E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC

DEPARTMENT OF MATHEMATICS

CBCS with **OBE**

MASTER OF SCIENCE

PROGRAMME CODE - OPM

COURSE STRUCTURE

(w.e.f. 2022 - 2023 Batch onwards)

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI $-625\ 014$.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC

CRITERION - I

1.2.2 Details of Programmes offered through Choice Based Credit System (CBCS) / Elective Course System

Syllabus copies with highlights of contents focusing on Elective Course System

To be Noted:

HIGHLIGHTED	COURSE	
	Elective	

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3 $^{\rm rd}$ Cycle) with Grade A $^+$ and CGPA 3.51 by NAAC

CBCS with OBE DEPARTMENT OF MATHEMATICS- PG

(w.e.f. 2022 - 2023 Batch onwards)

VISION

To mold the students to have strong Mathematical and Analytical skills to meet the challenges open to them.

MISSION

To provide the students with a strong Mathematical Foundation through courses which cater to the needs of Industry, Research and Higher Education

Programme Educational Objectives (PEOs) M.Sc..

PEO	On completion of the Programme, the student will be able to
PEO1	Apply their knowledge in modern industry or teaching, or secure acceptance in high quality graduate programs in mathematics.
PEO2	Keep on discovering new avenues in the chosen field and exploring areas that remain conducive for research and development.
PEO3	Promote the culture of interdisciplinary research among all disciplines and Applied Mathematics.
PEO4	Strengthen in logical and analytical ability by knowing the Knowledge of Mathematics
PEO5	Handle the problems faced by industry through Mathematical knowledge and scientific computational techniques
PEO6	To develop teaching skills, subject knowledge in the course of their study which will help them to shine in various field including Education ,IT etc.,

Programme Outcomes (POs) with Graduate Attributes

PO	Graduate Attributes	On completion of the Programme, the student will be able to
PO1	Knowledge Base	Equipped with intense knowledge in their discipline.
PO2	Problem Analysis & Investigation	Develop specialized skills to plan, analyze and draw conclusions related to their respective field of study.
PO3	Communication Skills & Design	Assess and interpret complex situations which enables them to choose successful career in Education and Industry
PO4	Individual and Team Work	Undergo projects and research activities to develop knowledge and become expertise in their field of study.
PO5	Professionalism, Ethics and equity	Develop social and ethical responsibility in the transfer of knowledge.
PO6	Lifelong learning	Crack lectureship and fellowship exams approved by UGC like CSIR – NET and SET.

Programme Specific Outcomes (PSOs) with Graduate Attributes

PSO	Graduate Attributes	On completion of the Programme, the student will be able to
PSO1	Knowledge Base	Understand of the fundamental axioms in mathematics and capability of developing ideas based on them.
PSO 2	Problem Analysis & Investigation	Solve complex problems by critical understanding, analysis and synthesis
PSO 3	Communication Skills & Design	Provide knowledge of a wide range of mathematical techniques and application of mathematical methods
PSO 4	Individual and Team Work	Solving problems skills, thinking, creativity through assignments, project work
PSO 5	Professionalism, Ethics and equity	Broaden their professional foundations through activities such as internships, fellowships, teaching and project work.
PSO 6	Lifelong learning	Recognize the need to engage in lifelong learning through continuous education, and research leading to higher degrees like PhD, D.Sc., etc

Eligibility for Admission: Pass in B.Sc., Mathematics

Duration of the Course:

The students shall undergo prescribed courses of study for the period of two academic years under CBCS semester pattern with Outcome Based Education.

Medium of Instruction: English

System: Choice Based Credit System with Outcome Based Education.

Courses of Study with Credit Distribution

Category	No. of Courses	No. of Credits
Core	16	64
Discipline Specific	4	16
Elective Course		
Inter Disciplinary	2	4
Course		
Project	1	6
Total	23	90

Nature of the Course

Courses are classified according to the following nature

- 1. Knowledge & Skill
- 2. Employability Oriented
- 3. Entrepreneurship Oriented

Outcome Based Education (OBE) & Assessment

Students understanding must be built on and assessed for wide range of learning activities, which includes different approaches and are classified along several bases, such as

1. Based on purpose:

- Formative (Internal tests, Assignment, Seminar, Quiz, Documentation, Case lets, ICT based Assignment, Mini Projects administered during the learning process)
- Summative (Evaluation of students learning at the end of instructional unit)

2. Based on Domain knowledge: (Post Graduate Up to K5 Levels)

• Assessment through K1, K2,K3, K4 & K5

Evaluation

Continuous Internal Assessment Test (CIA) : 25 Marks
Summative Examination : 75 Marks
Total : 100 Marks

CIA-Continuous Internal Assessment: 25 Marks

Components	Marks
Test (Average of three tests)	
(Conduct for 150 marks and converted into 15 marks)	15
Assignment	5
Seminar	5
Total	25

- Centralized system of Internal Assessment Tests
- There will be a three Internal Assessment Tests
- Duration of Internal Assessment Test I will be 1 1/4 hours and Internal Assessment Test II and III will be 2 1/2 hours.
- Students shall write retest on the genuine grounds if they are absent in either Test I or Test II and Test III with the approval of Head of the Department.

