E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI - 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC

DEPARTMENT OF CHEMISTRY

CBCS With OBE

BACHELOR OF SCIENCE

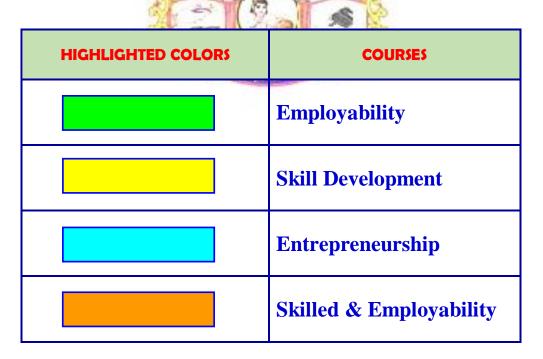
PROGRAMME CODE - K

COURSE STRUCTURE

(w.e.f. 2022 – 2023 Batch onwards)

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI $-625\ 014$.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC


CRITERION - I

1.1.3 Details of courses offered by the institution that focus on employability / entrepreneurship / skill development during the year.

Syllabus copies with highlights of contents focusing on Employability / Entrepreneurship / Skill Development

s. will at

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI -14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) (Re –accredited (3rd cycle) with Grade A⁺ and CGPA 3.51 by NAAC)

DEPARTMENT OF CHEMISTRY – UG (w.e.f. 2022– 2023 Batch onwards) CBCS with OBE

Vision

To build the vibrant and knowledgeable students community for careers in academia, industry, entrepreneur and government sectors through innovative teaching.

Mission

- ♣ To encourage students to face IIT-JAM, Entrance examinations for enroll M.Sc programme and other competitive examinations.
- ♣ To equip students become a successful women entrepreneur to run small scale industries like toiletry products and cosmetics.
- ♣ To impart quality chemical science education to enable the students to become an independent, competitive and professional graduates.

Programme Educational Objectives (PEOs): B.Sc. Chemistry

Sl. No.	Programme Educational Objectives
PEO1	To pursue further studies and able to work in various industries, research laboratories, schools and public sectors.
PEO2	To develop inter-social relationship and interpersonal skills in order to attain leadership qualities.
PEO3	Apply knowledge and understanding of Chemistry to identify problems and solutions in daily life.
PEO4	To possess skills of keen observation and drawing logical inferences from the practical experiments.
PEO5	Appear as a successful women entrepreneur to run small scale industries.

Programme Outcomes for Science Graduates

On completion of B.Sc., Programmes students will be able to

SI.No.	Programme Outcomes
PO1	Develop necessary foundation in fundamentals, aptitude, applications of sciences and other related subjects. Able to clear competitive examinations, appear with confidence and possess basic skills on the related subjects. Secure jobs in employment in Government / Private / Industry and entrepreneurship.
PO2	Receive basic experimental skills in the observation and study of nature, biological techniques, scientific research and demonstrate proficiency in critical analysis or creativity and provide scientific solutions to the problems of the society.
PO3	Enhance the digital knowledge of statistics and to understand its application in interpreting the obtained data.
PO4	Obtain knowledge with emerging trends in their disciplinary and inter- disciplinary areas. Usage of modern tools and software can also be put to use.
PO5	Lead lifelong learning & contribute sustainability to environment, equip students enough to take up higher studies up to research in various disciplines to become professionals.
PO6	Imbibe democratic, ethical, moral, social & spiritual values in the minds of the learners to become responsible citizens and build a healthy nation.

Programme Specific Outcome (PSOs)

PSO	Graduate Attributes	After completion of B.Sc Chemistry, the students will be able to	PO Addressed
PSO-1	Knowledge and Proficiency	Gain basic knowledge in fundamentals and applications of organic, inorganic, physical, analytical chemistry, nomenclature, stereochemistry, structures, reactivity, and mechanism of the chemical reactions and also in inter-disciplinary subjects such as Green, Nano, Environmental, Food chemistry, industrial chemistry, laboratory techniques, analytical clinical biochemistry, chemistry in everyday life, Pharmaceutical chemistry.	PO1
PSO-2	Problem analysis	Tackle problems and offer creative ideas based on analysis and critical thinking in all branches of Chemistry	PO2
PSO-3	Problem Solving	Apply the logical reasoning to find solutions for chemical problems	PO2
PSO-4	Modern tool usage	Impart knowledge in understanding and carrying out data analysis, use of library search tools, chemical simulation, drawing structures using computation software's	PO4
PSO-5	Social responsibility	Inculcate critical thinking and adopt healthier attitudes towards individual and society through the course of Chemistry	PO6
PSO-6	Lifelong learning	Develop life-long learning skills to pursue post graduate program in higher educational institutions and employment opportunities in chemistry fields through chemical science	PO5
PSO-7	Ethical & Moral and Spiritual Values	Develop Ethical and moral Values in the context of learning Chemistry to cater the business environment	PO6
PSO-8	Leadership, team work & Communication	Act as a team leader by contributing in laboratory, field based situation and industry. To make a graduate capable of expressing the chemistry subject through technical writing as well as through oral presentation	PO3

Qualification for Admission

Candidates should have passed the Higher Secondary Examination, Mathematics, Physics, Chemistry, Biology / Physics, Chemistry, Botany, Zoology as one of the stream, conducted by the Board of Higher Education, Government of Tamil Nadu, CBSC & ICSE or any other examination approved by Madurai Kamaraj University as equivalent.

Duration of the Course

The students shall undergo this prescribed course of study for the period of three academic years under Choice Based Credit System (CBCS) semester pattern with Outcome Based Education (OBE).

Medium of Instruction: English

System: Choice Based Credit System with Outcome Based Education Model

Courses of Study with Credit Distribution for B.Sc Chemistry

Category	No. of Courses	No. of Credits
Part-I	4	12
Part –II	4	12
Major Core Paper	12	51
Discipline Specific Elective Courses	2	8
Generic Elective Courses	10	18+18
Skill Enhancement Courses	6	12
Inter Disciplinary Courses	2	4
Ability Enhancement Compulsory Courses	2	4
NSS/Physical Education	1	1
Total	43	140

Nature of the Course

Courses are classified according to the following nature

- 1. Knowledge and skill oriented
- 2. Employability oriented
- 3. Entrepreneurship oriented

Outcome Based Education (OBE) & Assessment

Students understanding must be built on and assessed for wide range of learning activities, which includes different approaches and are classified along several basis, such as

1. Based on purpose:

- ➤ Continuous Assessment (internal tests, Assignment, seminar, quiz, Documentation, Case lets, ICT based Assignment, Mini projects administered during the learning process)
- > External Assessment (Evaluation of students' learning at the end of instructional unit)
- 2. Based on Domain Knowledge: (for UG Up to K4 levels) Assessment through K1, K2, K3 & K4

EVALUATION (THEORY) (PART I / PART II / PART III)

Internal (Formative) : 25 marks
External (Summative) : 75 marks
Total :100 marks

Formative Test (CIA-Continuous Internal Assessment): 25 Marks

Components	Marks
Test (Average of three tests)	20
(Conducted for 100 marks and converted into 20 marks)	
Assignment(Quiz/ Documentation/ Case lets/ ICT based	5
Assignment/ Mini Projects)	
Total	25

- ✓ Centralized system of Internal Assessment Tests
- ✓ There will be **Three Internal Assessment** Tests
- ✓ Duration of Internal assessment test will be 1 hour for Test I and 2 hours for Test II and III respectively.
- ✓ Students shall write **retest** with the approval of HOD on genuine grounds if they are absent.

Question Paper Pattern for Continuous Internal Assessment-Test I

Section		Marks
A-Multiple Choice Question	(3x1 mark)	3
B-Short Answer	(1x2 marks)	2
C-Either Or type	(1/2x 5 marks)	5
D-Open choice type	(1/2 x 10 marks)	10
	Total	20

Question Paper Pattern for Continuous Internal Assessment -Test II and III

Multiple choice for S	Marks	
A- Multiple Choice Question	(6x1 mark)	6
B-Short Answer	(2x2 marks)	4
C-Either Or Type	(2/4 x5 marks)	10
D-Open Choice Type	(2/3 x 10 marks)	20
	40	

Conducted for 100 marks and converted into 20 marks

Question Paper Pattern for Summative Examination

Section	Marks	
A- Multiple choice Questions with	10	
B-Short Answer without choice	(5x2 marks)	10
C-Either Or type	(5/10 x5 marks)	25
D-Open Choice type	(3out of 5x10 marks)	30
,	Total	75

In respect of Summative Examinations passing minimum is 36% for UG.

Distribution of Marks in % with K Levels CIA I, II, III & External Assessment

Blooms Taxonomy		External Assessment		
	I	II	III	
Knowledge (K1)	12%	12%	12%	13%
Understanding (K2)	44%	22%	22%	21%
Apply (K3)	44%	33%	33%	33%
Analyze (K4)	-	33%	33%	33%

Latest amendments and revision as per **UGC** and **TANSCHE** norms is taken into consideration in curriculum preparation.

BLUE PRINT FOR INTERNAL ASSESSMENT – I Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

	11 0					0	•		
		la la	Section	A	Section	В	Section C	Section D	
SI. No	CLOs	K- Level	MCQs (No Choice)		Short Answers (No Choice)		(Either or Type)	(Open choice)	Total
			No. of	K-	No. of	K-			
			Questions	Level	Questions	Level			
1	CLO 1	Up to K3	3	(K1)	1	K1	2 (K2) (Each set of questions must be in the same level)	1 (K2) & 2 (K3)	
	No. of Questions to be asked		3		1		2	3	9
No. of Questions to be answered					1		1	1	6
Marks for each question		1		2		5	10	-	
	tal Marks th section		3		2		5	10	20

BLUE PRINT FOR INTERNAL ASSESSMENT – II Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

		Section	1 A	Section	В	Section C	Section D		
SI. No	CLOs	K- Level	MCQs (No Choice)		Short Answers (No Choice)		(Either or Type)	(Open choice)	Total
			No. of	K-	No. of	K-			
			Questions	Level	Questions	Level			
1	CLO 2	Up to K3	3	(K1/ K2)	1	(K1/ K2)	2 (K2) / 2 (K4) (Each set of	2 (K3) & 1 (K4)	
2	CLO 3	Up to K4	3	(K1/ K2)	1	(K1/ K2)	questions must be in the same level)		
	of Quesasked	tions to	6		2		4	3	15
	of Ques		6		2		2	2	12
Marks for each question		1		2		5	10	-	
	tal Marks tion	for each	6		4		10	20	40

BLUE PRINT FOR INTERNAL ASSESSMENT – III Articulation Manning - K Levels with Course Learning Outcomes (CLOs)

	Articu	lation M	apping - K	Leveis	with Coul	rse Lea	rning Outcom	es (CLOs)	
		e	Section	ı A	Section	ion B Section		Section D		
SI. No CLOs		CLOS	CLOs K- Level		Qs pice)	Short Answers (No Choice)		(Either or Type)	(Open choice)	Total
			No. of Questions	K- Level	No. of Questions	K- Level				
1	CLO 4	Up to K3	3	(K1/ K2)	1	(K1/ K2)	2 (K2) / 2 (K4)	2 (K3) &		
2	CLO 5	Up to K4	3	(K1/ K2)	1	(K1/ K2)	(Each set of questions must be in the same level)	1(K4)		
	No. of Questions to be asked		6		2		4	3	15	
No. of Questions to be answered		6		2		2	2	12		
Marks for each question		1		2		5	10	-		
Tot	al Marks fo	or each	6		4		10	20	40	

Distribution of Marks with Choice K Levels CIA I, CIA II and CIA III

CIA	K Levels	Section -A MCQ (No choice)	Section -B Short Answer (No choice)	Section -C (Either or Type)	Section –D (Open choice)	Total Marks	% of Marks
	K1	3	2	-	-	5	12
I	K2	-	-	10	10	20	44
	K3	-	-	-	20	20	44
	K4	-	-	-	-	-	-
	Marks	3	2	10	30	45	100
	K1	5	2	-		7	12
II	K2	1	2	10	-	13	22
	К3	-	-	-	20	20	33
	K4	-	-	10	10	20	33
	Marks	6	4	20	30	60	100
	K1	5	2	-		7	12
III	K2	1	2	10	-	13	22
	K3	-	-	-	20	20	33
	K4	-	-	10	10	20	33
	Marks	6	4	20	30	60	100

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs) for External Assessment

		K- Level	Sectio	n A	Section	n B	Section	Section	
Sl. No	CLOs		MCQs (No choice)		Short Answers (No choice)		C (Either/	D (open	Total
01			No. of	K-	No. of	K-	or Type)	choice)	
			Questions	Level	Questions	Level	1 ypc)		
1	CLO 1	Up to K3	2	K1/K2	1	K1/K2	2 (K3 &	1(K2)	
							K3)		
2	CLO 2	Up to K3	2	K1/K2	1	K1/K2	2(K2 &	1(K3)	
							K2)		
3	CLO 3	Up to K4	2	K1/K2	1	K1/K2	2 (K4	1(K4)	
							&K4)		
4	CLO 4	Up to K 3	2	K1/K2	1	K1/K2	2 (K3 &	1(K3)	
		1					K3)	, ,	
5	CLO 5	Up to K 4	2	K1/K2	1	K1/K2	2 (K4 &	1(K4)	
							K4)		
No.	of Questic	ons to be	10		5		10	5	30
aske	d								
No.	of Questic	ons to be	10		5		5	3	23
	answered								
Mar	Marks for each question		1		2		5	10	
Tota	Total Marks for each		10		10		25	30	75
secti	on								(Marks)

Distribution of Section-wise Marks with K Levels for External Assessment

K Levels	Section A (MCQ'S) (No choice)	Section B (Short Answer) (No choice)	Section C (Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	9	6	-		15	13
K2	1	4	10	10	25	21
К3	-	-	20	20	40	33
K4	-	-	20	20	40	33
Total	10	10	50	50	120	100
Marks						

- K1- Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3- Application oriented- Solving Problems, Justifying the statement and deriving Inferences.
- K4- Examining, analyzing, presentation and make inferences with evidences.

