
apply_if function, 255
between function, 255
factorial function, 255
functional programming

anonymous functions, 246
closures, 247
filter function, 248
functions as arguments, 247
functions returning functions, 247
map function, 248
reduce function, 249

function composition, 256
functions

infix operators, 242
replacement functions, 243
special names, 242

modification, 245
operations

ellipsis parameters, 253
input and output functions, 250

power function, 255
row and column sums, 255
vectors and vectorizing functions

apply family, 237
expression, 233
ifelse, 235
vectorization, 235

Anonymous functions, 246
Arithmetic expressions, 205
Association rules, 192
Automating testing, 282

��������� B
Bayesian linear regression, 323

hyperparameter, 323
interval plots, 329
linear model, 328
models, 258
model matrix, 323
multivariate normal

distribution, 324
posterior distribution, 326
prior distribution, 325
priors and posteriors, 324
target variables, 328
wider range, 330

Boolean expressions, 206
Breast cancer

classification, 166

��������� C
C++, 320
Caching, 44
Classes, 259
Classification models, 126, 147
Closures, 225, 247
Clustering methods, 181

hierarchical clustering, 188
k-means clustering, 182

Coding and naming
conventions, 28

coef and predict function, 263
Coefficients function, 340
confint function, 341
Confusion matrix, 148
Constructor, 336
Control structures

loops, 218
selection statements, 216

Cross-validation, 157

Index

■ INDEX

348

��������� D
Data frames, 18
Data manipulation

datasets, 45
dplyr (see dplyr functions)
format and read datasets

boston housing dataset, 55
breast cancer dataset, 49
readr Package, 56

head() function, 47
importing data, 73
reading data, 48
read.table() functions, 49
summary() function, 47
tail() function, 47
tidyr (see tidyr function)

Datapipelines. See Pointless programming
Datasets, 113

hex and 2D density plots, 124
large scatterplots, 116

alpha values, 117–118
combination, 120
data frame, 116
2D density plot, 118–119
hex plot, 119

memory analysis, 115
slice() function, 121
slow plot files, 120
subsample data, 113, 124
too large to load, 121

Data types
character, 209
complex, 208
integer, 208
logical, 208
numeric, 207

deviance function, 341
dplyr functions, 58

arrange() function, 62
breast cancer data

manipulation, 65
filter() function, 63
group_by() function, 64
mutate() function, 61
select() function, 59
summarise() function, 64
tbl_df representation, 59
transmute() function, 62
use of, 73

��������� E
Ellipsis parameters, 253

��������� F
factors() function, 16
filter() function, 248
fitted() function, 341
Functions, 220

default parameters, 222
named arguments, 221
return values, 222
scoping, 224
variable names, 227

��������� G
ggplot2 package

facets
iris measures, 100
labeller() function, 99
subsets, 97
y-axes, 99
y-axis, 98

geometries
aes() function, 89
facets, 97
geom_histogram() and geom_density()

function, 90
geom_line() and geom_point() function, 94
ggplot() and geom_point() functions, 89
ggplot2, 94
ggplot() and geom_point() function, 89
histogram and density plot, 91
iris data, 90
linear model smoothing, 92
loess smoothing, 93
points and lines, 95
qplot() plots, 88
tidy data, 96

grammar of graphics, 83
qplot() function

density, 88
histogram, 87
print() function, 85
qplot (ggplot2), 84

scaling, 100
themes and graphics transformations, 105

coordinates and switched facet labels, 106
facet_grid() function, 106
final version, 109
theme modifications, 107

git
bare and cloning repositories, 291
branches, 294

checkout branchname, 296
command, 294

■ INDEX

349

develop, 296
master branch, 295
merge otherbranch, 296
switch to, 295
workflows, 297

existing project, 291
fetch, 293
global repositories, 297
handling conflicts, 294
hidden directory, 292
installation, 288
log, 292
modified files, 289–290
pull, 293
push, 293
staging files, 289

GitHub, 297
collaborate

base fork and the head
fork, 301

forking repositories, 301
pull requests, 300

existing repository, 299
home page, 298
package installation, 300
README.md file, 298

