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Chapter 1

Introduction

1.1 Zeolites

Zeolites are microporous crystalline materials with pores that have about the same size as small
molecules like water or n-hexane (pore size is usually 3-12 Å). The structure of a zeolite is
based on a covalently bonded TO4 tetrahedra in which the tetrahedral atom T is usually Silicium
or Aluminum. The very famous Löwenstine rule only allows the existence of zeolites with a
Silicium/Aluminum ratio of at least 1. As all corners of a tetrahedral have connections to other
tetrahedra, a three dimensional pore network of channels and/or cavities is formed. Currently,
these are about 100 different zeolite structures [1], several of these can be found in nature. To
clarify the topology of a typical zeolite, the pore structure of the zeolite Silicalite [2] is shown
in figure 1.1. This zeolite has a three dimensional network of straight and zigzag channels that
cross at the intersections.

Because of their special structure, there are several applications of zeolites in industrial pro-
cesses such as (selective) adsorption, catalysis and ion-exchange [3, 4]. A recent example of the
use of zeolites is the catalytic upgrading of lubricating oils [5]. Noble metal loaded AEL-type sili-
coaluminophosphate molecular sieves selectively absorb the wax-like, long-chain normal paraf-
fins from an oil feed-stock and hydro-convert them selectively into branched paraffins [5–7].
Catalysts based on TON- [8–11] and MTT-type [5,8,11–13] zeolites combine a strong affinity for
long-chain, normal paraffins with a significantly higher selectivity for hydro-isomerization than
for hydro-cracking [5–14]. However, the majority of zeolites that is produced worldwide is used
as ion-exchanger in detergents.

A very important characteristic of zeolites is the adsorption isotherm of a given sorbate [15].
An adsorption isotherm describes the amount of adsorbed material as a function of the chemical
potential at constant temperature. Using the equation of state of the sorbate one is able to con-
vert this chemical potential to the pressure [16]. At very low pressures, the amount of sorbate
will be negligible. The amount of adsorbed material also has a maximum (at high pressure) be-
cause the space for guest molecules in a zeolite is limited. A very popular equation to describe
adsorption is zeolites is the Langmuir equation:

�

�max
=

kp

1 + kp
(1.1)

in which � is the loading of the zeolite, �max the maximum loading, p the pressure and k a
constant. For low pressures, there is a linear relation between the pressure and the loading
(Henry’s law):

� = k�maxp = Kp (1.2)
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Figure 1.1: Pore structure of the zeolite Silicalite (MFI type framework). Left: projection on the
x-z plane. The straight channels are perpendicular to the x-z plane, the zigzag channels are in
the x-z plane. Right: projection on the x-y plane. The straight channels are from top to bottom,
the zigzag channels are from left to right. The pore size of the channels is slightly larger than
5Å. The dimensions of the rectangular unit cell are 20:1Å � 19:9Å � 13:4Å; multiple unit cells
are shown. See also figure 4.1 for a schematic representation of this zeolite.

in which K is the Henry coefficient. The value of K at different temperatures can often be de-
scribed by the integrated form of the van’t Hoff equation

K = K0 exp [-�U=RT] (1.3)

in which T is the temperature and R the gas constant. The measurement of adsorption isotherms
can be quite time consuming (see, for example, ref. [17] and chapter 4 of this thesis). As the
number of zeolite structures is rapidly increasing (see, for example, refs. [1, 18, 19]), to design
a new zeolite-based petrochemical process one will have to perform much experimental work
to find out which zeolite will be best. Therefore, it would save much time (i.e. money) if some
experiments could be replaced by fast computer simulations. Furthermore, molecular simula-
tions are able to simulate at conditions that are difficult to realize experimentally, for example,
at high temperatures or pressures, or multicomponent systems. Another advantage of molec-
ular simulations is that one is able to localize the positions of the molecules in the pores of a
zeolite directly. This can provide insight in adsorption mechanisms, for example, the inflections
in the isotherms of n-C6, n-C7, and i-C4 in the zeolite Silicalite that have been measured experi-
mentally [20, 21]. For an extensive review of computer simulations of the adsorption, diffusion,
phase equilibria and reactions of hydrocarbons in zeolites the reader is referred to refs. [22, 23].

1.2 Molecular Simulations

In this thesis, we will use force field based computational methods. This means that we know
exactly all interactions between the atoms of our system. Once we know these interactions,
we are able to calculate a variety of static and dynamic properties like heats of adsorption,
adsorption isotherms, and diffusion coefficients. In general, there are two methods to obtain a
molecular force field:
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1. From quantum mechanical calculations. By solving the Schrödinger equation using vari-
ous approximations, we can obtain forces between different atoms and molecules. These
forces can be fitted into a force field. This usually works very well for intra-molecular
bonded interactions like bond-stretching, bond-bending, and torsion interactions, but less
well for van der Waals interactions. Note that hydrocarbon-zeolite interactions are dom-
inated by van der Waals interactions (see, for example, ref. [24] and chapter 4). Recently,
there have been several quantum-mechanical studies of water and methanol in Sodalite
[25, 26] using the Car-Parrinello technique [27].

2. From experimental data. A force field can be fitted in such a way that experimental data
like diffusion coefficients, heats of adsorption, or phase equilibria can be reproduced. This
force field can then be used to compute other properties of other molecules.

Once we have a force field, we can calculate dynamic and static properties of our system. In
general, there are two classes of methods:

� Molecular Dynamics (MD). The basic concept of Molecular Dynamics is Newton’s second
law, which states that the second derivative of the position is proportional to the force:

d2xi
dt2

=
Fi
mi

(1.4)

in which t is the time, mi is the mass of particle i, Fi is the force on particle i, and xi is the
position of particle i. The velocity vi is the time derivative of the position:

vi =
dxi
dt

(1.5)

Except for a few trivial cases, these equations can only be solved numerically for a system
of more than two particles. A popular algorithm to solve these equations of motion is the
so called velocity-Verlet algorithm [28, 29]:

xi (t+ �t) = xi (t) + vi (t)�t+
Fi (t)
2mi

(�t)2 (1.6)

vi (t+ �t) = vi (t) +
Fi (t+ �t) + Fi (t)

2mi

�t (1.7)

in which �t is the time-step of the integration. Note that this algorithm is time-reversible.
The average of a static propertyA can be calculated from the time average of A:

hAi =
R
dtA (t)R
dt

(1.8)

An important dynamic quantity is the self-diffusivity D, which can be computed by eval-
uating the mean-square displacement, which reads in three dimensions

D =
1

6
lim
t
0

!1

����x�t+ t 0� - x (t)

���2�
t
0

(1.9)

or by evaluating the integral of the velocity autocorrelation function

D =
1

3

Z
1

0

dt
0

D
v (t) � v

�
t+ t

0

�E
(1.10)
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A typical time-step for MD has to be smaller than any characteristic time in the system.
For molecular systems this is in the order of �t = 10-15 s. This means that we have to
integrate the equations of motion for 1015 steps to perform a simulation of our model for
one second. In practice, we are limited to simulations of 10-6s due to the limitations of
modern computers. This means that using straightforward MD, we cannot obtain static
and dynamic properties that have a typical time-scale of 10-6s or larger. A possible way
to calculate the occurrence of such infrequent events for a special class of problems is
transition state theory [30].

� Monte Carlo (MC). In Monte Carlo algorithms, we do not calculate time averages but
phase space averages. For example, in the canonical (NVT) ensemble, the average of a
static property A is equal to

hAi =
R
dxA (x) exp [-�U (x)]R
dx exp [-�U (x)]

(1.11)

in which x resembles the position of all particles in the system,U is the total energy of the
system and � = 1= (kBT), in which kB is the Boltzmann constant. Because the integrals in
equation 1.11 are integrals in many dimensions (usually at least 100) and exp [-�U (x)] is
nearly always zero (i.e. only for a small part of x there is a contribution to the integral),
conventional numerical integration techniques are not suited to compute hAi. Therefore,
the only suitable method is MC, in which the ratio of the integrals in equation 1.11 is
calculated instead of the integrals themselves. In a MC simulation, we generate a sequence
(lengthN) of coordinates xi, in such a way that the average of A can be calculated using

hAi = lim
N!1

Pi=N
i=1 A (xi)
N

�
Pi=N

i=1 A (xi)
N

; N� 1 (1.12)

by ensuring that points xi in phase space are visited with a probability proportional to
exp [-�U (xi)]. There is an infinite number of possibilities to generate a sequence of coor-
dinates xi for a given system in such a way that this equality holds. However, to calculate
hAi accurately, some methods will need an astronomical large number of states (for exam-
ple,N = 10500), while other methods need only a few states (for example,N = 105). This is
the charm of MC methods, because one has the freedom to modify the algorithm to obtain
an optimal efficiency. In MD simulations there usually is no such freedom.

A simple MC method is the Metropolis MC method, in which k is generated by adding a
random displacement in the interval [-�;�] to xi. When a uniform distributed random
number between 0 and 1 is smaller than exp [-� (U (k) -U (xi))], we choose xi+1 = k,
otherwise we choose xi+1 = xi. The maximum displacement � can be adjusted to obtain
a certain fraction of accepted trial moves (usually around 50%). One can prove that in this
method the phase space density of xi is proportional to exp [-�U (xi)] for sufficiently large
i [29, 31, 32].

For long chain molecules with strong intra-molecular potentials this algorithm will not be
very efficient because a displacement of a single atom will not change the conformation of
the molecule very much. Furthermore, there might be high energy barriers (for example
torsional barriers) which are not often crossed; this will lead to poor sampling statistics. A
possible solution is the use of an algorithm that regrows a chain molecule completely or
partially and thus changes the conformation of the molecule significantly. Such algorithms
are discussed in chapters 2 and 3 of this thesis.
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µ T

0
0

Figure 1.2: Left: Zeolite in direct contact with a gas. Right: Adsorbent in contact with a particle
reservoir with a fixed temperature and chemical potential. These figures have been taken from
ref. [29] with permission of the authors.

Whether we use either MD or MC depends on the property we would like to calculate. For
example, consider the case of a gas that can be adsorbed in a microporous solid; one would
like to calculate the Langmuir constants k and �max (see equation 1.1). In a conventional MD
simulation one would have to simulate a gas in contact with the solid. There are three important
disadvantages of such a simulation (see figure 1.2):

1. Usually, the gas phase is not very interesting to simulate because thermodynamic proper-
ties can usually be obtained quite easily using different methods.

2. This adsorption process is limited by the diffusion of the sorbate in the solid. One may
have to simulate for a very long time to reach equilibrium.

3. As there is a gas-solid interface in the system, the size of the solid has to be chosen quite
large to suppress surface effects. This will slow down the computation even more.

An alternative would be to perform a grand-canonical MC simulation, in which only the solid
is simulated and not the gas phase (see figure 1.2 (right)). In this method, sorbate molecules are
exchanged with an imaginary particle reservoir of which the temperature and chemical poten-
tial are known. When the number of successful exchanges with the reservoir is large enough,
the chemical potential of the reservoir and the solid will be equal and the average loading of can
be calculated directly. It is not difficult to insert small molecules in the zeolite. However, when
an attempt is made to insert a large molecule with a random orientation in the zeolite, nearly
always there will be an overlap with a zeolite atom leading to a very high energy which will
result in a rejected trial move. Therefore, special techniques are needed to insert large molecules
with a reasonable acceptance rate. Several of such techniques are discussed in chapters 2 and 3
of this thesis. However, when one is interested in the dynamics of such a system one will have to
perform a MD simulation. For more information and other examples of molecular simulations,
the reader is referred to three standard textbooks on molecular simulations [29, 32, 33]. For a
review of applications of molecular simulations in chemical engineering the reader is referred
to ref. [34].
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1.3 Scope of this thesis

The scope of this thesis is twofold:

1. To study the adsorption and dynamic behavior of linear and branched alkane molecules
in zeolites by computer simulation.

2. To develop new computational methods which make these simulations more efficient.

Configurational-Bias Monte Carlo (CBMC) is a well-known technique to perform grand-canoni-
cal MC simulations of long chain molecules efficiently. With this technique, a chain molecule is
grown segment by segment in such a way that for the insertion of each segment several trial seg-
ments are generated; one of these trial segments is selected with a certain probability. In chapter
2, we will discuss several improvements of CBMC as well as a parallel implementation. It turns
out that for branched alkanes the CBMC algorithm needs a subtle modification. A disadvantage
of CBMC is that the growth of a chain can be stuck; i.e. all trial directions are unfavorable. In
chapter 3, we will discuss an alternative for CBMC (Recoil Growth, RG), which suffers less from
this problem. With this technique, a trial segment is selected when one is able to grow several
segments ahead. For long chains and high densities RG is more than an order of magnitude
more efficient than CBMC. However, it turns out that RG is less suitable for parallelization. In
chapter 4, the CBMC technique in the grand-canonical ensemble is used to study the adsorption
of linear and branched alkanes in the zeolite Silicalite. This adsorption can be described very
well using a rather simple force field. It turns out that for this zeolite linear and branched alkane
have quite different adsorption properties. Linear alkanes can occupy all channels of Silicalite
while branched alkanes are preferentially adsorbed at the intersections. Therefore, it would be
very interesting to investigate the competitive adsorption of alkane isomers. These simulations
are presented in chapter 5, as well as an example how one can use adsorption isotherms of
alkane isomers to design a membrane unit to separate these isomers. Chapter 6 deals with dif-
fusion of branched alkanes in Silicalite. Branched alkanes in Silicalite are preferentially located
at the intersections. However, sometimes a molecule can jump to another intersection. Because
this jump occurs only very rarely, we cannot use conventional MD to calculate a hopping rate
because the simulations would be way too long. Therefore, we use a different method (transition
path sampling) for the calculation of the hopping rate.



Chapter 2

Configurational-Bias Monte Carlo
methods�

2.1 Introduction

Computer simulations help us to relate the macroscopic properties of polymers to the atomic
structure of these molecules. Simulations are a useful aid in the interpretation of experimental
data and allow us to gain a better insight into the validity of theoretical models. In all many-
body simulations, it is essential to perform an adequate sampling of the phase space of the
model system. This becomes problematic for systems of long chain molecules, in particular at
high densities. In fact, the slow sampling of phase space also occurs for real polymers - at high
densities the natural (“reptation”) dynamics of long polymer chains is very slow. Molecular
Dynamics simulations aim to mimic the natural dynamics of a system, and suffer therefore
from the same problems. However, in Monte Carlo (MC) simulations, we are not constrained to
sample phase space (or actually, the configuration space) using natural dynamics. This is why,
for dense polymer systems, Monte Carlo methods have the potential to be more efficient than
Molecular Dynamics.

Many MC schemes have been proposed to sample the configuration space of both isolated
polymers and moderately dense polymeric systems. Among these methods, we should distin-
guish between static Monte Carlo schemes, in which many independent polymer configurations
are generated from scratch, and dynamic (Markov chain) MC schemes that accept or reject new
chain conformations by comparing their “weight” (in the simplest cases: Boltzmann weight)
with that of the old configuration. Examples of static MC schemes that can sample configura-
tions of long polymer chains are the single [39] and double scanning [40] methods of Meirovitch
and, in particular, the pruned-enriched Rosenbluth (PERM) method of Grassberger [41, 42].
Among the dynamic sampling schemes, the Configurational-Bias Monte Carlo (CBMC) tech-
nique [29,43–46] has found many applications. For example, CBMC simulations have been used
for the calculation of vapor-liquid equilibria of linear and branched molecules [47–66], cyclic
molecules [67,68], the simulation of adsorption of alkanes in porous structures [20,21,36,69–82],
the simulation of thin films of alkanes [83, 84], and for the simulation of linear and cyclic pep-
tides [85–87]. The basics of CBMC are summarized below. A more detailed discussion can be
found in ref. [29].

In the CBMC scheme it is convenient to split the total potential energy of a trial site into two
parts. The first part is the internal, bonded, intra-molecular potential

�
uinternal

�
which is used

for the generation of trial orientations. The internal potential for alkane molecules often has the

�This chapter is based on refs. [35–37]. Parts of the introduction have been taken from ref. [38].
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form [88, 89]

uinternal (l; �; �) =
X

ustretch (l) +
X

ubend (�) +
X

utors (�) (2.1)

ustretch (l) =
1

2
kl[l- l0]

2 (2.2)

ubend (�) =
1

2
k�[�- �0]

2 (2.3)

utors (�) = C0 + C1 cos (�) + C2cos2 (�) + C3cos3 (�) (2.4)

whereustretch (l) is the bond-stretching energy,ubend (�) is the bond-bending energy andutors (�)

is the torsion energy. The second part of the potential, the external potential
�
uext�, is used to

bias the selection of a site from the set of trial sites. Note that this split into u internal and uext is
completely arbitrary and can be optimized for a particular application [90].

For a new (n) configuration, a randomly chosen molecule of length N is regrown segment
by segment. If the entire molecule is being regrown then f trial sites for the first bead are placed
at random positions in the simulation box [51,91]; this will turn out to be more efficient than the
conventional choice f = 1 [29]. Note that there are also other techniques to bias the selection of
the first trial segment [80, 92]. The Rosenbluth weight of this segment is

w1(n) =

j=fX
j=1

exp
�
-�uext

1j

�
(2.5)

where � = 1= (kBT), and one trial site is selected with probability

P
selecting
1i (bi) =

exp
�
-�uext

1i

�
w1(n)

: (2.6)

For the other segments l of the molecule, k trial orientations bi are generated according to the
Boltzmann weight of the internal potential of that segment

P
generating
li (bi)db =

exp
�
-�uinternal

li

�
dbR

exp
�
-�uinternal

l

�
db

(2.7)

See, for example, ref. [93] how to optimize k for a particular application. Out of these k trial
orientations one is chosen according to the Boltzmann weight of its external potential

P
selecting
li (bi) =

exp
�
-�uext

li

�
Pj=k

j=1 exp
h
-�uext

lj

i : (2.8)

This procedure is repeated until the entire chain of length N has been grown. The Rosenbluth
weightW (n) of the new configuration is defined as

W (n) =
w1 (n)

Ql=N
l=2

hPj=k
j=1 exp

h
-�uext

lj

ii
f� kN-1

(2.9)

The old (o) configuration is retraced in a similar way, except that for each segment only k - 1

(f- 1 for the first bead) trial orientations are generated with a probability according to equation
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2.7 (randomly for the first bead). The k-th (f-th) trial orientation is the old orientation. The
Rosenbluth weightW(o) of the old configuration is defined as

W (o) =
w1 (o)

Ql=N
l=2

hPj=k
j=1 exp

h
-�uext

lj

ii
f� kN-1

(2.10)

where w1 (o) is the Rosenbluth weight of the first segment of the old configuration. To satisfy
detailed balance, the new configuration is accepted with probability

acc (o! n) = min
�
1;
W (n)

W (o)

�
: (2.11)

The CBMC algorithm greatly improves the conformational sampling for molecules with artic-
ulated structure and increases the efficiency of chain insertions (required for the calculation
of chemical potentials, grand-canonical, and Gibbs ensemble simulations) by several orders of
magnitude. To make these simulations more efficient and to use this technique for branched
molecules, several extensions are needed:

� Dual cut-off CBMC (DC-CBMC) [35]. This algorithm uses an additional bias in the selec-
tion of trial segments. It can be shown that hard-core (repulsive) interactions are more
important than long-range interactions in the selection of trial segments. Therefore, one
can use a second potential cut-off radius (rcut?) for the selection of trial segments. The sec-
ond cut-off radius can be chosen quite small, for example, for a Lennard-Jones (LJ) fluid
one can use rcut? � �. This saves a large amount of CPU time, because short-range in-
teractions can be calculated efficiently using a cell-list. The use of a second cut-off radius
introduces an additional bias in the CBMC algorithm, which can be removed exactly in
the acceptance/rejection rule.

� Parallel CBMC. With the increasing availability of parallel computers, interest in parallel
MC algorithms is growing. We present a parallel CBMC algorithm on the basis of the
algorithm of Esselink et al. [91]. This algorithm has been modified for the Gibbs ensemble
by Loyens et al. [94].

� Generation of trial segments for a branched molecule. We will briefly discuss some of the
difficulties associated with CBMC of branched molecules.

2.2 Dual cut-off CBMC

It is possible to split the external potential that is used for the selection of trial segments into
two parts

uext = uext + Æuext (2.12)

where uext is a potential that is less expensive to calculate than uext, and Æuext the difference
between uext and uext. A useful choice for uext is the same potential but with a shorter cut-off
radius (rcut?)

uext(r) = uext (r < rcut?) + Æu
ext (rcut? � r < rcut) (2.13)

where uext (r < rcut?) consists only of interactions within a distance rcut?. Dual cut-off
Configurational-Bias Monte Carlo (DC-CBMC) uses the potential uext (r < rcut?) for generation
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0.004
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[−

]

Figure 2.1: Efficiency (�) as a function of the second cut-off radius (rcut?). Details of the simula-
tions can be found in appendix A.

of the chain and thus calculates the Rosenbluth weight faster than CBMC because the number
of pair interactions is less. However, this would lead to an incorrect distribution if we would
use the conventional acceptance rule (equation 2.11). The correct distribution is recovered by
using

acc (o! n) = min
�
1;
W (n)

W (o)
exp

�
-�
�
Æuext (n) - Æuext (o)

���
(2.14)

as the acceptance rule, where W (n) and W (o) are the Rosenbluth weights calculated using
uext. The proof of this equation can be found in ref. [35] and in appendix A. Thus, a DC-CBMC
regrowth only requires the calculation of the full potential for the final configuration, and not
for all of the trial orientations. Note that the division of the external energy can be done in any
consistent fashion, and is typically used in conventional CBMC to account for LJ tail corrections
and for Ewald corrections in charged systems.

In figure 2.1, we have plotted for a typical simulation the efficiency (�, number of accepted
trial moves divided by the amount of CPU time) as a function of the second cut-off radius
rcut?. The short-range part of the potential can be calculated efficiently using a cell-list [95].
For rcut? = 0, completely unbiased chains are grown, resulting in a very low efficiency. When
rcut? = rcut = 13:8Å, we obtain the original CBMC algorithm. This is not very efficient because
for the selection of a trial segment, many long-range energy terms have to be calculated. The
optimum value of rcut? is around 5:0Å, which is slightly larger than the LJ size parameter (here:
� = 3:6Å). As in the DC-CBMC scheme the long-range energy has to be calculated only for the
selected configuration and not for every trial configuration, DC-CBMC is much more efficient.
For a more in-depth discussion the reader is referred to ref. [35].
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2.3 Parallel CBMC

2.3.1 Introduction

Whereas previous implementations of CBMC algorithms have been limited to sequential ma-
chines; here we propose a parallel CBMC algorithm. This algorithm is a combination of two
existing CBMC algorithms:

1. The Dual cut-off CBMC algorithm (DC-CBMC); see section 2.2.

2. The parallel CBMC algorithm by Esselink et al. [91]. In this algorithm, multiple chains are
grown in each CBMC trial move to increase the acceptance probability. Because the growth
of multiple chains is independent, this task can be easily distributed among processors.
Important to note is that all simulations in the article of Esselink et al. were performed
on a single workstation and not on a parallel computer, although the title of that article
suggests otherwise. Therefore it remains to be shown whether this algorithm will have a
good parallel performance in practice.

In this section, we will not only show that on the basis of these two algorithms we can de-
velop an efficient parallel code, but also that a combination of these algorithms is more efficient
than one would predict on the basis of each algorithm independently.

At this point we would like to address the question why one should develop a parallel MC
algorithm since the most efficient way of doing MC after all is to use a different sequence of
random numbers for each processor and average the results. We do not argue this may be the
most efficient way, but not always the most convenient way. This is, for example, the case when
a long equilibration of the system is needed.

2.3.2 Algorithm

Introduction

In general, there are several criteria to design a successful parallel algorithm:

� There should be a good load-balance, every processor should be doing roughly the same
amount of work.

� The amount of communication between processors should be minimized.

There are a number of reasons why the conventional CBMC algorithm cannot be parallelized
efficiently:

� The growth of a chain molecule is a sequential process by nature.

� For the selection of a new chain segment from several trial segments, a very short potential
cut-off radius can be used (see section 2.2). This means that this calculation is computa-
tionally cheap and therefore it is not possible to parallelize this task efficiently on a large
number of processors. Also, such a parallelization would imply that communication be-
tween processors is necessary for the growth of every segment of the chain.

To avoid these problems, Esselink et al. [91] have developed a CBMC algorithm in which
multiple (independent) chains are grown instead of only one chain in the conventional CBMC
algorithm. Out of these chains, one is selected according to its Rosenbluth weight and the other
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Figure 2.2: Relative efficiency (�R) as a function of the probability of generating a chain with an
overlap (x) and the number of chains grown in parallel (g) for a hard-sphere chain according to
equation 2.15.

chains are thrown away. The effect of the use of multiple-chain growth is that it is more likely
that one chain is grown in a favorable position, resulting in a larger fraction of accepted trial
moves. This will be most effective when the fraction of accepted trial moves is low. When the
fraction of accepted trial moves is high, the use of a larger number of trial chains (g) will have a
small effect only.

This can be demonstrated very easily for the growth of hard-sphere chains. When the proba-
bility of generating a chain with an overlap is equal to x and the number of chains that is grown
in parallel is equal to g, the relative efficiency �R (fraction of accepted trial moves per grown
chain divided by the fraction of accepted trial moves for g = 1) will be equal to

�R (g; x) =
1 - xg

(1 - x)� g (2.15)

This function is plotted in figure 2.2. As can be seen, the relative efficiency will always decrease
with increasing g. This decrease is less dramatic when the probability of generating a chain with
an overlap is high, meaning that Monte Carlo algorithms with a high acceptance rate will have
a poor parallel performance. However, when the acceptance rate is high for g = 1 we do not
need a parallel algorithm anyway.