EVALUATION (THEORY)

(PART IV - SBE & NME)

Internal (Formative): 25 marksExternal (Summative): 75 marks

Total :100 marks

Formative Test (CIA-Continuous Internal Assessment) : 25 Marks

Components	Marks
Test (Conducted for 50 marks and converted	25
into 25 marks)	

- ✓ There will be Only one Internal Assessment Test
- ✓ Duration of Internal assessment test will be 2 hour for Test
- \checkmark Students shall write retest with the approval of HOD on genuine grounds

if

they are absent.

Question Paper Pattern for Continuous Internal Assessment-Test

Section	Marks
A-Multiple Choice Question (5x1 mark)	5
B-Short Answer (5x2 marks)	10
C-Either Or type (3x 5 marks)	15
D-Open choice type (2/3 x 10 marks)	20
Total	50

Conducted for 50 marks and converted into 25 marks

Question Paper Pattern for External Examination

Section	Marks
A-Multiple Choice Question (10x1 mark)	10
B-Short Answer (5x2 marks)	10
C-Either Or type (5x 5 marks)	25
D-Open choice type (3/5 x 10 marks)	30
Total	75

BLUE PRINT FOR INTERNAL ASSESSMENT

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

			Section A		Secti	on B	Section C	Section D	Total
SI. No	CLO s	K- Level	MCQs (No Cho	ice)	Short Answers (No Choice)		(Either or Type)	(Open Choice)	To
			No. of	K-	No. of	K-			
			Questi	Leve	Questi	Level			
			ons	1	ons				
1.	CLO1	Up to K 3	1		1		4(K2)	1(K2)	
2.	CLO2	Up to K 3	1		1		&	&	
3.	CLO3	Up to K 3	1		1		2(K3)	2(K3)	
4	CLO4	Up to K 3	1	K1	1	K1	(Each set of		
5	CLO5	Up to K 3	1		1		questions		
							must be in		
							the same		
	L		_		_		level)	_	
No. aske	-	ons to be	5		5		6	3	19
	No. of Questions to be answered		5		5		3	2	15
Mar	ks for eac	ch question	1		2		5	10	
Tota secti		for each	5		10		15	20	50

Distribution of Marks with K Levels - CIA

CIA	K Levels	Section A MCQ	Section B (Short Answers)	Section C (Either/Or Choice)	Section D (Open Choice)	Total Marks	% of Marks
	K1	5	10	-	-	15	
							20
I	K2	-	-	20	10	30	
							40
	K3	-	-	10	20	30	
							40
	K4	-	-	-	-	-	
							-
	Marks	5	10	30	30	75	100

.

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs) for External Assessment

			Section	A	Section	ı В			
SI. No	CLOs	K- Level	MCQ)s	Short An	swers	Section C (Either/or	Section D (Open	Total
S 2		20,01	No. of	K-	No. of	K-	Choice)	Choice)	
			Questions	Level	Questions	Level			
1	CLO 1	Up to K3	2		1		3(K2) &		
2	CLO 2	Up to K3	2	K1	1	K1	2(K3) (Each set	2(K2)	
3	CLO 3	Up to K3	2		1		of questions	& 3(K3)	
4	CLO 4	Up to K 3	2		1		must be in the same		
5	CLO 5	Up to K 3	2		1		level)		
No. aske	of Questic	ons to be	10		5		10	5	30
	of Questic wered	ons to be	10		5		5	3	23
	ks for eacl stion	n	1		2		5	10	
Tota secti	al Marks fo ion	or each	10		10		25	30	75

Distribution of Section-wise Marks with K Levels for External Assessment

K Levels	Section A (MCQ'S)	Section B (Short Answer)	Section C (Either/or)	Section D (Open Choice)	Total Marks	% of Marks without choice
K1	10	10	-		20	16
K2	-	-	30	20	50	42
К3	-	-	20	30	50	42
Total Marks	10	10	50	50	120	100

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI -14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) (Re –accredited (3rd cycle) with Grade A⁺ and CGPA 3.51 by NAAC)

DEPARTMENT OF CHEMISTRY – UG

(With Allied Mathematics and Allied Physics) CBCS with OBE

COURSE STRUCTURE

(w.e.f. 2022 – 2023 Batch onwards)

					rs)	Mai	rks All	otted	
Semester	Part	Course Code	Title of the Course	Teaching hrs (Per week)	Duration of Exam (hrs)	CIA	SE	Total	Credits
	I	22OU1TA1	Part I: Tamil	6	3	25	75	100	3
I	II	22OU2EN1	Part II: English	6	3	25	75	100	3
	III	22OUCH11	Core: General Chemistry-I	4	3	25	75	100	4
	III		(Core : Practical – I Semi Micro) (Inorganic Qualitative Analysis)	2	-	-	-	-	-
	III	22OUCHGEMA1	(GEC: Mathematics –I) (Theory of equations, (Trigonometry, Analytical) (Geometry 3D and Vector) (Calculus)	6	3	25	75	100	4
	IV	220UCHSE11	SEC: Good Laboratory Practices	2	3	25	75	100	2
	IV	22OUCHSE12	SEC: Pharmaceutical Chemistry	2	3	25	75	100	2
	IV	22OUCHID1	IDC: Chemistry in Everyday Life	2	3	25	75	100	2
П	I	22OU1TA2	Part I: Tamil	6	3	25	75	100	3
	II	22OU2EN2	Part II: English	6	3	25	75	100	3
	III	22OUCH21	Core: General Chemistry-II	4	3	25	75	100	4
	III	22OUCH2P	(Core: Practical – I Semi Micro) (Inorganic Qualitative Analysis)	2	3	40	60	100	2

	III			6	3	25	75	100	5
	111	22OUCHGEMA2	GEC : Mathematics— II	U)	23	13	100	3
			Calculus, Differential Equations						
			and Applications						
				2	3	25	75	100	2
	IV	220UCHSE21	SEC : Industrial Chemistry						
				2	3	25	75	100	2
	IV	22OUCHSE22	SEC: Analytical Clinical						
	***		Biochemistry	2		25	7.5	100	2
	IV	22OUCHID2	IDC: Food Chemistry	2	3	25	75	100	2
		22000111102	ibc. Food Chemistry						
III	I	22OUITA3	Part I: Tamil	6	3	25	75	100	3
				6	3	25	75	100	3
	II	22OU2EN3	Part II: English	0	3	23	13	100	3
			Ture II. English	4	3	25	75	100	4
	III	22OUCH31	Core: General Chemistry-III						
			,	2	-	-	-	-	-
	III		Core : Practical – II Volumetric						
			Analysis						
	111	22OUCHGEMA3	CEC Mathematica III	6	3	25	75	100	4
	III	2200CHGEMAS	GEC: Mathematics–III Algebra and Statistics						
			Algebra and Statistics	4	3	25	75	100	4
		22OUCHGEPH3	GEC : Physics –I		3	23	13	100	7
	III		Mechanics and properties of						
			matter						
	III			2	-	-	-	-	-
			GEC: Physics Practical –I						
	I	220111744	D 41 77 11	6	3	25	75	100	3
	II	22OUITA4	Part I: Tamil	6	3	25	75	100	3
	11	22OU2EN4	Part II: English	0	3	23	13	100	3
	III	220022111	Tart II. English	4	3	25	75	100	4
	111	22OUCH41	Core: General Chemistry-IV			23	13	100	
IV	III			2	3	40	60	100	2
		22OUCH4P	Core: Practical – II Volumetric						
			Analysis						
	III	2201101101224	a-a	6	3	25	75	100	5
		22OUCHGEMA4	GEC: Mathematics– IV						
	III		Linear Programming	4	3	25	75	100	4
	1111	22OUCHGEPH4	GEC: Physics- II	4	3	23	13	100	4
			Thermal Physics						
	III			2	3	40	60	100	1
		22OUCHGEPH4P	GEC: Physics Practical-I			-			
	III			4	3	25	75	100	4
		22OUCH51	Core: Organic Chemistry-I						
	III	2201101152		4	3	25	75	100	4
	177	22OUCH52	Core: Physical Chemistry-I	<u> </u>		2.5	7.	100	
	III		DSECT	4	3	25	75	100	4
	<u> </u>		DSEC I]		

	III			4	6	40	60	100	5
V		22OUCH5P	Core: Practical – III Gravimetric Estimation and Organic Preparations	7	O	40	00	100	3
	III		Core: Practical – I Physical Chemistry Experiments	4	ı	ı	ı	ı	-
	III	22OUCHGEPH5	GEC: Physics- III Electricity and Electronics	4	3	25	75	100	4
	III		GEC : Physics Practical-II	2	-	-	-	-	-
	IV	22OUCHSE5	SEC: Cheminformatics	2	3	25	75	100	2
	IV	22OUAECEV5	AECC: Environmental Studies	2	3	25	75	100	2
	III	22OUCH61	Core: Organic Chemistry -II	4	3	25	75	100	4
	III	22OUCH62	Core: Physical Chemistry-II	4	3	25	75	100	4
VI	III		DSEC II	4	3	25	75	100	4
	III	22OUCH61P	Core: Practical –IV Physical Chemistry Experiments	4	6	40	60	100	5
	III	22OUCH62P	Core: Practical – V Organic Analysis & Estimation	4	6	40	60	100	5
	III	22OUCHGEPH6	GEC : Physics- IV Optics	4	3	25	75	100	4
	III	22OUCHGEPH6P	GEC: Physics Practical-II	2	3	40	60	100	1
	IV	22OUCHSE61	SEC: Green and Nano Chemistry	2	3	25	75	100	2
	IV	22OUAECVE6	AECC: Value Education	2	3	25	75	100	2
	V	22OU5NS4/ 22OU5PE4	Extension Activities NSS/ Phy. Education	-	3	25	75	100	1
			Total	180					140

GEC: Generic Elective Course
SEC: Skill Enhancement Course

 \boldsymbol{DSEC} : Discipline Specific Elective Course

AECC: Ability Enhancement Compulsory Course

IDC: Inter Disciplinary Course

DSEC: Discipline Specific Elective Course

Semester V (DSEC I- Choose any one)

1. Inorganic and Analytical Chemistry - 22OUCHDSE5A

2. Chemistry of Materials - 22OUCHDSE5B

Semester VI (DSEC II- Choose any one)

1. Inorganic and Applications of Computer in Chemistry - 22OUCHDSE6A

2. Diffraction Methods and Applications - 22OUCHDSE6B

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI -14

(An Autonomous Institution - Affiliated to Madurai Kamaraj University) (Re-Accredited with (3rd cycle) A⁺ & CGPA 3.51 Grade by NAAC)

DEPARTMENT OF CHEMISTRY-UG

Generic Elective Course (For B.Sc., N&D) CBCS with OBE

COURSE STRUCTURE

(w.e.f. 2022 – 2023 Batch onwards)

r	Course Code	Title of the Course		Duration of Exam (hrs.)	Marks a	Credits		
Semester				Duratio (CIA	SE	Total	O
	22OUNDGECH3	GEC : Chemistry-I Bio Chemistry	4 3		25	75	100	4
III		GEC: Chemistry Practical - I Inorganic Qualitative Analysis		-	-	-	-	
IV	22OUNDGECH4	GEC : Chemistry-II Environmental and Organic Chemistry	4	3	25	75	100	4
11	22OUNDGECH4P	GEC: Chemistry Practical - I Inorganic Qualitative Analysis	2	3	40	60	100	1
	22OUNDGECH5	GEC : Chemistry-III Applied Chemistry	4	3	25	75	100	4
V		GEC : Chemistry Practical -II Volumetric Analysis	2	-	-	-	-	-
VI	22OUNDGECH6	GEC :Chemistry-IV Applied and Medicinal		3	25	75	100	4
	22OUNDGECH6P	GEC : Chemistry Practical - II Volumetric Analysis	2	3	40	60	100	1

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI -14

(An Autonomous Institution - Affiliated to Madurai Kamaraj University) (Re-Accredited with (3^{rd} cycle) A^+ & CGPA 3.51 Grade by NAAC)

DEPARTMENT OF CHEMISTRY-UG

Generic Elective Course (For B.Sc., Physics) CBCS with OBE

COURSE STRUCTURE

(w.e.f. 2022 – 2023 Batch onwards)

				am	Marks allotted			
Semester	Course Code Title of the Course		Teaching hrs. (Per week)	Duration of exam (hrs)	CIA	SE	Total	Credits
Ш	220UPHGECH3 GEC: Chemistry –I Physical Chemistry		4	3	25	75	100	4
111		GEC: Chemistry Practical - I Inorganic Qualitative Analysis	2	-	-	-	-	
137	22OUPHGECH4	GEC: Chemistry –II Organic and Physical Chemistry	4	3	25	75	100	4
IV	22OUPHGECH4P	GEC: Chemistry Practical -I Inorganic Qualitative Analysis	2	3	40	60	100	1
v	22OUPHGECH5	GEC : Chemistry –III Inorganic, Physical and Medicinal Chemistry	4	3	25	75	100	4
•		GEC: Chemistry Practical - II Volumetric Analysis	2	-	-	-	-	-
371	22OUPHGECH6	GEC : Chemistry –IV Analytical and Inorganic Chemistry	4	3	25	75	100	4
VI	22OUPHGECH6P	GEC: Chemistry Practical - II Volumetric Analysis	2	3	40	60	100	1

NOTE:

The students are permitted to obtain additional credits (Optional)

- 1. MOOCs / SWAYAM / NPTEL Courses (Online)
- 2. Project

Year	Semester	Title	Duration of Study	Credit
III	VI	Project title	6 months	1

Compulsory Courses:

Year	Semester	Nature of Course	Course Code	Title of the Course	Hours	Offered to students of
I	I	Add on Course	22CHAOCP	Water Analysis Lab in Water Analysis	30	I B.Sc., Chemistry
II	III&IV	Certificate Course	22CHC	Small Scale Industrial Chemicals	90	II year students of all other disciplines
			22CHCP	Lab in Small Scale Industrial Chemicals		
III	V	Value Added Course	22CHVACP	Cosmetic Products Lab in Cosmetic Products	30	III B.Sc., Chemistry

Dep	Department of Chemistry				Class: I B.Sc			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/			
					Week			
I	Core	22OUCH11	General Chemistry -I	4	4	25	75	100

Nature of the Course							
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship Oriented					
✓							

Course Objectives:

- 1. To outline the fundamental concepts of organic chemistry.
- 2. To gain knowledge about electronic effects, bonding and its influences.
- 3. To understand about the atomic structure and periodic properties.
- 4. To compare the hybridization and shapes of simple inorganic molecules based on VB, VSEPR and MO theories.
- 5. To discuss the gas laws, various types of molecular velocities and explain the behavior of real gas.