Graph flow algorithm
constructor function, 304
details, 310
details of, 304
full-time graph, 312
larger graph, 310
multiple smoothing

iterations, 314
profile results, 306, 313
profiling window, 307
profvis() function, 305
replicate() function, 313
representation, 308
results and profiling code, 309
smoothing function, 305, 308
smooth_weights()

function, 312
unique() function, 308, 311

��������� H
Hierarchical clustering, 188

��������� I, J
ifelse() statement, 52
Indexing vectors, 6, 213
Inference vs. Prediction, 127

Infix operators, 242
Integration, 30
Interface

Bayesian statistics, 337
blm class, 336
constructor, 336
distributions, 337
model methods, 340

coefficients, 340
confint, 341
deviance, 341
fitted, 341
plot, 341
predict, 341
print, 341
residuals, 342

update function, 340

��������� K
Key-value structure, 34
k-means clustering, 182, 196
knitr document

compilation, 32
creation, 30
file creation, 31
HTML file, 32

��������� L
lapply function, 240
lapply()/map() function, 317
Lazy evaluation, 223
Leave-one-out cross-validation, 167
Linear regression, 128
Literate programming, 30
Logistic regression, 133

��������� M
Machine learning, 125
magical “ . ” argument, 24
Manipulatingdata. See Data manipulation
Map function, 248
map_class() function, 54
Markdowndocument. See knitr document
Markdown language

bibliographies, 39
creation, 44
cross-referencing, 38
formatting text, 35
markup language, 34
output, 44
output (templates/stylesheets), 39

■ INDEX

350

R code
analyzing data, 42
block-quotes, 40
caching results, 43
code chunk, 40
code chunk options, 41
displaying data, 43
document structure, 41
toolbar, 41

mean() function, 28
Missing values, 20
Model matrices

building, 334
data, 335
R, 331
response variables, 334

Model matrices and formula, 136
Model matrix, 330
Multidimensional scaling, 177
Multivariate normal distribution, 324
mutate() function, 61

��������� N
Naive Bayes, 165
NAMESPACE file, 274
Neural networks, 164
NEWS file, 344

��������� O
Object oriented programming

classes, 259
classhierarchies (see Specialization)
data structures

Bayesian linear models, 258
building blocks, 257

immutable objects, 257
polymorphic functions, 257

blm-specific print function, 261
class-specific version, 262
definition, 261
print function, 261
UseMethod function, 262

ordered() function, 17

��������� P, Q
Package checking consistency, 286
Package scope vs. global scope, 277
Parallel execution, 317
plot function, 341
Pointless programming

anonymous functions, 26
functions, 25

function calls, 23
%>% operator, 27
magical “ . ” argument, 24
magrittr package, 23
pseudo-code, 22
writing functions, 23

Polymorphic functions
blm-specific print function, 261
class-specific version, 262
definition, 261
print function, 261
UseMethod function, 262

Polynomials, 267
predict function, 341
Principal component analysis (PCA), 169
print function, 341
Profiling, 303

C++ functions, 320
codeperformance problem, 315
data analysis, 345
data science, 345
formulas, 331
GitHub, 344
graph flowalgorithm (see Graph flow

algorithm)
machine learning, 345
model matrix, 330
parallel execution, 317
targets, 335

��������� R
.Rbuildignore, 270
read.csv() function, 50–51
readLines() function, 50
README file, 344
readr package, 56
Recursive functions, 227
Reduce function, 249
Regression vs. classification, 126
Replacement functions, 243
residuals function, 342
rnorm() function, 28
Root mean square error, 28
Roxygen

documentation, 275
file load order, 277
import and export, 276
internal functions, 277
package scope vs. global scope, 277
syntax, 275

R package
build, 279
creation, 269

author and maintainer, 272
dependencies, 273

Markdown language (cont.)