Algorithm

The total external energy u can be split into three parts

u = u + Æu1 + Æu2 (2.16)

For the growth of a chain, u is used only. Æu1 and Æu2 are correction terms. The meaning of Æu1
and Æu2 will be explained later. Note that this division is completely arbitrary.
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Repeatedly, the following steps are executed:

1. Among Q processors, g new (n) chains of length N are distributed and grown using the
standard CBMC algorithm. To avoid load imbalance, mod (g;Q) = 0 must hold. For the
selection of trial segments, u is used only. This results in a Rosenbluth factor W for each
chain

W =

hPj=f
j=1 exp

�
-�u (j; 1)

�i hQi=N
i=2

Pj=k
j=1 exp

�
-�u (j; i)

�i
f� kN-1

(2.17)

In this equation, the number of trial segments is equal to f for the first bead and k for the
next beads.

2. For each chain that has been grown, Æu1 is calculated. This is a correction factor for the
Rosenbluth weightW of each chain:

W =W exp [-�Æu1] (2.18)

3. Out of the g chains, one chain (i) is selected according to

pi =
WiPj=g
j=1Wj

(2.19)

4. For the selected chain, Æu2 is calculated, resulting in

Z (n) =
exp [-�Æu2]

Pj=g
j=1Wj

g
(2.20)

5. For the old (o) configuration, a similar procedure is used to calculate Z (o). Note that the
first chain of the g chains is actually the old chain that is retraced using standard CBMC
retracing. The remaining g- 1 chains are new chains.

6. This trial move is accepted with a probability

acc (o! n) = min
�
1;
Z (n)

Z (o)

�
(2.21)

In appendix B, it is shown that this algorithm obeys detailed balance.

Another important application of the CBMC algorithm is the calculation of the chemical
potential using Widom’s test particle method [29, 32, 96]. For the parallel CBMC algorithm de-
scribed here it is straightforward to show that the excess chemical potential can be calculated
using

�ex = -
ln hZ+i
�

(2.22)

in which the symbol + is used to denote an additional test chain. The proof is almost identical
to the proof for g = 1 which is given in ref. [29].
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2.3.3 Discussion

There are several limiting cases of this algorithm that are worth mentioning:

1. u = Æu1 = 0 and f = k = g = 1. We obtain the standard Metropolis acceptance/rejection
rule for a completely unbiased MC trial move

acc (o! n) = min (1; exp [-� (Æu2 (n) - Æu2 (o))]) (2.23)

Equation 2.22 reduces to

�ex = -
ln hexp [-�u+]i

�
(2.24)

which is the usual Widom test particle method [29, 32, 96]. The symbol u+ represents the
energy of a test particle.

2. Æu1 = Æu2 = 0 and g = 1. We obtain the standard CBMC acceptance/rejection rule

acc (o! n) = min

 
1;
W (n)

W (o)

!
(2.25)

Equation 2.22 reduces to

�ex = -
ln
D
W

+E
�

(2.26)

which is identical to the equation derived in ref. [29]. The symbol W
+

represents the
Rosenbluth factor of a test chain that is grown using CBMC.

3. Æu2 = 0 and g = 1. We obtain the DC-CBMC acceptance/rejection rule.

4. Æu1 = Æu2 = 0 and g 6= 1. We obtain the acceptance/rejection rule for the parallel CBMC
algorithm that was proposed by Esselink et al. [91]. Note that the algorithm of Esselink
et al. is slightly different because for the old configuration, only one chain is grown. The
Rosenbluth weights of the remaining g - 1 chains of the old configuration are equal to
the Rosenbluth weights of the g - 1 chains of the new configuration that are not chosen.
This scheme also obeys detailed balance. The advantage of our scheme is that it is directly
portable to various ensembles like the grand-canonical or Gibbs ensemble.

It is interesting to discuss the properties of Æu1 and Æu2 when g 6= 1.

1. Æu1 is a correction term that is calculated for each chain individually, which means g times.
As chains are divided among processors, the calculation of Æu1 for a single chain is not
performed in parallel. When Æu2 = 0, the acceptance probability for a trial move will
become one when g!1.

2. The other correction term, Æu2, is calculated only for the selected chain, which means only
once. This means that the calculation of Æu2 can be divided among processors. If the
amount of CPU time required to calculate Æu2 is large and this calculation cannot be par-
allelized, load-imbalance occurs. When Æu1 = 0 and Æu2 6= 0, the acceptance probability
will not be equal to one in the limit of g!1.
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We thus can conclude that putting the energy term into Æu1 instead of Æu2 increases both
the acceptance probability and the CPU time. As the efficiency (�) of a MC algorithm is usually
defined by the number of accepted trial moves divided by the CPU time, the algorithm can be
optimized by an intelligent division of the energy between Æu1 and Æu2. There are three parts of
the total external energy which are usually put into Æu1 or Æu2:

1. LJ tail corrections. These are equal for all chains and also computationally inexpensive so
they can be put safely into Æu2.

2. Fourier part of an Ewald summation [29, 32]. An Ewald summation is usually compu-
tationally expensive but it can be parallelized very easily. This term is usually not very
different for all chains, so we recommend to put it into Æu2.

3. Inter-molecular interactions. These can be usually split into a short-range part and a long-
range part

u = u (r < rcut?) + Æui (rcut? � r < rcut) (2.27)

in which i = 1 or i = 2. Martyna and co-workers [97] have used a similar division to
distinguish two time-reversible Molecular Dynamics integration algorithms in the NVT
ensemble (respectively XI-RESPA and XO-RESPA). We will therefore use the notation IN-
DC-CBMC for i = 1 (long-range interactions are calculated for each chain) and OUT-DC-
CBMC for i = 2 (long-range interactions are calculated for the selected chain only). Note
that in RESPA algorithms a switching function is usually used to smooth the transition
from short-range interactions to long-range interactions. We found that for DC-CBMC the
use of a switching function does not influence the performance of the algorithm.

An important quantity is the amount of CPU time for the growth of one chain divided by
the total amount of CPU time that is spend in the calculation of Æu1;2. When this ratio is low,
one can grow multiple chains at almost no computational cost (because most time is spend on
calculating Æu1;2). This means that for increasing g the efficiency of the algorithm will increase
instead of decrease (figure 2.2). This is, for example, the case for OUT-DC-CBMC with the use
of a small value for rcut?. We therefore predict that OUT-DC-CBMC will be more efficient than
IN-DC-CBMC.

When the calculation of Æu1 and Æu2 is computationally expensive and not easy to calculate
in parallel, IN-DC-CBMC will fail because too many correction terms have to be calculated and
OUT-DC-CBMC will fail because the calculation of Æu2 cannot be parallelized. In appendix C,
we present an algorithm that may solve this problem.

2.3.4 Results and discussion

To test this parallel algorithm, we have studied a system of a single n-hexane molecule in the
zeolite Silicalite. Details about the model we used can be found in appendix A. Our simulation
code was written in FORTRAN77 and parallelized using MPI [98]. The following machines were
used to test our parallel CBMC algorithm:

1. Sun Enterprice 3000 machine (emerald.epcc.ed.ac.uk) with 4 x 250 MHz UltraSPARC CPU’s
and 1 Gbyte shared memory. MPICH-1.1.1 [99] was used as communication library.

2. IBM RS/6000 SP (isis.sp.sara.nl) with 76 nodes and 512 MB distributed memory per node.
MPI-F was used as a communication library.
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3. Cluster (24 nodes) of PC’s equipped with Intel PentiumII 350 MHz processors and 128
MB per node running Redhat Linux 5.2 [100]. LAM 6.1 [101] was used as a communica-
tion library, the options [-O - c2c - nger] were used for fast communication. The PC’s
were connected using a 100 Mbit Full-Duplex Ethernet network and a 3Com SuperStack
II Switch 3300. See ref. [102] for more information about this computer.

4. Cluster (48 nodes) of PC’s equipped with AMD (K7) Athlon 500 MHz processors and 128
MB per node running Redhat Linux 6.1 [100]. LAM 6.3 [101] was used as a communication
library, the options [-O - c2c - nger] were used for fast communication. The PC’s were
connected using a 100 Mbit Full-Duplex Ethernet network and a HP ProCurve Switch
4000M. See refs. [103, 104] for more information about this computer.

In all our simulations, we have defined the efficiency of a simulation (�) as the number
of accepted trial moves divided by the CPU time. It is possible to make a direct comparison
between different machines/simulations using � only. The relative efficiency �R is defined as
the efficiency divided by the efficiency when the number of grown chains is equal to the number
of processors, i.e. g = Q. The definition of relative efficiency of equation 2.15 is consistent with
this definition.

Scaling of the number of chains (g)

In figure 2.3, we have plotted � as a function of g for various values of rcut? for simulations
using 4 physical processors. All simulations in this subsection were performed on machine
1 [105]. The OUT-DC-CBMC scheme is much more efficient than the IN-DC-CBMC scheme. As
expected, decreasing the second cut-off radius rcut? increases �. Furthermore, there is a strik-
ing difference between IN-DC-CBMC and OUT-DC-CBMC. For IN-DC-CBMC, the efficiency
always decreases with an increasing g, resulting in a relative efficiency �R that is smaller than 1.
This is in agreement with equation 2.15. However, for OUT-DC-CBMC and rcut? � 4:0Å- 4:5Å,
there is a maximum in the efficiency, resulting in a relative efficiency that is larger than 1. The
reason for this is that here much more CPU time is spent on the calculation of the long-range
part of the LJ potential (Æu2) for the selected chain than in the growth of a chain molecule. This
means that growing extra chains does not increase the total CPU time too much, but it does
increase the fraction of accepted trial moves resulting in an overall efficiency increase. The rea-
son that the growth of a chain molecule is computationally inexpensive is because of the small
second cut-off radius, which explains why this effect only takes place at small rcut?. When g
becomes too large, the fraction of accepted trial moves hardly increases resulting in a decrease
in efficiency. As the optimal efficiency will be at g = 8, running the simulation on more than 8
processors will result in an efficiency decrease.

Because of this efficiency increase instead of the expected decrease for OUT-DC-CBMC with
increasing g at a small rcut?, we can conclude that a combination of multiple-chain growth and
the use of a second cut-off radius is more efficient that one would expect for these methods
individually.
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Figure 2.3: Efficiency (�) as a function of the number of chains (g) and the second cut-off radius
(rcut?). The number of processors was equal to 4. All simulations were performed on machine
1. Left: OUT-DC-CBMC; Right: IN-DC-CBMC.

Scaling of the number of processors (Q)

To investigate the scaling of the algorithm with the number of processors, we have performed
the same simulation on Q = 1; � � � ; 4 processors with g = 12 and rcut? = 4:5Å on machine 1
and g = 32 on machines 2,3,4 using Q = 1; � � � ; 32, see figures 2.4 and 2.5. Note that we have
used f = 15 and k = 10. The reason for choosing g = 12 on machine 1 is that no load-imbalance
will occur for Q = 1; � � � ; 4. We have used a large number of chains (g = 32) on machines 2
and 3 to test the performance of the algorithm on a large number of processors. Both IN-DC-
CBMC and OUT-DC-CBMC have a linear scaling for Q � 4 on machine 1. On machines 2 and
3, the algorithm scales ideally for Q � 8. For Q = 16 and Q = 32, there is a deviation from
ideal scaling due to communication overhead and load imbalance. It turns out that machine 4
is by far the fastest one, although the scaling for this machine is worse than for machine 2 for
Q = 32. The reason is that machine 2 has the most advanced communication system between
the processors.
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Figure 2.4: Efficiency (�) as a function of the number of processors (Q) for rcut? = 4:5Å, g = 12,
f = 15 and k = 10. Simulations were performed on machine 1.
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Figure 2.5: Left: Efficiency (�) as a function of the number of processors (Q) for rcut? = 4:5Å,
g = 32, f = 15 and k = 10. Simulations were performed on machine 2 (IBM-SP), machine 3 (PC
PII) and machine 4 (PC AMD K7). The OUT-DC-CBMC algorithm was used. Right: Same, but
the efficiency is divided by the efficiency of a simulation on one processor.

2.4 Generation of trial segments for branched molecules

In this section we will discuss how to generate trial positions of a branched molecule according
to the Boltzmann factor of the internal potential.

Let us consider the growth of a structure x - y - (b1;b2). In this structure there are three
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Figure 2.6: Part of the bond-angle distributions of isobutane at T = 1000K (k�=kB = 62500K);
(a) results of our algorithm and (b) the incorrect algorithm when the two beads are not inserted
simultaneously (b1 always inserted before b2). Because of symmetry reasons, all angle distribu-
tions of isobutane should be equal. Note that the differences are small but significant.

bonds, x - y, y - b1 and y - b2 (with bond-stretching potentials according to equation 2.2) and
three bond-angles x-y-b1, x-y-b2 and b1-y-b2 (with bond-bending potentials according
to equation 2.3). This structure corresponds, for example, to a united atom model of isobutane,
which is the simplest branched alkane [36].

Assume that we have already inserted the first two segments x;y using the conventional
growing schemes. We now have to generate the position of a trial set B = (b1;b2) where b1 and
b2 are the trial positions of the two atoms that are connected to the branched atom (y). In the
CBMC scheme the probability of this set is proportional to its Boltzmann weight [29],

p(B)dB / exp [-� [ubend (B) + ustretch (B)]]dB (2.28)

in which ubend is the total bond-bending energy:

ubend (B) = ubend (x;y;b1) + ubend (x;y;b2) + ubend (b1;y;b2) : (2.29)

and ustretch is the total bond-stretching energy

ustretch (B) = ustretch (y;b1) + ustretch (y;b2) (2.30)

It is possible to write dB in spherical coordinates

dB / l2 sin (�)dld�d� (2.31)

It is easy to see that due to the used harmonic bonded potentials (equations 2.2 and 2.3), the
bond-lengths lb1 and lb2 are independent of �b1 , �b2 , �b1 , and �b2 . This means that we can
generate the bond-lengths independent from the other spherical coordinates. However, due
to the presence of a bond-bending potential involving �b1;y;b2 , we cannot generate b1 and b2

independent from each other; see appendix D for details. This means that CBMC schemes that
do not insert all segments at a branch simultaneously generate incorrect distributions due to the
presence of dependent bond-bending potentials [35, 53–55, 66], see figure 2.6.
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Figure 2.7: Angle distribution of a hard-sphere branch with bond-lengths a for the incorrect
CBMC algorithm (sequential growth; first segment is selected at random) and the correct algo-
rithm (beads are inserted simultaneously). Left: a = 3. Right: a = 0:71.

Let us consider now a system in which x, b1 and b2 are hard spheres of diameter 1 and that
all bond-lengths are equal to a; no other potentials are involved [106]. A straightforward analy-
sis shows that this system does not have hard-core overlaps for a > 1=3�p3 � 0:577. However,
when the segments are not inserted simultaneously (we assume that a randomly selected seg-
ment is inserted first) this system will have no overlaps for a > 1=2 � p

2 � 0:707; the reason
for this is that when the first segment is placed badly, all possible trial segments for the second
bead will have hard-core overlaps and thus the growth of the molecule is stuck. This means
that for small a the sequential growth algorithm is not able to compute a new configurational
at all, although a non-overlapping configuration does exist. In figure 2.7, we have plotted the
distribution of the angle x-y-b1 for the sequential (incorrect) CBMC algorithm and the correct
algorithm in which both beads are inserted simultaneously. For a = 3, there is no noticeable dif-
ference in the angle distributions at all. For a = 0:71, there is a considerable difference between
the methods and for 1=3�p3 < a < 1=2�p2 the sequential growth algorithm completely fails.

A possible way to overcome these problems is to generate random vectors on a sphere simul-
taneously for all beads connected to a branch and to accept or to reject this configuration using
the conventional acceptance/rejection rule [29, 32, 83]. A problem is that when the distribution
p (B) is small (for example, at low temperatures, a large value of the bond-bending constants or
many beads that are connected to a branch) this scheme becomes computationally expensive. A
possible way overcome this problem is to generate b1;b2 using a separate MC simulation. In
such a simulation, there are two possible trial moves to change either �bi or �bi (i is chosen at
random either 1 or 2) with a random displacement. The acceptance/rejection rules of these trial
moves are respectively

acc (o! n) = min (1; exp [-� [u (n) - u (o)]]) (2.32)

and

acc (o! n) = min
�
1;

sin (� (n))

sin (� (o))
exp [-� [u (n) - u (o)]]

�
(2.33)

It is possible to start such a MC simulation from a previously conformation. In that case,
one has to make sure that the final configuration is independent of the starting configuration. In
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Figure 2.8: Number of MC steps to obtain independent angles for a single isobutane molecule
as a function of the fraction accepted trial moves for various temperatures (k�=kB = 62500K).
The number of steps between independent angles is calculated by evaluating the angle-angle
autocorrelation function. To obtain the highest efficiency, one should adjust all maximum angle
rotations to an acceptance probability of 0.4.

figure 2.8, we have plotted the number of required MC steps to obtain an independent configu-
ration as a function of the fraction of accepted trial moves. It turns out that an acceptance rate
of 40% is most efficient.

In case that more complex potentials like torsion potentials or potentials in which bond-
stretching and bond-bending cannot be separated are present, it may even become impossible
to generate trial segments directly according to the bonded intra-molecular potential. A way
to correct for this is to generate trial segments with a distribution that is close to the correct
distribution and correct for this difference afterwards (see also equation 2.14). One would like
to avoid the situation in which the (computationally more expensive) external energy has to be
calculated for a trial configuration with a very high internal energy, because such configurations
are usually not accepted. A possible way to avoid this problem is to use CBMC on the generation
of a trial segment as well [63]. In such a scheme, many (computationally inexpensive) config-
urations are created at random and out of these random configurations, several configurations
are selected according to their Boltzmann weight of their internal bonded potential. Only for
these selected configurations, the external energy has to be calculated. This will eventually lead
to an acceptance rule with two different Rosenbluth factors: one for internal and one for external
interactions. See refs. [63, 80] for a more detailed discussion about this subject.
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2.5 Conclusions

In summary, we have briefly reviewed some of the interesting aspects of CBMC. It was found
that we can efficiently use parallel computers to perform CBMC simulations and that special
care has to be taken for the simulation of branched molecules.

2.6 Appendix A: Model details

To test the efficiency of the algorithm, simulations were performed for the regrowth of one n-
hexane (C6) molecule in the zeolite Silicalite-1. Such a simulation can be used to compute the
heat of adsorption or Henry coefficient [29, 71, 107]. The zeolite was modeled as a rigid crystal.
The number of unit cells was chosen 2� 2� 4, resulting in a system size of 40:044Å� 39:798Å�
53:532Å. For n-hexane, a united atom model was used. All alkane-alkane and alkane-zeolite
inter-molecular interactions are modeled using a LJ potential with a cut-off radius of 13:8Å. In
the Dual cut-off scheme, all particles including the zeolite particles were placed on a 3D grid
with a grid-size at least equal to the second cut-off radius. This grid has to be recalculated only
after an accepted trial move. Intra-molecular interactions include a bond-stretching potential
for two bonded atoms, a bond-bending potential for three successive atoms, a torsion potential
for four successive atoms and a LJ potential for atoms that are separated by more than three
bonds. The number of trial orientations was chosen to be 15 for the first bead and 10 to the
remaining beads. These large numbers ensure that the chain growth will not be terminated
due to an overlap of all beads, which may result in load imbalance. In addition to regrowth
trial moves, a very small number of particle displacement and particle rotation trial moves were
used. Further details of the force field and the system can be found in sections 4.2 and 4.3.

2.7 Appendix B: Proof of equation 2.21

In this appendix, we will prove that our parallel CBMC algorithm obeys detailed balance. We
start with our super-detailed balance [29] equation:X

bo;bn

N (o)Pg (o! n) acc (o! n) =
X
bo;bn

N (n)Pg (n! o) acc (n! o) (2.34)

in which N (i) is the probability of finding the system in state i,

N (i) = exp [-�u (i)] (2.35)

bo; bn are the sets of trial chains for the old and new configuration, acc (a! b) is the acceptance
probability for a trial move from a to b, and Pg (a! b) is the probability for selecting a trial
move from a to b. Super-detailed balance implies that every term on the l.h.s. of equation 2.34
is equal to each term of the r.h.s. of this equation. This leads to

acc (o! n)

acc (n! o)
=

exp [-�u (n)]

exp [-�u (o)]
� Pg (n! o)

Pg (o! n)
(2.36)

For Pg (o! n) we can write

Pg (o! n) =
exp

�
-�u (n)

�
W (n)

� W (n) exp [-�Æu1 (n)]Pi=g
i=1Wi (n)

(2.37)
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Similar for Pg (n! o)

Pg (n! o) =
exp

�
-�u (o)

�
W (o)

� W (o) exp [-�Æu1 (o)]Pi=g
i=1Wi (o)

(2.38)

Combining these equations and using u = u + Æu1 + Æu2 leads to

acc (o! n)

acc (n! o)
=
Z (n)

Z (o)
(2.39)

It is straightforward to see that equation 2.21 obeys this equation.

2.8 Appendix C: Alternative parallel algorithm

When the calculation of Æu1 and Æu2 is computationally expensive and not easy to calculate in
parallel, IN-DC-CBMC will fail because too many correction terms have to be calculated and
OUT-DC-CBMC will fail because the calculation of Æu2 cannot be parallelized. This might be
true for the simulation of polarizable molecules [108], in which an iterative scheme is used to
calculated the polarization energy. In this case, the following algorithm can be used [109]:

1. Among Q processors, g new (n) chains are divided and grown using the standard CBMC
algorithm. We also assume that mod (g;Q) = 0. For the selection of trial segments, u is
used only. This results in a Rosenbluth factor W for each chain.

2. On each processor a, one of the g=Q chains that was grown on processor a is chosen with
a probability

pi =
WiPj=g=Q

j=1 Wj

(2.40)

This is the main difference from the IN/OUT-DC-CBMC scheme in which one chain is
chosen from all chains on all processors.

3. Each processor calculates Æu1 for the chain it has chosen. This leads to

W = exp [-�Æu1]

j=g=QX
j=1

Wj (2.41)

4. One of the processors is chosen with a probability

pi =
WiPj=Q
j=1 Wj

(2.42)

5. For the selected chain on the selected processor, Æu2 is calculated, resulting in

Z (n) =
exp [-�Æu2]

Pj=Q
j=1 Wj

g
(2.43)

6. For the old (o) configuration, a similar procedure is used to calculate Z (o). Note that the
first chain of the g chains is actually the old chain that is retraced using standard CBMC
retracing. The remaining g- 1 chains are new chains.
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7. This trial move is accepted with a probability

acc (o! n) = min
�
1;
Z (n)

Z (o)

�
(2.44)

For Q = 1 this algorithm will reduce to the OUT-DC-CBMC, while for Q = g the algorithm
reduces to the IN-DC-CBMC scheme. Note that in this algorithm the acceptance probability will
be an explicit function of the number of processors, while this is not the case for OUT-DC-CBMC
and IN-DC-CBMC. The proof that this algorithm obeys detailed balance is not given because it
is similar to the proof in appendix B. It is quite straightforward to construct variants of this
algorithm, for example, when a chain is chosen from chains that were grown on 2 processors.
In general, one can construct an algorithm as follows:

1. Find a smart way to split the total external energy for a particular application.

2. Investigate if and how the calculation of the correction term Æu1 can be parallelized effi-
ciently.

3. Construct a new algorithm by combining this information.

4. Prove that the algorithm obeys detailed balance.

2.9 Appendix D: Growth of isobutane

In this appendix, we demonstrate that for the growth of isobutane, all trial segments have to be
inserted simultaneously.

In schemes in which b1 and b2 are not inserted simultaneously it is assumed that

p(b1) / exp[-�ubend(x;y;b1)]

p(b2 j b1) / exp[-�(ubend(x;y;b2) + ubend(b1;y;b2))]

p(B) = p(b1)p(b2 j b1) (2.45)

It is important to note that this is assumption is only valid if�Z
db1 exp [-�ubend(x;y;b1)]

�
�
�Z

db2 exp [-� [ubend(x;y;b2) + ubend(b1;y;b2)]]
�

=

�Z
db1 exp [-�ubend(x;y;b1)]

Z
db2 exp [-� [ubend(x;y;b2) + ubend(b1;y;b2)]]

�
(2.46)

Because of the dependence of the second term on l.h.s. on b1 this equation does not hold in
general.



Chapter 3

Recoil growth algorithm for chain
molecules with continuous interactions�

3.1 Introduction

In the previous chapter, we have discussed several improvements of Configurational-Bias Monte
Carlo (CBMC). CBMC uses the algorithm suggested by Rosenbluth and Rosenbluth [110] for
generating a configuration of a chain molecule. In CBMC, a chain conformation is grown seg-
ment by segment. For each chain segment that has to be inserted, several trial segments are
generated and one of these segments is selected with a probability proportional to its Boltz-
mann factor. This introduces a bias in the growth of the chain, which can be removed exactly by
a modification of the acceptance/rejection rule; see section 2.1.

An important disadvantage of CBMC is that in the growth of the chain, only one step ahead
is examined, which means that one cannot avoid that the growth of the chain may lead into a
“dead-end street”. To compensate for this high attrition rate in the chain construction, one is
forced to use a large number of trial directions. For hard-core interactions, this leads to a broad
distribution of the Rosenbluth weight and therefore low acceptance rates [111].