Course Content:

Unit -- I Fundamentals of Organic Chemistry: Classification of organic compounds-differences between organic and inorganic compounds- IUPAC system of nomenclature of common organic compounds (upto C-10)- alkanes, alkenes, alkynes, cycloalkanes and aromatic compounds - Naming of organic compounds with one functional group- halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds (Both aliphatic and aromatic) -Naming of compounds with two functional groups - Naming of heterocyclic compounds containing one hetero atoms present in five/six membered rings-calculation of empirical and molecular formulae-definition and problems-Hybridization and geometry of molecules (methane, ethylene and acetylene) -bond angle, bond length, bond strength of C-H and C-C bonds.

Unit -- II Basic Concepts of Organic Compounds: Vander Waal's interactions-hydrogen bonds- inter & intra molecular forces and their effects on physical properties -electronic effects -inductive effect, resonance effect -drawing of resonance structures -conditions for resonance -stability of resonance structures, hyper conjugation, electromeric effect, steric

effect- Dissociation of bonds -homolysis and heterolysis –preparation and properties of radicals, carbocations and carbanions- stability of radicals, carbocations and carbanions- attacking reagents – nucleophiles and electrophiles-Types of organic reactions-electrophilic, nucleophilic addition, substitution and elimination reactions (elementary idea with examples).

Unit -- III Atomic Structure and Periodic Properties: Introduction to atomic structure-Rutherford concept and its draw backs-Planck's quantum theory -Bohr's model of hydrogen atom (no derivation)-atomic orbitals-shapes of s, p and d- orbitals- Quantum numbers- Principal, Azimuthal, Magnetic and Spin quantum numbers and their significance - Pauli's exclusion principle — Hund's rule- Aufbau Principle, (n+l) rule-Stability of half-filled and completely filled orbitals-inert pair effect-Periodic properties: Classification of elements as s, p, d and f-block elements- Periodic table anomalies and variations in atomic radius, ionic radius, electronic configuration, electron affinity and electro negativity, ionization energy and metallic character of elements along the group and periods and their influences on stability, colour, coordination number, geometry, physical and chemical properties- Factors affecting the electron affinity and ionization energy.

Unit -- IV Chemical Bonding: Ionic bond-general properties of ionic compounds - Lattice energy-Born-Haber Cycle-Polarizing power and Polarizability-Covalent character of ionic compounds -Fajan's rules -Covalent bond -structure and bonding of homo and heteronuclear molecules -Valence bond theory- orbital overlap-hybridization- sp³, sp², sp - sigma and pi bonds- VSEPR Theory -postulates - Shapes of simple inorganic molecules (BeCl₂, BF₃, PCl₅, SF₆, H₂O, NH₃)- MO Theory-Bonding and anti-bonding orbital's-Applications of MO theory H₂, He₂, N₂, O₂, HF and CO molecules-Comparison of VB and MO Theories.

Unit -- V Gaseous State: Postulates of Kinetic theory of gases - gas laws (derivation not required) – Maxwell distribution of molecular velocities-equation-graphical representation (derivation not required)- Temperature dependence of these distributions -Definition of Most probable velocity, Average velocity, RMS velocity - collision diameter, collision number, collision frequency, Mean free path of molecules- reason for deviation of real gases from ideal behavior – compressibility factor- Van der Waals equation of state for real gases –. Boyle temperature-Law of corresponding states and reduced equation of state.

Books for Study:

- 1. Jain M.K. Sharma S.C., (2009), "Modern Organic Chemistry", Vishal Publishing Co., Jalandhar.
- 2. Madan. R. D., (2011), "Modern Inorganic Chemistry," 3rd Revised Edition, S. Chand & Company Ltd., New Delhi.
- 3. Puri B.R., Sharma L.R.and Madan Pathania S., (2009), "*Principles of Physical Chemistry*", Vishal Publishing Co, Jalandhar.

Books for Reference:

- 1. Finar I. L., (2011), "*Organic Chemistry*" Volume I, Pearson Education (Singapore) Pvt. Ltd, Indian Branch, New Delhi.
- 2. Puri B.R., Sharma L.R., Kalia K.C., (2017), "Principles of Inorganic Chemistry," 23rd Edition, Shoban Lal Nagin Chand & Co., New Delhi.
- 3. Morrision R.T. and Boyd R.N., (2011), "*Organic Chemistry*", 7th Edition, Dorling Kindersley Pvt. Ltd., New Delhi.
- 4. Soni P.L. and Dharmarha O.P., (2001), "Text Book of Physical Chemistry", Sultan Chand & Sons, New Delhi.
- 5. Tewari K.S., Vishnoi N. K. and Mehotra S.N., (2001), "A Text Book of Organic Chemistry", 1st Edition, Vikas Publishing House Pvt. Ltd., New Delhi.

Web Resources/e-books:

- 1. https://nptel.ac.in./courses/104/106/104106119/
- 2. https://www.askiitians.com/revision-notes/chemistry/gaseous-state/
- 3. https://www.khanacademy.org/science/chemistry/periodic-table
- 4. https://www.khanacademy.org/science/chemistry/chemical-bonds#hybridization-and-hybrid-orbitals-chemistry

Pedagogy:

Chalk and Talk method, Power point Presentations, Seminar, Group Discussion, Quiz through ICT-Mode

Rationale for nature of Course:

Knowledge and Skill:

This course will enable the students to name the organic molecules by apply IUPAC system, to draw the IUPAC system of organic molecules, to acquired knowledge about the

gas law governing the physical and chemical behavior of gases, to recall the atomic structure, periodic table and its elements, current bonding models for simple organic and inorganic molecules in order to predict.

Activities to be given:

- 1. The basic study of chemical bonding helps the students to understand the bonding nature of organic compounds.
- 2. To identify and compare the colour and properties of various inorganic substances using laboratory procedure.
- 3. To construct the structure and bonding of organic and inorganic molecules using atomic model set.
- 4. The concept of gas laws and real gases were explained by doing small experiments and chart ork.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level
		(According to Bloom's
		Taxonomy)
CLO 1	Apply IUPAC concept to name the organic molecules	K1 to K4
CLO 2	Identify the geometry and stability of organic intermediates	K1 to K4
	formed by homolytic and heterolytic cleavages	
CLO 3	State the fundamental concepts of atomic structure, explain	K1 to K4
	the periodic properties and its periodic variations	
CLO 4	Illustrate the formation of chemical bonding, compare VB	K1 to K4
	theory and MO theory	
CLO 5	Recognize kinetic theory of ideal gases, gas laws,	K1 to K4
	Vanderwaal's equation	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	1	2	3	1
CLO2	3	2	1	2	3	1
CLO3	3	3	2	2	3	1
CLO4	3	3	2	2	3	1
CLO5	3	3	3	2	3	1

1-Basic Level 2- Intermediate Level 3- Advanced Level

LESSON PLAN: TOTAL HOURS (60 Hrs)

Unit	Description	Hours	Mode
I	Classification of organic compounds- differences between organic and inorganic compounds- IUPAC system of nomenclature of common organic compounds (upto C-10)- alkanes, alkenes, alkynes, cycloalkanes and aromatic compounds	3	Chalk and Talk, PPT
	Naming of organic compounds with one functional group- halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds (Both aliphatic and aromatic) -Naming of compounds with two functional groups - Naming of heterocyclic compounds containing one hetero atoms present in five/six membered rings.	4	Chalk and Talk, PPT
	Calculation of empirical and molecular formulae- Hybridization and geometry of molecules (methane, ethylene and acetylene) - bond angle, bond length, bond strength of C-H and C-C bonds.	3	Chalk and Talk, PPT
II	Vander Waal's interactions-hydrogen bonds- inter & intra molecular forces and their effects on physical properties -electronic effects -inductive effect, resonance effect -drawing of resonance structures -conditions for resonance -stability of resonance structures, hyper conjugation, electromeric effect, steric effect-	5	Chalk and Talk, PPT
	Dissociation of bonds -homolysis and heterolysis –preparation and properties of radicals, carbocations and carbanions- stability of radicals, carbocations and carbanions-attacking reagents – nucleophiles and electrophiles-Types of organic reactions-electrophilic, nucleophilic addition, substitution and elimination reactions (elementary idea with examples).	7	Chalk and Talk, PPT, group discussion
III	Introduction to atomic structure-Rutherford concept and its draw backs-Planck's quantum theory -Bohr's model of hydrogen atom (no derivation)-atomic orbitals-shapes of s, p and d- orbitals-Quantum numbers- Principal, Azimuthal, Magnetic and Spin quantum numbers and their significance - Pauli's exclusion	7	Chalk and Talk, PPT

	principle – Hund's rule- Aufbau Principle, (n+l) rule-Stability of half-filled and completely filled orbitals-inert pair effect Periodic properties: Classification of elements as s, p, d and f-block elements- Periodic table anomalies and variations in atomic radius, ionic radius, electronic configuration, electron affinity and electronegativity, ionization energy and metallic character of elements along the group and periods and their influences on stability, colour, coordination number, geometry, physical and chemical	7	Chalk and Talk, PPT,
IV	properties- Factors affecting the electron affinity and ionization energy. Ionic bond-general properties of ionic compounds - Lattice energy-Born-Haber Cycle-Polarizing power and Polarizability-Covalent character of ionic compounds -Fajan's rules -Covalent bond - structure and bonding of homo and heteronuclear molecules	4	Chalk and Talk, PPT and Seminar
	Valence bond theory- orbital overlap-hybridization- sp ³ , sp ² , sp - sigma and pi bonds- VSEPR Theory -postulates - Shapes of simple inorganic molecules (BeCl ₂ , BF ₃ , PCl ₅ , SF ₆ , H ₂ O, NH ₃).	6	Chalk and Talk, PPT and Virtual Lab.
	MO Theory-Bonding and anti-bonding orbital's-Applications of MO theory H_2 , H_2 , N_2 , O_2 , HF and CO molecules-Comparison of VB and MO Theories.	4	Chalk and Talk, PPT and Virtual Lab
V	Postulates of Kinetic theory of gases - gas laws (derivation not required) – Maxwell distribution of molecular velocities-equation-graphical representation (derivation not required)- Temperature dependence of these distributions.	4	Chalk and Talk, PPT
	Definition of Most probable velocity, Average velocity, RMS velocity - collision diameter, collision number, collision frequency, Mean free path of molecules- reason for deviation of real gases from ideal behavior – compressibility factor- Van der Waals equation of state for real gases –. Boyle temperature-Law of corresponding states and reduced equation of state.	6	Chalk and Talk, PPT
	Total Hours	60	

Course Designers: 1. Dr.(Mrs).S.Manimekalai

2. Dr.(Mrs).P.Bhuvaneswari

Dep	Department of Chemistry					Class: I B.Sc			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total	
					Hours/				
					Week				
I	Skill	22OUCHSE11	Good Laboratory	2	2	25	75	100	
	Enhancement		Practices						
	Course								

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship Oriented		
✓				

Course Objectives:

- 1. To outline the fundamental concepts of laboratory practices.
- 2. To gain knowledge about instrument techniques and laboratory preparation procedure.
- 3. To learn about gravimetric methods of analysis.
- 4. To study the purification techniques.
- 5. To acquire knowledge about principles and techniques of semi-micro methods.

Course content:

Unit -- I General Laboratory Practices: Common calculations in chemistry laboratories. Understanding the details on the label of reagent bottles. Preparation of solutions. Molarity and normality of common acids and bases. Dilutions. Percentage solutions. Molar, Molal and Normal solutions. Technique of handling micropipettes; Knowledge about common toxic chemicals and safety measures in their handling.

Unit --II Instrument Techniques and Laboratory Preparation Procedure: Use of micropipette, analytical balances, pH meter, conductivity meter, rotary evaporator, potentiometer. Use of purified water in lab experiments, Cleaning and drying of glasswares, Preparation of crystals from given salt. Preparation of Dyes-Methyl Orange, Bismark Brown, Malachite green and Indigo, Demonstration of preparation of material using Sol-gel procedure.