Question Paper Pattern for Continuous Internal Assessment Test I

Section	Marks
A – Multiple Choice Questions (4x1 Mark)	4
B– Short Answer (3x2 Marks)	6
C – Either Or type (2/4 x 5 Marks)	10
D – Open Choice type (1/2 x10 Marks)	10
Total	30

Question Paper Pattern for Continuous Internal Assessment Test II and Test III

Section	Marks
A – Multiple Choice Questions (8x1Mark)	8
B – Short Answer (6 x 2 Marks)	12
C – Either Or type (4/8 x 5 Marks)	20
D – Open Choice type (2/4 x 10 Marks)	20
Total	60

Conducted for 150 marks and converted into 15 marks

Question Paper Pattern for Summative Examination

Section	Marks
A – Multiple Choice Questions without choice	10
(10x 1Mark)	
B – Short Answer Questions without choice (5 x 2 Marks)	10
C – Either Or type (5/10 X 5Marks)	25
D – Open Choice type(3out of 5 X 10Marks)	30
Total	75

• In respect of external examinations passing minimum is 45% for Post Graduate Courses and in total, aggregate of 50%.

Latest amendments and revisions as per UGC and TANSCHE Norms are taken into consideration in curriculum preparation.

Distribution of Marks in % with K levels CIAI, II, III & External Assessment

Blooms Taxonomy	Int	ernal Assessr	External	
	I	II	III	Assessment
Knowledge(K1)	8%	8%	8%	5%
Understanding(K2)	28%	12%	8%	14%
Apply(K3)	44%	40%	24%	27%
Analyze(K4)	20%	40%	40%	27%
Evaluate(K5)	-	-	20%	27%

BLUE PRINT FOR INTERNAL ASSESSMENT - I Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

			Secti	ion A	Sec	tion B	Section C	Section D			
Sl. No	cCOs	K- Level	MCQ (No Cho				(Either or Type)	(Open Choice)	Total		
			No. of Questions	K- Level	No. of Questions	K- Level					
1	CLO 1	Up to K 4	2 2	K1 K2	1 1 1	K1 K2 K3	1(K2) 1(K3) (Each set of questions must be in the same level)	1(K3) 1(K4)			
	of Quest asked	ions to	4		3		4	2	13		
	No. of Questions to be answered				2	1	10				
	Marks for each question		1		2		5	10			
	Total Marks for each section		Total Marks for		4		6		20	20	50

BLUE PRINT FOR INTERNAL ASSESSMENT – II Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

			Secti	Section A Section B Section C	Section D						
SI. No	CLOs	K- Level	MCQs (No Choice)					Short Answers (No Choice)		(Open Choice)	Total
			No. of Questions	K- Level	No. of Questions	K- Level					
1	CLO 2	Up to K 4	2 2	K1 K2	1 2	K1 K2	1(K3) 1(K4)	1(K3) 1(K4)			
2	CLO 3	Up to K 4	2 2	K1 K2	1 2	K1 K2	1(K3) 1(K4) (Each set of questions must be in the same level)	1(K3) 1(K4)			
	. of Quest	ions to	8		6		8	4	26		
No. of Questions to be answered		8		6		4	2	20			
Marks for each question		ch	1		2		5	10			
To	Total Marks for each section		8		12		40	40	100		

BLUE PRINT FOR INTERNAL ASSESSMENT – III Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

SI. No	CLOs	K- Level	Sectio MC (No Ch	Qs	Section B Short Answers (No Choice)		Section C (Either or Type)	Section D (Open Choice)	Total
			No. of Questions	K- Level	No. of Questions	K- Level			
1	CLO 4	Up to	2	K1	1	K1	1(K3)	1(K4)	
		K5	2	K2	1	K2	1(K4)	1(K5)	
					1	K3			
2	CLO 5	Up to	2	K1	1	K1	1(K3)	1(K4)	
		K5	2	K2	1	K2	1(K4)	1(K5)	
					1	K3	(Each set		
							of		
							questions must be in		
							the same		
							level)		
							10 (01)		
	of Questic sked	ons to	8		6		8	4	26
No.	of Questic	ons to	8		6		4	2	20
	nswered								
Mar	ks for eacl	h	1		2		5	10	
ques	stion								
	al Marks fo	or each	8		12		40	40	100
secti	ion								

Distribution of Marks with choice K Levels CIA I, CIA II and CIA III

CIA	K Levels	Section- A MCQ (No choice)	Section -B Short Answer (No choice)	Section- C (Either or Type)	Section-D (Open Choice)	Total Marks	% of Marks
I	K1	2	2			4	8
	K2	2	2	10	-	14	28
	K3		2	10	10	22	44
	K4				10	10	20
	Marks	4	6	20	20	50	100
	K1	4	4			8	8
II	K2	4	8			12	12
	К3			20	20	40	40
	K4			20	20	40	40
	Marks	8	12	40	40	100	100
	K1	4	4			8	8
***	K2	4	4			8	8
Ш	К3		4	20		24	24
	K4			20	20	40	40
	K5				20	20	20
	Marks	8	12	40	40	100	100