The recoil growth (RG) [111] algorithm first applied for polymers with hard-core interac-
tions has been suggested as an alternative for CBMC which does not suffer from the “short-
sightedness” of CBMC. The RG method is a ‘look-ahead’ dynamic MC scheme (in contrast to
the static schemes of refs. [39–41]). In this algorithm, a chain is extended by one segment pro-
vided that a pathway (also called feeler) of certain length ahead of the current segment can be
grown successfully. However, the feeler may fail to grow because of overlaps with other seg-
ments. In that case, the feeler can recoil up to the part of the chain that has been successfully
grown.

There are two parameters that one has to tune to obtain good construction and acceptance
rates: the length of the feeler and the number of trial directions. For hard-core chains, it was
found that a small number of trial directions in combination with a relatively large recoil length
is optimal. This is because a small number of trial directions ensures that the distribution of
the Rosenbluth weight is small, which increases the acceptance probability of the chain. The
consequence of a large feeler is that the accessible part of the phase space for a segment of
the chain is much larger than for CBMC, which means that it is more likely that a favorable
configuration will be found. Just as for CBMC, RG introduces a bias in the generation of a chain
which can be removed exactly by a modification of the acceptance/rejection rule. In ref. [111],
the RG algorithm was tested for self-avoiding walks on a lattice and its efficiency was compared

�This chapter is based on ref. [38]. Appendix C is unpublished.
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with CBMC. It was found that for low densities (e.g. 30% occupancy of the lattice), CBMC
performs better than RG for both short and long polymer chains. For higher densities and chain
lengths longer than 20 segments, RG is an order of magnitude more efficient than CBMC.

The purpose of this study is to extend the RG algorithm to off-lattice chain molecules with
continuous interactions. Although the algorithm is inspired by the one for hard-core interac-
tions, there are several important differences in the construction of the algorithm.

The structure of this chapter is as follows. In section 3.2 the RG algorithm for the case of
continuous interactions is described, while in section 3.2.3 it is shown that RG can only become
equivalent to CBMC for hard-core potentials. Section 3.3.2 contains a study of the efficiency
compared to CBMC and suggestions for the optimization of the method. In appendix A, we
present an alternative (but less efficient) algorithm to compute the Rosenbluth weight of a chain.
In appendix B, we show that there is little point in parallelizing the RG scheme using a “multiple
chain” algorithm as described in section 2.3. In appendix C, we show how to incorporate RG into
a fixed endpoint scheme. In such a scheme, part of a chain is regrown between fixed endpoints.

3.2 Description of the algorithm

The RG algorithm for hard-core chains is described in detail in ref. [111]. Here we discuss exten-
sions of this algorithm for continuous potentials. In what follows we describe the RG scheme
for canonical MC in which M chains of length N are sampled. It is straightforward to extend
this algorithm to other ensembles [29, 32].

3.2.1 Construction of a chain

The central step in RG is the selection of a specific polymer trial conformation from an entire
“tree” of possible conformations. The essential difference between the “continuous-potential”
RG method and the earlier schemes is that the selection of the trial conformation involves two
stochastic steps: the first is the selection of a subset of “open” branches on the tree, the second
is the selection of the trial conformation among the open branches. The crucial new concept
in RG is that trial directions can be either open or closed. A trial direction that is closed will
never be chosen as a part of the chain. For hard-core potentials, a trial direction is closed if it
leads to a configuration that has at least one hard-core overlap - otherwise it is open. Therefore,
the selection of the open trial directions is deterministic rather than stochastic. In contrast, for
continuous potentials, we use a stochastic rule to decide whether a trial direction is open or
closed. The probability pi that direction i is open depends on its energy ui, hence pi= pi (ui). It
is important to note that, in principle, this stochastic rule is quite arbitrary, the only restriction
is 0 < pi � 1 (for hard-core potentials: 0 � pi � 1). However, it is useful to apply the following
restrictions [112]

lim
ui!1

pi (ui) = 0

lim
ui!-1

pi (ui) = 1 (3.1)

These restrictions ensure that very favorable configurations will be open and very unfavorable
configurations will be closed. An obvious choice that obeys these restrictions is the standard
Metropolis acceptance/rejection rule [29, 31, 32]

pi (ui) = min (1; exp [-�ui]) (3.2)
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in which � = 1= (kBT). For hard-core potentials, popen is either equal to 0 (at least one overlap)
or 1 (no overlaps). Once we have determined the set of open trial directions, the RG algorithm
for a chain with continuous interactions becomes almost identical to that for a hard-core chain:

1. To start, the first segment of a chain is placed at a random position in the system. If the
first position is open, we continue with the next step. Otherwise, the chain is discarded.

2. A direction is assigned randomly to a segment i (i > 1). If this direction leads to overlap
with another segment in the system, another direction is tried, up to a maximum of k trial
directions. In principle, k can vary with i. In fact, it can even be a stochastic variable.

3. If an open direction is found, a new segment is added and the number of the directions
for segment i that have not yet been explored is recorded. If all directions are blocked the
chain retracts by one step to segment i - 1, and the unused directions are explored. The
chain is allowed to recoil up to length (lmax - l + 1) where lmax is the maximum length
that the chain has attained in its growth history, and l is the recoil length, which is a fixed
simulation parameter. When a chain is not allowed to recoil the entire chain is discarded.

4. The previous steps are repeated until the complete chain has been grown. After the suc-
cessful construction of a chain, the weight of the new chain, W (n), is computed. This
weight will be needed in step 6 to determine whether or not the new conformation will be
accepted. The computation of Wwill be discussed in the next section.

5. For the old chain, on every segment of the old chain k-1 feelers of length l are grown and
the number of feelers that is grown successfully is recorded. Using this information, one
can compute the weight of the old configuration,W (o).

6. The new configuration is accepted with a probability

acc(o! n) = min
�
1;
W (n)

W (o)

�
(3.3)

In the next sections, we derive the form forW (n) andW (o) that is required to obey detailed
balance.

3.2.2 Detailed balance condition and acceptance probability

In a Markov-chain Monte Carlo scheme, we need to ensure that different points in configura-
tion space are visited with a frequency proportional to their Boltzmann weight. This is usually
achieved by imposing the detailed balance condition

N (o)P(o! n) = N (n)P (n! o) (3.4)

where N (i) is the Boltzmann weight of state i,

N (i) = exp [-�u (i)] (3.5)

and P (o! n) is the transition probability from state o (old configuration) to state n (new con-
figuration).

In the RG algorithm, the transition probability includes the construction of a particular tree
of trial segments for both the new and the original state, the stochastic choice of the subset of
“open” segments in both trees, the selection of a particular configuration among the “branches”
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of the “new” tree, and finally the probability of accepting the new configuration. The transition
probability from the old to the new state is given by:

P (o! n) =
X

to;tn;Oo;On

Pg (tn)Pg (On j tn)Pg (rwn j tn; On)�

Pg (to j rwo)Pg (Oo j to; rwo) acc (o! n) (3.6)

where Pg (tn) is the probability of generating the new tree tn - in what follows, we shall con-
sider the case that this probability is uniform [113]. Pg (On j tn) is the probability of selecting a
particular set of open/closed directions (On) on the new tree tn. P (rwn j tn; On) is the proba-
bility of putting a chain on the new tree tn with a set of open/closed directions On. This can be
interpreted as a random walk (rw) on the tree tn in the direction of the chain. Therefore, this
factor is equal to

P (rwn j tn; On) =
1Qi=N

i=1 mi

(3.7)

in which mi is the number of successfully grown feelers at position i in the chain. mi is al-
ways larger than zero, because if it were not, the trial move would not have resulted in any
new configuration, and it would have been rejected. The next two terms are related to the old
configuration: Pg (to j rwo) is the probability of generating a tree around the old configuration
(i.e. the old configuration is included in the tree, the other configurations are generated) and
Pg (Oo j to; rwo) is the probability of selecting a particular set of open/closed directions on this
tree - but the old configuration of the chain is always “open”. Finally, the term acc (o! n) is the
probability that the transition from o to n is accepted. The transition probability from the new
(n) to the old (o) state is written as equation 3.6 by exchanging o and n:

P (n! o) =
X

to;tn;Oo;On

Pg (to)Pg (Oo j to)Pg (rwo j to; Oo)�

Pg (tn j rwn)Pg (On j tn; rwn) acc (n! o) (3.8)

Detailed balance is satisfied by imposing the stronger condition of super-detailed balance [29],
which means that we obey detailed balance for all possible sets of trees and open/closed direc-
tions of both the new and old configuration ([to; tn; Oo; On]). Many factors in Pg (On j tn; rwn)

that are found in the transition probability from the new (n) to the old (o) state cancel with the
factors of Pg (On j tn) which are in the expression for the transition probability from the old (o)
to the new (n) state. The only remaining term is the probability of generating open directions
along the backbone of the tree. Therefore, the correct acceptance/rejection rule is given by

acc(o! n) = min
�
1;
W (n)

W (o)

�
(3.9)

in which W (n) equals

W (n) =
exp [-�u (n)]

Qi=N
i=1

mi(n)

pi(n)

f� kN-1
(3.10)

In this equation, f is the number of trial positions for the first segment, which is equal to 1when
the first segment of the chain is placed at a random position in the system. Note that the term
f � kN-1 is present in both the numerator and denominator of equation 3.9 and is therefore
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irrelevant. We include this term to emphasize the similarity of W with the Rosenbluth weight
(equation 2.9). We obtain the expression forW (o), by exchanging n and o:

W (o) =
exp [-�u (o)]

Qi=N
i=1

mi(o)

pi(o)

f� kN-1
(3.11)

If we choose equation 3.2 as our stochastic rule, there is complete cancellation of Boltzmann fac-
tors associated with the selected trial segments (i) as long as ui � 0. For hard-core interactions
pi = 1, in which case the algorithm reduces to the RG algorithm for hard-core potentials [111].

For the simulation of branched chain molecules, there will be an additional term in equa-
tion 3.6 for the probability to select a random growth path on the branched molecule. As this
probability is uniform, this does not influence the final expression (equation 3.9). For the simula-
tion of branched molecules with bonded intra-molecular interactions special techniques like the
Coupled-Decoupled CBMC method by Martin and Siepmann [63] may be required; see section
2.4.

An alternative scheme to compute the weights W (n) and W (o) can be found in appendix
A. As this scheme is more complex and less efficient than the scheme presented above, we will
not discuss it in the main text of this chapter.

3.2.3 Comparison with CBMC

It is instructive to compare RG with CBMC for when the recoil length l is equal to 1. In ref. [111] it
was explained that, for hard-core potentials, RG and CBMC become identical when l = 1. Below
we show that this is not the case continuous potentials. In other words, RG is not simply a gen-
eralization of CBMC. In CBMC we retain all possible trial directions and then select a particular
direction iwith a probability proportional to its Boltzmann weight bi = exp [-�ui]. For models
with continuous interactions, bi > 0 (even though it may be very small). Hence, in a naive
implementation of the CBMC scheme, the growth of a trial configuration will be completed, no
matter how small bi (see, however, ref. [114]). Of course, in the acceptance step, conformations
with a very low weight will most likely be rejected. In contrast, in the RG scheme, unlikely
configurations are weeded out at an early stage because, most likely, they will be “closed”. One
might think that RG would become similar to CBMC if we do not allow trial segments to be
closed (i.e. if pi(ui) is always equal to one). However, if we do that, all generated configurations
are equally likely to be selected, irrespective of their Boltzmann weight. Clearly, that would be
much worse than CBMC (unless k = 1, in which case both schemes reduce to the worst possible
algorithm: i.e. random insertion). Otherwise, RG is only equivalent to CBMC in the case that
l = 1 provided that all configurations that have a non-zero Boltzmann weight, do in fact have
the same Boltzmann weight. Clearly, this condition is fulfilled for hard-core potentials. But, in
general, RG and CBMC are based on different stochastic rules to generate trial configurations.

3.3 Simulations

3.3.1 Simulation details

To study the efficiency of the continuous-potential RG method, we have performedNVT -Monte
Carlo simulations of M linear chains (length N) with truncated Lennard-Jones interactions be-
tween the non-bonded segments. In reduced units (well depth � = 1, Lennard-Jones diameter
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� = 1), the truncated LJ potential has the following form:

u (r) =

Æ
4
h�

1
r

�12
-
�
1
r

�6i
r � rcut

0 r > rcut
(3.12)

We have used rcut = 2:5. The bond-length between two successive segments was chosen to
be 1:0. Three successive segments of a molecule have a constant bond-angle of 2:0 rad. Intra-
molecular non-bonded interactions were taken into account for segments that are separated by
more than two bonds.

To enhance the efficiency of both the CBMC and the RG scheme, we have divided the inter-
molecular potential energy into short-range and long-range parts

u (r) = u (r < rcut?) + Æu (rcut? � r < rcut) (3.13)

in which rcut? is a second cut-off radius. As is shown in section 2.2, the repulsive part of the
potential is most important for the generation of a chain:

� For CBMC, we generate chain segments only with the short-range part of the potential
and correct for the bias afterwards (see section 2.2).

� For RG, we only use the short-range part of the potential to decide whether a segment is
open or closed. In this study, we have used

popen = min (1; exp [-� (uinter (r < rcut?) + uintra)]) ; (3.14)

where uintra is the intra-molecular energy [115]. In principle, one could optimize this
stochastic rule.

Since the generation of a chain only uses the short-range part of the potential, we can make a
linked cell-list to calculate the potential efficiently. Such a cell-list only has to be updated after an
accepted trial move. As the number of interactions within the short-range part of the potential
is usually quite small, we can calculate the energy of a trial position very fast, see section 2.2.
One consequence of this trick is that most of the CPU time will be spent in calculating the long-
range part of the potential energy, as the construction of a chain is very fast. As a consequence,
the overall efficiency of the simulation does not depend strongly on the choice of the simulation
parameters (f, k, l). This makes it difficult (but also less relevant) to find (or predict) the optimal
values for (f, k, l) [93].

When the first segment of a new chain is placed at an unfavorable position, it is not very
likely that this trial move will be accepted. Therefore, we use CBMC in the selection of a position
for the first segment [91], for which we use f trial positions. One of these positions is selected
with a probability proportional to its Boltzmann factor. For the old configuration, f - 1 trial
positions are generated (the f-th is the position of the first segment itself). To obey detailed
balance, one has to multiply the Rosenbluth weight of the new and old configuration (equations
3.10 and 3.15) with the sum of the f Boltzmann factors; see also refs. [63, 80, 91]. The value of
f can be chosen quite large for CBMC, for example, Martin et al. use f = 10 [63] and Mackie
et al. have used f = 32 to f = 128 [51]. RG is less sensitive to the value of f because, if the
first segment is placed at a position with a very unfavorable energy, the chain growth will be
terminated immediately.
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3.3.2 Efficiency of RG compared to CBMC

To test the efficiency of our algorithm, we have simulated the following systems at T = 5:0:

1. N = 10, � = 0:4, M = 40

2. N = 10, � = 0:2, M = 20

3. N = 20, � = 0:4, M = 20

4. N = 20, � = 0:2, M = 10

5. N = 40, � = 0:4, M = 10

6. N = 40, � = 0:2, M = 5

Note that � is the segment density. In all our simulations, we have used rcut? = 1:5. The
length of our cubic simulation box was 10:0. We have simulated all systems using CBMC (f =
5; 10, k = 5; 10; 15) and RG (f = 5, k = 1; 2; 3; 4; 5, l = 1; 2; 3; 4; 5). Note that, in principle, k
itself can be a stochastic variable [111] - but here we have kept it fixed. We have performed two
different trial moves:

� Displacement of a chain. A randomly chosen chain is given a random displacement. The
maximum displacement is adjusted such that 50% of the trial moves are accepted.

� Regrowth of a chain. A randomly chosen chain is regrown at a random position using
either CBMC or RG.

In every MC trial move consists of either a trial regrowth or a trial displacement (both se-
lected with equal probability). The amount of CPU time that is spent in the regrowth trial move
is monitored during the simulation. A total simulation consists of 105 cycles, i.e. 105 trial moves
per chain.

First of all, we have checked if the implementation of RG and CBMC is correct. We have
found excellent agreement in average energies, distribution of the radius of gyration of a chain
and also the radial distribution function between RG and CBMC for various simulation param-
eters. In general, there are several ways to define the efficiency of a simulation:

1. Number of accepted trial moves divided by the CPU time (�1). This definition is often
used, but it does not say anything about the effectiveness of accepted trial moves in chang-
ing the molecular configuration. For example, if we swap between two different configu-
rations the number of accepted trial moves can be large while the system itself is hardly
changed.

2. Decay of an autocorrelation function that measures the rate of change of molecular con-
formations (�2). For example, we can measure the autocorrelation function of the angle
between the end-to-end vector of a chain with an arbitrary but constant vector (for exam-
ple, the z-axis) as a function of the CPU time. The faster the decay of this function, the
faster a new independent configuration is generated. The efficiency �2 is defined as the
initial decay of this autocorrelation function.

The second definition is generally preferred, because this one contains not only information
about the CPU requirements of the algorithm, but also information about its effectiveness in
sampling configuration space.
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Table 3.1: Optimal simulation parameters and efficiencies (arbitrary units) by both definitions
(�1, �2) for both RG (f = 5) and CBMC. The last two columns are the efficiency ratios for RG and
CBMC according to different definitions (�1, �2).

CBMC RG (RG/CBMC)1 (RG/CBMC)2
N � M f,k �1 �2 k,l �1 �2 - -

1 10 0.4 40 10,10 5.9 0.071 3,4 22.4 0.27 3.8 3.8
2 10 0.2 20 10,5 63.2 1.54 2,2 102.5 2.5 1.6 1.7
3 20 0.4 20 10,15 0.58 0.013 3,5 5.0 0.12 8.6 8.4
4 20 0.2 10 10,10 16.2 0.748 2,2 35.7 1.8 2.2 2.4
5 40 0.4 10 10,15 0.031 0.0017 3,5 0.81 0.039 26 23
6 40 0.2 5 10,10 3.6 0.35 2,3 9.83 1.02 2.7 2.9

In table 3.1, we have summarized the efficiency by both definitions for our six model sys-
tems, with their optimal simulation parameter sets for both CBMC and RG. It is found that the
ratios of efficiencies of CBMC compared to RG are equal for both definitions. This means that
an accepted CBMC move is as effective in changing the molecular configuration of the system
as an accepted RG trial move. This is different from lattice simulations of RG and CBMC [111],
the reason for this is unclear to us. For short chains and low density the improvement of RG
over CBMC is only marginal. However, for high densities and long chain lengths, RG is an or-
der of magnitude more efficient than CBMC. For both schemes, the efficiency of the MC scheme
decreases quite rapidly at high densities and for long chain lengths. However, using RG we can
clearly extend the density and chain-length regime for which MC techniques based on chain
regrowth are feasible.

In figure 3.1, we have plotted the efficiency of the RG scheme as a function of the number of
trial directions (k) for various values of the recoil length (l). As is to be expected, the efficiency
decreases quite rapidly with increasing chain length and density. The figure shows that, once
k, the number of trial directions, is larger than one, more efficiency is gained by increasing the
value of the recoil length l than by increasing k. However, at higher densities, it is important to
optimize k. Of course, for k = 1, the efficiency is independent of the recoil length.



3.3 Simulations 33

0 2 4 6
k/[−]

0

5

10

15

20

25

30

η/
[−

]

l=1
l=2
l=3
l=4
l=5

0 2 4 6
k/[−]

0

20

40

60

80

100

120

η/
[−

]

l=1
l=2
l=3
l=4
l=5

0 2 4 6
k/[−]

0

1

2

3

4

5

6

η/
[−

]

l=1
l=2
l=3
l=4
l=5

0 2 4 6
k/[−]

0

10

20

30

40

50
η/

[−
]

l=1
l=2
l=3
l=4
l=5

0 2 4 6
k/[−]

0.0

0.2

0.4

0.6

0.8

1.0

η/
[−

]

l=1
l=2
l=3
l=4
l=5

0 2 4 6
k/[−]

0

2

4

6

8

10

12

η/
[−

]

l=1
l=2
l=3
l=4
l=5

Figure 3.1: Efficiency (arbitrary units, �1) as a function of the number of trial directions (k) for
a given recoil length (l) for the six systems described in section 3.3.2 (Left: reduced density
� = 0:4, Right: � = 0:2. Top-to-bottom: chain-lengths N = 10, N = 20, N = 40). f = 5.
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Figure 3.2: Schematic representation of some simple trees. Left: l = 1, k = 2, and N = 2, Right:
l = k = 2 and N = 3.

3.4 Conclusions

In summary, we have extended the recoil growth scheme for systems with continuous poten-
tials. We find that in a NVT simulation RG is much more efficient than CBMC for long chains
and high densities. However, in appendix B we have shown that RG is less suitable for par-
allelization using the parallel algorithm of section 2.3. We found that the standard Metropolis
acceptance/rejection rule is a reasonable stochastic rule when a Lennard-Jones potential is used.

3.5 Appendix A: Alternative algorithm to compute the weight

Instead of the method described in section 3.2.2, it is also possible to calculate the probability
that a certain path on the tree t is followed explicitly, without having to use terms that represent
the probability of generating a set of open/closed directions (Pg (On j tn), Pg (Oo j to; rwo)).
This means that Oo and On do not appear in the super-detailed balance expression (equations
3.6 and 3.8). When the probability to follow a path on the tree is equal to 	, to obey detailed
balance and to use equation 3.9 as acceptance/rejection rule we have to redefine the weight
W (n) as

W (n) =
exp [-�u (n)]

	 (n)� f� kN-1
(3.15)

To obtain the correct expression forW (o), we have to replace n with o:

W (o) =
exp [-�u (o)]

	 (o)� f� kN-1
(3.16)

To calculate 	, we have to extend all feelers up to the recoil length l and calculate the probabili-
ties that each of these trial segments is open.

It is instructive to discuss the situation l = 1 andN = 2. This system is schematically drawn
in figure 3.2 (left). The probability that the first segment is open is equal to p0. For the second
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Table 3.2: Recursive FORTRAN90 function (F) to compute the probability to select direction 1
from k directions (see equations 3.17 and 3.19). The probability that direction i is open is equal
to P (i). This function should be called with N=k and Norm=1.

Recursive Double Precision Function F(P,N,Norm) Result(Res)
Implicit None

Integer N,Norm
Double Precision P(*)

If(N.Eq.1) Then
Res = P(1)/Dble(Norm)

Else
Res = P(N)*F(P,N-1,Norm+1)
Res = Res + (1.0d0-P(N))*F(P,N-1,Norm)

Endif

Return
End Function F

segment, the probability that we select trial segment 1 is equal to

Q =
p1p2

2
+
p1 (1 - p2)

1
; (3.17)

in which pi is the probability that segment i is open. The probability of generating the whole
chain (segments 0; 1) then equals

	 = p0Q (3.18)

When the number of trial segments for the second segment is equal to k, the number of terms in
this equation will be equal to 2k-1. For example, for k = 3 the probability to select trial segment
1 is equal to

Q =
p1p2p3

3
+
p1p2 (1 - p3)

2
+
p1 (1- p2)p3

2
+
p1 (1 - p2) (1 - p3)

1
(3.19)

For arbitrary k, it is possible to compute this function recursively, see table 3.2. Note that for
hard-core potentials, pi is either equal to 0 or 1. This means that for arbitrary k, all terms except
one in equation 3.19 will be equal to zero. Therefore this equation will reduce to

Q =
1

m
(3.20)

in which m is the number of open directions including direction 1. It is straightforward to see
that in this case the algorithm reduces to the standard RG algorithm of hard-core potentials [111].

Let us now consider the case that we have to calculate the probability of generating a chain
of length N = 3. This is only different from the previous case in the way we calculate the
probabilities that parts of the tree are open. For example, consider a segment (1) with children
2 and 3. Segment 2 has children 4 and 5 and segment 3 has children 6 and 7. This situation is
drawn schematically in figure 3.2 (right) and it corresponds to l = k = 2. Let us again use pi for
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Figure 3.3: Efficiency (arbitrary units) as a function of the number of trial directions (k) for
a given recoil length (l) for the two different algorithms to compute the Rosenbluth weight
(section 3.2.2 and the alternative method of appendix A). N =M = 20 and � = 0:4. Left: l = 2,
Right: l = 5. Note that for CBMC, the number of trial directions is constant (f = 10, k = 15).

the probability that segment i is open. The probability to follow the path 1; 2; 4 along this tree is
equal to

	 = p1

�
p?2p

?

3

2
+
p?2 (1- p

?

3)

1

�
(3.21)

In this equation, p2? is the probability to successively grow segment 4 from segment 2. The
expression for p2? is similar to the previous expression

p?2 = p2

�
p4p5

2
+
p4 (1 - p5)

1

�
(3.22)

The physical meaning of p3? is the probability to grow either 6 or 7 starting from 3. This means
that segment 3 and at least 6 or 7 have to be open

p?3 = p3 [1 - (1 - p6) (1 - p7)] (3.23)

For different chain and recoil lengths, we simply have to use the previous expressions in a
recursive way:

� For a part of the tree that is part of the backbone, we have to calculate the probability that
the backbone is followed; see table 3.2.

� For a part of the tree that is not part of the backbone, we have to calculate the probability
that at least one trial direction is open. This is of course equal to 1 minus the probability
that none of the directions are open; see, for example, equation 3.23.