Unit -- III Gravimetric Methods of Analysis: Introduction- contamination of precipitates-Co-precipitation-types, post precipitation- differences between Co precipitation and post precipitation-precipitation from homogeneous solution-theory of precipitation-properties of a precipitate-general rules of precipitation-specific and selective precipitants-choice of precipitants.

Unit–IV General Purification Techniques: Purification of solid organic compounds-recrystallization, use of miscible solvents, use of drying agents and their properties, sublimation. Purification of liquids. Experimental techniques of distillation, fractional distillation, distillation under reduced pressure.

Unit --V Principles and Techniques of Semi-micro Methods: Aims of semi micro qualitative analysis – theory behind inorganic qualitative analysis – Dry reactions – precipitation reactions – Applications of solubility product principle in qualitative analysis – Complexation reaction – Oxidation and reduction reactions – Spot tests – preparation of solution for cation testing on semi micro scale – Removal of interfering ions in the analysis of cations – oxalate, borate, fluoride, chromate, phosphate and arsenite.

Books for Study:

- 1. Gopalan R. Subramanian. P.S., Rengarajan. K., (2005), "Elements of Analytical Chemistry", S. Chand & Sons, New Delhi.
- 2 .Venkateswaran V., Veeraswamy R. and Kulandaivelu A.R., (2007), "Basic Principles of Practial Chemistry", S. Chand & Sons, New Delhi.

Books for Reference:

- 1. Skoog D.A. West D.M. and Holler F.J., (1990), "Analytical Chemistry" 5th Edition Saunders College Publishing, Philadelphia.
- 2. Mendham J., (2009), Vogel's "Quantitative Chemical Analysis" Pearson.
- 3. Garner, W.Y., Barge M.S., Ussary. P.J., (1992), "Good Laboratory Practice Standards: Application for field and Laboratory studies", Wiley VCH.
- 4. Dash U.N., (1995), "Analytical Chemistry Theory and Practice", Sultan Chand and Sons Educational Publishers, New Delhi.
- 5. Svehla G. and Vogel's, (2012), "Qualitative Inorganic Analysis," Pearson Education.

Web Resource/e-Books:

- 1. https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_glpcm.pdf
- https://www.researchgate.net/profile/Mathew-Olaniyan-2/publication/317181728 LECTURE NOTES ON LABORATORY INSTRUME NTATION AND TECHNIQUES/links/592b2315aca27295a80b7793/LECTURE-NOTES-ON-LABORATORY-INSTRUMENTATION-AND-TECHNIQUES.pdf

- 3. https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/Unit%201%2062
 1.pdf
- 4. https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXI/chemistry/kelm202.pdf
- 5. https://www.ijddr.in/drug-development/laboratory-techniques-of-purification-and-isolation.pdf
- 6. http://www.demarcheiso17025.com/document/Guidelines%20for%20the%20valida tion%20and%20verification%20of%20quantitative%20and%20qualitative%20test %20methods.pdf

Pedagogy:

Chalk and Talk method, Power point Presentations, Seminar, Group Discussion, Quiz through ICT-Mode

Rationale for nature of Course:

Knowledge and Skill:

Students acquire lab knowledge on preparation of molar and normal solution, gain skill to handle the instruments, gravimetric methods, purification techniques, interfering ions separation in inorganic semi-micro qualitative analyses.

Employability Oriented: Take up employment in various chemical laboratories.

Activities to be given:

- 1. To prepare normal and molar solution of given substances in laboratory.
- 2. To predict the P^H value of consumer products using P^H meter.
- 3. To identify carcinogenic chemicals in laboratory.
- 4. To purify the impure substance using recrystallization method and sublimation process.
- 5. To analyze the inorganic mixture by semi-micro qualitative method.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level		
		(According to Bloom's		
		Taxonomy)		
CLO 1	Understand the basics concept of laboratory	K1 to K3		
	practice on the label of reagent bottles and			
	Preparation of mole and normal solutions.			
CLO 2	Explain about the various micropipette, analytical	K1 to K3		
	balances, pH meter, conductivity meter, rotary			
	evaporator, potentiometer			
CLO 3	Distinguish between co precipitation and post	K1 to K3		
	precipitation. Explain the type's precipitation.			
CLO 4	Classify recrystallization, use of miscible solvents,	K1to K3		
	use of drying agents and their properties,			
	sublimation			
CLO 5	Apply the solubility product principle in	K1 to K3		
	qualitative analysis Complexation reaction			
	Oxidation and reduction reactions.			

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	2	3	1
CLO2	3	3	2	2	3	1
CLO3	3	3	1	1	3	1
CLO4	3	3	1	1	3	1
CLO5	3	3	1	2	3	1

1-Basic Level

2- Intermediate Level 3- Advanced Level

LESSON PLAN: TOTAL HOURS (30 Hrs)

Unit	Description	Hours	Mode
Ι	Common calculations in chemistry laboratories. Understanding the details on the label of reagent bottles. Preparation of solutions. Molarity and Normality of common acids and bases. Dilutions. Percentage solutions	3	Chalk and Talk, PPT .
	Molar, Molal and Normal solutions. Technique of handling micropipettes; Knowledge about common toxic chemicals and safety measures in their handling.	2	Chalk and Talk, PPT
II	Use of micropipette, analytical balances, pH meter, conductivity meter, rotary evaporator, potentiometer. Use of purified water in lab experiments, Cleaning and drying of glassware's, Preparation of crystals from given salt	3	Chalk and Talk, PPT,
	Preparation of Dyes, Demonstration of preparation of material using Sol-gel procedure.	2	Chalk and Talk
III	III Introduction- contamination of precipitates-Co-precipitation- types, post precipitation- differences between Co precipitation and post precipitation precipitation from homogeneous solution-theory of precipitation- properties of a precipitate		Chalk and Talk, PPT,
			Chalk and Talk,
	General rules of precipitation-specific and selective precipitants- choice of precipitants.,	3	Chalk and Talk, PPT,
IV	Purification of solid organic compounds- recrystallization, use of miscible solvents, use of drying agents and their properties, sublimation.	3	Chalk and Talk,
	Purification of liquids. Experimental techniques of distillation, fractional distillation, distillation under reduced pressure.	2	Chalk and Talk, PPT,
V	Composition and functions of blood, blood coagulation. Anemia, Regulation,	3	Chalk and Talk, PPT,
	Estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin.	3	Chalk and Talk, PPT,
	Total hours	30	

Course Designer: Miss: K.Punitha

Department of Chemistry				Class: I B.Sc				
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/			
					Week			
I	Skill	22OUCHSE12	Pharmaceutical	2	2	25	75	100
	Enhancement		Chemistry					
	Course							

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship Oriented			
✓					

Course Objectives:

- 1. To know the pharmaceutical terms, and find out the symptoms and drugs for chronic diseases.
- 2. To understand sulpha drugs in antibacterial.
- 3. To provide the importance of analgesics and its classifications, and study the antipyretic drugs, drugs that influences CNS.
- 4. To study anaesthetics and its classifications, and provide the important aspects of cancer antineoplastics, diabetes and blood related factors.
- 5. To study vitamins and its classifications, physiological functions of harmones and enzymes.

Course Content:

Unit--I Basic Pharmaceutical Chemistry: Definition of the following terms: drug, pharmachophore, pharmacology, Pharmacopeia, bacteria, virus and vaccine. Causes, symptoms and drug for anemia, jaundice, cholera, malaria and filarial. Indian Medicinal plants and uses – Tulasi, Neem, Kizhanelli, Mango, Semparuthi, Adadodai and Thoothvelai.

Unit—II Antibacterials: Sulpha drugs-examples and actions-prontosil, sulphathiazole, sulphafurazole. Antibiotics-definition and action of penicillin, streptomycin, chloramphenicol, erythromycin-tetracyclin – SAR of chloramphenicol only. Antiseptics and disinfectans – definition and distinction – phenolic compounds, chlorocompounds and cationic surfactant.

Unit--III Analgesics and CNS stimulants: Analgesics: Definition and Actions – narcotic and non- narcotic – morphine and its derivatives, pethidine and methodone – disadvantages and uses. Antipyretic analgesics - salicylic derivative, paracetamol, ibuprofen. Drugs affecting CNS – Definition, distinction and examples for tranquilisers, sedatives, hypnotics, psychedelic drugs – LSD, Hashish – their effects.

Unit-- IV Anasthetics and Drugs for Chronic diseases: Anaesthetics - definition – local and general – volatile nitrous oxide, ether, Chloroform, cyclo propane – uses and disadvantages – non – volatile intravenous – thiopental sodium, methohexitone, propanidid. Causes, medicines and their mode of action for the treatment of cancer – antineoplastics – diabetes – hypoglycemic agents AIDS – AZT, DDC. Blood: Grouping, composition, Rh factor, blood pressure, hyper tension and hypotension.

Unit-- V Vitamins, Harmones and Enzymes: Vitamins – fat soluble vitamins – (i) vitamin A; (ii) vitamin D; (iii) vitamin B complex; (iv) vitamin C; (V) vitamin E; (vi) vitamin K; (vii) vitamin P. Hormones – Introduction, properties and function of hormones, chemical nature of hormones. Physiological function of some harmones: Adrenaline, thyroxin, oxytoxin, insulin, the sex harmones. Enzymes – Chemical nature of enzymes, classification of enzymes, properties of enzymes, mechanism of enzyme action. Action of Co-enzymes.

Books for Study:

- 1. Bagavathi sundari.K., (2008), "Applied Chemistry", MJP Publishers, Chennai.
- 2. Vhenchu Lakshmi N.V., (2013), "*Pharmaceutical Inorganic Chemistry*", Theory and Practice, Dorling Kindersley Pvt. Ltd., India.
- 3. Roseline.A., (2011), "Pharmacognosy", MJP Publishers, Chennai.

Books for Reference:

- 1. Jayashree Ghosh, (2012), "A Text Book of Pharmaceutical Chemistry", 3rd Edition, S.Chand & Company LTD, New Delhi.
- 2. Vhenchu Lakshmi. N.V, (2013), "*Pharmaceutical Inorganic Chemistry*", Theory and Practice, Dorling Kindersley Pvt. Ltd., India.
- 3. Tisdale, S.L., Nelson, W.L. and Beaton, J. D., (1990), "Soil Fertility and Fertilizers!", Macmillian Publishing Company, New York.

- 4. Joseph E. and Rice, (2014), "Organic Chemistry Concepts and Applications for Medicinal Chemistry", Academic Press.
- 5. David G. and Watson, (2012), "Pharmaceutical Analysis-A Textbook for Pharmacy Students and Pharmaceutical Chemists", 3rd Edition, Elsevier.

Web Resource/E-Books:

- https://www.fpharm.uniba.sk/uploads/media/Seminar_1_from_Pharmaceutical_che mistry_I_02.pdf
- 2. https://www.sciencedirect.com/topics/chemistry/antibacterial-agent
- 3. https://www.drugs.com/drug-class/central-nervous-system-agents.html
- 4. https://www.asahq.org/madeforthismoment/anesthesia-101/types-of-anesthesia/anesthesia-risks/
- 5. https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-2007-958715.pdf
- 6. https://downloads.lww.com/wolterskluwer_vitalstream_com/samplecontent/978078
 https://downloads.lww.com/wolterskluwer_vitalstream_com/samplecontent/978078
 https://downloads.lww.com/wolterskluwer_vitalstream_com/samplecontent/978078
 https://downloads.lww.com/wolterskluwer_vitalstream_com/samplecontent/978078
- 7. <u>file:///D:/Users/Intel/Downloads/Pharmaceutical%20chemistry1%20(Inorganic)%2</u> <u>0By%20Mohammed%20Ali%20.pdf</u>

Pedagogy:

Chalk and Talk, PPT, Group Discussion, Quiz, Virtual labs.

Rationale for nature of Course:

Knowledge and Skill:

- 1. To understand the basic terms involved in pharmaceutical chemistry
- 2. To study the sulpha drug and identify the different types of drugs
- 3. To acquire the knowledge about the Analgesics and CNS stimulants
- 4. To study the students may apply their skills and knowledge to a variety of areas, such as development of Anasthetics and drugs to treat rare diseases.
- 5. To study the different types of Vitamins and Harmones in physiological functions.

Entrepreneurship Oriented: Students will get employment in pharmaceutical industries.

Activities to be given:

- 1. To find out the chemicals components present in the drugs that is commercially available.
- 2. To list out the classification of various drugs.
- 3. To identify different types of analgesic drugs used in different diseases.
- 4. Find the vitamins present in food sources.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level (According
		to Bloom's Taxonomy)
CLO 1	Students can able to study about the important terminologies of	K1 to K3
	Pharma Chemistry, and brings about the knowledge towards	
	Indian Medicinal Plants.	
CLO 2	Students can able to know about Sulpha drugs, Antibiotics and	K1 to K3
	their important features, and gives the clinical uses of	
	Antiseptics and disinfectants.	
CLO 3	Gives a knowledge towards the Basic information about	K1 to K3
	Analgesics, Anti pyretic drugs, and the drugs affecting CNS;	
	and its examples.	
CLO 4	Brings about a clear idea towards Anaesthetics and its	K1 to K3
	significants, and provide the importantance of the drugs for	
	cancer, Diabetes, AIDS and Blood related diseases.	
CLO 5	Can brings the knowledge toward Vitamins and their	K1 to K3
	classifications. To give the informations about harmones and	
	enzymes along with their physiological functions and mode of	
	actions through a specific mechanism	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	1
CLO2	3	3	1	1	3	1
CLO3	3	3	1	1	3	1
CLO4	3	3	1	2	3	1
CLO5	3	3	1	1	3	1

1-Basic Level

2- Intermediate Level 3- Advanced Level

LESSON PLAN: TOTAL HOURS (30 Hrs)

Unit	Description	Hours	Mode
I	Basic Pharmaceutical Chemistry	2	Chalk and Talk/PPT
	Definition of the following terms: drug, pharmachophore,		
	pharmacology, Pharmacopeia, bacteria, virus and vaccine.		
	Causes, symptoms and drug for anemia, jaundice, cholera, alaria	1	Chalk and Talk
	and filarial.		
	Indian Medicinal plants and uses - Tulasi, Neem, Kizhanelli,	2	Chalk and Talk /PPT
	Mango, Semparuthi, Adadodai and Thoothvelai.		
II	Antibacterials	3	Chalk and Talk
	Sulpha drugs-examples and actions-prontosil, sulphathiazole,		
	sulphafurazole. Antibiotics-definition and action of penicillin,		
	streptomycin, chloramphenicol,		
	Antiseptics and disinfectans - definition and distinction -	2	Chalk and Talk /PPT
	phenolic compounds, chlorocompounds and cationic surfactant.		
III	Analgesics and CNS stimulants	2	Chalk and Talk /PPT
	Analgesics: Definition and Actions – narcotic and non- narcotic		
	- morphine and its derivatives,		
	Pethidine and methodone – disadvantages and uses. Antipyretic	2	Chalk and Talk
	analgesics - salicylic derivative, paracetamol, ibuprofen.		