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs) for Internal Assessment (IDC)

Sl. No	CLOs	K- Level	Section A MCQs (No choice)		Section B Short Answers (No choice)		Short Answers		Section C (Either/or Type)	Section D (open choice)	Total
			No. of Question	K- Level	No. of Question	K- Level					
			S	Level	S	Level					
1	CLO 1	Up to K4	2	K1			2(K3&K3)	1(K3)			
2	CLO 2	Up to K4	2	K1			2(K3&K3	1(K4)			
3	CLO 3	Up to K4			1	K2	2 (K4&K4)	1(K4)			
4	CLO 4	Up to K5			1	K2	2 (K5&K5)	1(K5)			
5	CLO 5	Up to K5			1	K2		1(K5)			
No ask	-	ions to be	4		3		8	5	20		
	No. of Questions to be answered		4		3		4	2	13		
Ma	Marks for each question		1		2		5	10			
	tal Marks tion	for each	4		6		20	20	50 (Marks)		

Distribution of Section-wise Marks with K Levels for Internal Assessment (IDC)

K Levels	Section A (MCQ'S) (No choice)	Section B (Short Answer) (No choice)	Section C (Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	4				4	4
K2		6			6	6
K3			20	10	30	30
K4			10	20	30	30
K5			10	20	30	30
Total Marks	4	6	40	50	100	

- K1- Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3- Application oriented- Solving Problems, Justifying the statement and deriving Inferences.
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5- Evaluating, making Judgments based on criteria

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs) for External Assessment

Sl. No	CLOs	K- Level	Section A MCQs (No choice)		Section B Short Answers (No choice)		Section C (Either/or Type)	Section D (open choice)	Total
			No. of Question	K- Level	No. of Question	K- Level			
			S	Level	S	Level			
1	CLO 1	Up to K4	2	K1&K2	1	K1	2 (K2& K2)	1(K3)	
2	CLO 2	Up to K4	2	K1&K2	1	K2	2(K3& K3)	1(K4)	
3	CLO 3	Up to K4	2	K1&K2	1	K3	2 (K3 &K3)	1(K4)	
4	CLO 4	Up to K5	2	K1&K2	1	K4	2 (K4 & K4)	1(K5)	
5	CLO 5	Up to K5	2	K1&K2	1	K5	2 (K5 & K5)	1(K5)	
No ask	-	ions to be	10		5		10	5	30
	. of Quest wered	ions to be	10		5		5	3	23
Ma	Marks for each question		1		2		5	10	
	tal Marks tion	for each	10		10		25	30	75 (Marks)

Distribution of Section-wise Marks with K Levels for External Assessment

K Levels	Section A (MCQ'S) (No choice)	Section B (Short Answer) (No choice)	Section C (Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	5	2	-	-	7	5
K2	5	2	10	-	17	14
К3	-	2	20	10	32	27
K4	-	2	10	20	32	27
K5	-	2	10	20	32	27
Total Marks	10	10	50	50	120	100

- K1- Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3- Application oriented- Solving Problems, Justifying the statement and deriving Inferences.
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5- Evaluating, making Judgments based on criteria

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3^{rd} Cycle) with Grade A^+ and CGPA 3.51 by NAAC

CBCS with **OBE**

DEPARTMENT OF MATHEMATICS-PG

(w.e.f. 2022 – 2023 Batch onwards)

COURSE STRUCTURE -SEMESTER WISE

Sem	Category	Course Code	Title of the Course	Teaching hrs(per Week)	Exam Duration (Hrs.)		Mar	ks Allotte	ed
						CIA	SE	Total	Credits
	Core	22OPMA11	Abstract Algebra	5	3	25	75	100	4
	Core	22OPMA12	Real Analysis	5	3	25	75	100	4
I	Core	22OPMA13	Differential Equations	6	3	25	75	100	4
	Core	22OPMA14	Differential Geometry	6	3	25	75	100	4
			DSEC-I	6	3	25	75	100	4
	IDC	22OPMAID1	Teaching & Research Aptitude Paper –I	2	3	25	75	100	2
	Core	22OPMA21	Linear Algebra	5	3	25	75	100	4
п	Core	22OPMA22	Measure and Integration	5	3	25	75	100	4
	Core	22OPMA23	Graph Theory with Applications	6	3	25	75	100	4
	Core	22OPMA24	Advanced Statistics-1	6	3	25	75	100	4
			DSEC-II	6	3	25	75	100	4
	IDC	22OPMAID2	Teaching & Research Aptitude Paper -II	2	3	25	75	100	2
	Core	22OPMA31	Advanced Statistics-II	6	3	25	75	100	4
	Core	22OPMA32	Complex Analysis	6	3	25	75	100	4
III	Core	22OPMA33	Mechanics	6	3	25	75	100	4
	Core	22OPMA34	Topology	6	3	25	75	100	4
			DSEC-III	6	3	25	75	100	4
	Core	22OPMA41	Advanced Topology	6	3	25	75	100	4
IV	Core	22OPMA42	Research Methodology & Mathematical Methods	6	3	25	75	100	4
	Core	22OPMA43	Functional Analysis	6	3	25	75	100	4
	Core	22OPMA44	Operations Research	6	3	25	75	100	4
			DSEC-IV	6	3	25	75	100	4
		22OPMAPR4	Project			20	80		6
	•	1	Total Credits			1	•		90