A possible way to program this on a computer is to use a parent/child concept, in which
every point of the tree has pointers to both its parent and its children. One can use the same
recursive operators for a parent and all descendants of the parent.

An important difference with the algorithm in section 3.2.2 is that we have to extend all feel-
ers up to length l, even if a direction is closed [116]. This means that we have to compute many
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Figure 3.4: Fraction of chains (�) that are successfully grown up to length Nsucc as a function of
Nsucc for � = 0:4 and T = 5:0. For RG, we have used f = 5, l = 5, and k = 3. For CBMC, we
have used f = k = 10.

more trial directions compared to the algorithm in section 3.2.2. Although it is possible to re-
duce the fraction of CPU time that is spend in the calculation of the energy of a trial segment (see
section 2.2), this algorithm will always be computationally more expensive than the algorithm
in section 3.2.2. In figure 3.3, we have plotted the efficiencies of the method described in this
appendix and the method described in section 3.2.2 forN =M = 20 and � = 0:4. It is found that
for a large recoil length and number of trial directions, the algorithm described in this section
becomes less efficient. However, the method described in this appendix is still almost a factor
of 5 faster than CBMC for l = 2.

We found that although this algorithm is correct, in principle, this method is quite difficult to
program. Although every program with recursive functions can be transformed to a program
without recursion, we found that this method is relatively difficult to program without this
technique. Because of the lower efficiency and the complexity we do not recommend to use this
algorithm. However, there may be other problems where an approach like the one sketched in
this appendix is useful.

3.6 Appendix B: Parallelization

In section 2.3, we have discussed a parallel CBMC algorithm. It was found that, although the
construction of a single chain cannot be parallelized efficiently on a large number of processors,
one can construct multiple chains instead. This task can readily be divided among processors.
One of these chains is selected as the new configuration, while the remaining chains are thrown
away. This introduces a bias in the generation of the new configuration, which can be removed
exactly by a modification of the acceptance/rejection rule.

In such a multiple chain algorithm, it is essential to have a good load balance. This means



38 Recoil growth algorithm for chain molecules with continuous interactions

that every processor is doing roughly the same amount of work. Therefore, the distribution
in CPU time for the construction of a chain should be as small as possible. In figure 3.4, we
have plotted the fraction of chains that is successfully grown as a function of the maximum
chain-length that has been attained during the construction of a chain for various chain-lengths
(systems 1,3,5 of section 3.3.2). Note that in CBMC, a chain is only discarded for numerical
reasons when the Rosenbluth weight is in the order of the machine accuracy of the computer
(roughly 2�10-308 for the computer used in this study). For the Boltzmann factor of a Lennard-
Jones potential with � = � = � = 1, this corresponds to a pair separation of rij = 0:64. It turns
out that the distribution in CPU time is much wider for RG than for CBMC. The fact that in RG
many configurations can be thrown away before the complete chain is constructed is one of the
main reasons why RG is more efficient than CBMC. However, it also implies that multiple chain
algorithms cannot be parallelized efficiently, which makes RG less suitable for parallelization.

3.7 Appendix C: Fixed endpoints

In this appendix, we will show how to incorporate the RG method into a scheme that regrows
chain segments between fixed endpoints. Such schemes are important, for example, for the
calculation of phase equilibria of cyclic alkanes [67, 68] or for the simulation of cyclic pep-
tides [85,86]. Also, for very long chains, complete regrowth of a chain will have a low acceptance
probability. Therefore, it can be efficient to regrow only a part of the chain while all other seg-
ments keep their positions; the endpoints of the segment that is regrown are determined by
the part of the chain that is not regrown. It is important to note that we do not claim that the
algorithm described in this appendix is better (more efficient) than other algorithms like, for
example, the ECB method of Escobedo and co-worker [117]. Instead, we would like to demon-
strate the flexibility of the RG scheme and demonstrate that it can be incorporated into various
other algorithms. For more information on fixed endpoints algorithms, we refer the reader to
refs. [29, 67, 68, 85, 86, 117–119].

Consider a fully flexible linear chain ofN elements, of which a randomly selected segment of
Nfix beads (0 < Nfix < N-1) is cut and regrown using RG; the positions of all other segments are
unchanged. To improve the efficiency, trial positions are generated using the bonded (internal)
part of the potential energy (see section 3.2.2). However, the bonded energy between the last
bead of the segment of lengthNfix that is grown and the fixed endpoint is not taken into account
for the generation of the position of this last bead. For the probability that a trial position is
considered as “open” we have used

popen = min (1; exp [-�uext])� exp
h
-�B (i)� (l - l0 (i))

2
i

= pext (uext)� p (l; i; �) (3.24)

in which � = 1= (kBT), uext is the external (non-bonded) energy (for the last bead of the segment
of lengthNfix that is grown, the bonded energy between this bead and the fixed endpoint is also
included in uext), l is the distance to the fixed endpoint, and B (i), l0 (i) are constants that only
depend on the number of beads between the bead that is being grown and the fixed endpoint
(i). Note that B (0) = 0. Both B (i) and l0 (i) can be determined from a short simulation in which
the distribution of the distance between beads is recorded as a function of i. The probability
that a bead is considered “open” is both a function of the external energy and the probability
that one is able to reach the fixed endpoint after i beads. Because of the formulation in equation
3.24, one does not have to calculate the (usually computationally expensive) external energy
(uext) for beads that are considered as “closed” due to their distance (l) to the endpoint (which
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Figure 3.5: Probability distribution of the distance between two beads (l) as a function of the
number of segments between the beads (i). a = 10:0, C = 2:0, N = 15, � = 2:0. The probability

distribution is fitted using p (i) = exp
h
-�B (i)� (l - l0 (i))

2
i
. This function is able to describe

the simulated probability distribution quite well.

is computationally very cheap to calculate).

To test this algorithm, we have simulated a single chain of which the particles interact with
a DPD (Dissipative Particle Dynamics) potential [120–122]. For this DPD potential, every pair
of beads has a soft repulsive interaction:

us (r) =

�
1
2
a
�
r2 - 2r + 1

�
r � 1

0 r > 1
(3.25)

For every pair of bonded beads an additional bond-stretching potential is included:

ub (r) =

�
1
2
Cr2 r � 21 r > 2

(3.26)

In this work, we have used a = 10:0, C = 2:0,N = 15 and � = 2:0. The constants B (i) and l0 (i)
(i = 1 � � �Nfix) have been determined from a short simulation; see figure 3.5. In the simulation,
it was decided at random to perform a trial move to regrown the entire chain using CBMC
(probability of 0:01, k = 5) or to grow a segment of length Nfix between (randomly selected)
fixed endpoints (probability of 0:99) using RG. To generate a bond-length from the bonded part
of the potential

p (l)dl / exp [-� (us (l) + ub (l))] l
2dl 0 < l � 2 (3.27)

we have calculated

f (l) =

Rl
0
p (x)dxR2

0
p (x)dx

(3.28)
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Figure 3.6: Efficiency (�) in arbitrary units as a function of the number of trial directions (k) for
various recoil lengths (l). Top: leftNfix = 3, rightNfix = 5. Bottom: leftNfix = 7, rightNfix = 8.

and solved l from

f (l) =  (3.29)

in which  is a uniformly distributed random number between 0 and 1 [123].
In figure 3.6, we have plotted the efficiency of the fixed endpoints RG trial move (here de-

fined as the number of accepted trial moves divided by the amount CPU time, in arbitrary units)
as a function of k, l and Nfix. It turns out that for large values of Nfix, the efficiency decreases
significantly and that the optimum efficiency is at k = 3. However, this optimum efficiency does
not differ too much from k = 8, l = 1.



Chapter 4

Adsorption of alkanes in Silicalite�

4.1 Introduction

In the previous chapters, we have discussed techniques to calculate thermodynamic properties
of chain molecules. In this chapter, we will use these techniques to study the adsorption of linear
and branched alkanes in the zeolite Silicalite.

Adsorption isotherms provide information on the amount of hydrocarbons adsorbed in
these porous materials at a given pressure and temperature. Recent studies have revealed
some interesting characteristics of the adsorption isotherms of hydrocarbons. For example, the
isotherms of most linear hydrocarbons in the zeolite Silicalite show simple Langmuir behav-
ior [124]. The isotherms of heptane and hexane, however, show an inflection point. Evidence
of this surprising inflection behavior can be gleaned by careful analysis of experimental data
from various sources [125–128]. More recent and systematic studies have confirmed this pecu-
liar behavior of hexane and heptane [129–134]. It is interesting to note that computer simulation
studies had preceded these experimental works with a possible explanation of this behavior in
terms of a commensurate freezing of hexane and heptane in the zigzag channels of Silicalite [20].

Fewer experimental data are available for adsorption of branched hydrocarbons adsorbed
in Silicalite. The adsorption isotherms of isobutane also shown an inflection [21, 135, 136] but
for 2-methylpentane a simple Langmuir isotherm was found [137]. Molecular simulations have
shown that the inflection of isobutane is related to the preferential adsorption of the branched
alkanes at the intersections of the zigzag and straight channel of Silicalite [21].

Experimentally, the determination of adsorption isotherms of long chain alkanes can be time
consuming. For example, Stach et al. [17] report that measurement of each isotherm for decane
in Silicalite requires at least two weeks of equilibration. It is therefore an important question
whether molecular simulations provide an attractive alternative for estimating the adsorption
of long chain hydrocarbons in the pores of a zeolite. The main reason why experimentally
it takes two weeks to achieve equilibration is that the diffusion of long chain alkanes is very
slow. Such slow diffusion would lead to extremely long simulation times if the conventional
molecular dynamics or Monte Carlo simulation techniques were to be used, see figure 1.2. The
Configurational-Bias Monte Carlo (CBMC) technique has been developed to reduce these sim-
ulation times many orders of magnitude; see chapter 2.

In this chapter we present the results of computer simulations of linear and branched alkanes
in the zeolite Silicalite. We focus on the development of the model and a detailed comparison
with experimental data for the linear and branched alkanes. In addition we demonstrate that
these isotherms can be described quantitatively with a dual-site Langmuir isotherm.

�This chapter is based on refs. [21, 36].
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Figure 4.1: Schematic drawing of the pore structure of Silicalite (MFI type framework). See also
figure 1.1.

A schematic drawing of the Silicalite structure is shown in 4.1. Silicalite has two types of
channels, straight and zigzag channels which are connected via intersections.

4.2 Model

In practical applications of the adsorption of hydrocarbons in zeolites the temperatures and
pressures of interest can vary significantly. It is therefore important that the models for the
hydrocarbon and zeolites give reasonable results for the thermodynamics over a wide range of
temperatures and pressures.

The linear and branched alkanes are described with a united-atom model [138], i.e. CH3,
CH2, and CH groups are considered as single interaction centers [139]. The bonded interactions
include bond-bending and torsion potentials, the non-bonded interactions are described with
a Lennard-Jones potential. A way to obtain reasonable Lennard-Jones parameters is to fit the
Lennard-Jones parameters to reproduce the vapor-liquid curve of the phase diagram. In ref. [49]
it is shown that the prediction of the vapor-liquid curve is very sensitive to the choice of the non-
bonded Lennard-Jones potential. The model of Siepmann et al. [47] can describe the vapor-liquid
curves of a large number of alkanes over a large temperature range. This model has been further
refined and extended to branched alkanes in refs. [53, 59, 63]. We have compared the different
sets of parameters to investigate how sensitive the adsorption of hydrocarbons in zeolites is for
these parameters. This comparison indicates that the results do not differ significantly and gave
a very good prediction of the vapor-liquid curves for all tested sets. The details of the alkanes
model we have used in this work are given in appendix A.

Following Kiselev and co-workers [24], the zeolite is modeled as a rigid crystal [140]. This
allows the use of interpolation techniques to determine the interaction of an alkane atom with
the zeolite and avoids having to consider all zeolite atoms [107, 141]. The interactions of the
alkane atoms with the zeolite atoms are dominated by the dispersive interactions with the oxy-
gen atoms [24], these interactions are described with a Lennard-Jones potential.
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Table 4.1: Lennard-Jones parameters for the zeolite-alkane interactions: of the model proposed
by June et al. [141], Smit et al. [142], and the model developed in this work. The potentials were
truncated at 13:8 Å, and the usual tail corrections have been applied [29, 32].

�CHiO

[Å]

�CHO=kB

[K]

�CH2O=kB

[K]

�CH3O=kB

[K]

�CH4O=kB

[K]

June et al. 3.364 50.0 83.8 83.8 -
Smit et al. 3.64 51.3 54.4 87.5 -
This work 3.60 58.0 58.0 80.0 96.5

Table 4.2: Parameters for the Lennard-Jones potential describing the interactions between
pseudo atoms of a branched alkane [53]. We have also given the parameters for the methane-
methane interactions [143]. We have used the Jorgensen mixing rules [89] to compute
interactions between different pseudo-atoms: �ij =

p
�ii�jj, �ij =

p
�ii�jj. The potentials were

truncated at 13:8 Å, and the usual tail corrections have been applied [29, 32].

(�=kB) =[K] �=[Å]

CH4-CH4 148.0 3.73
CH3-CH3 98.1 3.77
CH2-CH2 47.0 3.93
CH-CH 12.0 4.10

In ref. [70] it is shown that to describe an adsorption isotherm sufficiently accurately, it is
important to have models that yield an accurate prediction of both the Henry coefficient and the
heat of adsorption. For the short chain alkanes there are sufficient experimental data to arrive at
a reasonably reliable model, for the long chain alkanes, however, there are far less experimental
data, which makes it difficult to perform a careful test of the model.

To reduce the set of interaction parameters, we have assumed that the size parameter of
the Lennard-Jones potential (�) is equal for all pseudo atoms including methane, ethane, and
propane. However, one would expect that all size parameters are different. Because a united-
atom force field implies lumping of parameters it is very difficult to justify values of parameters
based on other reasons than a good reproduction of experimental data, so the choice of equal �
is justified [144]. This has as additional advantage that the same interpolation table can be used
for all interactions and thus memory is saved. In table 4.1 the parameters of the Lennard-Jones
potential are given of two models that we have used in this study. These parameters have been
optimized to give a reasonable prediction of the Henry coefficients and heats of adsorption.

4.3 Simulation technique

In this work we have used NVTMonte Carlo simulations in combination with the CBMC tech-
nique (see chapter 2) to determine the heat of adsorption and the Henry coefficient [69, 107].
The adsorption isotherms have been determined using grand-canonical Monte Carlo simula-
tions, also in combination with the CBMC technique. The technical details of these methods are
described in refs. [107, 145] and in chapter 2; below a short description is given.

The simulations are performed in cycles, in each cycle an attempt is made to perform one of
the following (randomly selected) moves [146]
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� displacement of a chain; a chain is selected at random and given a random displacement.
The maximum displacement was taken such that 50% of the moves were accepted.

� rotation of a chain; a chain is selected at random and given a random rotation around
the center of mass. The maximum rotation was selected such that 50% of the moves were
accepted.

� partly regrowing of a chain; a chain is selected at random and part of the molecule is
regrown using the CBMC scheme. It is decided at random which part of the chain is
regrown and with which segment the regrowing is started.

� regrowing of the chain (only for the case of NVT-simulations); a chain is selected at ran-
dom and is completely regrown at a randomly selected position. During this step data are
collected from which the Henry coefficient is determined.

� exchange with reservoir (only in the case of grand-canonical simulations); it is decided at
random whether to add or to remove a molecule from the zeolite. This exchange with the
reservoir is done using the CBMC scheme.

� change of identity (only in the case of mixtures); one of the components is selected at
random and an attempt is made to change its identity [50]. The acceptance rules for this
type of move are given in ref. [147]. Simulations of alkane mixtures are presented in the
next chapter.

The relative probabilities for attempting these moves were such that in theNVT-simulations
10% of the total number of moves were displacements, 10% rotations, 10% partial regrowths,
and 70% regrowths of the entire molecule. For the case of grand-canonical simulations of the
pure components the distribution of moves was: 15% displacements, 15% rotations, 15% partial
regrowths, and 55% exchanges with the reservoir. For alkane mixtures the number of exchanges
was reduced to 50% and the remaining 5% of the moves were attempts to change the identity of
a molecule. The number of trial orientations in the CBMC scheme (k) was eight for all molecules.
In addition, we used the multiple first bead scheme (see section 2.1) with 15 trial positions for
the first bead (f). For the growth of a branched molecule we have used the procedure described
in section 2.4. For the NVT-simulations the total number of cycles was at least 106. In a cycle,
the number of trial moves is equal to the number of particles with a minimum of 20 trial moves
per cycle. The grand-canonical simulations were started from the end configuration of a simu-
lation at a lower chemical potential. We have allowed at least 105 cycles for equilibration and
subsequent production runs were at least 105 cycles. For the longest chains and at high loading
a larger number of cycles were performed.

4.4 Linear alkanes

4.4.1 Heats of adsorption and Henry coefficients

To test our model we use the experimental heats of adsorption and Henry coefficients of the
linear and branched alkanes. In appendix B, a compilation of the experimental data is given.

In figure 4.2 the experimental heats of adsorption are compared with the results from sim-
ulations using the models given in table 4.1. Both the model of June et al. [141] and the model
introduced in this work reproduce the experimental data. In addition, this figure also shows
that our simulation results are in excellent agreement with the CBMC integration calculations
of Maginn et al. [71].
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Figure 4.2: Heats of adsorption (-qst) as a function of the number of carbon atoms Nc of the
alkanes adsorbed in Silicalite.

Figure 4.3 compares the experimental Henry coefficients with the predictions of the various
models. For the Henry coefficient there is a significant difference between the various models.
Note that the results are plotted on a logarithmic scale, a small deviation from the experimental
value gives already a significant deviation for the adsorption isotherms. The results indicate
that the model June et al. [141] gives a good description for butane, but deviates significantly
for the higher alkanes. Our model describes the short chain alkanes very well but deviates,
although less than the model of June et al., for hexane and the longer alkanes. For both models,
the simulation data for the Henry coefficients fall on a straight line. The experimental data,
however, suggest that the Henry coefficients deviate from a straight line for the longer alkanes.
We have also calculated the Henry coefficients for various other sets of parameters but always
obtained a straight line. Although we did not test all combinations of parameters, these results
indicate that with the current set of models one cannot describe this deviation from a straight
line. It would be interesting to investigate whether a straight line is also observed in a simulation
with a flexible zeolite lattice.

4.4.2 Adsorption isotherms

The adsorption isotherms of methane, ethane, and propane as predicted by the model devel-
oped in this work are reported in ref. [148]. In the tested temperature range T = 275K–350K the
model reproduces the experimental isotherms very well.

For butane the simulation results are compared in figure 4.4 with experimental data of
Abdul-Rehman et al. [149, 150], Richard et al. [151], Stach et al. [124], Sun et al. [131], and Zhu
et al. [135]. The simulation results are in good agreement with the experimental data. The
maximum loading of Zhu et al. is considerably lower than the maximum loading of the other
isotherms, which are due to impurities in the sample [152].
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Figure 4.3: Henry coefficients,H, (in [mmol/g/Pa]) of linear alkanes as a function of the number
of carbon atomsNc in Silicalite.

The simulated adsorption isotherm of pentane is compared in figure 4.5 with the experi-
mental isotherms of Rakhmatkariev et al. [126], Dubinin et al. [127], and Sun et al. [131]. The
experimental data differ significantly. The maximum loading obtained by Sun et al. is signifi-
cantly higher than the maximum loading obtained by Rakhmatkariev et al. and Dubinin et al.
The maximum loading of Sun et al. agrees very well with the maximum loading obtained from
the simulations. A similar agreement with the data of Sun et al. and our simulation results for
the maximum loading is obtained for butane (see figure 4.4) and hexane (see figure 4.6). For
these systems more experimental data is available which is consistent with the data of Sun et al.
This suggests that the Silicalite used by Rakhmatkariev et al. and Dubinin et al. may suffer from
pore blocking.

In figure 4.6 the experimental isotherms for hexane of Stach et al. [124], Richard and Rees
[128], and Sun et al. [131] are compared with the simulation results using the model of June et al.
and the model developed in this work. From the comparison with the Henry coefficients (see
figure 4.3) it was already clear that the model of June et al. would overestimate the adsorption
significantly. Our model gives a better agreement with experiments.

For heptane adsorption isotherms have been reported by Lohse and Fahlke [125],
Rakhmatkariev et al. [126], Dubinin et al. [127], and Sun et al. [131]. The simulations agree very
well with the data of Sun et al. Since Rakhmatkariev et al. and Dubinin et al. used the same
zeolite as for the experiments of pentane a similar difference as observed for pentane has to be
expected with their data and our simulation results. Although the agreement with experimental
data of Rakhmatkariev et al. and Dubinin et al. is less satisfactory, both sets of experimental
data show an inflection at a loading of adsorbate loading of 4 molecules per unit cell (which
corresponds to approximately 0.7 mmol/g). This inflection is also observed in the simulated
adsorption isotherms. In the next section we will discuss this aspect in detail.
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Figure 4.4: Comparison of adsorption isotherms of butane in Silicalite.

For octane and nonane the simulation results are compared with the data of Sun et al. [131]
in figures 4.8 and 4.9, respectively. It is interesting to note that our simulations show a pro-
nounced inflection at a loading of 4 molecules per unit cell. The experimental data of Sun et
al. were obtained above this loading and therefore no inflection was noted experimentally. The
agreement between the simulation results and experiments would improve significantly if the
model would yield three times larger Henry coefficients (see figure 4.3). The precise reason for
the inflection behavior of these molecules is as yet unclear to us. The experimental data of Yang
and Rees [133] indicate inflection behavior for octane and nonane. At this point it is important
to note that the number of accepted exchanges with the reservoir in the CBMC scheme becomes
for these molecules at high pressures (above 100 Pa) very low. Therefore we had to increase the
total length of the simulation and the total number of trial orientations significantly. We have
performed simulations starting from a low loading and increasing the pressure as well as sim-
ulations starting from a high loading and decreasing the pressure. Both gave identical results.
Therefore we do have some confidence that the inflection is not due to limitations of the CBMC
technique. Furthermore, for these large molecules at these high pressures it is an important
question whether the assumption of the zeolite being rigid is still reasonable.

In figure 4.10, the simulated isotherms for linear alkanes have been collected together for
comparison and discussion.

4.4.3 Discussion

The adsorption isotherm of heptane shows a distinct inflection which suggests that a (phase)-
transition takes places in the pores of the zeolite. A well-known example of a phase transition
in porous systems is capillary condensation. If in a system capillary condensation is observed
the adsorption isotherm shows a step and hysteresis occurs, such isotherms are denoted as type
IV or V [153]. Steps or inflections without hysteresis are occasionally observed in adsorption
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Figure 4.5: Comparison of adsorption isotherms of pentane in Silicalite.

isotherms. Such adsorption isotherms are classified as type VI isotherms. These steps are usu-
ally due to wetting or pre-adsorption and occur mainly on flat surfaces [154]. The pores of most
zeolites are too small to observe capillary condensation. In these narrow pores the fluid behaves
as a quasi one-dimensional fluid and in a such one-dimensional system phase transitions do
not occur . Therefore for zeolites one would expect that for the linear alkanes the adsorption
isotherms are of the type I. If a stepped adsorption isotherm is observed, this step is usually
attributed to capillary condensation in the exterior secondary pore system formed by the space
between the different crystals [124]. If such a measurement would have been performed with a
perfect crystal, an ordinary type I isotherm would have been observed. For linear alkanes with
five or less carbon atoms a simple Langmuir isotherm has been found [158]. Also temperature
programmed desorption studies show that among the linear alkanes hexane and heptane be-
have distinctly differently [129, 130, 132, 134]. Therefore the results for heptane and also hexane
are surprising and in this section we discuss these results in detail.

Detailed inspection of the hexane experimental data of Richard and Rees [128] suggests that
a small kink is present at about 4 molecules per unit cell at T = 333K. In addition, the data
in [128] indicates that with increasing temperature this inflection becomes more pronounced.
Stach et al. [124] and Lohse et al. [159] did not observe an inflection at room temperature. Eder
and Lercher [160–163] observed an inflection at T = 333K. Yang and Rees [132] also observed
that this inflection disappears when the temperature is increased above T = 383K. Sun et al. [131]
state that an inflection is observed in a narrow temperature window (310K < T < 360K), below
and above this temperature window normal type I isotherms are observed. For heptane both
the experiments and simulations show a pronounced inflection.

The anomalous behavior of hexane and heptane in Silicalite compared to other alkanes is
now well established. However, the temperature dependence of the inflection of hexane and
heptane is still debated in the literature. The simulation results for hexane of Smit and Maesen
[20] indicate that as the temperature increases the inflection becomes more pronounced. The
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Figure 4.6: Comparison of adsorption isotherms of hexane in Silicalite.

experimental data of Richard and Rees [128] appear to support this point. However, recently
Sun et al. [131] and Yang and Rees [132] claim that their experimental data indicate that as the
temperature is increased the inflection disappears. It is therefore interesting to investigate the
temperature dependence of the inflection in detail.

In figure 4.11, the simulated adsorption isotherms of hexane obtained at temperatures rang-
ing from 298K to 373K are compared with the experimental data of Sun et al. [131], Richard and
Rees [128] and Yang and Rees [132]. At about 300K the simulations are in good agreement with
the data of Richard and Rees [128] but deviates slightly from the data of Sun et al. There is ex-
cellent agreement between the simulations at 323K and 343K and the experimental data of Sun
et al. [131]. When the temperature is further increased to 373K, we note that the experimental
data of Sun et al. are significantly below the simulation results. The reason for this deviation
is unclear. It is important to note that our simulations at 373K are in excellent agreement with
the data of Yang and Rees [132]. Our simulations show a regular shift of the isotherm towards
higher pressures if the temperature is increased; this agrees with the experimental observations
of Yang and Rees [132], but not with those of Sun et al.