	Drugs affecting CNS - Definition, distinctionand examples for	2	Chalk and Talk /PPT
	tranquilisers, sedatives, hypnotics, psychedelic drugs - LSD,		
	Hashish – their effects.		
IV	Anasthetics and Drugs for Chronic diseases	3	Chalk and Talk /PPT
	Anaesthetics - definition - local and general - volatile nitrous		
	oxide, ether, Chloroform, cyclo propane - uses and		
	disadvantages- non - volatile intravenous - thiopental sodium,		
	methohexitone, propanidid.		
	Causes, medicines and their mode of action for the treatment of	2	Chalk and Talk /PPT
	cancer – antineoplastics, diabetes – hypoglycemic agents AIDS –		
	AZT, DDC.		
	Blood: Grouping, composition, Rh factor, blood pressure, hyper	2	Chalk and Talk /PPT
	tension and hypotension.		
V	Vitamins, Harmones and Enzymes	3	Chalk and Talk
	Vitamins – fat soluble vitamins – (i) vitamin A; (ii) vitamin D;		
	(iii) vitamin B complex; (iv) vitamin C; (V) vitamin E; (vi)		
	vitamin K; (vii) vitamin P.		
	Hormones - Introduction, properties and function of hormones,	2	Chalk and Talk /PPT
	chemical nature of hormones. Physiological function of some		
	harmones: Adrenaline, thyroxin, oxytoxin, insulin, the sex		
	harmones.		
	Enzymes - Chemical nature of enzymes, classification of	2	Chalk and Talk
	enzymes, properties of enzymes, mechanism of enzyme action.		
	Action of Co-enzymes.		
	Total hours	30	

Course Designer: Dr. (Mrs). A.Ramya

Dep	Department of Chemistry				Class: I U	G		
Sem	Category	Course Code	Course Title	Credits	Contact Hours/	CIA	SE	Total
					Week			
I	Inter Disciplinary Course	22OUCHID1	Chemistry in Everyday Life	2	2	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship Oriented			
		✓			

Course Objectives:

- 1. To learn how to make soaps and detergents.
- 2. To understand importance of vitamins and minerals.
- 3. To acquire knowledge about cosmetics and plastics.
- 4. To understand the manufacturing technique for small–scale industrial chemicals.
- 5. To gain knowledge about plaster of pairs, gum and shoe polish.

Course Content:

Unit – I Soaps and Synthetic Detergents: Introduction- detergent action-types of detergents- raw materials. Washing powder: Introduction- raw materials- method of manufacturing. Soaps: Introduction-raw materials-Manufacturing methods- Features in the preparation of toilet soaps.

Unit -- II Vitamins and Minerals: Need for vitamins in body, types of vitamins- water soluble and fat soluble vitamins, sources and deficiency diseases of vitamins A, B complex, C, D, E and K- Role of minerals in body, iodine deficiency and remedy.

Unit -- III Cosmetics and Plastics: Introduction – classification – bathing oils, face creams, skin products, hair dye, and shampoo- general formulation of each type-toxicology of cosmetics. Plastics in everyday life - uses of PET, PVC – recycling of plastics – biodegradable of plastics – Environmental hazards of plastics.

Unit -- IV Phenoils, Incense stick, Sambirani and Napthalene balls: Phenoils: Introduction- raw materials - methods of preparation and uses. Incense stick: Introduction-raw materials- method of manufacturing and uses. Sambrani: Introduction- raw materials-

methods of manufacturing and uses. Naphthalene Balls: Introduction- raw materials-methods of manufacturing and uses.

Unit -- V Plaster of paris, Gum and Shoe polish: Plaster of Paris: Introduction- Method of manufacturing and uses. Gum: Introduction- Method of manufacturing and uses. Shoe polish: Introduction- raw materials-Method of manufacturing and uses.

Books for study:

- 1. Sharma B.K., (2000), "Industrial Chemistry" Goel Publishing House, Meerut.
- 2. Kirpal Singh., (2012), "Chemistry in everyday life", PHI Learning Pvt. Ltd., 3rd Edition.

Books for Reference:

- 1. Kumarappa J.C., "*Preparative materials*", Institute of Rural Technology and Development, T. Kallupatti.
- 2. Sawyer W., (2000), "Experimental cosmetics", Dover publishers, New York.
- 3. Berg J. M., Tymoczeko J. L., Stryer I., (2008), "Bio chemistry", W. H. Freeman.

Web resources/ E Books:

- 1. https://www.slideshare.net/BSMRSTUFUN/soap-and-detergentsoaps-detergents/
- 2. https://vikaspedia.in/health/nutrition/types-of-vitamins-and-minerals
- 3. https://www.chemicalsafetyfacts.org/plastics/
- 4. http://www.petrecycling.in/applications-of-pet/
- 5. https://www.vashutraders.com/post/sambrani101
- 6. https://www.britannica.com/technology/plaster-of-paris
- 7. https://byjus.com/chemistry/to-prepare-colloidal-solution-of-gum/
- 8. https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/s/Shoe_polish.htm

Pedagogy:

Chalk and Talk method, Power point Presentations, Seminar, Group Discussion, and Quiz through ICT-Mode

Rationale for nature of Course:

Entrepreneurship oriented:

This course will enable the students to develop their entrepreneurial skills that enable them to become a successful entrepreneur.

Knowledge and Skill: This course will enable the students to find different types of raw materials used in cosmetics, Soap and detergent.

- 1. Acquire the knowledge about detergents in comparison to soaps,
- 2. Understand the knowledge about varies types of vitamins present our body
- 3. Can prepare daily used products such as incense stick, sambrani and phenoils.

Activities to be given:

- 1. To find out the types of vitamins present in varies food.
- 2. List out the ingredients present in commercial soap.
- 3. List out the raw materials of incense stick, sambrani, phenoils and naphthalene balls which is commercially available.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level (According to Bloom's Taxonomy)
CLO 1	Understand the cleaning action of soap and detergents.	K1 to K3
CLO 2	Explain the types of vitamins and role of minerals in body.	K1 to K3
CLO 3	Develop the skill of making cosmetics and consumer products.	K1 to K3
CLO 4	Demonstrate the preparation of some home products like Phenoils, Incense stick, Sambrani and Naphthalene balls.	K1 to K3
CLO 5	To know the manufacturing processes and uses of Plaster of Pairs, Gums and Shoe polish.	K1 to K3

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) (SCIENCE)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	3	1	2	3	2
CLO2	3	3	2	3	3	2
CLO3	3	3	1	2	2	1
CLO4	3	2	2	1	1	2
CLO5	3	3	1	2	3	1

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) (ARTS)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	2	2	1	2
CLO2	2	1	1	1	1	2
CLO3	3	1	2	1	1	1
CLO4	3	1	3	2	1	2
CLO5	3	1	3	2	1	1

1-Basic Level

2- Intermediate Level

3- Advanced Level

LESSON PLAN: TOTAL HOURS (30 Hrs)

Unit	Description	Hours	Mode
I	Introduction-detergent action-types of detergent- raw materialsWashing powder: Introduction- raw materials - method of manufacturing. Enzymes used in commercial detergents. Soaps: Introduction - raw materials - Manufacturing methods- Features in the preparation of toilet soaps.	6	Chalk and Talk, PPT, group discussion.
II	Need for vitamins in body, types of vitamins- water soluble and fat soluble vitamins, sources and deficiency diseases of vitamins A, B complex, C, D, E and K- Role of minerals in body, iodine deficiency and remedy	6	Chalk and Talk, PPT, group discussion.
III	Introduction – classification – bathing oils, face creams, skin products, hair dye, and shampoo- general formulation of each type - toxicology of cosmetics. Plastic in everyday life - uses of PET, PVC – recycling of plastics – biodegradable of plastics – Environmental hazards of plastics.	6	Chalk and Talk, PPT, group discussion.
IV	Phenoils: Introduction- raw materials - methods of preparation and uses. Incense stick: Introduction- raw materials- method of manufacturing and uses.	3	Chalk and Talk, PPT, group discussion
	Sambrani: Introduction- raw materials- methods of manufacturing and uses. Naphthalene Balls: Introduction- raw materials- methods of manufacturing and uses.	3	Chalk and Talk, PPT, group discussion.
V	Plaster of Paris: Introduction- Method of manufacturing and uses. Gum: Introduction- Method of manufacturing and uses. Shoe polish: Introduction- raw materials-Method of manufacturing and uses.	6	Chalk and Talk, PPT, group discussion,
	Total Hours	30	

Course Designer: Mrs.V.Gokilaa

Dep	Department of Chemistry				Class: I E	3.Sc		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/			
					Week			
II	Core	22OUCH21	General Chemistry-II	4	4	25	75	100

Nature of the Course					
Knowledge and Skill Oriented Employability Oriented Entrepreneurship Oriented					
✓					

Course objectives:

- 1. To identify the composition and stability of the nucleus and types of nuclear reactions.
- 2. To understand the acid base reactions, oxidation number and valency.
- 3. To know about basic metallurgical processes.
- 4. To learn the preparation, properties and importance of aliphatic compounds.
- 5. To study the basic concepts of structure of solids and semiconductors.

Course Content:

UNIT – I Nuclear Chemistry: Composition of the nucleus-stability of nuclei- mass defect-binding energy- nuclear fission-atom bomb- nuclear fusion- hydrogen bomb-Radioactivity- definition – nature of radiations from radioactive substances – comparison of the properties of α , β and γ radiations- detection and measurements of radioactivity – Geiger – Muller counter – radioactive decay –group displacement law – radioactive decay series – artificial radio activity –Half-life period-Average life period- applications of radioactive isotopes-problems using carbon dating.

UNIT – II Acids, Bases, Oxidation and Reduction: Modern concepts of acids and bases: Arrhenius, Bronsted- Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases – amphoteric solvents- differentiating solvents- levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number- solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method.

UNIT – III Metallurgy: Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals- concentration of ores – Froth floatation method and electromagnetic separation – calcinations –roasting – smelting; flux, slag –Alumino-thermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – Van Arkel de-Boer methods – electrolytic refining –chemical properties – important compounds and uses of Chromium (CrCl₂, Cr₂O₃), Manganese (MnO₂) and Nickel (Ni(DMG)₂).

thydrogenation of alkenes and alkynes, reduction of alkyl halides, action of sodium on alkyl halides, hydrolysis of Grignard reagents, wurtz reaction, physical properties, reactions-bromination, iodination, fluorination, nitration, sulphonation, aromatisation, reactions with radical mechanism for substitution reaction – cracking (pyrolysis) - Alkenes: Preparation from alcohol, haloalkane, dihaloalkanes and alkynes - reactions of alkenes - mechanisms involved in addition of hydrogen, halogen, hydrogen halide, hypohalous acid, water, hydroboration, hydroxylation, ozonolysis and epoxidation - peroxide effect - allylic substitution, oxidation by KMnO4 and polymerization - Application in the synthesis of following molecules. Akynes: preparation, reactions - addition of hydrogen, halogen, hydrogen halide, water, HCN, CH3COOH, hydroboration — ozonolysis- dimerisation and cyclisation (polymerisation) - acidity of terminal alkynes.

UNIT – V Solid State: Forms of solids-Symmetry elements of a crystal- seven crystal systems, Space lattice and unit cells- Bravais lattice types and identification of lattice planes- Laws of Crystallography -Law of rational indices, Miller indices. X–Ray diffraction by crystals, Bragg's equation-derivation. Types of crystal-Molecular crystal(H₂O)-covalent crystal (diamond)-ionic crystal- Characteristic structure of NaCl and Wurtzite - Definition of Conductors, Insulators and Semi conductors- Defects in crystals-Schottky defect – Frenkel defect.

Books for Study:

- 1. Tewari.K.S and Vishnoi.N.K, (2017), "A Text Book of Organic Chemistry", 4th Edition, Vikas Publishing House Pvt Ltd.
- 2. Arun Bahl and Bahl.B.S, (2016), "A Text Book of Organic Chemistry", S Chand & Company, 22nd Edition.
- 3. Finar.I.L, (2004), "Organic Chemistry" Vol-1&2, 6th Edition, Pearson Education, South Asia.
- 4. Soni. P. L, Mohan Katyal, (2007), "Text book of Inorganic Chemistry", 20th Edition, Sultan Chand & Sons, New Delhi.
- **5.** Puri. B.R, Sharma. L.R and Pathania. M.S, (2016), "Principles of Physical Chemistry", 47th Edition, Vishal Publishing Co.