■ INDEX

351

description, 271–272
imports/suggests function, 273
license, 272
package name, 269
.Rbuildignore, 270
structure of, 270
suggested package, 274
title field, 271
type, date and LazyData, 272
URL and BugReports, 272
version, 271

data, 278
NAMESPACE file, 274
packages, 269
R/ and man/ directories, 275
Roxygen (see Roxygen)

R programming
binary search, 230
blm class, 342

admixturegraph package, 343
documentation, 343
NEWS, 344
package interface, 342
README, 343–344
source files, 342
testing, 344

control structures, 216
loops, 218
selection statements, 216

data structures, 209
factors, 216
formulas, 216
indexing, 213
lists, 212
matrix, 210
named values, 215
vectors, 209

data types
character, 209
complex, 208
integer, 208
logical, 208
numeric, 207

expressions
arithmetic expressions, 205
boolean expressions, 206

fibonacci numbers, 229
functions, 220

default parameters, 222
lazy evaluation, 223
named arguments, 221
return values, 222
scoping, 224
variable names, 227

k smallest element, 231
linear time merge, 229

product, 229
recursive functions, 227
sorting, 230

R programming language
calculator

assignments, 5
indexing vectors, 6
simple expressions, 3
vectorized expressions, 7
vectors, 5

coding and naming conventions, 28
comments, 8
control structures, 12

break and repeat statement, 15
if statements, 12–13
ifelse function, 14
next statement, 16
seq_along() function, 15
Vectorize() function, 14
while statements, 15

data frames, 18
datapipelines (see Pointless programming)
factors, 16
functions, 8

documentation, 9
expressions, 10
square function, 11
vectorized expressions, 12

manipulating data, 1
missing values, 20
RStudio, 1
script file, 3

RStudio, 1

��������� S
sapply function, 241
save() function, 54
Shapes, 267
Softwaretesting. See Testing software
Specialization

implementations, 264
interface, 263
levels of, 263

Supervised learning
breast cancer classification, 166
compare classification

algorithms, 167
decision trees, 161, 167
inference versus prediction, 127
leave-one-out cross-validation, 167
linear regression, 128
logistic regression, 133
measures, 166
model matrices and

formula, 136

■ INDEX

352

Naive Bayes, 165
neural networks, 164, 167
overview, 125
polynomials, 166
predict_dist() function, 130
random forests, 163, 167
regression vs. classification, 126
validation (see Validating models)
vector machines, 165, 167

��������� T
Testing software, 281

unittesting (see Unit testing)
testthat function, 283
tidyr function

gather() function, 70
plot measurements vs.

values, 72
plotting species vs. petal

length, 70
Petal.Length column, 69
tidy data, 69
use of, 73

��������� U
Unit testing

automating testing, 282
functional units, 281
random numbers, 285
results, 285
test-driven programming, 281
testthat, 283
writing tests, 284

unname() function, 53
Unsupervised learning method

association rules, 192
clustering (see Clustering methods)
dimensionality reduction, 169

multidimensional scaling, 177
PCA, 169

fitting models, 203
HouseVotes84 Data, 196
project

data import, 197
exploratory analysis, 198
quality scores, 198
red and white, 199

Unsupervised learning
packages, 169

��������� V, W, X
Validating models

accuracy, 149
measures, 152
sensitivity and specificity, 151
two classes, 153

classification models, 147
confusion matrix, 148
cross-validation, 157
polynomial data, 145
random permutations, 153
regression models, 145
training and test data selection, 159

vapply function, 241
Vector machines, 165
Vectors and vectorizing functions

apply family, 237
apply function, 238
lapply function, 240
sapply function, 241
vapply function, 241

expression, 233
ifelse, 235
vectorization, 235

Version control system
GitHub, 297

collaborate, 300
existing repository, 299
home page, 298
package installation, 300
README.md file, 298

repositories, 287
RStudio (see git)

Visualization
figures, 109
ggplot2 (see ggplot2 package)
graphics

abline() function, 81
Armed.Forces variable, 80
histogram plot, 78
lm() function, 79
model-fitting algorithms, 79
packages, 75
plot() function, 75, 80
scatterplot, 76–77
species variable, 82

multiple plots, 109

��������� Y, Z
YAML language, 33

Supervised learning (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to R Programming
	Basic Interaction with R
	Using R as a Calculator
	Simple Expressions
	Assignments
	Actually, All of the Above Are Vectors of Values…
	Indexing Vectors
	Vectorized Expressions

	Comments
	Functions
	Getting Documentation for Functions
	Writing Your Own Functions
	Vectorized Expressions and Functions