At room temperatures both the experiments and the simulations show an inflection at a
loading of 4 molecules per unit cell. At high temperatures all simulated adsorption isotherms
show inflection behavior. Simulation at T = 1000K have confirmed this. A careful examination
of our simulation results and also the experimental data of Yang and Rees [132] shows that these
results are in very good agreement. It also shows that from the experimental data it is difficult to
conclude whether or not an inflection is present at higher temperature. Our CBMC simulations
do not support the contention of Yang and Rees that the inflection behavior disappears at higher
temperatures. As is shown in figure 4.11, the isotherm data of Sun et al. at high temperatures
were not obtained at sufficiently high pressures to notice inflection behavior. Therefore, the
observation of Sun et al. that the inflection behavior of n-hexane is restricted to a temperature
window (310K < T< 360K) is also not borne out.
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Figure 4.7: Comparison of adsorption isotherms of heptane in Silicalite.

Figure 4.14 compares the experimental adsorption isotherms of heptane of Sun et al. [131]
and Eder [160, 162–164] obtained at temperatures ranging from 323K, 343K, and 373K with the
simulation results. At 323K the simulations are in good agreement with the data of Sun et al.
There is excellent agreement between the simulations at T = 343K with the experiments of both
Sun et al. and Eder. At T = 373K the CBMC simulations agree very well with the data of Eder
but there is a significant deviation with the Sun et al. data. This deviation is similar to the one
observed earlier for hexane at T = 373K (see figure 4.11).

The inflection for heptane is found by Rakhmatkariev et al. [126] and Dubinin et al. [127] at
room temperature and at slightly higher temperatures by Eder and Lercher [160–163] and Sun et
al. [131]. As is shown in figure 4.14, the isotherm data of Sun et al. at high temperatures were not
obtained at sufficiently high pressures to notice inflection behavior. Therefore, the conclusion
of Sun et al. that the inflection behavior of n-heptane occurs in a temperature window is not
supported by our results. In the case of heptane the results clearly show that with increasing
temperature the inflection behavior becomes more pronounced.
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Figure 4.8: Comparison of adsorption isotherms of octane in Silicalite.
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Figure 4.9: Comparison of adsorption isotherms of nonane in Silicalite.
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Figure 4.10: Simulated isotherms for C4-C9 linear alkanes in Silicalite at 300 K.
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Figure 4.11: Adsorption isotherms of hexane in Silicalite at various temperatures. The open
symbols are experimental data of Sun et al. [131], Richard and Rees [128], and Yang and Rees
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Figure 4.12: Probability distribution of hexane in Silicalite at T = 405K: (left figures) projection
on the x-z plane, (right figures) projection on the x-y plane; low pressures 0.01 [kPa] (top figures)
and high pressures 1000 [kPa] (bottom figures). At intervals of 200 cycles the center of mass of
the hexane molecules are computed and at this position a dot is drawn this is repeated until
10000 dots have been plotted. The lines are the zeolite structure (only a quarter of the total
zeolite used in the simulation is shown).
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Figure 4.13: Probability distribution of butane (top figures) and pentane (bottom figures) in Sil-
icalite at T = 300K: (left figures) projection on the x-z plane projection, (right figures) projection
on the x-y plane at high pressures 100 [kPa]. At intervals of 200 cycles the center of mass of
the molecules are computed and at this position a dot is drawn this is repeated until 10000 dots
have been plotted.
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Figure 4.14: Adsorption isotherms of heptane in Silicalite at various temperatures.
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A possible explanation of the peculiar behavior of heptane and hexane was given by Smit
and Maesen [20] in terms of a commensurate freezing of hexane and heptane in the zigzag chan-
nels of Silicalite. Only hexane and heptane have a size that is commensurate with the size of the
zigzag channel. This effect is illustrated in figure 4.12 in which we compare density distribution
of the center of mass of hexane at low pressure and high pressure. At low pressure we observe
a uniform distribution of the molecules in the intersections, straight and zigzag channels. This
distribution completely changes at high pressures where the molecules are localized into the
zigzag channels in such a way that the intersections are free. This allows a complete filling of
the straight channels, in which we observe a nearly uniform distribution. It is interesting to
compare this distribution of hexane with the distribution of pentane and butane at high load-
ings (see figure 4.13). For butane we observe a nearly uniform distribution. For pentane this
distribution is less uniform, but the dots are not as clearly clustered as for hexane indicating
that the strong localization in the zigzag channels is not present. Recently, this effect has also
been found by using FT-Raman spectroscopy and temperature-programmed desorption [165].

Another evidence that the packing efficiency of hexane and heptane are higher than that of
other linear alkanes can be obtained by plotting the maximum loading expressed in kg per kg of
Silicalite against the number of carbon atoms; see figure 4.15; there is a clear maximum loading
for hexane and heptane. Expressed in terms of molecules per unit cell, the maximum loading
decreases with increasing carbon number in a monotonous fashion.

4.5 Branched alkanes

Compared to linear alkanes much less experimental data are available on the adsorption of
branched alkanes in Silicalite. Adsorption isotherms of isobutane have been reported by Sun et
al. [136] and Zhu et al. [135, 166], for various hexane isomers by Cavalcante and Ruthven [137],
and for 2-methylheptane by Eder [160, 162, 163].

Simulations of branched alkanes have been reported in refs. [142, 167]. June et al. showed
that at infinite dilution the branched alkanes prefer the intersections. These observations were
confirmed by the simulations of Smit and co-workers [21,142]. Here we investigate the sorption
behavior of branched alkanes at higher loadings.

As a first approximation, we have assumed that the interaction CH group of the branched
alkane with the zeolite is identical to the interaction of a CH2 group (see table 4.2). Experimen-
tally the heats of adsorption of isobutane have been obtained by several groups, see table 4.4.
The data of Zhu et al. is significantly higher than the other datasets, which might be due to
impurities in the sample [152]. For 2-methylpentane Cavalcante and Ruthven [137] obtained -68
[kJ/mol] Eder and Lercher [160–163] report for 2-methylpentane an heat of adsorption of -90
[kJ/mol]. Figure 4.17 shows that for the 2-methylalkanes our model gives very good results.
For isobutane our simulations are in good agreement with the data of Sun et al. but deviate
significantly from the data of Zhu et al.
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Figure 4.17: Heats of adsorption (-qst) as a function of the number of carbon atoms Nc of the
branched (2-methyl) alkanes adsorbed in Silicalite.
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Figure 4.18: Adsorption isotherms of isobutane in Silicalite. Molecular simulations (open sym-
bols) using the models of Vlugt et al. [36] (� = 3:60Å, circles), Smit et al. [142] (� = 3:64Å,
squares) and June et al. [141] (� = 3:364Å, triangles), see table 4.1. Experimental data (closed
symbols) from Zhu et al. [135] (circles) and Sun et al. [136] (diamonds).
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In figure 4.18, the simulated adsorption isotherm of isobutane is compared with the experi-
mental isotherms of Sun et al. [136] and Zhu et al. [135]. The agreement is very good. Both the
experiments and the simulations show an inflection at a loading of 0.7 [mmol/g], this corre-
sponds to a loading of 4 molecules per unit cell. To investigate this inflection, we have plotted
the siting of at a pressure of 0.1 kPa and 200 kPa at 300K and compared this with the siting of
butane, see figure 4.16. The differences are striking. Whereas n-butane has an equal probability
to be in the straight channel, zigzag channel or intersection, isobutane has a strong preference
for the intersection. Let us now compare the siting of isobutane before (low loading, figure 4.16
(middle)) and after (high loading, figure 4.16 (right)) the inflection point in the isotherm. Below
a loading of 4 molecules per unit cell, isobutane occupies only the intersections. At a loading
of 4 molecules per unit cell, the intersections are fully occupied and to achieve higher loadings,
isobutane must also seek residence in the other channels. This, however, is energetically very
demanding and requires a significantly higher driving force (pressure) resulting in the inflection
point.

It is important to note the Lennard-Jones size parameter �CHi-O has a large influence on this
inflection. June et al. [141] has chosen a rather small value of � = 3:364Å, while Smit et al. [142]
and Schuring et al. [168] have used � = 3:64Å. The model of June et al. has been used by many
authors to study the diffusion of hydrocarbons in Silicalite [71,169–172]. In figure 4.18, we have
plotted the isotherm of isobutane for the different models for the alkane-zeolite interactions
together with available experimental data. Although the value of � between the models differs
by less than 10%, the differences in the computed isotherms are huge. Furthermore, the model
of June et al. deviates significantly from the other data and does not reproduce the inflection
in the isotherm at a loading of four molecules per unit cell (equivalent to approximately 0:7
mmol/g) [21, 173], while this inflection is present in both other models. This inflection is also
not reproduced using the all-atom CVFF model [80, 174].

The simulated isotherms for 2-methylalkanes at 300K temperature are shown in figure 4.19.
The continuous lines in this figure are fits of the CBMC simulations using the dual-site Langmuir
model which will be discussed in section 4.6.

For the longer branched alkanes adsorption isotherms have been measured by Cavalcante
and Ruthven [137] for 2-methylpentane and by Eder and Lercher for 2-methylheptane [160,162,
163]. In figure 4.20 we compare the experimental data [137] with our simulation results for 2-
methylpentane. Considering the fact that we have optimized our parameters for linear alkanes
using experimental data at room temperature, the agreement at these elevated temperatures
is surprisingly good. This figure also makes clear that the pressures in the experiments were
not sufficiently high to observe an inflection. Similar agreement between the experiments of
Eder [160, 162, 163] for 2-methylheptane at T = 372K and our simulations are observed (see
figure 4.21). For the range of pressures studied both simulations and experiments do not exhibit
an inflection behavior.
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4.6 Fitting of simulated isotherms with dual-site Langmuir model

The isotherm inflection behavior observed for branched alkanes (see figure 4.19) and for linear
alkanes with 6 or more C atoms (see figure 4.10) cannot be modeled using a simple Langmuir
isotherm. Sun et al. [131,136] have used a 6-parameter virial type equation to fit these isotherms.
In this section, we develop a much simpler approach based on the molecular insight obtained
from the simulations. From the discussion regarding the inflection behavior of isobutane it
becomes clear that one must account for differences in the ease with which a molecule can be
adsorbed at the intersections and within the channel interiors. We therefore adopt a dual-site
Langmuir model [3, 175] for purposes of fitting the isotherms

� =
�AkAp

1 + kAp
+
�BkBp

1 + kBp
=

(�AkA + �BkB)p+ (�A + �B)kAkBp
2

1 + (kA + kB)p+ kAkBp2
; (4.1)

where we identify sites A and B, with the respective maximum loading capacities �A and �B,
expressed in molecules per unit cell, p is the partial pressure of the component. The dual-
site Langmuir constants for adsorption at the two sites A and B are kA and kB (expressed in
Pa-1). We take site A to be the one with the higher Langmuir constant. From figures 4.10 and
4.19, it is clear that inflection in Silicalite occurs at a loading of 4 molecules per unit cell and
so the maximum capacity of site A, so �A = 4. From figures 4.10 and 4.19 we conclude that
�A should be taken equal to 4 for all (linear and branched) alkanes (�A is therefore not used as
a fitting parameter). The maximum total loading �max = �A + �B for the linear alkanes from
the simulations agree with the experimental data of Sun et al. [176] (see figure 4.15). In our
description of the data we have used the values of �max corresponding to our simulation results;
this is therefore also not a fit parameter. All our CBMC results shown in figures 4.10 and 4.19
were described by fitting the two remaining Langmuir constants kA and kB to equation 4.1. The
fitted curves describe the simulation results exceedingly well; see figures 4.10 and 4.19. The
values of the fit parameters for linear and branched alkanes are presented in figure 4.22 in the
form

k =
(�AkB + �BkB)

�A
; S = kAkB: (4.2)

The fitted parameter k is practically identical for linear and branched alkanes. The S pa-
rameter, on the other hand, is about two to three orders of magnitude lower for the branched
alkanes as compared to the linear ones. This causes the inflection behavior for branched alkanes
to be much more prominent. The information presented in figure 4.22 could be extrapolated to
estimate the isotherms for alkanes with higher carbon numbers. We note in passing that the con-
stant k� �max presented in figure 4.22 corresponds remarkably well with the Henry coefficients
shown in figure 4.3.

4.7 Conclusions

The Configurational-Bias Monte Carlo technique has been used for simulating the adsorption
isotherms for linear and branched (2-methyl) alkanes on Silicalite. The important observations
and conclusions arising from our studies are as follows.

� For branched alkanes inflection behavior was observed for all carbon numbers studied,
which ranged from 4 to 9. This inflection was found to occur at a loading of 4 molecules
per unit cell. Below this loading the branched alkanes are seen to be located predomi-
nantly at the intersections of the straight and zigzag channels. To obtain loadings higher
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Table 4.3: Parameters for the torsion potential of the branched alkanes (equation 4.4), a CH3

group connected to a CH group is denoted by CHb3, the letter i is used to indicate either an
CH3 or CH2 group, i.e. i = 2; 3. In case of a CH group the total torsion potential is the sum of
two contributions.

C0=kB
[K]

C1=kB
[K]

C2=kB
[K]

C3=kB
[K]

CHi-CH2-CH-CHb3 373.0512 919.0441 268.1541 -1737.216
CHi-CH2-CH2-CH 1009.728 2018.446 136.341 -3164.520
CHi-CH2-CH2-CHi 1009.728 2018.446 136.341 -3164.520

than 4, the branched alkane must seek residence in the channel interiors which is more
demanding and therefore requires disproportionately higher pressures; this leads to the
inflection behavior.

� Linear alkanes with 6 and more carbon atoms also were found to exhibit inflection behav-
ior. Hexane and heptane show inflection due to commensurate “freezing”; the length of
these molecules is commensurate with the length of the zigzag channels. This leads to a
higher packing efficiency than for other linear alkanes.

� Available experimental data from the literature confirm the accuracy of the predictions of
the CBMC simulations for both linear and branched alkanes. However, in the latter case
the number of experimental data are much less as compared to that available for linear
alkanes.

� The temperature dependency of the isotherms are also properly modeled by the CBMC
simulations.

� For purposes of fitting the CBMC simulated isotherms,the dual-site Langmuir model has
been found to provide an excellent description. In this model we distinguish between two
sites with differing ease of adsorption: site A, representing the intersections between the
straight and zigzag channels and site B, representing the channel interiors.

4.8 Appendix A: Alkane model

In our study we focus on linear alkanes and branched alkanes with a single chain-end branch
with the structure (CH3)2-CH-(CH2)n-CH3. The pseudo-atoms in a given chain are assumed to
be connected by rigid bonds (dCC = 1:53 Å). Bond-bending is modeled by a harmonic potential
[88]

ubend(�i) =
1

2
k�(�i - �eq)

2 (4.3)

with �eq = 113Æ and the equilibrium angle for all hydrocarbons and with a force constant equal
to k� = 62500 K rad-2. Changes in the torsional angles are controlled by [177]:

utors(�i) = C0 + C1 cos(�i) + C2 cos2(�i) + C3 cos3(�i) (4.4)

with parameters shown in table 4.3. The pseudo-atoms in different molecules, or belonging to
the same molecule, but separated by more than three bonds, interact which each other through
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a Lennard-Jones potential

u
lj
ij =

8<
: 4�ij

��
�ij
rij

�12
-
�
�ij
rij

�6�
rij � rcut

0 rij > rcut

(4.5)

where rij is the distance between sites i and j and rcut the cut-off radius. The Lennard-Jones
parameters used are shown in table 4.2.

4.9 Appendix B: Discussion of the experimental data

4.9.1 Heats of adsorption

In our model we have used the heats of adsorption and the Henry coefficients to fit our model.
Unfortunately, these is significant scatter in the experimental data which makes it difficult to
refer to the literature for the experimental data. In our comparison with the simulation results,
we have made a selection of the experimental data. This appendix provides a short justification
of this selection. The available experimental data for the heats of adsorption are summarized in
table 4.4.

The experimental data for methane are in the range -18, -22 [kJ/mol]. In our simulations
we have used -20 [kJ/mol]. For ethane the experimental data on pure Silicalite converge to
a value of -31 [kJ/mol] and for propane to a value of -40 [kJ/mol]. For the longer alkanes
we have used for butane -50 [kJ/mol]. For pentane the data scatter significantly. The data
reported by Sun et al. [131] suggests that the heat of adsorption of pentane is lower than the heat
of adsorption of hexane also the data in refs. [126, 127, 178] do not give a consistent result. We
have used -60 [kJ/mol] which is consistent with the data for butane and hexane. For hexane
the experimental data agree much better. These data converge well to a value of -71 [kJ/mol].
For the longer alkanes only a few data have published which makes it difficult to compare the
consistency. We have used for heptane -83 [kJ/mol], for octane -92 [kJ/mol], for nonane -108

[kJ/mol], and for decane -120 [kJ/mol].
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Table 4.4: Experimental heat of adsorption of various alkanes (qst) in Silicalite/ZSM5.

T=[K] Si/Al ratio -qst=[kJ=mol] ref.
methane

298 300 20.9 [179]
300 1 18.1 [180, 181]
300 1 (Linde S-115) 20.4 [149]
300 1 20.5 [182]
300 1 20.0 [151]
300 1 20.9 [183, 184]
300 1 20 [136]
300 > 3000 18.6 [135]
300 > 1300 18.0 [166]
300 52 28 [185]
300 1 18.7 [186]
300 1 20.9 [187]
423 1 22.5 [188]

ethane
293 34 40.0 [178]
293 130 45 [178]
298 1 30.5 [189]
298 300 31.1 [179]
300 1 31.1 [187]
300 30 (Na,ZSM5) 38.0 [190]
300 1 (Linde S-115) 32.8 [149]
300 1 29.9 [182]
300 1 31 [17]
300 1 33 [136]
300 > 3000 30.7 [135]
300 > 1300 34.4 [166]
301 1 34 [191]
318 1230 30 [192]
333 132 30 [128]

propane
293 34 44.5 [178]
293 130 46.5 [178]
298 1 38 [189]
298 300 41.4 [179]
300 1 40.7 [182]
300 1 40 [136]
300 > 3000 40.9 [135]
300 > 1300 45.9 [166]
300 1 42.2 [193]
318 1230 40 [192]
318 135 (Na,H-ZSM5) 36.7 [192]
323 35 46 [162]
325 1 (Linde S-115) 39.9 [149]
333 132 39 [128]
423 1 36.5 [188]
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Table 4.4 continued ...
T=[K] Si/Al ratio -qst=[kJ=mol] ref.

butane
293 34 49.5 [178]
300 1 48.7 [194]
300 1 51 [17]
300 1 50.4 [182]
300 1 51 [136]
300 > 3000 53.0 [135]
300 > 1300 56.1 [166]
301 1 54.8 [191, 195, 196]
303 132 50 [128]
323 35 58 [162]
325 1 (Linde S-115) 48.3 [149]
400 10 (Na,ZSM5) 55 [197]
400 10 (H,ZSM5) 53 [197]
400 24 (Na,ZSM5) 52 [197]
400 24 (H,ZSM5) 50 [197]
400 44 (Na,ZSM5) 50 [197]
400 1 48 [197]
400 380 37.8 [134]
423 1 49.5 [188]

2-methylpropane
300 1 56 [136]
300 1 49.3 [182]
300 > 3000 46.7 [135]
300 > 1300 65.6 [166]
301 1 49.0 [191]
323 35 52 [162]
400 380 50.2 [198]
423 1 51 [188]

pentane
293 34 54 [178]
300 1 41.8 [131]
303 1 64.5 [126, 127]
323 35 70 [162]
400 380 50–56 [134]

2-methylbutane
323 35 64 [162]
400 380 58.4 [198]

hexane
300 1 71 [2]
300 1 71.5 [124, 199]
300 1 71 [17]
300 1 70.5 [131]
318 135 (Na,H-ZSM5) 71 [192]
323 35 82 [162]
333 132 60 [128]
373 1 72 [161]
400 380 71–78 [134]
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Table 4.4 continued ...
T=[K] Si/Al ratio -qst=[kJ=mol] ref.

2-methylpentane
323 35 90 [162]
400 380 61.5 [198]
400 1 68 [137]

heptane
300 1 83.4 [131]
303 1 84.5 [126, 127]
373 1 84 [161]
400 380 84–88 [134]

octane
300 1 92.1 [131]
373 1 96 [161]
400 380 89.4 [134]

nonane
300 1 107.7 [131]
373 1 107 [161]

decane
300 1 112 [17]
300 1 120.5 [131]
303 1 110.5 [124]

4.9.2 Henry coefficients

Adsorption isotherms of methane in Silicalite have been determined by several groups [149,151,
182, 184, 186, 200, 201]. At low pressures the data from Hufton and Danner [182], Yamazaki et
al. [184], Ott et al. [201], Rees et al. [151], and Golden and Sircar [186] are in very good agreement.
From these adsorption isotherms we have determined the Henry coefficients and we have used
H = 7:5 � 10-6 [mmol/g/Pa] as experimental value for the Henry coefficient.

For ethane, the data of Hufton and Danner [182,202], Richard and Rees [128], and Hampson
and Rees [189] are in good agreement with each other. We have combined the low pressure data
of Hufton and Danner [182, 202], Richard and Rees [128], and Hampson and Rees [189]. Fitting
all these data with equal weight yielded a Henry coefficient H = 1:4� 10-4 [mmol/g/Pa]. This
is consistent with the values reported in refs. [182, 189].

The adsorption isotherms of propane of Abdul-Rehman et al. [149] and Hampson and Rees
[189] are in good agreement with each other. The data of Richard and Rees [128] deviate slightly.
Note that the isotherm of Richard and Rees was measured at a temperature of 291:5K, while the
other data are taken at 300 K. This temperature difference can explain the difference between
the data sets. In our calculations, we have usedH = 1:25 � 10-3 [mmol/g/Pa].

For butane isotherms have been measured by Thamm [195], Stach et al. [124], Richard and
Rees [128], Abdul-Rehman [149], and Shen and Rees [194]. These isotherms gave a Henry coef-
ficient of approximately 1:5� 10-2 [mmol/g/Pa].

Adsorption isotherms of pentane in Silicalite have been measured by Rakhmatkariev et al.
[126] and Dubinin et al. [127]. Dubinin et al. [127] report data at low pressures yielding a Henry
coefficient of 0.187 [mmol/g/Pa].

For hexane adsorption isotherms have been measured by Stach et al. [124] and Richard and
Rees [128]. We have used the average of the two Henry coefficients, namely 3.05 [mmol/g/Pa].
For the longer alkanes we could not find sufficiently reliable isotherms at low pressures to com-
pute a Henry coefficient at room temperature.





Chapter 5

Adsorption of mixtures of alkanes in
Silicalite�

5.1 Introduction

In the previous chapter we have shown that our model gives a satisfactory description of the
adsorption isotherms of pure n-alkanes and 2-methylalkanes for C4–C9 on Silicalite. In this
chapter, we investigate the mixture isotherms of various alkane isomers. Experimentally, the
measurement of an isotherm is more complicated for mixtures than for pure components. One
not only has to measure the weight increase of the zeolite as a function of pressure, but also
the change in composition of the gas mixture. To the best of our knowledge, only adsorption
isotherms of mixtures of short alkanes have been measured [149, 205]. In ref. [148] we have
shown that for mixtures of ethane and methane our model gives a reasonable prediction of the
mixture isotherms. Here we concentrate on the mixtures of C4 through C7 isomers.

Using the Maxwell-Stefan theory, we will closer investigate the influence of isotherm inflec-
tion on the diffusivity. When we assume that the Maxwell-Stefan diffusion coefficient (some-
times also called the corrected diffusion coefficient) is independent of the loading, the loading
dependence of the conventional Fick diffusion coefficient will be completely determined by the
adsorption isotherm. We will demonstrate that on the basis of mixture isotherms we can predict
the membrane permeation efficiency without having to know the diffusion coefficients exactly.

5.2 Mixture Isotherms

In the previous chapter, we have focussed on adsorption of pure linear and branched alkanes
on Silicalite and found that our model is able to reproduce experimental data very well. Here,
we will use the same model and simulation technique to study mixtures. In figures 5.1–5.4, the
mixture isotherms of C4, C5, C6, and C7 isomers are presented. We focus on a mixture of a
linear alkane and the 2-methyl isomer with a 50%-50% mixture in the gas phase. Details about
these simulations can be found in chapter 4. For all mixtures we see the following trends. At
low pressure the linear and branched alkanes adsorb independently. The adsorption of the two
components is proportional to the Henry coefficients of the pure components. At a total mixture
loading of 4 molecules per unit cell the adsorption of the branched alkanes reaches a maximum
and decreases with increasing pressure. For C5, C6 and C7 mixtures, the branched alkane is
completely removed from the zeolite. The adsorption of the linear alkanes however increases
with increasing pressure till saturation is reached.

�This chapter is based on refs. [36, 203, 204].
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Figure 5.1: Adsorption isotherm of a 50%-50% mixture of butane and isobutane in Silicalite.