DSEC- Discipline Specific Elective Course

IDC- Inter Disciplinary Course

DSEC: Discipline Specific Elective Courses:

DSEC – I has to be chosen in Semester I from the following:

- 1. Number Theory & Cryptography 22OPMADSE1A
- 2. Fluid Dynamics 22OPMADSE1B

DSEC – II has to be chosen in semester II from the following:

- 1. Fuzzy Sets and Logic -22OPMADSE2A
- 2. Automata Theory and Formal Languages -22OPMADSE2B

DSEC – III has to be chosen in semester III from the following:

- 1. Numerical Analysis -22OPMADSE3A
- 2. Stochastic Process -22OPMADSE3B

$\boldsymbol{DSEC}\boldsymbol{-}\boldsymbol{IV}$ has to be chosen in semester \boldsymbol{IV} from the following:

- 1. Discrete Mathematics 22OPMADSE4A
- 2. Financial Mathematics 22OPMADSE4B

	De	I M.Sc.,						
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	DSEC	22OPMADSE1A	Number Theory	4	6	25	75	100
			and					
			Cryptography					

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives

- 1. To know about fundamental algorithms for integer arithmetic and greatest common divisor calculation.
- 2. To find modular arithmetic and other number theoretic computations.
- 3. To derive algorithms and linear congruence
- 4. To Analyze Quadratic Residues and Diophantine equation
- 5. To explore applications of number theory in cryptography.

Unit	Course Contents	90 Hours	K Level	CLO
I	Arithmetical Functions and Dirichlet Multiplication Introduction – Divisibility – The Mobius function $\mu(n)$ – The Euler totient function $\Phi(n)$ – A relation connecting Φ and μ – The divisor functions $\sigma_{\alpha}(n)$ - Generalized convolutions – Formal power series – The Bell series of an arithmetical function – Bell series and Dirichlet multiplication – Derivatives of an arithmetical functions – The Selberg Identity.	18	Up to K4	CLO1
II	Averages of Arithmetical Functions $ \begin{array}{l} \text{Introduction} - \text{The big oh notation. Asymptotic equality of} \\ \text{functions} - \text{Euler's summation formula} - \text{Some elementary} \\ \text{asymptotic formulas} - \text{The average order of d(n)} - \text{The average} \\ \text{order of the divisor functions } \sigma_{\alpha}\left(n\right) - \text{The average order of } \Phi(n) \\ \text{- An application to the distribution of lattice points visible from} \\ \text{the origin} - \text{The average order of } \mu(n) \text{ and of } \dot{U}(n) \text{ - The partial} \\ \text{sums of a Dirichlet product} - \text{Applications to } \mu(n) \text{ and } L(n) \text{ -} \\ \text{Another identity for the partial sums of a Dirichlet product.} \\ \end{array} $	18	Up to k4	CLO2

III	Some Elementary Theorems on the Distribution of Prime Numbers and Congruence's: Introduction – Chebyshev's functions (x) and (x) - Definition and basic properties of congruence - Residue classes and complete residue systems – Linear congruence – Reduced residue systems and Euler Fermat theorem – Polynomial congruence modulo p .Lagrange's theorem – Applications of Lagrange's theorem – Simultaneous linear Congruence . The Chinese Remainder theorem – Applications of the Chinese Remainder theorem – Polynomial congruence with prime power moduli - The Principle of cross classification – A decomposition property of reduced residue systems	18	Up to K4	CLO3
IV	Quadratic Residues and the Quadratic Reciprocity Law: Quadratic residues – Legendre's symbol and its properties – Evaluation of (-1/p) and (2/p) –Gauss' lemma- The quadratic reciprocity law-Applications of the reciprocity law- The Jacobi symbol - Applications of Diophantine equations- Gauss sums and the Quadratic reciprocity law.	18	Up to K5	CLO4
V	More on Number Theory: Public-Key Cryptography, RSA and Other Public Cryptosystems Discrete logarithm – Principles of public key – Cryptosystem – RSA algorithm – Elliptic curve cryptography.	18	Up to K5	CLO5

Books for study:

- 1. TOM.M. Apostol, *Introduction to Analytic Number theory*, Narosa Publishing *House* (1998).
- 2. William Stallings, *Cryptography and Network Security Principles and Practice*, Prentice Hall, Fifth Edition, 2011

UNIT	CHAPTER(S)	SECTIONS		
I	2	2.1 to 2.19 Book No.1		
II 3		3.1 to 3.12 BookNo1		
III	4&5	4.1,4.2 &5.1 to 5.11		
		Book No1		
IV	9	9.1 to 9.9 Book No1		
V	8,9&10	8.5, 9.1,9.2 & 10.4		
		Book No2		

Books for Reference:

- 1) S.G. Telang, Number Theory, Tata McGraw-Hill (2001).
- 2) Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 1987.
- 3) Ivan Niven, Niven Ivan, Herbert S. Zuckerman, Zuckerman Herbert S An introduction to the theory of numbers ,1972.
- 4) Martin Erickson, Anthony Vazzana, introduction to Number Theory, first Indian, 2009.
- 5) David M.Burton, Elementary Number Theory, Wm.C.Brown Publishers 1989.