	A Quick Look at Control Structures
	Factors
	Data Frames
	Dealing with Missing Values
	Using R Packages
	Data Pipelines (or Pointless Programming)
	Writing Pipelines of Function Calls
	Writing Functions that Work with Pipelines
	The magical “.” argument
	Defining Functions Using .
	Anonymous Functions
	Other Pipeline Operations

	Coding and Naming Conventions
	Exercises
	Mean of Positive Values
	Root Mean Square Error

	Chapter 2: Reproducible Analysis
	Literate Programming and Integration of Workflow and Documentation
	Creating an R Markdown/knitr Document in RStudio
	The YAML Language
	The Markdown Language
	Formatting Text
	Cross-Referencing
	Bibliographies
	Controlling the Output (Templates/Stylesheets)

	Running R Code in Markdown Documents
	Using Chunks when Analyzing Data (Without Compiling Documents)
	Caching Results
	Displaying Data

	Exercises
	Create an R Markdown Document
	Produce Different Output
	Add Caching

	Chapter 3: Data Manipulation
	Data Already in R
	Quickly Reviewing Data
	Reading Data
	Examples of Reading and Formatting Datasets
	Breast Cancer Dataset
	Boston Housing Dataset
	The readr Package

	Manipulating Data with dplyr
	Some Useful dplyr Functions
	select(): Pick Selected Columns and Get Rid of the Rest
	mutate():Add Computed Values to Your Data Frame
	Transmute(): Add Computed Values to Your Data Frame and Get Rid of All Other Columns
	arrange(): Reorder Your Data Frame by Sorting Columns
	filter(): Pick Selected Rows and Get Rid of the Rest
	group_by(): Split Your Data Into Subtables Based on Column Values
	summarise/summarize(): Calculate Summary Statistics

	Breast Cancer Data Manipulation

	Tidying Data with tidyr
	Exercises
	Importing Data
	Using dplyr
	Using tidyr

	Chapter 4: Visualizing Data
	Basic Graphics
	The Grammar of Graphics and the ggplot2 Package
	Using qplot()
	Using Geometries
	Facets
	Scaling
	Themes and Other Graphics Transformations

	Figures with Multiple Plots
	Exercises

	Chapter 5: Working with Large Datasets
	Subsample Your Data Before You Analyze the Full Dataset
	Running Out of Memory During Analysis
	Too Large to Plot
	Too Slow to Analyze
	Too Large to Load
	Exercises
	Subsampling
	Hex and 2D Density Plots

	Chapter 6: Supervised Learning
	Machine Learning
	Supervised Learning
	Regression versus Classification
	Inference versus Prediction

	Specifying Models
	Linear Regression
	Logistic Regression (Classification, Really)
	Model Matrices and Formula

	Validating Models
	Evaluating Regression Models
	Evaluating Classification Models
	Confusion Matrix
	Accuracy
	Sensitivity and Specificity
	Other Measures
	More Than Two Classes

	Random Permutations of Your Data
	Cross-Validation
	Selecting Random Training and Testing Data

	Examples of Supervised Learning Packages
	Decision Trees
	Random Forests
	Neural Networks
	Support Vector Machines

	Naive Bayes
	Exercises
	Fitting Polynomials
	Evaluating Different Classification Measures
	Breast Cancer Classification
	Leave-One-Out Cross-Validation (Slightly More Difficult)
	Decision Trees
	Random Forests
	Neural Networks
	Support Vector Machines
	Compare Classification Algorithms

	Chapter 7: Unsupervised Learning
	Dimensionality Reduction
	Principal Component Analysis
	Multidimensional Scaling

	Clustering
	k-Means Clustering
	Hierarchical Clustering

	Association Rules
	Exercises
	Dealing with Missing Data in the HouseVotes84 Data
	Rescaling for k-Means Clustering
	Varying k

	Project 1
	Importing Data
	Exploring the Data
	Distribution of Quality Scores
	Is This Wine Red or White?