It is interesting to investigate the reasons why the branched alkanes are squeezed out by the
linear alkanes at high pressures. For theC6 andC7 isomers the Henry coefficient of the branched
alkanes is slightly larger. One would therefore expect that these branched alkanes would adsorb
better. This is indeed observed at low pressures; at high pressures, however, other considera-
tions have to be taken into account. We will explain this on the basis of the mixture behavior
for C6 isomers. As can been seen from figure 5.3 the total loading exhibits inflection behavior at
�1 + �2 = 4. Until this loading there is no competition between C6 and 2-methylpentane (2MP)
and both are almost equally easily adsorbed. Examination of the probability distributions of
the linear and branched isomers 100 Pa reveals that all the 2MP molecules are located at the
intersections between the straight channels and the zigzag channels whereas C6 are located ev-
erywhere (see ref. [203]). A further important aspect to note is orientation of the 2MP molecules;
these have their heads (i.e. the branched end) at the intersections and their tails sticking out
into the zigzag or straight channels. The C6 molecules fit nicely into both straight and zigzag
channels [20]; these molecules have a higher “packing efficiency” than 2MP. As the pressure is
increased beyond 100 Pa, it is more efficient to obtain higher loadings by “replacing” the 2MP
with C6; this entropic effect is the reason behind the curious maximum in the 2MP isotherm. A
similar explanation holds for the C5 and C7 isomers. To further test our hypothesis that because
of entropic reasons the branched alkanes are squeezed out the zeolite, we have performed a
simulation in which we have removed the attractive part of the Lennard-Jones potential inter-
acting between the hydrocarbon atoms and hydrocarbon-zeolite atoms. In such a system with
only “hard-sphere” interactions there is no energy scale involved and the only driving force is
entropy. Also in this system we have observed that the branched alkane is squeezed out at high
pressures, which proves that this squeezing out of the branched alkanes by the linear isomer is
an entropic effect.

There is an important advantage in being able to describe the inflection behavior accurately
with the help of the dual-site Langmuir model (DSL); this is because it would then be possible to
predict the mixture isotherm from only pure component data. For single components, we have
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Figure 5.2: Adsorption isotherm of a 50%-50% mixture of pentane and 2-methylbutane in Sili-
calite.

shown in section 4.6 that the DSL gives a good description for the adsorption isotherms of linear
and branched alkanes on Silicalite. Here, we consider the case that there are two adsorption sites
in the zeolite. There are two ways to set up the mixture rule. In the first approach (I) we apply
this rule to each of the two sitesA and B separately. For each site we apply the multicomponent
extension of the Langmuir isotherm [3]; for a mixture of components 1 and 2, therefore, this rule
yields:

�1 =
�A1kA1p1

1 + kA1p1 + kA2p2
+

�B1kB1p1

1 + kB1p1 + kB2p2

�2 =
�A2kA2p2

1 + kA1p1 + kA2p2
+

�B2kB2p2

1 + kB1p1 + kB2p2
(5.1)

where kAi and kBi are the Langmuir constants for species i for sites A and B, pi is the partial
pressure of the component i in the gas phase. We expect this mixture scenario to hold when
each of the two components 1 and 2 is present in both sites.

The second scenario (II) is to apply the mixture rule to the combination of sites (A+B). This
scenario is appropriate to situations in which one of the components is excluded from one par-
ticular site (say B); therefore we set up the mixing rule for the total of (A+B), i.e. the entire zeolite.
To derive this mixing rule, the most convenient starting point is the right equality of equation
4.1 and the guidelines outlines in the book of Ruthven [3]. This yields for a two-component
system the following set of equations

�1 =
(�A1kA1 + �B1kB1)p1 + (�A1 + �B1)kA1kB1p

2
1

1+ (kA1 + kB1)p1 + kA1kB1p
2
1 + (kA2 + kB2)p2 + kA2kB2p

2
2

�2 =
(�A2kA2 + �B2kB2)p2 + (�A2 + �B2)kA2kB2p

2
2

1+ (kA1 + kB1)p1 + kA1kB1p
2
1 + (kA2 + kB2)p2 + kA2kB2p

2
2

(5.2)

There are also some qualitative differences between the various alkanes. The maximum in the
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Figure 5.3: Adsorption isotherm of a 50%-50% mixture of hexane and 2-methylpentane in Sili-
calite.

isotherm of isobutane in the butane-isobutane mixture is very small and at saturation the ratio
of the loadings of butane and isobutane is approximately 5.6:1 (see figure 5.1). For the pentane
isomers the maximum is more pronounced and at saturation the concentration of the branched
alkane is much lower, about one-sixth that of the linear alkane (see figure 5.2). For the hexane
isomers at maximum loading the branched alkane is completely squeezed out of the zeolite.
For the heptane isomers a table-mountain maximum is observed (see figure 5.4); here too the
branched alkane is completely squeezed out at high pressures.

We see from figures 5.2–5.4 that the simulated isotherms conform very well to the mixture
rule II based on the dual-site Langmuir model. For alkanes with carbon atoms in the 5-7 range,
we need to set up the mixture rule considering the total Silicalite matrix (including sites A and
B) as one entity. This is because the branched alkanes do not easily occupy site B (channel inte-
riors) and for some pressure range the channel interiors are completely devoid of the branched
isomers. The simulated isotherm for the 50%-50% mixture of butane-isobutane behaves differ-
ently, however. Neither mixture rule, I or II, is completely successful. An average of the two
mixture rules, on the other hand, is very successful.
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Figure 5.5: Pictorial representation of the Maxwell-Stefan diffusivities.
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5.3 Consequences for Diffusion

5.3.1 The Maxwell-Stefan theory for zeolite diffusion

Using the Maxwell-Stefan theory for microporous diffusion, the following expression can be
derived for diffusion of species i in a zeolite [206, 207]:

-
1

RT

d�i

dz
=

j=nX
j=1

�j

�max

ui - uj

D– ij

+
ui

D– iZ

; i = 1; 2; � � � ; n (5.3)

where -d�i=dz is the force acting on species i tending to move it within the zeolite at a velocity
ui, D– iZ is the Maxwell-Stefan diffusivity describing the interaction between component i and
the zeolite (Z), and D– ij is the Maxwell-Stefan describing the interchange between components
i and j within the zeolite structure. The D– iZ are also called the corrected diffusivity in the
literature [3]. Figure 5.5 is a pictorial representation of the three Maxwell-Stefan diffusivities
describing diffusion of a binary mixture consisting of species 1 and 2. Procedures for estimation
of the D– iZ and the interchange diffusivity D– ij are discussed by Krishna in refs. [206, 207]. If
there is no possibility of interchange between species 1 and 2, the first term on the right side of
equation 5.3 can be ignored. Writing equation 5.3 in terms of the diffusion fluxesNi

Ni = ��iui (5.4)

we get

-
�i

RT

d�i

dz
=

j=nX
j=1

�jNi - �iNj

��maxD– ij

+
Ni

�D– iZ

; i = 1; 2; � � � ; n (5.5)

where �i is the molecular loading within the zeolite, expressed in molecules per unit cell, �max
is the maximum molecular loading, �max = (�A + �B), and � represents the number of unit cells
perm3 of Silicalite.

The chemical potential gradients are related to the gradients in the component loadings by

�i

RT

d�i

dz
=

j=nX
j=1

�ij
d�j

dz
; �ij =

�i

pi

@pi

@�j
; i; j = 1; 2; � � � ; n (5.6)

where we have defined a matrix of thermodynamic correction factors [�]. The elements �ij of
this matrix can be determined from a knowledge of the sorption isotherms. Combining these
equations we can write down an explicit expression for the fluxesNi using n-dimensional matrix
notation

(N) = -� [B]-1 [�]
d (�)

dz
(5.7)

where the elements of the matrix [B] are

Bii =
1

D– iZ

+
X
j6=i

�j

D– ij

1

�max
; Bij = -

�i

D– ij

1

�max
(i 6= j) (5.8)

The more commonly used Fick diffusivity matrix is defined as

(N) = -� [D]
d (�)

dz
(5.9)



5.3 Consequences for Diffusion 75

Comparing these equations we obtain the following inter-relation between the Fick and the
Maxwell-Stefan diffusivities

[D] = [B]-1 [�] (5.10)

Since the thermodynamic correction factor matrix [�] is generally non-diagonal, the matrix of
Fick diffusivities is also generally non-diagonal. Generally speaking the Maxwell-Stefan dif-
fusivities D– iZ are better behaved than the elements of Fick diffusivity matrix [D]. The latter
diffusivities are strongly influenced by the thermodynamic non-idealities in the system. In this
work we examine, in turn, the influence of [�] on the diffusion behavior of single components
and binary mixtures in Silicalite for which the isotherms are described by the dual-site Langmuir
model.

5.3.2 Diffusion of a single component in Silicalite

For single component diffusion equations 5.5 and 5.8 degenerate to their scalar forms

� =
�

p

@p

@�
(5.11)

and

D = �D– (5.12)

For the DSL model isotherm, the thermodynamic factor can be determined by analytic differen-
tiation of equation 4.1; the result is

� =

�
1 + (kA + kB)p+ kAkBp

2
�2

[(�AkA + �BkB) + 2�maxkAkBp] [1+ (kA + kB)p+ kAkBp2]

�

p

-
h
(�AkA + �BkB)p+ �maxkAkBp

2
i
[(kA + kB) + 2kAkBp]

�

p
(5.13)

This correction factor shows two extrema: a maximum at the inflection point �A = 4 and a
minimum at a loading �A < � < �B . This behavior is illustrated for adsorption of benzene
on Silicalite at temperatures of 303K and 323K; see figure 5.6. Since the Fick diffusivity is pro-
portional to the thermodynamic factor, it can be expected to also exhibit two extrema. This is
indeed verified by the experimental data of Shah et al. [208] for Fick diffusivity at 303K and
323K; see figure 5.6. The Maxwell-Stefan diffusivities, calculated from equation 5.12 are seen
to be practically constant, emphasizing the importance of thermodynamic correction factors on
the diffusion behavior.

5.3.3 Diffusion of binary mixtures

For diffusion of a binary mixture in Silicalite equations 5.5 and 5.8 reduce to

(N) = -� [D]
d (�)

dz
; [D] =

2
4 1
D– 1Z

+ �2
D– 12

1
�max

- �1
D– 12�max

- �2
D– 12�max

1
D– 2Z

+ �2
D– 12

1
�max

3
5
-1 �

�11 �12
�21 �22

�
(5.14)

The interchange mechanism is often ignored and the following formulation used

(N) = -� [D]
d (�)

dz
; [D] =

�
D– 1Z 0

0 D– 2Z

� �
�11 �12
�21 �22

�
(5.15)
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Figure 5.6: Thermodynamic correction factors (top) and diffusivities (bottom) for diffusion of
benzene in Silicalite at (left) 303K and (right) 323K. The experimental diffusivity data are from
Shah et al. [208].

Recent work of Van de Graaf et al. [209] and Kapteijn et al. [210] has shown that for diffusion
of binary mixtures in Silicalite, the complete Maxwell-Stefan formulation, equation 5.14, taking
interchange into account provides a much better description of binary permeation experimental
results across a Silicalite membrane than with a model ignoring the interchange mechanism
(portrayed byD– 12).

To calculate the �ij we need the sorption isotherms for mixtures. However, experimental data
on sorption isotherms of mixtures are scarce. To illustrate the influence of �ij on the diffusion we
consider a mixture of n-hexane (n-C6) and 3-methylpentane (3MP) and use the Configurational-
Bias Monte Carlo (CBMC) simulation technique described earlier (see chapters 2 and 4) to gen-
erate the pure component and 50%-50% mixture isotherm data at 362K. The results of these
CBMC simulations are shown in figure 5.7. The continuous lines in 5.7 are DSL fits of the pure
component isotherms (parameter values are given in the caption). The mixture isotherms are
well represented by the DSL mixture model (equation 5.2, mixing rule II) as can be seen in figure
5.7 wherein the mixture isotherms are predicted using only pure component data. The branched
alkane 3MP exhibits a maximum with respect to molecular loading within the Silicalite struc-
ture, this is similar for a mixture of 2MP and hexane.

The four elements of �ij can be obtained by analytic differentiation of equation 5.6. The result
is

[�] =

�
A3 (B2 - �2B4) =p1 A3�1B4=p1

B3�2A4=p2 B3 (A2 - �1A4) =p2

�
A2B2 - �1A4B2 - �2A2B4

(5.16)
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where

A2 = (�1Ak1A + �1Bk1B) + 2 (�1A + �1B) k1Ak1Bp1

A3 = (�1Ak1A + �1Bk1B)p1 + (�1A + �1B) k1Ak1Bp
2
1

A4 = (k1A + k1B) + 2k1Ak1Bp1

B2 = (�2Ak2A + �2Bk2B) + 2 (�2A + �2B) k2Ak2Bp2

B3 = (�2Ak2A + �2Bk2B)p2 + (�2A + �2B) k2Ak2Bp
2
2

B4 = (k2A + k2B) + 2k2Ak2Bp2 (5.17)

To demonstrate the consequences of the influence of �ij on diffusion, consider the permeation
of hydrocarbon isomers across a Silicalite membrane (figure 5.8). To obtain the values of the
permeation fluxesNi we need to solve the set of two coupled partial differential equations:

@ (�)

@t
=
@

@z

�
[D]

@ (�)

@z

�
(5.18)

subject to the initial and boundary conditions

t = 0 ; 0 � z � Æ; �iz = 0 (5.19)

t > 0 ; z = 0; i = 1; 2 (5.20)

�i0 =
(�iAkiA + �iBkiB)pi0 + (�iA + �iB) kiAkiBp

2
i0

1+ (k1A + k1B)p10 + k1Ak1Bp
2
10 + (k2A + k2B)p20 + k2Ak2Bp

2
20

The set of two coupled partial differential equations (equation 5.18) subject to the initial and
boundary conditions (equations 5.19 and 5.20) were solved using the method of lines [211] to
determine the fluxes, as described in ref. [212]. In the calculations presented here we assume
that the pure component Maxwell-Stefan diffusivities are identical for the isomers, i.e. D– 1Z =

D– 2Z; this assumption is a conservative one from the viewpoint of separation of the isomers
as we expect the branched isomer to have a lower mobility within the Silicalite structure. The
simulations were carried out with the complete Maxwell-Stefan model for [D], i.e. equation 5.14.
Since the interchange coefficient D– 12 has a value intermediate between D– 1Z and D– 2Z [213] we
must also have D– 1Z = D– 2Z = D– 12. A further point to note is that in the calculation of the
fluxes we have made the assumption that the Maxwell-Stefan diffusivities are independent of
the loading. Though this assumption is not always true (see refs. [214, 215]), the values of the
ratio of fluxes, i.e. selectivity for separation, is not expected to be influenced by this assumption.

The transient fluxes for theC6 isomers are presented in figure 5.9 in dimensionless form. Ex-
amination of the transient fluxes reveals a slight maximum in the flux of the branched alkanes;
this maximum is a direct consequence of the corresponding maximum in mixture isotherms; see
figure 5.7. The ratio of the fluxes of n-C6 and 3MP is found to be 32. There is some evidence in
the published literature for permeation of a 50%-50% mixture of n-C6 and 3MP at 362K across
a Silicalite membrane [216] to suggest that this high selectivity values for separation of the C6
isomers can be realized in practice. These high selectivities are entirely due to the strong inflec-
tion observed for the branched alkane; this is described by a much lower value of the Henry
coefficient kB for site B than for the linear alkane. If both sites A and B had the same sorption
capability, then the selectivity for the separation would be close to unity. Another important
point to note is that in the membrane permeation experiment we must ensure that the values of
the upstream partial pressures of the hydrocarbon isomers are high enough (say higher than 5
kPa) to ensure that the branched alkane is virtually ”excluded”. More details about temperature
and pressure dependence of the permeation selectivity can be found in ref. [203].
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5.4 Conclusions

� CBMC simulations of isotherms of 50%-50% binary mixtures of C5, C6 and C7 hydrocar-
bon isomers showed some remarkable and hitherto unreported features. The loading of
the branched isomer in all three binary mixture reaches a maximum when the total mix-
ture loading corresponds to 4 molecules per unit cell. Higher loadings are obtained by
“squeezing out” of the branched alkane from the Silicalite and replacing these with the
linear alkane. This “squeezing out” effect is found to be entropic in nature; the linear
alkanes have a higher packing efficiency and higher loadings are more easily achieved by
replacing the branched alkanes with the linear alkanes.

� The mixture isotherms can be predicted quite accurately by applying the appropriate mix-
ture rule to the dual-site Langmuir model. This model allows the mixture isotherm to
be predicted purely on the basis of the parameters describing the isotherms of the pure
components, linear and branched alkane.

� The sorption selectivity exhibited by Silicalite for the linear alkane in preference to the
branched alkane in mixtures of C5, C6 and C7 hydrocarbon isomers, provides a potential
for the development of a novel separation technique based on entropy driven sorption
selectivity [203].



Chapter 6

Diffusion of Isobutane in Silicalite
studied by Transition Path Sampling�

6.1 Introduction

From both Monte Carlo (MC) simulations and experiments, it has been found that at low load-
ing, branched alkanes are preferentially adsorbed at the intersections of Silicalite (see section
4.5); these intersections are located where a straight channel and a zigzag channel cross (see
figure 4.1). Similar results have been obtained for benzene [92, 218, 219]. These bulky molecules
diffuse via a hopping mechanism from one intersection to the next. This hopping, however,
is a very infrequent event due to the large free energy barrier between two intersections [142].
Therefore, conventional Molecular Dynamics (MD) techniques cannot be used to study this pro-
cess. A naive way of computing the hopping rate would be to perform MD simulations at higher
temperatures, for which MD can be used efficiently [168]. By assuming that the temperature de-
pendence of the diffusion coefficient is described by the Arrhenius equation one can extrapolate
to a lower (desired) temperature. This method will not be able to produce accurate results when
the extrapolation is performed over a large temperature range, not only because of extrapola-
tion errors but also because the diffusion mechanism might be different at lower temperatures.
For an extensive overview of diffusion in zeolites the reader is referred to the famous book of
Kärger and Ruthven [220].

Recently, Smit et al. [142] have used transition state theory (TST) [30, 221] to calculate the
hopping rate of branched alkanes in Silicalite; this technique has also been used by Brickmann
and co-workers to study the diffusion of Xeon [222, 223] and aromatic molecules [224, 225] in
the zeolite NaY; the activated diffusion of benzene in NaY has also been studied by Jousse and
Auerbach using this technique [226]. Unfortunately, this method needs a priori information
about the possible transition state. Although in principle the calculated hopping rate does not
depend on the exact location of this transition state, the error bars of this calculated hopping
rate do. Therefore, it might be advantageous to use a method in which this information is not
required. This can be done with the transition path sampling method [227,228]. This method has
been applied for the calculation of transition rates of ion pair dissociation in water [229], proton
transfer in a protonated water trimer [230,231], rearrangement of a Lennard-Jones cluster [232],
isomerization of alanine dipeptide [233], and isomerization of a diatomic molecule in a Weeks-
Andersen-Chandler (WCA) fluid [234].

In this chapter, we will use transition path sampling to study the hopping of the smallest
branched alkane, isobutane, in the zeolite Silicalite. In section 6.2, we will briefly summarize

�This chapter is based on ref. [217].
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this technique. In section 6.3, we will briefly focus on the simulation and model details and their
implications, while in section 6.4 we will present our results and a comparison with experimen-
tal data. In appendix A, we will show how to calculate a free energy profile for a hydrocarbon
in a zeolite with an arbitrary channel structure. This free energy profile is required to make an
estimate of the diffusion coefficient using TST. It turns out that the Lennard-Jones size param-
eter describing the alkane-zeolite interactions has a large effect on this free energy barrier. In
appendix B, we will briefly discuss the pseudo code of a bitwise time-reversible multiple time-
step algorithm which is strictly speaking required in transition path ensemble simulations. In
appendix C, we discuss how to apply parallel tempering for transition path ensemble simula-
tions.

6.2 Transition Path Sampling

In this section, we will briefly summarize the transition path sampling method for deterministic
paths which has been developed by David Chandler and co-workers based on earlier ideas of
Pratt [235]. This method is not only able to calculate the hopping rate (and therefore also the
diffusion coefficient) between two stable sites (here: the intersections of Silicalite). For a more
complete discussion about this simulation technique, the reader is referred to refs. [227,232,234].

6.2.1 Introduction

Consider a dynamical system with two stable states, A and B, in which transitions from A to B
are rare. This could be, for example, intersections of the zeolite Silicalite in which a branched
alkane is preferentially adsorbed. The transition rate k from A to B can be calculated from the
time derivative of an autocorrelation function C (t),

k =
dC (t)

dt
tmol < t� trxn

C (t) =
hhA (x0)hB (xt)i

hhA (x0)i ; (6.1)

provided that the relaxation time trxn of the system [A;B] is much larger than the molecular
relaxation time tmol of the system in region A or B. As we will see in section 6.3, k is directly
related to the diffusion coefficient. In equation 6.1, xt represents the momenta p and positions q
of the system at time twhile x0 represents the positions and momenta at time 0. We will consider
only deterministic trajectories for which xt is completely determined by the initial conditions x0,
i.e. xt = xt (x0). The functions hA and hB characterize the regions A and B, hA;B (x) = 1 when
x 2 A;B, respectively, and hA;B (x) = 0 otherwise. Note that A and B must be chosen in such a
way that A and B do not overlap, i.e. A \ B = ?.

Since the function xt is fully determined by the initial condition x0, the ensemble averages
in equation 6.1 can be written as an integration over the initial conditions weighted with the
equilibrium distribution N (x0)

C (t) =

R
dx0N (x0)hA (x0)hB (xt (x0))R

dx0N (x0)hA (x0)
(6.2)

We can also look at this equation as the ensemble average of hB (xt) weighted with the equi-
librium distribution N (x0) � hA (x0). In other words, C (t) is the fraction of trajectories that
start in A with distribution N (x0) and reach B after time t. Since we are sampling over paths
this ensemble is called the path ensemble. A procedure to sample this ensemble would be to
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perform a molecular dynamics simulation to generate a new path of length t and subsequently
use a Monte Carlo procedure to decide whether to accept or reject this new path. In this way,
we generate an ensemble of paths which we can use to compute ensemble averages. In section
6.2.2 we will discuss the details on how to perform such a simulation.

In the remaining part of this chapter we will only consider a canonical ensemble of initial
conditions x0, i.e.

N (x0) = exp [-�H (x0)] (6.3)

Alternatively, one could use an ensemble in which the total energy, total momentum or total
angular momentum of the system is conserved.

In principle, we could compute C (t) from an “ordinary” path ensemble simulation. This
would imply that we generate an ensemble of paths of length t that start at A and we would
count all the paths that are at time t in B. However, since the transition from A to B is a rare
event, the number of paths that end in B is so small that such an approach would require very
long simulations. Therefore, we need to help the system explore the regions of interest. Suppose
that region B can be defined by the value of an order parameter �; xt 2 B if �min � � (xt) � �max.
In principle, one could use more order parameters to characterize region B. For equation 6.1, we
can write

C (t) =

R
dx0 exp [-�H (x0)]hA (x0)hB (xt (x0))R

dx0 exp [-�H (x0)]hA (x0)
=

Z�max

�min

d�P (�; t) (6.4)

in which

P (�; t) =

R
dx0 exp [-�H (x0)]hA (x0) Æ [�- � (xt (x0))]R

dx0 exp [-�H (x0)]hA (x0)
(6.5)

P (�; t) can be interpreted as the probability for the system to be in a state with a certain � after
time t given that the system is in A at time 0. Because P (�; t) is quite small in B (i.e. transitions
from A to B are rare), it is advantageous to use umbrella sampling [29, 32] to compute P (�; t).
By defining overlapping regions Bi by

xt 2 Bi if �min (i) � � (xt) � �max (i) (6.6)

in such a way that [Bi equals the whole phase space, one is able to calculate

P (�; t; i) =

R
dx0 exp [-�H (x0)]hA (x0)hBi (xt (x0)) Æ [�- � (xt (x0))]R

dx0 exp [-�H (x0)]hA (x0)hBi (xt (x0))

=

R
dx0f (x0; t; i) Æ [� - � (xt (x0))]R

dx0f (x0; t; i)
(6.7)

in which

f (x0; t; i) = exp [-�H (x0)]hA (x0)hBi (xt (x0)) (6.8)

f (x0; t; i) is the ensemble of all paths starting in A and ending in Bi at time t. In the next sub-
section, we will discuss how to sample from this distribution and similar distributions. Because

P (�; t; i) / P (�; t; j) i 6= j (6.9)

one is able to calculate C (t) by matching the distributions P (�; t; i) and integrate over region
B. A disadvantage of this method is that the distributions P (�; t; i) can become quite steep,
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especially when transitions from A to B are very rare. To sample more uniformly in window i,
one can introduce a weight-functionW (� (xt) ; i) and sample from the distribution

�i = f (x0; t; i)� exp [W (� (xt) ; i)] (6.10)

instead of from the distribution f (x0; t; i). The correct distribution is recovered using [29]

P (�; t; i) =
hÆ [�- � (xt)] exp [-W (� (xt))]i�i

hexp [-W (� (xt))]i�i
(6.11)

As is shown in refs. [232, 234], it is advantageous to rewrite C (t) as

C (t) =
hhA (x0)hB (xt (x0))i

hhA (x0)i
=

hhA (x0)hB (xt (x0))i
hhA (x0)hB (xt 0 (x0))i �

hhA (x0)hB (xt 0 (x0))i
hhA (x0)i

= C
�
t 0
�� hhA (x0)hB (xt (x0))HB (x0; T)i

hhA (x0)hB (xt 0 (x0))HB (x0; T)i
= C

�
t 0
�� R dx0 exp [-�H (x0)]hA (x0)HB (x0; T)hB (xt (x0))R

dx0 exp [-�H (x0)]hA (x0)HB (x0; T)hB (xt 0 (x0))

= C
�
t 0
�� hhB (t)iF(x0;T)

hhB (t 0)iF(x0;T)
(6.12)

in which t; t 0 2 [0; T] and

HB (x0; T) = max
0�t�T

hB (xt (x0)) (6.13)

The distribution

F (x0; T) = exp [-�H (x0)]hA (x0)HB (x0; T) (6.14)

can be interpreted as the ensemble of trajectories starting in A and visiting B at least once in the
time interval [0; T]. In this way, one has to perform only a single calculation of C (t 0) when one
would like to calculate the time derivative of C (t)

k =
dC (t)

dt
=

C (t 0)

hhB (t 0)iF(x0;T)
�
d
h
hhB (t)iF(x0;T)

i
dt

(6.15)

while the functions hhB (t)iF(x0;T) and hhB (t 0)iF(x0;T) can be calculated from a (single) separate
transition path sampling simulation.