Books for Reference:

- 1. Bhupinder Mehta and Manju Mehta, (2015), "*Organic Chemistry*", 2nd Edition, PHI Learning Pvt Ltd.
- 2. Jain. M.K and Sharma. S. C, (2015), "Modern Organic Chemistry", Visal Publishing Co.
- 3. Tewari.N, (2011), "Advanced Organic Reaction Mechanism", 3rd Edition, Books & Allied (P) Ltd.
- 4. Malik. W. U., Tuli. G. D and Madan. R. D, (1998), "Selected Topic in Inorganic Chemistry" S. Chand & Company Ltd, New Delhi.
- 5. Kundu. N and Jain. S.K, (2000), "Physical Chemistry", S. Chand & Company Ltd.
- 6. Barrow. G.M, (1996), "Physical Chemistry", 6th Edition, McGraw-Hill Inc., US.

Web Resource/E-books:

- 1. https://wou.edu/chemistry/files/2017/01/CH105-Chapter-8-PDF-file.pdf
- 2. <a href="https://chem.libretexts.org/Bookshelves/Organic Chemistry/Book%3A Basic Principles of Organic Chemistry (Roberts and Caserio)/12%3A Cycloalkanes Cycloalkenes and Cycloalkynes
- **3.** https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/chapt5.htm
- 4. https://www.britannica.com/science/metallurgy/Testing-mechanical-properties

- **5.** https://nios.ac.in/media/documents/SrSec313NEW/313_Chemistry_Eng
- **6.** https://www.rachidscience.com/2021/01/a-textbook-of-organic-chemistry-arun.html https://www.rachidscience.com/2021/01/a-textbook-of-organic-chemistry-arun.html https://www.rachidscience.com/2021/01/a-textbook-of-organic-chemistry-arun.html

epDalal.pdf

Pedagogy:

Chalk and Talk, PPT, Group Discussion, Seminar, Quiz, Spot test, Virtual labs.

Rationale for nature of Course:

Knowledge and Skill:

- 1. This course to study and understand the chemical concepts, principles and theories of nuclear chemistry.
- 2. To study the students may apply their skills and knowledge to Acid base and oxidation and reduction reactions.
- **3.** To gain the knowledge and skill to study the occurrence and extraction of metals. And uses of different metal components in our daily life.
- 4. To develop students ability and skill to acquire expertise over Aliphatic compounds including alkanes, alkenes, and alkynes.
- **5.** To acquired knowledge about the solid state in crystal lattice structure and laws of rational indices and types of defects in crystals.

Activities to be given:

- 1. To identify the applications of radioactive isotopes in various field.
- 2. To balance the redox equation by oxidation number using chart work method.
- 3. To frame the structure of alkane, alkene and alkyne using atomic model set.
- 4. To find out the crystal structure and Miller indices using chart work and avagadro software to frame the structure of NaCl.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level (According to
		Bloom's Taxonomy)
CLO 1	Outline the concepts of nuclear reactions and its	K1 to K4
	applications.	
CLO 2	Illustrate the modern concepts if acid and bases	K1 to K4
CLO 3	Explain the basics of metallurgy and the principles of	K1 to K4
	extraction and refining on metals.	
CLO 4	Compare the properties of alkane, alkene and alkyne	K1 to K4
CLO 5	To classify the types of crystals in solid state. and Explain	K1 to K4
	the defects in crystals.	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

$\label{eq:composition} \textbf{Mapping of Course Learning Outcomes} \ \ \textbf{(CLOs)} \ \ \textbf{with Programme Outcomes}$ $\ \ \textbf{(POs)}$

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	2	1	3	1
CLO2	3	1	2	1	2	1
CLO3	3	2	1	1	3	1
CLO4	3	1	1	1	2	1
CLO5	3	1	1	1	2	1

1-Basic Level 2- Intermediate Level 3- Advanced Level

LESSON PLAN: TOTAL HOURS (60 Hrs)

Nuclear Chemistry Composition of the nucleus-stability of nuclei- mass defect-binding energy Nuclear fission-atom bomb- nuclear fusion- hydrogen bomb- Radioactivity-definition – nature of radiations from radioactive substances Comparison of the properties of α, β and γ radiations- detection and measurements of radioactivity —Geiger — Muller counter — radioactive decay —group displacement law — Radioactive decay series — artificial radio activity —Half-life period-Average life period applications of radioactive isotopes-problems using carbon dating. Chalk and Talk /PPT Decay Chalk and Talk /PPT Amount Chalk and Talk /PPT Amount Chalk and Salar Chalk and Talk /PPT Amount Chalk and Salar Chalk and Talk /PPT Amount Chalk and Salar Chalk and Talk /PPT	Unit	Description	Hours	Mode
Nuclear fission-atom bomb- nuclear fusion- hydrogen bomb- Radioactivity- definition – nature of radiations from radioactive substances Comparison of the properties of α, β and γ radiations- detection and measurements of radioactivity –Geiger – Muller counter – radioactive decay –group displacement law – Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes- problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Amphoteric solvents- differentiating solvents-levelling effects. Amphoteric solvents- differentiating solvents-levelling effects. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. Chalk and Talk /PPT metallurgy process – General methods involved in extraction of metals Chalk and Talk /PPT metallurgy process – General methods involved in extraction of metals Chalk and Talk /PPT metallurgy process – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange Chalk and Talk /PPT Chalk and Talk	I	Nuclear Chemistry	2	Chalk and Talk/PPT
Nuclear fission-atom bomb- nuclear fusion- hydrogen bomb- Radioactivity- definition – nature of radiations from radioactive substances Comparison of the properties of α, β and γ radiations- detection and measurements of radioactivity –Geiger – Muller counter – radioactive decay –group displacement law – Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes- problems using carbon dating. Chalk and Talk /PPT		Composition of the nucleus-stability of nuclei- mass defect-		
Radioactivity- definition – nature of radiations from radioactive substances Comparison of the properties of α, β and γ radiations- detection and measurements of radioactivity –Geiger – Muller counter – radioactive decay –group displacement law – Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes-problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted-Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic freduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		binding energy		
substances Comparison of the properties of α, β and γ radiations- detection and measurements of radioactivity –Geiger – Muller counter – radioactive decay –group displacement law – Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes-problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted-Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		Nuclear fission-atom bomb- nuclear fusion- hydrogen bomb-	3	Chalk and Talk
Comparison of the properties of α, β and γ radiations- detection and measurements of radioactivity –Geiger – Muller counter – radioactive decay –group displacement law –		Radioactivity- definition – nature of radiations from radioactive		
and measurements of radioactivity –Geiger – Muller counter – radioactive decay –group displacement law – Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes-problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted-Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases: Amphoteric solvents- differentiating solvents-levelling effects. Amphoteric solvents- differentiating solvents-levelling effects. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		substances		
radioactive decay –group displacement law – Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes-problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted-Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Amphoteric solvents- differentiating solvents-levelling effects. Amphoteric solvents- differentiating solvents-levelling effects. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		Comparison of the properties of α , β and γ radiations- detection	3	Chalk and Talk /PPT
Radioactive decay series – artificial radio activity –Half-life period-Average life period applications of radioactive isotopes-problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted-Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		and measurements of radioactivity -Geiger - Muller counter -		
period-Average life period applications of radioactive isotopes- problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted- Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept -HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals -basic metallurgical operations and metallurgy process - General methods involved in extraction of metals concentration of ores - froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes - Chemical reduction - electrolytic reduction - metal displacement - refining methods - distillation - fractional crystallization - electrolytic refining - van Arkel de Boer methods - electrolytic refining - ion exchange		radioactive decay –group displacement law –		
problems using carbon dating. II Modern concepts of acids and bases: Arrhenius, Bronsted-Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency-rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		Radioactive decay series - artificial radio activity -Half-life	4	Chalk and Talk /PPT
II Modern concepts of acids and bases: Arrhenius, Bronsted- Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		period-Average life period applications of radioactive isotopes-		
Lowry, Lewis and Lux-Flood; Relative strengths of acids and bases Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		problems using carbon dating.		
Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – ion exchange	II	Modern concepts of acids and bases: Arrhenius, Bronsted-	3	Chalk and Talk
Amphoteric solvents- differentiating solvents-levelling effects. Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – ion exchange		Lowry, Lewis and Lux-Flood; Relative strengths of acids and		
Hard and soft acids and bases: Pearson's concept –HSAB principle and its applications. Oxidation and reduction: Definitions- oxidation number-differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		bases		
principle and its applications. Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals -basic metallurgical operations and metallurgy process - General methods involved in extraction of metals concentration of ores - froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes - Chemical reduction - electrolytic reduction - metal displacement - refining methods - distillation - fractional crystallization - electrolysis. Zone refining - van Arkel de Boer methods - electrolytic refining - ion exchange		Amphoteric solvents- differentiating solvents-levelling effects.	3	Chalk and Talk /PPT
Oxidation and reduction: Definitions- oxidation number- differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals -basic metallurgical operations and metallurgy process - General methods involved in extraction of metals concentration of ores - froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes - Chemical reduction - electrolytic reduction - metal displacement - refining methods - distillation - fractional crystallization - electrolysis. Zone refining - van Arkel de Boer methods - electrolytic refining - ion exchange		Hard and soft acids and bases: Pearson's concept -HSAB		
differences between oxidation number and valency- rules for calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		principle and its applications.		
calculating oxidation number, solved examples- oxidizing and reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		Oxidation and reduction: Definitions- oxidation number-	6	Chalk and Talk
reducing agents- redox reactions. Balancing of redox equations by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic freduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		differences between oxidation number and valency- rules for		/PPT/animated video
by oxidation number method. III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		calculating oxidation number, solved examples- oxidizing and		
III Occurrence of metals –basic metallurgical operations and metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolytic refining – van Arkel de Boer methods – electrolytic refining – ion exchange		reducing agents- redox reactions. Balancing of redox equations		
metallurgy process – General methods involved in extraction of metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic freduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		by oxidation number method.		
metals concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic freduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange	III	Occurrence of metals -basic metallurgical operations and	3	Chalk and Talk /PPT
concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		metallurgy process – General methods involved in extraction of		
calcination, roasting, smelting, flux, aluminothermic process. Extraction processes – Chemical reduction – electrolytic 6 reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		metals		
Extraction processes – Chemical reduction – electrolytic 6 Chalk and Talk /PPT reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		concentration of ores - froth floatation, magnetic separation,	3	Chalk and Talk
reduction – metal displacement – refining methods – distillation – fractional crystallization – electrolysis. Zone refining – van Arkel de Boer methods – electrolytic refining – ion exchange		calcination, roasting, smelting, flux, aluminothermic process.		
- fractional crystallization - electrolysis. Zone refining - van Arkel de Boer methods - electrolytic refining - ion exchange		Extraction processes - Chemical reduction - electrolytic	6	Chalk and Talk /PPT
Arkel de Boer methods – electrolytic refining – ion exchange		reduction – metal displacement – refining methods – distillation		
		- fractional crystallization - electrolysis. Zone refining - van		
method- muffle furnace – chemical properties – important		Arkel de Boer methods – electrolytic refining – ion exchange		
		method- muffle furnace - chemical properties - important		

	compounds and uses of Cr, Mn, Co, Ni and Zn.		
IV	Alkanes - General method of preparations-hydrogenation of	3	Chalk and Talk /PPT
	alkenes and alkynes,reduction of alkyl halides, action of sodium		
	on alkyl halides, hydrolysis of Grignard reagents, wurtz		
	reaction , physical properties, reactions-bromination,		
	iodination, fluorination, nitration, sulphonation, aromatisation,		
	Reactions with radical mechanism for substitution reactions -	2	Chalk and Talk
	cracking (pyrolysis) - Alkenes: Preparation from alcohol,		
	haloalkane, dihaloalkanes and alkynes - reactions of alkenes -		
	Mechanisms involved in addition of hydrogen, halogen,	4	Chalk and Talk /PPT
	hydrogen halide, hypohalous acid, water, hydroboration,		
	hydroxylation, ozonolysis and epoxidation - peroxide effect -		
	allylic substitution, oxidation by KMnO ₄ and polymerization -		
	Application in the synthesis of following molecules - Dibenzyl		
	(from toluene), cis and trans 2-butene, propanal and 1-methyl		
	cyclohexanol.		
	Akynes: preparation, reactions - addition of hydrogen, halogen,	3	Chalk and Talk /PPT
	hydrogen halide, water, HCN, CH ₃ COOH, hydroboration -		
	ozonolysis- dimerisation and cyclisation (polymerisation) -		
	acidity of terminal alkynes.		
V	Forms of solids-Symmetry elements of a crystal- seven crystal	3	Chalk and Talk
	systems, Space lattice and unit cells-Bravais lattice types and		
	identification of lattice planes		
	Laws of Crystallography -Law of rational indices, Miller	3	Chalk and Talk
	indices. X-Ray diffraction by crystals, Bragg's equation-		
	derivation.		
	Types of crystal-Molecular crystal(H ₂ O)-covalent crystal	6	Chalk and Talk /PPT
	(diamond)-ionic crystal- Characteristic structure of NaCl,		
	Wurtzite) - Definition of Conductors, Insulators and Semi		
	conductors- Defects in crystals- Schottky defect - Frenkel		
	defect.		
	Total hours	60	

 ${\bf Course\ Designers:\ Dr. (Mrs). A. Ramya}$

Dr.(Mrs).S.Manimekalai

	Department of Chemistry					3.Sc		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/			
					Week			
II	Skill	22OUCHSE21	Industrial Chemistry	2	2	25	75	100
	Enhancement							
	Course							

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship Oriented		
✓				

Course Objectives:

- 1. To gain the knowledge on match industry and explosives.
- 2. To learn about to manufacturing method of cement and glass.
- 3. To understand the various types of fertilizers and their uses.
- 4. To gain knowledge about the preparation and properties of rubber.
- 5. To acquire knowledge on plastics and paper industry.