Web Resources

- 1. http://www.fuchs-braun.com/media/532896481f9c1c47ffff8077fffffff0.pdf
- 2.https://www.flowsurfv3.net/c.php?cu=https%253A%252F%252Fwstein.org%252Fent%252Fent.pdf&sh=wstein.org%2Fent%2Fent.pdf&l=IN&po=2&u=mbeh-20210420-ccmnet-

flga33&a=3100&tr=7gb1211411dgd&keyword=number%2Btheory%2Bpdf%2Bfree%2Bdownload&aid=61a887bb708ea&t=8&bc=0&rt=1638434746.9534&n=5&loc=normal. 3. https://crypto.stanford.edu/pbc/notes/numbertheory/book.pdf

E-books

http://www.freebookcentre.net/maths-books-download/gotoweb.php?id=9568
 https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxha2hsYWdoZWF8Z3g6MTRmYTdkZDQ4Y2Q2MmFhMQ

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- Develop a deeper conceptual understanding of the theoretical basis of number theory and cryptography.
- Apply elementary number theory to cryptography

Activities to be given:

We will be providing students with intellectual problems, theory application problems and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understand the properties of divisibility and congruence.	Up to K4
CLO2	Use arithmetic functions in area of mathematics	Up to K4
CLO3	Understand and use the theorems ,Chinese reminder theorem and Lagrange's theorem	Up to K4
CLO4	Know the applications of reciprocity law and Diophantine equation	Up to K5
CLO5	Apply elementary number theory concepts in cryptography.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	2	3	3
CLO2	3	2	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	3	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course	90	Total	Mode of
	Content	Hours	Hours	Teaching
1	Arithmetical Functions and Dirichlet Multiplication Introduction – Divisibility – The Mobius function $\mu(n)$ – The Euler totient function $\Phi(n)$ – A relation connecting φ and μ	6	18	Chalk & Talk
	A product formula for $\Phi(n)$ – The Dirichlet product of arithmetical functions – Dirichlet inverses and the mobius inversion formula – The Mangoldt function $L(n)$ – Multiplicative functions - Multiplicative functions and Dirichlet multiplication	6		
	The inverse of a completely multiplicative function- Liouville's function $\lambda(n)$ - The divisor functions σ_{α} (n) - Generalized convolutions –Formal power series – The Bell series of an arithmetical function – Bell series and Dirichlet multiplication – Derivatives of an arithmetical functions – The Selberg Identity.	6		
II	Averages of Arithmetical Functions Introduction – The big oh notation. Asymptotic equality of functions – Euler's summation formula – Some elementary asymptotic formulas	6	18	Chalk & Talk
	The average order of $d(n)$ - The average order of the divisor functions $\sigma_{\alpha}(n)$ - The average order of $\Phi(n)$ - An application to the distribution of lattice points visible from the origin	6		
	The average order of $\mu(n)$ and of $\Lambda(n)$ - The partial sums of a Dirichlet product - Applications to $\mu(n)$ and Λ (n) - Another identity for the partial sums of a Dirichlet product.	6		

III	Some Elementary Theorems on the Distribution of	6	18	Chalk & Talk
	Prime Numbers and Congruence's:			
	Introduction – Chebyshev's functions $\psi(x)$ and $I(x)$ -			
	Definition and basic properties of congruence - Residue			
	classes and complete residue systems			
	Linear congruence – Reduced residue systems and Euler	6		
	Fermat theorem - Polynomial congruence modulo p -			
	Lagrange's theorem – Applications of Lagrange's			
	theorem - Simultaneous linear Congruence . The			
	Chinese Remainder theorem – Applications of the			
	Chinese Remainder theorem			
	Polynomial congruence with prime power moduli - The	6		
	Principle of cross classification – A decomposition			
	property of reduced residue systems.			
IV	Quadratic Residues and the Quadratic Reciprocity	6	18	PowerPoint
	Law:			Presentation
	Quadratic residues – Legendre's symbol and its			&Seminar
	properties -Applications of the reciprocity law- The			
	Jacobi symbol			
	Evaluation of (-1/p) and (2/p) –Gauss' lemma- The	6		
	quadratic reciprocity law			
	Applications of Diophantine equations- Gauss sums and	6		
	the Quadratic reciprocity law.			
V	More on Number Theory: Public-Key	6	18	PowerPoint
	Cryptography, RSA and Other Public			Presentation &
	Cryptosystems			Seminar
	Discrete logarithm			
	Principles of public key – Cryptosystem	6		
	RSA algorithm – Elliptic curve cryptography	6		

Course Designer: Dr. Mrs. S. Sripriya, Assistant Professor of Mathematics

	Department of Mathematics					I M.Sc	2.,	
Sem	Category	Course Code	Course	Credits	Contact	CIA	SE	Total
			Title		Hours/week			
1	DSEC	22OPMADSE1B	Fluid	4	6	25	75	100
			Dynamics					

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives

- 1. To develop an application for properties of Newtonian Fluid.
- 2. To Study analytical solution to variety of simplified problems.
- 3. To understand the dynamics of fluid flows and governing the non dimensional parameters.
- 4. To give fundamental knowledge of fluid, its properties and behavior under various conditions of internal and external flows.
- 5. To describe the principles of motion for fluids.