6.2.2 Monte Carlo sampling from the distribution F (x0; T)

In this section, we will present three types of Monte-Carlo trial moves to sample the distribution
F (x0; T). Sampling of the distribution f (x0; t; i) is almost similar. We will use the symbols n and
o for respectively the new and old configuration.
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Shooting

In a shooting move, first one picks a time t 0 randomly from the interval [0; T] and one adds a
random displacement to the old positions (qt 0 (o)) and old momenta (pt 0 (o)):

pt 0 (n) = pt 0 (o) + Æp ; qt 0 (n) = qt 0 (o) + Æq (6.16)

The components Æp and Æq are chosen at random from uniform distributions in the finite inter-
vals

�
-�p; �p

�
and

�
-�q; �q

�
, respectively. Note that in the original papers of Chandler and

co-workers [232, 234] only changes in momentum were considered. However, for systems with
large gradients in potential energies (for example a sorbate in a zeolite) one is able to sample the
path ensemble much better when also position changes are applied. This is particularly impor-
tant at low temperatures for which the contribution of the kinetic energy to the total energy is
quite low.

Second, one has to construct a new path by integrating backward and forward to obtain
xo (n) and xT (n), respectively. To obey detailed balance, the new path has to be accepted with
a probability

acc (o! n) = min
�
1;
F (x0 (n) ; T)Pg (n! o)

F (x0 (o) ; T)Pg (o! n)

�
= hA (x0 (n))HB (x0 (n) ; T)�

min
�
1;

exp [-�H (x0 (n))]Pg (n! o)

exp [-�H (x0 (o))]Pg (o! n)

�
(6.17)

In this equation, Pg (i! j) is the probability to generate a trial move from state i to state j.
When one assumes that the total energy along the transition path is conserved exactly, one is
able to compute the second factor on the r.h.s. on the last line of equation 6.17 without having
to integrate the equations of motion. This means that one can reject paths with an unfavorable
energy immediately [236].

For symmetric generation probabilities like in equation 6.16 the factors Pg (o! n) and
Pg (n! o) cancel. However, one can construct trial moves for which Pg (o! n) 6= Pg (n! o).
A well-known example of such a trial move is Configurational-Bias Monte Carlo (CBMC, see
chapter 2). This can, for example, be used to change the orientation of the tail of a long branched
molecule like 2-methylpentane, as such a reorientation will not be observed on the time-scales
of MD in a narrow channel of a zeolite. It is important to note that one is able to construct many
variations of the shooting trial move, for example, one can use rotation moves or choose the
time t 0 with a bias. However, one has to ascertain that the new configuration at time t 0 does not
differ too much from the old configuration at t 0 because otherwise the new path will not start in
A or end in B.

Shifting

In a shifting move, one translates the initial conditions in time by an amount �t:

x0 (n) = x�t (x0 (o)) (6.18)

To have a symmetric generation of �t, one has to choose

Pg (�t) = Pg (-�t) (6.19)

Due to energy conservation along a trajectory, the acceptance/rejection rule for this trial move
equals

acc (o! n) = hA (x0 (n))HB (x0 (n) ; T) (6.20)
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Although shifting trial moves do not sample the phase space ergodically because the energy of
the path is not changed, they greatly improve statistics.

Parallel Tempering

Although in principle shooting and shifting moves sample the path ensemble ergodically, it can
be difficult to sample different classes of pathways if they are not connected in path space. This
can be solved by parallel tempering [237], which is discussed for transition path sampling in
appendix C.

6.2.3 Transition State Ensemble

Traditionally, a transition state is defined as saddle points in the potential energy surface. In
complex systems, however, saddle points are dense on the potential energy surface and enu-
meration of saddle points is neither possible nor can it provide insight into the transition mech-
anism. We therefore adopt a statistical notion of transition states which is identical to the pro-
cedure described in ref. [232] and define a configuration x to be a transition state if, for a given
kinetic energy Ukin, the probability to reach A equals the probability to reach B after a time �,
which is in the order of tmol. This collection of points [x;Ukin] is called the transition state en-
semble. In a transition path ensemble simulation, randomly selected points [x;Ukin] of several
transition paths are analyzed and investigated if they are a transition state. For such a config-
uration, a large number of MD trajectories with random initial momenta are computed. The
fraction of trajectories that reach region A and B, respectively, is recorded. When these fractions
are equal within certain error bars this configuration is labeled as a transition state. In detail, the
following procedure is used:

1. Select a random point (here: isobutane molecule) of a transition path. For this point
[x;Ukin], we generate n1 random momenta p from a Maxwell-Boltzmann distribution.
These momenta are rescaled in such a way that the total initial kinetic energy of the sys-
tem (Ukin) is a constant. The value of n1 should be large enough to have some reasonable
initial statistics on the probability of reaching regions A and B.

2. For each n1 momenta, the equations of motion are integrated. If the system reaches A or
B, or when the time of the integration exceeds �, the integration is stopped.

3. From the n1 integrations, we obtain estimates for pA and pB, which are respectively p̄A
and p̄B:

p̄A =
nA

n1
; p̄B =

nB

n1
(6.21)

in which nA; nB are the number of paths that reach A,B. The errors in these estimates are
approximately

�A �
s
p̄A (1 - p̄A)

n1
; �B �

s
p̄B (1- p̄B)

n1
(6.22)

When

jp̄A - p̄Bj > �A + �B (6.23)

the point [x;Ukin] is rejected as a transition state. Otherwise, n2 additional random mo-
menta are generated and new values for p̄A, p̄B, �A and �B are computed. In case that after
n1+n2 integrations, jp̄A - p̄Bj < �A+�B, the point [x;Ukin] is accepted as a transition state.
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6.2.4 Integrating the equations of motion

When one would like to sample deterministic paths (xt = xt (x0)), it is important that the equa-
tions of motion are integrated using a time-reversible integrator. Recently, Martyna, Tuckerman,
and co-workers have shown how to systematically derive time reversible, area preserving MD
algorithms from the Liouville formulation of classical mechanics [97,238]. A complication how-
ever is that using such integrators on a computer that uses (conventional) floating point preci-
sion arithmetics, the algorithm is not time-reversible anymore because of rounding errors of the
computer.

In a conventional MD simulation it is generally accepted that not having bitwise time-
reversibility is not a problem at all, but in a transition path ensemble simulation this means that
a conventional floating point implementation of the shifting and shooting trial move will result
in paths that are not deterministic (i.e. xt 6= xt (x0)). To obey detailed balance in a Metropolis
MC algorithm, the acceptance probability should approach 1 when the new trial configuration
approaches the old configuration. When the paths are not integrated exactly time-reversible, a
trial path that is generated by a shooting move might not start in region A or end in region B,
even if the trial configuration of the selected point of the path is identical to the old configura-
tion. Not obeying detailed balance in a MC simulation may lead to erroneous results [29, 239].

A way to overcome this problem is the use of exact bitwise reversible integrators [240]. In our
simulations, we have compared conventional time-reversible integrators with a bitwise (exact)
time-reversible version of the multiple time-step algorithm of refs. [97,238] and we did not find
any difference at all in the final results; see appendix B for a brief description of this algorithm.
Therefore we conclude that although exact time-reversibility is strictly speaking required for
transition path ensemble simulations, conventional time-reversible integrators seem to be suit-
able as well. However, strictly speaking one should test this carefully for all simulations. Note
that if exact time-reversibility or accuracy in which the equations of motion are integrated have
an effect on ensemble averages in the transition path ensemble, it would mean that transition
path sampling simulations are completely useless.

6.3 Simulation and model details

We have used the model for alkane-zeolite and alkane-alkane interactions that has been de-
scribed extensively in section 4.2. The following modifications of this model have been applied:

� Two bonded united atoms have a harmonic bond-stretching potential

ustretch (l) =
1

2
kl (l - l0)

2 (6.24)

in which l0 = 1:54Å and kl=kB = 96500 K Å-2 [57]. The reason for using this harmonic
potential instead of fixed bond-lengths is that one is able to integrate the equations of
motion time-reversible.

� We have added a dummy hydrogen atom to aCH group of isobutane to prevent a branched
alkane from inverting itself; this dummy atom does not have any interaction with the ze-
olite. This unphysical inversion happens at high temperatures or on top of the barrier
because the energy barrier for the inversion of a united-atom model of isobutane without
dummy hydrogen atom is much lower than the energy barrier between two intersections.
The dummy atom does not affect thermodynamic properties but it can lead to artificial
dynamics.
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Table 6.1: Hopping rates (events per second) and diffusion coefficients for diffusion in the
straight (st) and zigzag (zz) channel as computed by transition state theory.

�=
�
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�
kst=

�
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�
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�
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�
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Figure 6.1: Free energy of a single isobutane molecule in the straight channel (left) or in the
zigzag channel (right) of Silicalite as a function of the position in the straight channel for dif-
ferent force fields [36, 141, 142]. The two intersections are located at � = 0 and � = 1 (equation
6.25). See appendix A for details about these calculations.

� In our transition path ensemble simulations, we have used truncated and shifted Lennard-
Jones interactions with rcut = 10Å. Tail corrections have not been applied.

The use of a rigid zeolite is a quite crude assumption because it has been shown by many authors
that the flexibility of the zeolite framework has a large effect on the diffusivity [170, 219, 241].
Furthermore, using a rigid zeolite also implies that sorbate molecules cannot exchange energy
with the zeolite which means that the motion of a single sorbate molecule in a zeolite is ballis-
tic. In a transition path ensemble simulation the hopping rate is calculated using a canonical
ensemble of initial conditions; this implies that no energy with the zeolite is exchanged during
the transition from A to B, but that energy can transfered when the molecules are in the stable
states A or B. This corresponds to a conventional MD algorithm in which the initial conditions
are generated from a Maxwell-Boltzmann distribution. The disadvantage of a flexible zeolite
however is that those simulations take more than an order of magnitude more CPU time, which
is the main reason why we have omitted this flexibility of the framework.

In section 4.5, we have showed that the Lennard-Jones size parameter � for the alkane-zeolite
interactions has a large effect on the adsorption isotherm. Here, we demonstrate that there is
also a large effect on the free energy barrier between two intersections.

To demonstrate this effect, in figure 6.1 we have plotted the free energy profile of an isobu-
tane molecule along a straight channel and a zigzag channel of Silicalite which has been calcu-
lated using the CBMC technique, see chapter 2. Details about this type of calculation can be
found in ref. [142] and in appendix A. To map the coordinates of an isobutane molecule onto a
single order parameter �, we have defined � in such a way that for a channel between intersec-
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tions A and B, �A = 0 and �B = 1:

� (x) = 1 -
jx - xBj

jxA - xBj
; (6.25)

in which xA and xB are the centers of the stable regions A and B and x is the position of the CH
group of isobutane. Indeed, the precise value of �CHi-O has a large effect on the height of the
barrier. In the model of June et al. the height of the barrier is reduced by almost 50% compared
to the model of ref. [36]. Another important feature is that this free energy profile shows several
local minima and maxima in which isobutane can be stuck when TST with dynamical correc-
tions is used. To compute the hopping rate using TST, we have used the same procedure as in
ref. [142]. We have also assumed that the hopping rate is completely determined by the largest
free energy barrier. As can be seen in table 6.1, the hopping rates of the different force fields
differ by two orders of magnitude.

In our transition path ensemble simulations, we have used at least 106 cycles in every sim-
ulation. In every cycle, it is decided at random do to a shooting move in which the momenta
are changed (10%), a shooting move in which isobutane is displaced (10%), or a shifting move
(80%). All maximum displacements were chosen in such a way that 33% of all trial moves are ac-
cepted. The equations of motion were integrated using a multiple time-step algorithm [97, 238]
in which the largest time-step was 10-3 ps, which results in an average relative deviation of the
total energy of around 10-5 (see the definition in ref. [97]). The stable regions A and B were
defined as all positions within a distance of 2:5Å of the center of an intersection of Silicalite. A
typical simulation takes 2 weeks (!) on a Linux PC equipped with an AMD K7 (Athlon) 500
MHz processor.

From the hopping rates for the zigzag channel (kzz) and straight channel (kst) one is able to
compute the diffusion tensor at zero loading [142, 242, 243]:

Dxx =
1

4
kzza

2 ; Dyy =
1

4
kstb

2 ; Dzz =
1

4

kzzkst

kzz + kst
c2 (6.26)

in which a, b and c are the unit vectors in the diffusion lattice of Silicalite (a = 20:1Å, b = 19:9Å

and c = 26:8Å. In the z-direction, the diffusion length is two times the length of the unit cell of
Silicalite.). As the total diffusivity D is proportional to the total mean square displacement per
unit of time, i.e.

D =
1

6
lim
t!1

hr (t)i
t

(6.27)

we can write

D =
Dxx +Dyy +Dzz

3
(6.28)

In equation 6.26, we have assumed that two successive crossings are uncorrelated, which is
a reasonable assumption for isobutane but maybe invalid for longer 2-methylalkanes because
of the orientation of the tail of the molecule. To study the concentration dependence of the
diffusion tensor, it would be interesting to use these microscopic hopping rates in a kinetic
Monte Carlo scheme [244, 245].

6.4 Results

6.4.1 Calculating the hopping rate

In figure 6.2, we have plotted the function hhB (t)iF(x0;T) both for the straight and zigzag channel
for T = 15 ps. For long times, as expected, this function approaches a straight line. In figure 6.3,
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Figure 6.2: The function hhB (t)iF(x0;T) both for diffusion in the straight and zigzag channel.
T = 15ps.

we have plotted the function P (�; t) for t = 6:0 pswhich has been computed by using umbrella
sampling. Clearly, this function has several local minima and maxima that are also present in
the free energy profiles (see figure 6.1). By integrating over region B we obtain p st = 6 � 10-10
and pzz = 8� 10-10.

By combining all results we obtain kst = 0:4 � 103s-1 and kzz = 0:16 � 103s-1. Using
equations (6.26) and (6.28) we obtain Dxx = 2 � 10-16m2=s, Dyy = 4 � 10-16m2=s, Dzz =

6� 10-16m2=s and D = 4� 10-16m2=s. Due to the large error-bars introduced by matching the
histograms in the free energy calculations we can only say that the computed diffusivity is in the
order of 10-15- 10-16 m2=s. When we compare this diffusivity with the diffusivity obtained by
TST (see table 6.1) we obtain a transmission coefficient of around 10-4. The diffusion coefficients
are almost equal for the straight and zigzag channel, which can be explained by an almost equal
channel diameter of the straight and zigzag channel.

The diffusivity of isobutane in Silicalite at 300 K has been measured by several groups using
different experimental techniques; Hufton and Danner (chromatographic) [246] 2�10-12m2=s at
297 K, Shah et al. (membrane permeation) [247] 1�10-12m2=s at 298 K, Nijhuis et al. (multitrack)
[248] 6 � 10-13m2=s, Bakker et al. (membrane permeation) [249] 4 � 10-12m2=s, Chiang et al.
(chromatographic, extrapolated to 300 K by using Arrhenius law) [188] 5 � 10-17m2=s, Millot
et al. (QENS, extrapolated to 300 K by using Arrhenius law) [250] 2 � 10-13m2=s, and Millot et
al. (membrane permeation, extrapolated to 300 K by using Arrhenius law) [250] 5� 10-13m2=s.
Comparing the experimental results shows that the diffusion coefficients differ by one order of
magnitude; the data of Chiang et al. is significantly lower. It is well established in literature that
microscopic and macroscopic diffusivities can differ several orders of magnitude [220]. Most
experimental diffusivities are several orders of magnitude higher than our simulation result.

An explanation for this is that the � value of 3:6Å we have used is somewhat too high; the
simulations of Bouyermaouen and Bellemans [170] report a diffusivity of 3�10-11m2=s for MD
simulations using � = 3:364Å, which is an order of magnitude larger than most experimental
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Figure 6.3: Probability P (�) to find a particle at position � for t = 6:0 ps for both the straight
and zigzag channel. This function has been constructed by matching 10 overlapping windows.
The two intersections are located at � = 0 and � = 1 (equation 6.25).

results. For the same system but with a flexible zeolite they found 2 � 10-10m2=s. When we
insert our TST results for � = 3:364Åwe obtain 2:8�10-10m2=s, which is an order of magnitude
larger that the MD result. As the free energy barrier is largely reduced by using this low value
of �we do not expect that their simulations are effected by the inversion of isobutane.

Apparently, the optimal � should be somewhere between 3:35Å and 3:60Å. Also, in our
model we have assumed a rigid zeolite lattice to save CPU time, which may result in a diffusivity
that is one order of magnitude too low [170, 219]. This suggest that one should carefully choose
the model system.

6.4.2 Transition state ensemble

To locate possible transition states, we have used the procedure described in section 6.2.3 using
n1 = 50 and n2 = 150. Every 10; 000MC steps in a simulation of F (x0; T), 200 randomly selected
points of the current path were analyzed by assigning random momenta and integrating the
equations of motion for at most 15; 000 time-steps. This procedure was continued until 300
transition states have been identified. In figure 6.4, we have plotted the position of the branch
for all transition states both for diffusion in the straight channel and in the zigzag channel.
Clearly, the transition states are somewhat between the stable regions A and B (which is not
very surprising of course).
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Figure 6.4: Schematic representation of all transition states (dots) both for diffusion in the
straight channels and in the zigzag channels. Left: Top view, the straight channels are per-
pendicular to the plane. Right: Side view, the straight channels are from top to bottom while the
zigzag channels are from left to right (but not in the plane).
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Figure 6.5: Probability distribution of the orientational order parameter � of all generated tran-
sition states for both the straight and zigzag channel.
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A more interesting property is the orientation of the molecules in the transition state. We
have defined the orientational order parameter� as the angle between a straight line connecting
the centers of the stable regionsA and B and the bond-vectorCbranch-H in whichH is a dummy
atom that prevents isobutane from inverting itself (see section 6.3). In figure 6.5, we have plotted
the probability distribution of �. It turns out that the distribution of � has a maximum for ap-
proximately 90Æ, which is more pronounced for the straight channel than for the zigzag channel
(which is quite obvious because the zigzag channel is not straight). This means that orientations
in which all three methyl-groups all point either to region A or B are no transition states, which
also suggests that for longer branched alkanes the orientation of the tail will decide to which
stable state the molecule will move. This is in agreement with the transition state simulations
of Smit et al. [142] who found that the transmission coefficient of 2-methylhexane in Silicalite is
extremely low.

6.5 Conclusions

In summary, we have used transition path sampling to study the diffusion of isobutane in Sil-
icalite. Our computed diffusion coefficient is significantly lower than the diffusion coefficient
obtained by experiments or by the use of transition state theory. The difference with the experi-
mental result might be due to either the use of a rigid zeolite or a Lennard-Jones size parameter
describing the alkane-zeolite interactions that is too high. We found that not only the position
of the center of mass but also the orientation of an isobutane molecule is important in the iden-
tification of transition states. It would be very interesting to compare transition path sampling
with the scheme of Ruiz-Montero et al. [251]. This scheme is a modification of transition state
theory with dynamical corrections which is suited to study systems with a low transmission
coefficient efficiently.

6.6 Appendix A: Calculation of a free energy profile

To compute the hopping rate using TST, one has to know the free energy (F) as a function of the
reaction coordinate (�). For a branched alkane, it is conventional to use the position of the CH
group for this. To compute the free energy for a given reaction coordinate, we can use CBMC to
grow a chain molecule. In ref. [29] it is shown that the free energy F (�) at position � is related to
the average Rosenbluth factor W (�) (see equation 2.9);

exp [-�F (�)] = C� hW (�)i (6.29)

in which C is a constant which is determined by the reference frame of the free energy.
To compute the free energy as a function of the position in the channel of a zeolite, one

should be able to map the reaction coordinate � onto the position in the channel. For the straight
channel in Silicalite this mapping is quite trivial, i.e. the reaction coordinate is the projection on
a straight line from one intersection to another. However, if one would use the same method
for the zigzag channel one would obtain a rather unphysical reaction coordinate because this
zigzag channel is not straight, so the free energy as a function of the reaction coordinate � will
not be very meaningful.

To compute a more realistic realistic reaction coordinate, we will use a cord of N segments
that connects the middles of two intersections; the endpoints r1 and rN of this cord remain fixed.



94 Diffusion of Isobutane in Silicalite studied by Transition Path Sampling

The total energy U of this cord equals:

U =

i=NX
i=1

ui (ri) + kcord [N - 1]�
i=N-1X
i=1

jri+1 - rij
2 (6.30)

in which ui (ri) is the energy of a CH group at position ri. For sufficient large kcord one can
produce a cord ofN-1 segments of equal length by minimizing the total energy of the cord (U).
We have chosen kcord is such a way that the differences in length of the segments (ri+1 - ri) are
less than 1%. The reason for the factor N - 1 is to make sure the total energy of the spring part
ofU is independent ofN. To see this, consider a cord of (constant) length lwhich is divided into
N - 1 segments. The energy of the spring part of this cord equals:

U = kcord [N - 1]�
i=N-1X
i=1

�
l

N - 1

�2
= kcordl

2 (6.31)

which is independent ofN when the length of the cord l is approximately constant:

l �
i=N-1X
i=1

jri+1 - rij
2 (6.32)

To be able to compare the free energy profile with the distribution P (�; t), we have plotted the
free energy as a function of �, which is defined in equation 6.25.

6.7 Appendix B: Bitwise time-reversible multiple time-step algorithm

To construct bitwise time-reversible trajectories, we have modified the original RESPA inte-
grator from refs. [97, 238]; see table 6.2. In algorithm, the positions Rx,Ry,Rz and velocities
Vx,Vy,Vz are integer multiplications of 2-i (here: i = 30), although they are stored as floats.
The forces Fx,Fy,Fz however are computed in floating point precision, which means that the
calculation of the force does not have to be changed.
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Table 6.2: FORTRAN77 pseudo code of a bitwise time-reversible multiple time-step integrator
using Nrespa short (S) time-steps for every long (L) time-step of length Tst. The function Bnt
rounds a float to the nearest integer with a precision of 2-30; the FORTRAN77 function nint
rounds off to the nearest integer. The mass of the particles equals 1/Rm.

Function Bnt(X)
Double Precision Bnt,X
Integer*8 I

I = Nint(X*Dble(2**30)
Bnt = (2.0d0**-30)*Dble(I)

Subroutine Integrate

Do Ires=1,Nrespa
If(Ires.Eq.1) Then

Do I=1,Natom
Vx(I) = Bnt(Vx(I) + Bnt(0.5*Tst*Rm*Fx L(I)))
Vy(I) = Bnt(Vy(I) + Bnt(0.5*Tst*Rm*Fy L(I)))
Vz(I) = Bnt(Vz(I) + Bnt(0.5*Tst*Rm*Fz L(I)))

Enddo
Endif
Do I=1,Natom

Vx(I) = Bnt(Vx(I) + Bnt(0.5*Tst*Rm*Fx S(I)/Nrespa))
Vy(I) = Bnt(Vy(I) + Bnt(0.5*Tst*Rm*Fy S(I)/Nrespa))
Vz(I) = Bnt(Vz(I) + Bnt(0.5*Tst*Rm*Fz S(I)/Nrespa))
Rx(I) = Bnt(Rx(I) + Bnt(Tst*Vx(I)/Nrespa))
Ry(I) = Bnt(Ry(I) + Bnt(Tst*Vy(I)/Nrespa))
Rz(I) = Bnt(Rz(I) + Bnt(Tst*Vz(I)/Nrespa))

Enddo
If(Ires.Eq.Nrespa) Then

Call Force S L(Fx S,Fy S,Fz S,Fx L,Fy L,Fz L)
Else

Call Force S(Fx S,Fy S,Fz S)
Endif
Do I=1,Natom

Vx(I) = Bnt(Vx(I) + Bnt(0.5*Tst*Rm*Fx S(I)/Nrespa))
Vy(I) = Bnt(Vy(I) + Bnt(0.5*Tst*Rm*Fy S(I)/Nrespa))
Vz(I) = Bnt(Vz(I) + Bnt(0.5*Tst*Rm*Fz S(I)/Nrespa))

Enddo
If(Ires.Eq.Nrespa) Then

Do I=1,Natom
Vx(I) = Bnt(Vx(I) + Bnt(0.5*Tst*Rm*Fx L(I)))
Vy(I) = Bnt(Vy(I) + Bnt(0.5*Tst*Rm*Fy L(I)))
Vz(I) = Bnt(Vz(I) + Bnt(0.5*Tst*Rm*Fz L(I)))

Enddo
Endif

Enddo
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6.8 Appendix C: Parallel tempering

6.8.1 Introduction

Parallel tempering [18,86,237,252] is a very useful Monte Carlo technique for systems that suffer
from ergodicity problems. For example, in transition path sampling there might be two differ-
ent paths (C and D) that are separated by a high energy barrier in such a way that transitions
between these paths occur very rarely when only shifting and shooting trial moves are used.
For such a system, one would need a very long simulation to sample all possible paths.