Course Content:

Unit-- I MATCH INDUSTRY AND EXPLOSIVES: Match industry: Raw materials – Types of matches - composition of match head striking - surface manufacture of safety matches - Pyrotechnic - colored matches. Explosives: Classification of explosives-Requirements and classification of a good explosives TNT, RDX, Picric acid, Gun powder, Ammonium nitrate.

Unit-- II CEMENT AND GLASS: Cement: Introduction-composition of cement-raw materials need for manufacturing of Portland cement-manufacture of Portland cement by wet process and dry process-role of gypsum in the setting of cement. Glass: Introduction-characteristics of glass- physical and chemical properties- manufacture of glass (tank furnace method)-annealing- characteristics of borosilicate glass, optical glass, colored glass, safety glass, fiber glass, flint glass and bottle glass.

Unit-- III AGRICULTURAL CHEMISTRY: Fertilizers: Definition-Nutrients for plant-role of various elements in plant growth —Natural and chemical fertilizer- classification of chemical fertilizers-ammonium sulphate, urea, calcium cyanamide, super phosphate of lime and potassium nitrate, NPK fertilizers, mixed fertilizers.

Unit--IV POLYMER CHEMISTRY: Importance of Rubber - draw backs of raw rubber-vulcanization-properties of vulcanized rubber- synthetic rubber- preparation and applications of SBR rubber, neoprene rubber, butyl rubber and Thiokol-Distinction between natural rubber and synthetic rubber.

Unit--V PLASTICS AND PAPER INDUSTRY: Plastics: Introduction-characteristics of plastics-classification of plastics- differences between thermo setting and thermo plastics-preparation and applications of bakelite, polythene, PVC, polypropylene, poly styrene and urea formaldehyde resin. Differences between plastics and resins. Paper industry: Introduction- raw materials and manufacturing process of paper- types of paper-paper industry in India.

Book for study:

 Sharma B.K., (1999), "Industrial Chemistry" 10th Edition, Krishna Prakashan Media (P)
 Ltd., Meerut.

Books for Reference:

1. Arora M.G. & Singh M., (1999), "Industrial Chemistry", Anmol Publications, Pvt Ltd,

New Delhi.

2. Chakravarthy B.N, (1998), "Industrial Chemistry" Oxford & IBH Publishing & Co. Pvt

Ltd., New Delhi.

- 3. Jain and Monika Jain, (1990), "Engineering Chemistry" 5th Edition, Dhanpat Rai & Sons, New Delhi.
- 4. Mahapatra G., (2001), "Elements of Industrial Chemistry", Kalyani Publishers, New Delhi.

Web resources/ E-books:

- 1. https://www.slideshare.net/AlexGeorge3/match-manufacture-alex
- 2. https://www.slideshare.net/prashantmehta371/glass-9219937
- 3. https://www.jagranjosh.com/general-knowledge/fertilizer-types-and-important-fertilizers-
 1456826098-1

- 4. .https://www.vedantu.com/chemistry/rubber
- 5. https://www.embibe.com/exams/some-commercially-important-polymers/
- 6. https://unacademy.com/content/railway-exam/study-material/static-gk/paper-manufacturing-industry-in-india/

Pedagogy:

Chalk and Talk method, PPT, Seminar, Group Discussion, and Quiz.

Rationale for nature of Course:

Knowledge and Skill:

Understand the manufacturing methods of matches, explosives, cement, glass, fertilizers, rubber and plastics.

Activities to be given:

To find out the composition in various types of fireworks.

- 1. Data collection on raw materials of cement availability in various districts.
- 2. To determine the potassium content in given fertilizer.
- 3. List out the types of paper and paper Industry in various areas.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level (According to
		Bloom's Taxonomy)
CLO 1	Understand the basic principle and	K1 to K3
	manufacturing process of match industry and	
	explosives.	
CLO 2	Enumerate the manufacturing method of	K1 to K3
	Portland cement & glass.	
CLO 3	Illustrate the manufacturing methods and	K1 to K3
	applications of fertilizer.	
CLO 4	Explain the isolation of natural rubber,	K1 to K3
	vulcanization, applications of synthetic rubber.	
CLO 5	Classify plastics, knowing their preparation	K1 to K3
	and applications	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems
- K4- Examining, analyzing, presentation and make inferences with evidences

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	1	1	3	2
CLO2	3	3	2	1	3	2
CLO3	3	3	1	1	2	3
CLO4	3	2	1	1	3	2
CLO5	3	2	1	1	3	3

1-Basic Level 2- Intermediate Level 3- Advanced LeveL

LESSON PLAN: TOTAL HOURS (30 Hrs)

Unit	Description	Hours	Lecture Mode
I	Match industry: Raw materials – Types of matches - composition of match head striking - surface manufacture of safety matches - Pyrotechnic - colored matches. Explosives: Classification of explosives- Requirements and classification of a good explosives TNT, RDX, Picric acid, Gun powder, Ammonium nitrate.	6	Chalk and Talk, PPT.
П	Cement: Introduction-composition of cement-raw materials need for manufacturing of Portland cement-manufacture of Portland cement by wet process and dry process-role of gypsum in the setting of cement.	3	Chalk and Talk, PPT.
	Glass: Introduction- characteristics of glass- physical and chemical properties- manufacture of glass (tank furnace method)-annealing- characteristics of Borosilicate glass, optical glass, colored glass, safety glass, fiber glass, flint glass and Bottle glass.	3	Chalk and Talk, PPT.
III	Fertilizers: Definition-Nutrients for plant-role of various elements in plant growth –Natural and chemical fertilizer- classification of chemical fertilizers-ammonium sulphate, urea, calcium cyanamide, super phosphate of lime and potassium nitrate, NPK	6	Chalk and Talk, PPT.

	fertilizers, mixed fertilizers.		
IV	Dukkan Introduction composition of natural makkan accommon	6	Challe and Talle DDT
1 V	Rubber: Introduction-composition of natural rubber-occurrence and isolation of natural rubber - draw backs of raw rubber-	0	Chalk and Talk, PPT.
	vulcanization-properties of vulcanized rubber- synthetic rubber-		
	preparation and applications of SBR rubber, neoprene rubber,		
	butyl rubber and Thiokol-Distinction between natural rubber and		
	synthetic rubber.		
V	Plastics: Introduction-characteristics of plastics-classification of	6	Chalk and Talk, PPT.
	plastics- differences between thermo setting and thermo plastics-		
	preparation and applications of Bakelite, Polythene, PVC,		
	Polypropylene, Poly Styrene and Urea formaldehyde resin.		
	Differences between plastics and resins. Paper industry:		
	Introduction- raw materials and manufacturing process of paper-		
	types of paper-paper industry in India		
	Total hours	30	

Course Designer: (Mrs.) V.Gokilaa

Dep	Department of Chemistry				Class: I B.Sc			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/			
					Week			
II	Skill Enhancement	22OUCHSE22	Analytical	2	2	25	75	100
	Course		Clinical					
			biochemistry					

Knowledge and Skill	Employability oriented	Entrepreneurship oriented
oriented		
✓		

Course Objectives:

- 1. To understand biological importance of carbohydrates.
- 2. To gain knowledge on structures of proteins and mechanism of enzyme action.
- 3. To give the detailed aspects of functions of lipids, cholesterol, lipoproteins.
- 4. To discuss the structure of DNA and RNA.
- 5. To learn the functions of blood and estimate the constituents of pathological urine.

Course Content:

Unit -- I Carbohydrates: Biological importance of carbohydrates, Metabolism, Cellular currency of energy (ATP), Glycolysis, Alcoholic and Lactic acid fermentations, Krebs cycle. Isolation and characterization of polysachharides.

Unit --II Proteins and Enzymes: Classification, Biological importance; Primary and secondary and tertiary structures of proteins: α -helix and β - pleated sheets, Isolation, characterization, denaturation of proteins. Enzymes: Nomenclature, Characteristics (mention of Ribozymes), Classification; Active site, Mechanism of enzyme action, Stereospecificity of enzymes, Coenzymes and cofactors, Enzyme inhibitors, Introduction to Biocatalysis: Importance in "Green Chemistry" and chemical industry.

Unit -- III Lipids, Cholesterol and Lipoproteins: Classification, Biological importance of triglycerides and phosphoglycerides and cholesterol; Lipid membrane, Liposomes and their biological functions and underlying applications. Lipoproteins: Properties, functions and biochemical functions of steroid hormones. Biochemistry of peptide hormones.

Unit -- IV DNA and RNA: Structure of DNA (Watson- Crick model) and RNA, Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation, Introduction to Gene therapy.

Unit –V Blood and Urine: Composition and functions of blood, blood coagulation. Anemia, Regulation, estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin. Urine: Formation of urine. Composition and estimation of constituents of normal and pathological urine

Books for study:

- Prof.Rulsy Fatima , Meyyan R.P. , Narayanan L.M., Nallasingam K., Prasanna Kumar S.,
 - Arumugam N., (2012), "Elements of Biochemistry", Saras Publication.
- 2. Jain J.L., Sunjay Jain and Nitin Jain, (2007), "Fundamentals of Biochemistry", S.Chand & Company Ltd., New Delhi.
- 3. Dr.Ambika Shanmugam, (1996), "Fundamentals of Biochemistry for Medical students"
 - West C.I.T Nagar, Madras.

Books for References:

- 1. Cooper T.G., (1977), "Tool of Biochemistry", Wiley-Blackwell.
- 2. Wilson K. & Walker J., (2009), "Practical Biochemistry" Cambridge University Press.
- 3. Varley H., Gowenlock A.H., & Bell M., (1980), "Practical Clinical Biochemistry", Heinemann, London.
- 4. Devlin, T.M., 2010, "Textbook of Biochemistry with Clinical Correlations" John Wiley & Sons.
- 5. Berg J.M., Tymoczko, J.L. & Stryer, L., (2002), "Biochemistry" W.H. Freeman,
- 6. Talwar G.P. & Srivastava, M., "*Textbook of Biochemistry and Human Biology*" 3rd Edition, PHI Learning.
- 7. O.Mikes R.A., Chalmers, (1961), "Laboratory Handbook of Chromatographic Methods", VanNostrand D. & Company.

Web Resources/E-books:

- https://courses.lumenlearning.com/suny-ap2/chapter/carbohydrate-metabolism-nocontent/
- 2. https://byjus.com/chemistry/protein-structure-and-levels-of-protein/
- 3. https://lubrizolcdmo.com/technical-briefs/protein-structure/
- 4. https://www.mlsu.ac.in/econtents/984_Enzyme%20introduction%20and%20factor %20affecting%20action.pdf
- 5. https://www.biologydiscussion.com/dna/dna-and-rna-composition-and-structure/9667
- 6. https://byjus.com/biology/blood/
- 7. https://books.google.co.in/books?id=NuaFRNaCce8C&lpg=PP1&pg=PA75#v=one
 page&q&f=false

Pedagogy:

Chalk and Talk method, Power point Presentations, Seminar, Group Discussion and Quiz

Rationale for nature of Course:

Knowledge and skill:

Students gained the knowledge on biological importance of carbohydrates, proteins, enzymes, lipids, DNA and RNA. Having skills in estimation of blood sugar, normal and pathological urine.

Employability Oriented: Take up employment in pathology lab.

Activities given:

- 1. Estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin
- 2. Estimation of constituents of normal and pathological urine.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level (According to Bloom's Taxonomy)
CLO 1	Describe the importance of carbohydrates, Glycolysis, Krebs Cycle and polysaccrides	K1 to K3
CLO 2	Recognize the structures of primary, secondary and tertiary proteins, mechanism of enzyme action and enzyme inhibitors	K1 to K3
CLO 3	Explain biological importance of triglycerides, phosphoglycerides, cholesterol and lipoproteins	K1 to K3
CLO 4	Demonstrate the structure of DNA and RNA	K1 to K3
CLO 5	Discuss the composition, functions of blood & urine	K1 to K3

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	1	1	1	1	1
CLO2	2	1	1	2	3	2
CLO3	2	2	1	1	2	2
CLO4	2	1	1	1	2	1
CLO5	2	3	3	2	3	3

1-Basic Level

2- Intermediate Level

3- Advanced Level

LESSON PLAN: TOTAL HOURS (30Hrs)

Unit	Description	Hours	Mode
I	Biological importance of carbohydrates, Metabolism, Cellular	3	Chalk and Talk, PPT
	currency of energy (ATP), Glycolysis, Alcoholic and Lactic acid		
	fermentations.		
	Krebs cycle. Isolation and characterization of polysachharides.	3	Chalk and Talk, PPT,
			Group discussion
II	Classification, biological importance; Primary and secondary and	3	Chalk and Talk, PPT
	tertiary structures of proteins: α -helix and β - pleated sheets,		
	Isolation, characterization, denaturation of proteins. Enzymes:		
	Nomenclature, Characteristics (mention of Ribozymes),		
	Classification; Active site, Mechanism of enzyme action,		
	Stereospecificity of enzymes, Coenzymes and cofactors, Enzyme	3	Chalk and Talk, PPT
	inhibitors, Introduction to Biocatalysis: Importance in "Green		
	Chemistry" and Chemical Industry.		
III	Classification. Biological importance of triglycerides and	3	Chalk and Talk, PPT,
	phosphoglycerides and cholesterol; Lipid membrane, Liposomes		Group discussion
	and their biological functions and underlying applications.		
	Lipoproteins: Properties, functions and biochemical functions of	3	
	steroid hormones. Biochemistry of peptide hormones.		
IV	Structure of DNA (Watson-Crick model) and RNA, Genetic	6	Chalk and Talk, PPT
	Code, Biological roles of DNA and RNA Replication,		
	Transcription and Translation, Introduction to Gene therapy.		
V	Composition and functions of blood, blood coagulation.	3	Chalk and Talk, PPT
	Anaemia, Regulation, estimation and interpretation of data for		
	blood sugar, urea, creatinine, cholesterol and bilirubin.		
	Urine: Formation of urine.Composition and estimation of	3	Chalk and Talk, PPT
	constituents of normal and pathological urine		
	Total hours	30	

Course Designers: Dr.P.Bhuvaneswari

Dep	Department of Chemistry				Class: I UG			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/			
					Week			
II	Inter Disciplinary Course	22OUCHID2	Food Chemistry	2	2	25	75	100

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship Oriented		
✓				

Course Objectives:

- 1. To learn about food and water.
- 2. To understand modern foods and beverages.
- 3. To acquire knowledge about food additives.
- 4. To study the food nutrition and balanced diet.
- 5. To gain knowledge about food adulteration and hygiene.