	Fitting Models
	Exercises
	Exploring Other Formulas
	Exploring Different Models
	Analyzing Your Own Dataset

	Chapter 8: More R Programming
	Expressions
	Arithmetic Expressions
	Boolean Expressions

	Basic Data Types
	The Numeric Type
	The Integer Type
	The Complex Type
	The Logical Type
	The Character Type

	Data Structures
	Vectors
	Matrix
	Lists
	Indexing
	Named Values
	Factors
	Formulas

	Control Structures
	Selection Statements
	Loops
	A Word of Warning About Looping

	Functions
	Named Arguments
	Default Parameters
	Return Values
	Lazy Evaluation
	Scoping
	Function Names Are Different from Variable Names

	Recursive Functions
	Exercises
	Fibonacci Numbers
	Outer Product
	Linear Time Merge
	Binary Search
	More Sorting
	Selecting the k Smallest Element

	Chapter 9: Advanced R Programming
	Working with Vectors and Vectorizing Functions
	ifelse
	Vectorizing Functions
	The apply Family
	apply
	lapply
	sapply and vapply

	Advanced Functions
	Special Names
	Infix Operators
	Replacement Functions

	How Mutable Is Data Anyway?
	Functional Programming
	Anonymous Functions
	Functions Taking Functions as Arguments
	Functions Returning Functions (and Closures)
	Filter, Map, and Reduce

	Function Operations: Functions as Input and Output
	Ellipsis Parameters

	Exercises
	between
	apply_if
	power
	Row and Column Sums
	Factorial Again
	Function Composition

	Chapter 10: Object Oriented Programming
	Immutable Objects and Polymorphic Functions
	Data Structures
	Example: Bayesian Linear Model Fitting

	Classes
	Polymorphic Functions
	Defining Your Own Polymorphic Functions

	Class Hierarchies
	Specialization as Interface
	Specialization in Implementations

	Exercises
	Shapes
	Polynomials

	Chapter 11: Building an R Package
	Creating an R Package
	Package Names
	The Structure of an R Package
	.Rbuildignore
	Description
	Title
	Version
	Description
	Author and Maintainer
	License
	Type, Date, LazyData
	URL and BugReports
	Dependencies
	Using an Imported Package
	Using a Suggested Package

	NAMESPACE
	R/ and man/

	Roxygen
	Documenting Functions
	Import and Export
	Package Scope Versus Global Scope
	Internal Functions
	File Load Order

	Adding Data to Your Package
	Building an R Package
	Exercises

	Chapter 12: Testing and Package Checking
	Unit Testing
	Automating Testing
	Using testthat
	Writing Good Tests
	Using Random Numbers in Tests
	Testing Random Results

	Checking a Package for Consistency
	Exercise

	Chapter 13: Version Control
	Version Control and Repositories
	Using git in RStudio
	Installing git
	Making Changes to Files, Staging Files, and Committing Changes
	Adding git to an Existing Project
	Bare Repositories and Cloning Repositories
	Pushing Local Changes and Fetching and Pulling Remote Changes
	Handling Conflicts
	Working with Branches
	Typical Workflows Involve Lots of Branches
	Pushing Branches to the Global Repository

	GitHub
	Moving an Existing Repository to GitHub
	Installing Packages from GitHub

	Collaborating on GitHub
	Pull Requests
	Forking Repositories Instead of Cloning

	Exercises

	Chapter 14: Profiling and Optimizing
	Profiling
	A Graph-Flow Algorithm

	Speeding Up Your Code
	Parallel Execution
	Switching to C++
	Exercises
	Project 2
	Bayesian Linear Regression
	Exercises: Priors and Posteriors
	Sample from a Multivariate Normal Distribution
	Computing the Posterior Distribution

	Predicting Target Variables for New Predictor Values

	Formulas and Their Model Matrix
	Working with Model Matrices in R
	Exercises
	Building Model Matrices
	Fitting General Models

	Model Matrices Without Response Variables
	Exercises
	Model Matrices for New Data
	Predicting New Targets

	Interface to a blm Class
	Constructor
	Updating Distributions: An Example Interface
	Designing Your blm Class
	Model Methods
	coefficients
	confint
	deviance
	fitted
	plot
	predict
	print
	residuals
	summary

	Building an R Package for blm
	Deciding on the Package Interface
	Organization of Source Files
	Document Your Package Interface Well
	Adding README and NEWS Files to Your Package
	README
	NEWS

	Testing
	GitHub
	Conclusions
	Data Science
	Machine Learning
	Data Analysis
	R Programming

	The End
	Acknowledgements

	Index