Unit	Course Content	90 Hours	K Level	CLO
I	Real fluids and Ideal fluids- Velocity of a fluid at a point – streamlines path lines- velocity potential –Vorticity Vector – Equation of continuity – acceleration of a fluid	18	Up to K4	CLO1
II	Equation of motion of a fluid: Pressure at a point in a fluid at rest – pressure at a point in a moving fluid-Euler's equations of motion – Bernoulli's Equation, Bernoulli's theorem.	18	Up to K4	CLO2
III	Some two-dimensional flows: meaning of two-dimensional flow –stream function – two dimensional image systems–Milne – Thomson circle theorem –Theorem of Blasius.	18	Up to K4	CLO3
IV	Elements of Thermodynamics: The equation of state of a substance – the first law of thermodynamics- internal energy of a gas – specific heats of a gas – function of state; Entropy-Maxwell's thermodynamics relation	18	Up to K5	CLO4
V	Shock waves: formation of shock waves – elementary analysis of normal shock waves –elementary analysis of oblique shock waves-the method of characteristics for two – dimensional ,homentropic, irrational flow.	18	Up to K5	CLO5

Book for study:

F.Chorlton: *Text book of Fluid Dynamics*, CBS publishers and Distributors Pvt.Limited.2004.

Books for Reference:

- 1. M.D.Raisinghania: Fluid Dynamics, S.Chand, 2003.
- 2. Michel Rieutord: Fluid Dynamics, Springer International Publishing, 2015.
- 3. Geoffrey K. Vallis *Essentials of Atmospheric and Oceanic Dynamics* 1st dition, 2019.
- 4. Richard W. Johnson: Handbook of Fluid Dynamics 2nd Edition.
- 5. George EmKarniadakis, Spencer J. SherwinSpectral/hp *Element Methods for Computational Fluid Dynamics (Numerical Mathematics and Scientific Computation)* 2nd Edition

Web Resourses:

- 1.https://www.meteo.physik.unimuenchen.de/lehre/roger/manuskripte/Fluid_Dynamics.pdf
- 2. http://www.ccpo.odu.edu/~klinck/Reprints/PDF/groschBook2011.pdf 3.https://www.engineerclassroom.com/2019/01/a-textbook-of-fluid-mechanics-and 18.html

E-books:

1.http://www.issp.ac.ru/ebooks/books/open/Advanced_Fluid_Dynamics.pdf 2.https://www.u-cursos.cl/usuario/5d90bc31eadb7b756f4a0d3fd9789c4f/mi_blog/r/1205763481Batchelor.-Introduction-to-Fluid-Dynamics.pdf

Pedagogy:

 Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- Students will get the knowledge of basic principles of fluids mechanics
- To get the ability to analyze the fluid flow problems with the application of Bernoulli's theorem.

Activities to be given: We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insist them to check the Books for References and web resources.

Annexure -1

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Describe the principles of motion for fluids	Up to K4
CLO2	Formulate the motion of fluid element	Up to K4
CLO3	Use the dimensional analysis and derive dimensional numbers	Up to K4
CLO4	Understanding of thermo dynamics properties and processes	Up to K5
CLO5	Be able to analyze shock waves	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	1	3	2	3	3
CLO2	1	2	2	2	1	3
CLO3	1	1	3	3	1	3
CLO4	2	2	2	2	2	3
CLO5	2	2	3	2	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Annexure -1

Lesson Plan

TT •.	C C + +	TT	00	3.7.1.6
Unit	Course Content	Hours	90	Mode of
			Hours	Teaching
1	Real fluids and Ideal fluids- Velocity of a fluid at a	6	18	Chalk and
	point			Talk
	streamlines path lines- velocity potential	6		
	Vorticity Vector – Equation of continuity – acceleration of a fluid.	6		
II	Equation of motion of a fluid: Pressure at a point in a fluid at rest	6	18	Chalk and Talk
	pressure at a point in a moving fluid-Euler's equations of motion	6		
	Bernoulli's Equation, Bernoulli's theorem.	6		
III	Some two-dimensional flows: meaning of two-dimensional flow		18	Chalk and Talk
	stream function – two dimensional image systems	6		
	Milne – Thomson circle theorem –Theorem of Blasius.	6		
IV	Elements of Thermodynamics: The equation of state of a substance – the first law of	6	18	PowerPoint Presentation
	thermodynamics			&Seminar
	internal energy of a gas – specific heats of a gas- function of state; Entropy	6		
	Maxwell's thermodynamics relation	6]	
V	Shock waves: formation of shock waves –	6	18	PowerPoint
	elementary analysis of normal shock waves		1	Presentation
	elementary analysis of oblique shock waves-the	6		&Seminar
	method of characteristics for two		4	
	dimensional, homentropic, irrational flow.	6		

Course Designer: Dr. Mrs. S. Sripriya, Assistant Professor of Mathematics

Depar	Department of Mathematics					I M.Sc.	,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total
II	DSEC	22OPMADSE2A	Fuzzy Sets and Logic	4	6	25	75	100

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives:

- 1. To understand fundamental of fuzzy set.
- 2. To learn fuzzy set, Arithmetic operation on fuzzy set.
- 3. To understand fuzzy notation
- 4. To know about fuzzy relation.
- 5. To apply fuzzy logic in real world problem.