Course content:

UNIT -- I Introduction: Food- source, functions of food – food groups – food guide – basic five food groups, usage of the food guide – food in relation to health – objectives of cooking.Water: Purification processes – Ion exchangers, reverse osmosis, activated charcoal treatment. Use of chlorination, ozone, and UV light disinfection. Specification of drinking water. Water borne diseases – microbiological examination. Sources and detection.

UNIT--II Foods and Beverages: Modern food: Mushroom cultivation and types, spirulina composition. Snack foods. Production of bread, bun and biscuits. Raw materials, methods and machinery required. Candy manufacturing. Caramellisation. Fast foods. Instant foods. Dehydrated foods. Beverages: Soft drinks, soda, fruit juices and alcoholic beverages (Types and content of alcohol). Examples, Carbonation. Addiction to alcohol. Cirrhosis of liver. Social problems. Composition of soft drinks. Excessive use leading to urinary

bladder stones. Preservation of tetrapak. Nitrogen preservation and packing of fruit juices. Coconut Water.

UNIT—III Food Additives: Artificial sweeteners – saccharin, cyclomate, asparatame – food flavours– esters, aldehydes and heterocyclic compounds. Antioxidants and their uses (Ascorbic acid, citric acid and Butylated Hydroxy Anisole (BHA). Chemistry of Food colours – natural and synthetic colours. Limiting value of colouring agents and safety. Emulsifying agents, preservatives – leavening agents. Baking powder –Yeast. Taste enhancers – MSG-vinegar

UNIT--IV Nutrition and Balanced Diet: Nutrition – calorific value of food stuff – RQ of food (Respiratory quotient of food) –basal metabolic rate – factors influencing BMR, Specific Dynamic Action (SDA) of food. Thermogenic effect – energy requirements of individuals – diet and its components – the protein requirements – biological value of proteins, supplementary value of proteins. Diseases associated with protein malnutrition. Nutritional value of carbohydrates. – Fibers in the diet, dietary sugars – nutritional aspects of lipids.

UNIT--V Food Adulteration and Hygiene: Adulterants-Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages. Contamination with toxic chemicals – pesticides and insecticides. Principles involved in the analysis of detection and prevention of food adulteration.

Microbial growth: growth curve of bacteria. Effect of environmental factors on growth of microorganisms. pH, water activity, oxygen availability temperature – beneficial effect of Micro-organisms Food borne illness – bacteria, virus, moulds and parasites. (Any two illness each).

Books for study:

- 1. Gobala Rao S., (1998), "Outlines of chemical technology", Affiliated East West press.
- 2. Kafaro, (1995), "Wasteless chemical processing", Mira publishers.
- 3. Sawyer W., (2000), "Experimental cosmetics", Dover publishers, New York.

Books for References:

- 1. Kumarappa J.C., "*Preparative materials*", Institute of Rural Technology and Development, T. Kallupatti.
- 2. Mohan, (1980), "Latest Cottage Industries", 20th Edition, Malhotra et al..
- 3. Sharma B.K., (2000) "Industrial Chemistry" Goel Publishing House, Meerut.

Web Resource/E-Books:

- 1. https://www.brainkart.com/article/Functions-of-food_33938/
- 2https://www.wqpmag.com/water-disinfection/uv-disinfection/article/10958170/uv-ozone- a-match-made-in-heaven
- 3. https://krishijagran.com/health-lifestyle/different-types-of-mushrooms/
- 4. https://www.mdpi.com/2076-3921/10/8/1264/htm
- 5 .https://tandobeverage.com/types-of-beverage/
- $6. \underline{http://stannscollegehyd.com/department/wp-content/uploads/2018/08/BMR-SDA-} \\ \underline{AND-RDA.pdf}$
- 7. https://byjus.com/biology/food-adulteration/
- 8. https://www.nationwidechildrens.org/conditions/health-library/viruses-bacteria- and-parasites-in-the-digestive-tract

Pedagogy:

Chalk and Talk method, Power point Presentations, Seminar, Group Discussion, Quiz.

Rationale for nature of Course:

Knowledge and Skill:

Students gained the knowledge on biological importance of food, water, soft drinks. And familiarize in food nutritive values, thermogenic effect of food.

Activities to be given:

Understanding the functions of some important nutrients in the body, food sources and adulterants present in food stuff.

Course Learning Outcomes (CLOs)

CLOs	Course Learning Outcomes statements	Knowledge Level
		(According to Bloom's
		Taxonomy)
CLO 1	Understand the and be able to functions of food food groups	K1 to K3
	food guide basic five food groups, usage of the food guide	
CLO 2	Explain the Antioxidants and their uses (Ascorbic acid,	K1 to K3
	citric acid and Butylated Hydroxy Anisole (BHA).	
CLO 3	Develop the skill Artificial sweeteners saccharin,	K1 to K3
	cyclomate, asparatame food flavours esters, aldehydes and	
	heterocyclic compounds.	
CLO 4	Demonstrate the preparation of some home products like	K1 to K3
	Phenoils, Incense stick, Sambrani and Naphthalene balls.	
CLO 5	To know the manufacturing process and uses of Plaster of	K1 to K3
	Pairs, Gums and Shoe polish.	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) (Science)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	3	1	2	3	2
CLO2	3	3	2	3	3	2
CLO3	3	3	1	2	2	1
CLO4	3	2	2	1	1	2
CLO5	3	3	1	2	3	1

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) (Arts)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	2	2	1	1
CLO2	3	1	3	2	1	3
CLO3	3	1	3	2	1	1
CLO4	3	1	1	2	1	2
CLO5	3	1	2	2	2	1

1-Basic Level

2- Intermediate Level

3- Advanced Level

LESSON PLAN: TOTAL HOURS (30 Hrs)

Unit	Description	Hours	Mode
I	Food- source, functions of food – food groups – food guide – basic five food groups, usage of the food guide – food in relation to health – objectives of cooking	2	Chalk and Talk, PPT.
	Water- Purification processes – Ion exchangers, reverse osmosis,	4	Chalk and Talk, PPT
	activated charcoal treatment. Use of chlorination, ozone, and UV		
	light disinfection. Specification of drinking water. Water borne		
	diseases – microbiological examination. Sources and detection.		
II	Modern food: Mushroom cultivation and types, spirulina composition. Snack foods. Production of bread, bun and biscuits. Raw materials, methods and machinery required. Candy manufacturing. Caramellisation. Fast foods. Instant foods. Dehydrated foods.	3	Chalk and Talk, PPT
	Beverages: Soft drinks, soda, fruit juices and alcoholic beverages (Types and content of alcohol). Examples, Carbonation. Addiction to alcohol. Cirrhosis of liver. Social problems. Composition of soft drinks. Excessive use leading to urinary bladder stones. Preservation of tetrapak. Nitrogen preservation and packing of fruit juices. Coconut Water.	3	Chalk and Talk, PPT
III	Artificial sweeteners – saccharin, cyclomate, asparatame – food flavours–esters, aldehydes and heterocyclic compounds. Antioxidants and their uses (Ascorbic acid, citric acid and Butylated Hydroxy Anisole (BHA).	3	Chalk and Talk, PPT
	Chemistry of Food colours – natural and synthetic colours. Limiting value of colouring agents and safety. Emulsifying agents, preservatives – leavening agents. Baking powder –Yeast. Taste enhancers – MSG-vinegar	3	Chalk and Talk, PPT
IV	Nutrition – calorific value of food stuff – RQ of food (Respiratory quotient of food) –basal metabolic rate – factors influencing BMR, Specific Dynamic Action (SDA) of food.	2	Chalk and Talk, PPT
	Thermogenic effect – energy requirements of individuals – diet and its components – the protein requirements – biological value of proteins, supplementary value of proteins. Diseases associated with protein malnutrition. Nutritional value of carbohydrates. – Fibers in the diet, dietary sugars – nutritional aspects of lipids	4	Chalk and Talk, PPT
V	Adulterants: Common adulterants in different foods – milk and milk products, vegetable oils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages. Contamination with toxic chemicals – pesticides and insecticides. Principles involved in the analysis of detection and prevention of food adulteration.	3	Chalk and Talk, PPT

Annexure-18

Microbial growth: growth curve of bacteria. Effect of environmental factors on growth of microorganisms. pH, water activity, oxygen availability temperature – beneficial effect of microorganisms Food borne illness – bacteria, virus, moulds an parasites. (Any two illness each).	r f	Chalk and Talk, PPT
Total hours	30	

Course Designer: Miss: K.Punitha

Sem	Course	Course Code	Course Title	Credits	Contact
	Туре				Hours/ Week
I & II	Core	22OUCH2P	Semi-Micro Inorganic Qualitative Analysis	2	2

Analysis of a mixture containing two cations and two anions of which one is an interfering ions by semi- micro method.

Cations: Lead, Bismuth, Copper, Cadmium, Iron (II &III), Aluminum, Zinc, Manganese, Cobalt, Nickel, Barium, Strontium, Calcium, Magnesium and Ammonium

Anions: Carbonate, Sulphate, Nitrate, Chloride, Bromide, Fluoride, Oxalate, Borate and Phosphate.

Books for References:

- 1. Venkateswaran.V, Veeraswamy.R, Kulandaivelu.A.R, (2007), "Basic Principles of Practical Chemistry", 2nd Edition, Sultan Chand & Sons, New Delhi
- 2. Mala Nath,(2016), "Inorganic Chemistry-A Laboratory Manual," Narosa Publishing House Pvt Ltd, New Delhi

Web Resources/E books:.

- 1. http://www.iscnagpur.ac.in/study_material/dept_chemistry/4.1_MIS_and_NJS_Ma
 nual_for_Inorganic_semi-micro_qualitative_analysis.pdf
- 2. https://www.goodearthschool.org/admin/product_document/Chemistry---Inorganic-Qualitative-analysis.pdf
- 3. http://www.rbmcollege.ac.in/sites/default/files/files/reading%20material/inorganic-qualitative-analysis.pdf
- 4. https://books-library.net/files/books-library.online_noo7f92c9ed2bbcef1ddf21cc-47353.pdf
- 5. https://kresnadipayana.files.wordpress.com/2018/10/macro-and-semimicro-qualitative-inorganic-analysis-5ed-vogel.pdf

Pedagogy

Chalk and Talk, Group Discussion and Demonstration

LESSON PLAN: TOTAL HOURS (60 Hrs)

S.No	Description	Hrs	Mode
1	Instructions	2	Chalk and Talk, Demonstration
2	Analysis of Anions (Acid Radicals)	4	Demonstration
	Analysis of Cations (Basic Radicals)	4	Demonstration
3	Analysis of Anions	4	Chalk and Talk, Discussion, Procedure with illustration
4	Analysis of Cations	4	Chalk and Talk, Discussion, Procedure with illustration
5	Analysis of inorganic mixture -I	5	Chalk and Talk, Discussion, Procedure with illustration
6	Analysis of inorganic mixture-II	5	Chalk and Talk, Discussion, Procedure with illustration
7	Analysis of inorganic mixture -III	5	Chalk and Talk, Discussion, Procedure with illustration
8	Analysis of inorganic mixture –IV	5	Chalk and Talk, Discussion, Procedure with illustration
9	Analysis of inorganic mixture -V	5	Chalk and Talk, Discussion, Procedure with illustration
10	Analysis of inorganic mixture -VI	5	Chalk and Talk, Discussion, Procedure with illustration
11	Revision	6	
12	Model	6	
	Total	60	

Course Designers: 1. Dr.(Mrs).S.Manimekalai

2. Dr.(Mrs).A.Ramya

EVALUATION (PRACTICAL)

Internal (Formative) : 40 marks

External (Summative) : 60 marks

Total :100 marks

Question Paper Pattern for Internal Practical Examination: 40 Marks

S.No	Components	Marks
1.	Acid Radicals	10
2	Basic Radicals	10
3.	Model Exam	10
4.	Viva	5
5	Observation Book	5
	Total	40

Question Paper Pattern for External Practical Examination (Major): 60 Marks

S.No	Components	Marks
1.	Acid Radicals with procedure	20
2	Basic Radicals with procedure	20
3.	Viva	10
4.	Record Book	10
	Total	60

In respect of external examinations passing minimum is 35% for Under Graduate Courses and in total, aggregate of 40%.

Latest amendments and revisions as per **UGC** and **TANSCHE** norm is taken into consideration to suit the changing trends in the curriculum.