In parallel tempering, N independent systems are simulated simultaneously. The total par-
tition function of this system (Q) equals

Q =

i=NY
i=1

Qi (6.33)

in which Qi equals

Qi =
X
xi

f (xi; �i) (6.34)

For example, for the canonical ensemble, the function f (xi; �i) equals

f (xi; �i) = exp [-�iH (xi)] (6.35)

in which �i = 1= (kBTi). Let us consider two different trial moves:

1. Displacement. A system i is selected with a fixed probability pi. For this system, a new
point in phase-space (xi (n)) is generated from xi (o), we assume here that this generation
is symmetric and that the other systems j are not affected (xj (n) = xj (o), j 6= i). The ratio
of acceptance probabilities equals

acc (o! n)

acc (n! o)
=

Qk=N
k=1 f (xk (n) ; �k)Qk=N
k=1 f (xk (o) ; �k)

=
f (xi (n) ; �i)

f (xi (o) ; �i)
(6.36)

Note that this expression does not depend on f (x j; �j). For the canonical ensemble, this
equation reduces to

acc (o! n)

acc (n! o)
= exp [-�i (H (xi (n)) -H (xi (o)))] (6.37)

To sample all N systems equally well, pi should be proportional to the time constant of a
characteristic autocorrelation function.

2. Swapping. Two systems (i and j, i 6= j) are selected at random, the systems are swapped
by choosing xi (n) = xj (o) and xj (n) = xi (o). The ratio of acceptance probabilities equals

acc (o! n)

acc (n! o)
=

Qk=N
k=1 f (xk (n) ; �k)Qk=N
k=1 f (xk (o) ; �k)

=
f (xj (o) ; �i) f (xi (o) ; �j)

f (xi (o) ; �i) f (xj (o) ; �j)
(6.38)

For the canonical ensemble, this equation reduces to

acc (o! n)

acc (n! o)
= exp [(�i - �j)� (H (xi (o)) -H (xj (o)))] (6.39)

Such trial moves will be accepted when there is enough overlap between f (xi; �i) and
f (xj; �j).
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In practice, this means that a transition from path C to path D that, without swapping trial
moves, rarely occurs in system i but quite frequently in system j (j 6= i, for example, because
�j � �i), can also occur in system i. Additionally, due to accepted swapping trial moves the
correlation time of subsequent elements of the Markov chain is largely reduced. When f (xi; �i)
and f (xj; �j) are stored during the simulation, the computational cost in this trial move is neg-
ligible.

6.8.2 Application to transition path sampling

In this section, we will discuss two applications of parallel tempering in path ensemble simula-
tions:

1. Simulation at different temperatures. When paths are sampled in the canonical ensemble,
i.e.

F (x0; T) = exp [-�H (x0)]hA (x0)HB (x0; T) (6.40)

one can simulate different systems with different � and apply swapping trial moves be-
tween different systems. However, when paths are sampled in the micro-canonical en-
semble, i.e.

F (x0; T) = Æ (H (x0) -H0)hA (x0)HB (x0; T) (6.41)

the acceptance probability for swapping trial moves between systems with a different H0

is zero.

2. Umbrella sampling. To compute P (�; t), it is sometimes advantageous to define overlap-
ping regions Bi by

x 2 Bi if �min (i) � � (xt) � �max (i) (6.42)

in such a way that [Bi equals the whole phase space. When all regions are simulated
simultaneously, one is able to perform trial moves that swap paths between two overlap-
ping regions Bi and Bj (i 6= j). When no additional window potentialW (� (xt)) is defined,
such a trial move is accepted when both paths are in the overlapping region of Bi and Bj
(i.e. hBi = hBj = 1). Note this holds both for simulations in the canonical as well as in the
micro-canonical ensemble.

Of course, both techniques can also be combined to sample P (�; t; �) for different overlapping
regional Bi and different temperatures �i in a single simulation.

6.8.3 Model system

To illustrate this method, we have used a two-dimensional system consisting of 9WCA particles:

uWCA (r) =

�
1 + 4

��
1
r12

�
-
�
1
r6

��
r � rWCA

0 r > rWCA
(6.43)

in which rWCA = 21=6. However, two particles (1 and 2) interact via a double well potential:

udw (�) = h

"
1 -

(�-w- rWCA)
2

w2

#2
(6.44)
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Figure 6.6: Probability distribution P (�; i) for all slices. P (�; i) / P (�; j) for i 6= j.

in which � is the distance between the particles. This system is described in detail in ref. [234].
We have usedw = 0:25, h = 6, �t = 0:001 and a box-size of 4 in both directions. We have chosen
the regions A and B such that x 2 A when � < 1:3 and x 2 Bwhen � > 1:45. All transition path
ensemble simulations have been performed in the canonical ensemble using � = 2; the total
impulse of the system is constrained to 0 in all dimensions. The total length of the paths was
5:0. We have defined 8 overlapping regions:

1. 0:00 < �1 < 1:20

2. 1:15 < �2 < 1:25

3. 1:20 < �3 < 1:30

4. 1:25 < �4 < 1:35

5. 1:30 < �5 < 1:40

6. 1:35 < �6 < 1:45

7. 1:40 < �7 < 1:60

8. 1:50 < �8 <1
In our simulations, there are three types of (randomly selected) trial moves:

1. Shifting ((70 - x)%).

2. Shooting (30%). A randomly selected particle of a randomly selected slice of a randomly
selected system is given a random displacement; the maximum displacement is adjusted
such that 33% of the trial moves are accepted.

3. Swapping (x%). Two overlapping regions are selected at random. An attempt is made to
swap the systems in these regions.

The total simulation consisted of 2� 106 cycles; in every cycle the number of trial moves equals
the number of slices (here: 8).

In figure 6.6, we have plotted the distributions P (�; i) for the various slices i. As there is
considerable overlap between the slices, one is able to construct the function P (�) accurately.
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Figure 6.7: Energy autocorrelation function for i = 1.

To define the efficiency of these simulations, we have calculated the energy autocorrelation:

G (t) =
hÆE (t) ÆE (0)i

hÆE2i (6.45)

in which t is the number of Monte Carlo cycles and ÆE = E - hEi. In figures 6.7, 6.8 and 6.9 we
have plotted the function G (t) with and without swapping trial moves for slices i = 1, i = 5

and i = 8. For i = 1 and i = 8, there is not much difference in efficiency, although the correlation
time is larger when no swapping occur. The reason for this is that slice 7 and 8 have quite a
large overlap and therefore a too large acceptance probability for swapping moves (32%). For
i = 5 (and also for i = 6 and i = 4, not shown here) however, the difference is huge. Without
swapping trial moves, the amount of trial moves to obtain a configuration with an independent
energy is increased by a factor 3. The reason for this is that slice i = 5 is located at the maximum
of the double well potential; when a path ends before the barrier the energy is much lower then
when a path is just able to cross the barrier.

In summary, we have demonstrated the use of parallel tempering in transition path ensemble
simulations. The use of parallel tempering has the potential to make these simulations more
efficient.
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Figure 6.8: Energy autocorrelation function for i = 5.
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Bibliography

[1] Meier, W.M.; Olson, D.H.; Baerlocher, Ch., Atlas of Zeolite Structure Types, 4th ed. Elsevier;
Amsterdam, 1996.

[2] Flanigen, E.M; Bennett, J.M.; Grose, R.W.; Cohen, J.P.; Patton, R.L.; Kirchener, R.M.; Smith,
J.V. Nature 1978, 271, 512–516.

[3] Ruthven, D.M., Principles of Adsorption and Adsorption Processes John Wiley; New York,
1984.

[4] Bekkum, H. van; Flaningen, E.M.; Jansen, J.C. (editors), Introduction to Zeolite Science and
Practice Elsevier; Amsterdam, 1991.

[5] Maxwell, I.E.; Stork, W.H.J., in Introduction to Zeolite Science and Practice, Studies in Surface
Science and Catalysis, edited by Bekkum, H. van; Flaningen, E.M.; Jansen, J.C. Elsevier;
Amsterdam, 1991.

[6] Miller, S.J., in Zeolites and Related Microporous Materials: State of the Art 1994, Studies in
Surface Science and Catalysis, edited by Weitkamp, J.; Karge, H.G.; Pfeifer, H.; Hölderich,
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Summary

The subject of this thesis is the study of adsorption and diffusion of alkanes in zeolites by com-
puter simulation.

In chapter 1, a short introduction to molecular simulations is presented, as well as an intro-
duction to the structure and industrial applications of zeolites.

In chapter 2, we discuss several extensions of Configurational-Bias Monte Carlo (CBMC).
CBMC is a Monte Carlo algorithm for the computation of thermodynamic properties of chain
molecules. In this algorithm, a chain molecule is grown step by step. For the insertion of a
new segment, several (k) trial positions are generated of which the energy u is calculated. One
of these segments is selected with a probability proportional to its Boltzmann factor. A similar
procedure is applied for the old configuration. Finally, it is decided at random to accept the new
chain or not (the so-called acceptance/rejection rule).

In this algorithm, biased chains are grown instead of random chains. We can correct for
this bias by a modification of the acceptance/rejection rule. As the calculation of the energy
of a trial segment (u) is computationally expensive, it would be advantageous to select a trial
segment in a different way. A possibility is to split u into short-range and long-range parts.
When chains are constructed by using the short-range part only, one is able to save much CPU
time because the calculation of the long-range part is much more expensive. To correct for
the bias, we have to compute the long-range interactions only for the selected configuration
and not for every trial segment. For a typical simulation, a speed-up of a factor 2 to 5 can be
achieved. Another possibility to speed-up CBMC simulations is to use a parallel computer. As
the growth of a chain is a sequential process, it is very difficult to parallelize this task using
a large number of processors. Therefore, we have studied an algorithm in which many (g)
chains are grown using only short-range interactions. This task can be parallelized efficiently.
When many chains are grown simultaneously, it is more likely that one of the chains is grown
in a favorable configuration. One of the g chains is chosen with a probability proportional to
its Rosenbluth weight and only for this chain we have to compute the long-range interactions
to correct for the bias. This algorithm is more efficient than one would expect based on the
individual algorithms.

Finally, we investigate the growth of branched molecules using CBMC. Due to the presence
of bond-bending potentials, one has to grow all segments connected to a branched atom of an
alkane molecule simultaneously.

In chapter 3, we discuss an alternative for CBMC (Recoil Growth, RG). One of the main
disadvantages of CBMC is that when all trial segments have unfavorable energies, the growth
of the chain will be terminated. In RG, two new concepts are introduced to solve this problem:

� a binary parameter b, which indicates whether a trial segment is considered as open or
closed. b is a stochastic variable which depends on the energy of the trial position only.
When a trial segment is considered as closed, it cannot be part of the chain.

� the recoil length l, which is the number of segments that the chain is allowed to retract.
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For the growth of a chain, one generates a possible trial segment. When it is decided that the trial
segment is open, we continue growing the chain. Otherwise, another trial segment is generated
up to a maximum of k trial segments. When all k trial segments are closed, the chain retracts
by one segment. The chain is allowed to retract to segment (lmax - l + 1), in which lmax is
the maximum length that was obtained during the construction of the chain. When the chain
is not allowed to retract anymore the chain is discarded. A similar procedure is applied to
the old configuration. Finally, the new chain is accepted or rejected with a certain probability.
In this chapter, we have derived the correct acceptance/rejection rule for this algorithm. For
long chains and high densities, RG is more than one order of magnitude more efficient than
CBMC. However, RG is less suitable for parallelization using a multiple chain algorithm (which
is described in chapter 2).

In chapter 4, we discuss the adsorption of linear and branched alkanes in the zeolite Silicalite.
We have used the simulation techniques described in the previous chapters for this. Silicalite
has a three dimensional channel structure which consists of straight and zigzag channels that
cross at the intersections (see figures 1.1 en 4.1). To compute the adsorption behavior, we have
fitted a force field which is able to reproduce the Henry coefficient (adsorption isotherm at low
pressure) and the heat of adsorption. From CBMC simulations it turns out that linear alkanes
can occupy all channels of Silicalite. For n-C6 en n-C7, the length of the molecule is almost
identical to the length of the zigzag channel. In literature, this process is called “commensurate
freezing” and causes an inflection in the adsorption isotherm of these molecules. This effect has
also been observed experimentally.

The adsorption behavior of branched alkanes in Silicalite is completely different from linear
alkanes. Branched alkanes are preferentially adsorbed at the intersections of Silicalite, which is
due to larger available space for the branch at the intersections. At a loading of 4 molecules per
unit cell Silicalite, all intersections are occupied. Additional molecules will have to reside in the
channel interiors. As this is energetically unfavorable, an additional driving force is needed to
force the molecules into the channel interiors. This is the cause of the inflection in the isotherm,
which has also been obtained experimentally for Silicalite. All isotherms can be described well
using a dual-site Langmuir isotherm.

Chapter 5 describes the adsorption of 50%-50% mixtures of linear and branched alkanes on
Silicalite. We find that at low pressures, both linear as well as branched molecules are adsorbed.
At high pressures, there will be a competition between these molecules because the space in the
zeolite is limited. At these pressures, linear alkanes are adsorbed anywhere in the zeolite while
branched alkanes are only adsorbed at the intersections. Branched alkanes disturb the structure
of the linear ones. Therefore, the system can gain entropy when the branched molecules are
completely squeezed out of the zeolite. This process occurs for 50%-50% mixtures of i-C5-n-
C5, i-C6-n-C6 en i-C7-n-C7. These mixture isotherms are well described by a dual-site binary
Langmuir isotherm.

As the Fick diffusion coefficient is directly related to the adsorption isotherm and the Maxwell-
Stefan diffusion coefficient using the thermodynamic matrix �, we can describe the diffusion of
alkane mixture using the Maxwell-Stefan theory. For this, we have assumed that the Maxwell-
Stefan diffusivity is independent of the loading of the zeolite. This suggests a possible industrial
application for the separation of linear and branched alkanes using a zeolite membrane.

In chapter 6, we study the diffusion of isobutane in Silicalite. At low pressures, isobutane
is preferentially adsorbed at the intersections of Silicalite. As there is a large free energy barrier
between two intersections, the jump of an isobutane molecule to a nearby intersection will be
a rare event. Therefore, we cannot use conventional Molecular Dynamics (MD) to compute the
jump rate (and therefore also the diffusion coefficient). To compute the diffusion coefficient, we
have used transition path sampling. In these simulations, we generate an ensemble of MD tra-
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jectories that connects two nearby intersections. This allows us to compute not only the jump
rate but also the transition state. For isobutane, the calculated diffusivity is much lower than
the experimental obtained value. Possible explanations for this are that we have neglected the
flexibility of the zeolite (to save CPU time) and the large Lennard-Jones size parameter describ-
ing the alkane-zeolite interactions. The simulations show that not only the position but also the
orientation of isobutane is important to localize transition states.





Samenvatting (Summary in Dutch)

Dit proefschrift gaat over computersimulaties van adsorptie en diffusie van alkanen in zeolieten.
In hoofdstuk 1 worden enkele basisbegrippen van moleculaire simulaties geı̈ntroduceerd.

Tevens wordt een korte inleiding over de structuur en industriële toepassingen van zeolieten
gegeven.

In hoofdstuk 2 worden enkele uitbreidingen van Configurational-Bias Monte Carlo (CBMC)
besproken. CBMC is een Monte Carlo algoritme dat gebruikt kan worden voor de berekening
van thermodynamische grootheden van ketenmoleculen. In dit algoritme wordt een keten-
molecuul segment voor segment opgebouwd. Voor de insertie van een nieuw segment worden
enkele (k) trial-segmenten gegenereerd en van deze trial-segmenten wordt de energie u uit-
gerekend. Eén van deze trial-segmenten wordt geselecteerd met een kans die evenredig is met
zijn Boltzmann factor. In de praktijk betekent dit, dat het segment met de gunstigste energie
wordt gekozen. Tevens wordt een soortgelijke procedure toegepast op de oude keten. Vervol-
gens wordt met een bepaalde kans besloten of de nieuwe keten wordt geaccepteerd of dat de
oude keten behouden blijft (de zogenaamde acceptatieregel).

Ondanks dat in dit algoritme in plaats van random ketens, ketens met een bepaalde voorkeurs-
richting (bias) worden geconstrueerd, kan voor deze bias exact worden gecorrigeerd in de ac-
ceptatieregel. Aangezien de berekening van de energie van een trial-segment (u) een reken-
intensieve operatie is, is het wenselijk een trial-segment op een andere manier te selecteren.
Eén van de mogelijkheden is het splitsen van u in een potentiaal met een korte-dracht en een
lange-dracht. Wanneer ketens worden geconstrueerd met uitsluitend het korte-dracht deel van
u wordt veel rekentijd bespaard, aangezien de berekening van het lange-dracht deel van u ver-
reweg de meeste rekentijd vraagt. De aanpassing van de acceptatieregels vereist de berekening
van het lange-dracht deel van u alleen voor de geselecteerde configuratie en niet voor alle trial-
segmenten van de gehele keten. Voor een typische simulatie levert dit een versnelling op van
een factor 2 tot 5. Een andere mogelijkheid om CBMC simulaties te versnellen is het overgaan
op een parallel algoritme. Dit vereist een computer met meerdere processoren. Aangezien het
groeien van een keten van nature een sequentieel proces is, is dit lastig te parallelliseren over
een groot aantal processoren. Daarom is gekozen voor een algoritme waarbij een groot aan-
tal ketens (g) wordt opgebouwd met het korte-dracht deel van u. Deze taak kan gemakkelijk
worden geparallelliseerd. De gedachte is, dat door meerdere ketens simultaan te construeren,
de kans dat een keten in een gunstige conformatie terecht komt, wordt vergroot. Uit deze g
ketens wordt de meest gunstige keten gekozen en voor deze keten wordt het lange-dracht deel
van u berekend om te corrigeren voor de door dit algoritme geı̈ntroduceerde voorkeur voor de
geselecteerde configuratie. Het blijkt dat dit een bijzonder effectief algoritme oplevert.

Tevens worden de problemen die gepaard gaan bij de extensie van CBMC naar vertakte
ketens in kaart gebracht. Het blijkt dat bij een vertakt alkaan, door de aanwezigheid van bond-
bending potentialen, alle segmenten aan een vertakking simultaan neergezet moeten worden.

In hoofdstuk 3 wordt een alternatief voor CBMC besproken, Recoil Growth (RG). Eén van de
belangrijkste nadelen van CBMC is, dat op een bepaald moment alle trial-segmenten ongunstig
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kunnen zijn. Hierdoor kan de constructie van een keten vastlopen. In RG worden twee nieuwe
concepten geı̈ntroduceerd om dit te verbeteren:

� een binaire parameter b die aangeeft of een segment open of gesloten is. De kans op
een bepaalde waarde van b is een functie van de energie u van dit segment. Wanneer
wordt bepaald dat een segment gesloten is, kan dit segment nooit deel uitmaken van de
geselecteerde keten.

� de recoil lengte l, dit is de lengte waarover een keten kan teruggroeien.

Voor het opbouwen van een keten wordt telkens een trial-segment gegenereerd. Wanneer
dit segment open is, wordt verder gegaan met het volgende segment. Wanneer dit segment
gesloten is, wordt een ander trial-segment gegenereerd tot een maximum van k segmenten.
Zijn alle k segmenten gesloten, dan kan de keten een stap teruggroeien tot een maximum van
(lmax - l+ 1) segmenten, waarin lmax de maximale lengte is die bereikt is tijdens de constructie
van de keten. Wanneer verder teruggroeien niet meer mogelijk is, wordt de nieuwe keten ver-
worpen. Een soortgelijke procedure wordt toegepast op de oude keten. Vervolgens wordt met
een bepaalde kans de nieuwe keten aangenomen of verworpen. Hiervoor zijn in dit hoofdstuk
de correcte acceptatieregels afgeleid. Het blijkt dat RG voor lange ketens en systemen met een
hoge dichtheid een orde grootte efficiënter is dan CBMC. Echter, RG blijkt minder geschikt voor
parallellisatie met het algoritme dat in hoofdstuk 2 is beschreven.

Hoofdstuk 4 beschrijft uitgebreid het adsorptiegedrag van lineaire en vertakte alkanen in
het zeoliet Silicalite. Hiervoor zijn de simulatietechnieken uit de vorige hoofdstukken gebruikt.
Silicalite heeft een driedimensionale kanaalstructuur bestaande uit lineaire kanalen en zigzag
kanalen die elkaar kruisen op de intersecties (zie figuren 1.1 en 4.1). Om dit adsorptiegedrag te
kunnen berekenen is een krachtveld opgesteld om de interacties tussen alkanen en het zeoliet
te kunnen berekenen. Dit krachtveld is zodanig gefit dat experimentele waardes van de Henry
coëfficiënt (adsorptie isotherm bij lage druk) en adsorptiewarmte gereproduceerd kunnen wor-
den. Uit de CBMC simulaties blijkt dat lineaire alkanen zich vrij kunnen bewegen over alle
kanalen van Silicalite. Voor n-C6 en n-C7 is de lengte van het alkaan molecuul vrijwel identiek
aan de lengte van het zigzag kanaal. Dit proces staat in de litteratuur bekend onder de naam
“commensurate freezing” en veroorzaakt een inflectie in de adsorptie isotherm. Dit effect wordt
ook experimenteel waargenomen.

Het adsorptiegedrag van vertakte alkanen in Silicalite is compleet verschillend van lineaire
alkanen. Vertakte alkanen zijn preferentieel op de intersecties van Silicalite geadsorbeerd. Dit
komt omdat op de intersecties meer ruimte is voor de vertakking. Bij een belading van 4
moleculen per eenheidscel Silicalite zijn alle intersecties bezet en zullen extra moleculen in de
kanalen moeten gaan zitten. Aangezien plaatsing in de kanalen energetisch ongunstig is, zullen
deze extra moleculen in de rechte en zigzag kanalen moeten worden geduwd. Dit veroorzaakt
een inflectie in de isotherm. Deze inflectie is ook experimenteel gemeten voor isobutaan. Alle
isothermen blijken goed te beschrijven met een zogenaamd dual-site Langmuir isotherm.

Hoofdstuk 5 beschrijft resultaten van simulaties voor de adsorptie van 50%-50% mengsels
van lineaire en vertakte alkanen in Silicalite. Het blijkt dat bij lage drukken zowel lineaire als
vertakte moleculen adsorberen. Bij hogere drukken vindt er echter een competitie plaats tussen
de lineaire en vertakte alkanen. De lineaire alkanen kunnen overal in het zeoliet adsorberen
terwijl de vertakte alkanen met kun vertakking op de intersecties plaats willen nemen. Verder
blijkt dat de aanwezigheid van vertakte alkanen de pakking van de lineaire alkanen dusdanig
verstoort dat het systeem entropie kan winnen wanneer de vertakte alkanen uit het zeoliet wor-
den verdreven. Dit proces vind plaats voor 50%-50% mengsels van i-C5-n-C5, i-C6-n-C6 en
i-C7-n-C7. Deze mengsel isothermen blijken goed te kunnen worden beschreven met een dual-
site binaire Langmuir isotherm.
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Omdat de Fick diffusiecoëfficiënt rechtstreeks gerelateerd is aan de adsorptie isotherm via
de thermodynamische matrix �, kan met behulp van de berekende isothermen de diffusie van
alkaanmengsels worden beschreven met behulp van de Maxwell-Stefan theorie. Hierbij wordt
aangenomen dat de Maxwell-Stefan diffusiecoëfficiënt niet afhangt van de concentratie. Dit lev-
ert een mogelijke industriële toepassing op voor de scheiding van lineaire en vertakte alkanen
met behulp van een zeolietmembraan.

In hoofdstuk 6 wordt de diffusie van isobutane in Silicalite bestudeerd. Doordat isobutane
bij lage druk preferentieel op de intersecties van Silicalite is gesitueerd en er tussen twee inter-
secties een hoge vrije energie barrière is, zal het verspringen van een isobutaan molecuul naar
een naburige intersectie een infrequent proces zijn. Hierdoor is conventionele moleculaire dy-
namica (MD) niet geschikt om deze hopping rate (en dus ook diffusiecoëfficiënt) uit te rekenen.
Om deze hopping rate toch te kunnen uitrekenen is gebruik gemaakt van transition path sam-
pling. In deze techniek wordt een ensemble van MD trajecten gegenereerd die twee intersecties
met elkaar verbinden. Hierdoor kan niet alleen de hopping rate worden uitgerekend maar ook
kan de zogenaamde transition state worden gelocaliseerd. Voor isobutaan blijkt de berekende
diffusiecoëfficiënt veel te laag vergeleken met experimentele resultaten. De verklaring hiervoor
moet worden gezocht in het niet meenemen van de flexibiliteit van het zeoliet (vanwege de
beperkte hoeveelheid beschikbare rekenkracht) en de nogal grote Lennard-Jones size param-
eter voor de beschrijving van alkaan-zeoliet interacties. Uit deze simulaties blijkt tevens dat
niet alleen de positie maar ook de oriëntatie een belangrijke rol speelt bij de identificatie van
transition states.
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