Unit	Course Content	90 Hours	K-Level	CLO
I	Introduction ,Crisp Sets: An Overview, The Notation of Fuzzy Sets, Basic Concepts of Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic	18	Up to K4	CLO1
II	General Discussion, Fuzzy Complement, Fuzzy Union, Fuzzy Intersection, Combinations of Operations, General Aggregation Operations.	18	Up to K4	CLO2
III	Crisp and Fuzzy Relations, Binary Relations, Binary Relations On a Single Set, Equivalence and Similarity Relations.	18	Up to K4	CLO3
IV	Compatibility or Tolerance Relations, Orderings	18	Up to K5	CLO4
V	Morphisms, Fuzzy Relation Equations	18	Up to K5	CLO5

Book for Study:

Fuzzy Sets, Uncertainty and Information, George J.Klir, Tina A. Folger.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
I	1	1.1 to 1.6
II	2	2.1 to 2.6
III	3	3.1 to 3.4
IV	3	3.5 & 3.6
V	3	3.7 & 3.8

Books for Reference:

- 1) Bhargava A.K *Fuzzy Set Theory Fuzzy Logic and Their Applications*, S.Chand& Company Pvt. Ltd.2013.
- 2) Chennakesava, R. Alavala, Fuzzy Logic and Neural Network Basic Concepts & Applications, New Age International Publishers 2008.
- 3) George J.Klir and Boyuan, Fuzzy sets Fuzzy Logic, Theory and Applications, Prentice Hall of India, 2002.
- 4) George Bojadziev and Maria Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications, 1996.
- **5**) Bhargava A.K. Fuzzy Set Theory Fuzzy Logic and their Applications, 2013.

Web Resources:

- 1.https://cours.etsmtl.ca/sys843/REFS/Books/ZimmermannFuzzySetTheory2001.pdf
- 2. https://link.springer.com/book/10.1007/978-3-642-35221-8
- 3. https://www.b-farhadinia.ir/bfarhadiadmin/file/stdfile/Klir.pdf

E-books:

- 1. https://bookauthority.org/books/beginner-fuzzy-logic-ebooks
- 2. https://www.phindia.com/Books/ShowBooks/NzI/Fuzzy-Sets-and-Fuzzy-Logic
- 3. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119193210

Pedagogy:

Chalk and Talk, Group Discussion, Student Seminar, Spot Test, Assignments, Quiz.

Rationale for Nature of the Course:

Knowledge and Skill

To understand the concept of fuzzy and its application in various field

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource

Course Learning Outcomes (CLO):

On successful Completion of the course Students will be able to

CLO	Course Learning Outcomes	Knowledge Level
		(According to
		Bloom's
		Taxonomy)
CLO1	Understand to Examine the Basic Concepts of Crisp sets and Fuzzy sets	Up to K4
CLO2	Describe Fuzzy Operations	Up to K4
CLO3	Understand the concept of Fuzzy Arithmetic	Up to K4
CLO4	Determine the difference between Crisp and Fuzzy Relation	Up to K5
CLO5	Use Fuzzy Relation as tools to Visualize and Simplify	Up to K5

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3– Application oriented Solving Problems
- K4 –Examining, analyzing, presentation and make inferences with evidences
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcome(CLOs) with Program Outcomes(Pos)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	2	3	2	2	3
CLO2	1	2	3	2	2	3
CLO3	2	3	2	2	2	1
CLO4	2	2	3	2	2	2
CLO5	2	2	3	2	2	3

- 1 Basic Level
- 2 Intermediate Level
- 3- Advance Level

Lesson Plan:

Units	Course Contents 9		IRS	Mode of Teaching
	 Introduction, Crisp Sets 	6		Chalk & Talk
I	 An Overview: The Notation of Fuzzy Sets. Basic Concepts: Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic. 	6	18	
	General Discussion, Fuzzy Complement,	6		Chalk & Talk
	 Fuzzy Union , Fuzzy Intersection 	6	18	
II	 Fuzzy Intersection, Combinations of Operations Combinations of Operations, General Aggregation Operations. 	6		
	Crisp and Fuzzy Relations	6		Chalk & Talk,
Ш	 Relations, Binary Relations On a Single Set Equivalence and Similarity Relations. 	6 6	18	Spot Test Group Discussion
	Compatibility	6		Chalk & Talk
IV	Tolerance RelationsOrderings	6	18	
	M 1:	6		Cl. 11 0 T. 11
V	MorphismsFuzzy Relation and Equation	9	18	Chalk & Talk Students Seminar

Course Designer: Mrs. K.Saranya, Assistant Professor of Mathematics

Department of Mathematics					I M.Sc.,			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	DSEC	22OPMADSE2B	Automata	4	6	25	75	100
			Theory&					
			Formal					
			Languages					

Nature of the Course				
Knowledge and Skill	Employability Oriented	Entrepreneurship oriented		
Oriented	Employability Offended	Entrepreneursing oriented		

Course Objectives

- 1. To identify different formal language classes and their notation strips.
- 2. To design grammars and recognizes for different formal languages.
- 3. To prove or disperse theories in automata theory using its properties
- 4. To understand the regular expression in UNIX.
- 5. To acquire the idea about regular languages and Pumping Lemma

Unit	Course Content	90 Hours	K Level	CLO
I	Inductive Proofs-Inductions on integers – Mutual inductions The Central Concept of Automata Theory	18	Up to K4	CLO1
	Alphabets and strings-languages			
II	Finite Automata-An informal Picture of finite Automata-The ground Rules- Deterministic finite Automata: Definition of a Deterministic Finite automata-How a FDA Processes Strings.	18	Up to K4	CLO2
III	Regular Expressions and Languages-Building Regular Expressions Finite Automata and Regular Expressions-From DFA'S to Regular Expression-Converting DFA's to Regular Expressions by Eliminating States.	18	Up to K4	CLO3
IV	Applications of Regular Expressions-Regular Expressions in UNIX-Lexical Analysis-Finding Patterns in Text Discovering Laws for Regular Expressions-The Test for a Regular-Expressions Algebraic Law	18	Up toK5	CLO4
V	Properties of Regular Languages-Proving Languages not to be Regular-The Pumping Lemma for Regular Languages-Applications of the Pumping Lemma. Closure Properties of Regular Languages.	18	Up toK5	CLO5

Book for study:

John.E.Hopcroft, Jeffrey D.Ullman. *Introduction to Automata Theory Languages and computation*, Dorling Kindersley (India Pvt. Ltd.,) 2001.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
I	1	1.4 & 1.5
II	2	2.1 & 2.2
III	3	3.1 & 3.2
IV	3	3.3 & 3.4
V	4	4.1 & 4.2

Books for Reference:

- 1. Alexander Meduna, Automata and Languages Springer (2000).
- 2. .Kohavi, ZVI, *Switching And Finite Automata Theory*, Tata McGraw-Hill, 2006.
- 3. ShyamalenduKandar, *Automata Theory and Formal Languages* Dorling Kindersley(India) Pvt.Ltd(2000)
- 4. Debidas gosh, *Introduction to Theory Of Automata, formal languages and computation*, PHI Learning; 21 August 2013
- 5.Pandey, An Introduction to Automata Theory and Formal languages, S.K.Kataria& Sons, 2010

Web Resources:

- 1. https://youtube.com/playlist?list=PLLOxZwkBK52CTVrHjYa7-SpXlEtef1TqL
- 2. https://youtube.com/playlist?list=PLN2vKr_NwAR7PpXMNrq1C3JnCu3e6hwJI

E-books:

- 1. https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf
- 2. https://www.gopalancolleges.com/gcem/course-material/computer-science/course-plan/sem-V/formal-languages-and-automata-theory-10CS56.pdf

Pedagogy:

 Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill: Acquire in fundamental understanding of the core concepts in automata theory and formal languages .An ability to design grammars and automata for different languages classes.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understanding the basic properties of formal languages.	UptoK3
CLO2	Utilize the two way finite Automata	Up to K3
CLO3	Analyze the properties of regular sets	Up to K3
CLO4	Present the context free grammars	Up to K4
CLO5	Build the algorithm of DFA's	Up to K4

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	3	2	2	3
CLO2	3	3	3	2	1	3
CLO3	3	3	3	1	2	3
CLO4	3	2	3	2	2	3
CLO5	3	2	3	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	90	Hours	Mode of Teaching
1	Inductive Proofs-Inductions on integers—	6	18	Lecture, Quiz,
	Mutual inductions The Central Concept of Automata Theory	6		PPT
	Alphabets and strings –languages	6		
II	Finite Automata: An informal Picture of finite	6	18	Lecture, Quiz,
	Automata	6		PPT
	Deterministic finite Automata: Definition of a Deterministic Finite automata The ground RulesHow a FDA Processes	6		
	Strings.			
III	Regular Expressions and Languages-Building	6	18	Lecture, Quiz,
	Regular Expressions Finite Automata and	6		
	Regular Expressions			
	From DFA'S to Regular Expression	6		
	Converting DFA's to Regular Expressions by Eliminating States.			
IV	Applications of Regular Expressions: Regular	6	18	PPT, Lecture
	Expressions in UNIX-Lexical Analysis	6		
	Finding Patterns in Text Discovering Laws for			
	Regular Expressions	6		
	The Test for a Regular Expressions Algebraic			
**	Law		10	T / T / 1
V	Prosperities of Regular Languages: Proving	6	18	Lecture, Tutorial
	Languages not to be Regular	6		
	The Pumping Lemma for Regular Languages			
	Applications of the Pumping Lemma. Closure Properties of Regular Languages.	6		

Course Designer: Mrs.Ponnulakshmi, Assistant Professor of Mathematics