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Preface

This book is based on more than two decades of teaching Real Analysis in the
famous Mathematics Training and Talent Search Programme across the country
in India.

The unique features of our book are as follows:
1) We create an interest in Analysis by encouraging readers to think geomet-

rically.
2) We encourage readers to investigate and explore pictures and guess the

results.
3) We use pictures and leading questions to think of a possible strategy of

proof. (There are more than a hundred pictures in the book.)
4) We preface all the major and difficult proofs with a strategy and explain

how the strategy is translated into rigorous and precise (so-called) textbook
proofs. (This will make sure that the reader does not miss the wood for the
trees. This will also train readers to conceptualize and later write in such a way
that it is acceptable to a professional.)

5) We explain the mystery and role of inequalities in analysis and train the
students to arrive at estimates that will be useful for the proofs.

6) We emphasize the role of the least upper bound property of real numbers,
which underlies all crucial results in real analysis. (The prevalent impression is
that the Cauchy completeness of the real number system is the cornerstone of
analysis.)

7) We keep a conversational tone so that the reader may feel that a teacher
is with him all the way. (This will ensure that the book is eminently suitable for
self-study, a much-felt need in a country like India where there is a paucity of
teachers when compared to the large number of students.)

8) We attend to the needs of a conscientious teacher who would like to explain
the hows and whys of the subject. (Typically, such teachers can explain the line-
by-line proof or the logical steps, but are at a loss to explain how the results and
concepts were arrived at and why the proof works or the central or crucial idea
of the proof. In fact, these are often the features that help students develop a feel
for the subject.)

9) We show both aspects of analysis, as a qualitative as well as quantitative
study of functions. The prevalent practice is to introduce topological notions at a
very early stage (which may be construed as qualitative) at the cost of traditional
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xii PREFACE

ε-δ, ε-n0 treatment (which may be considered as quantitative). Students who are
exposed very early to the topological notions are invariably very uncomfortable
while dealing with some proofs where the arguments fall under the name hard-
analysis.

As some of the novelties, we would like to mention our proof of Cauchy
completeness of R (Theorem 2.2.3), the sequential definition preceding the ε-
δ definition or the limit definition of continuity, the repeated employment of the
auxiliary function f1 while dealing with differentiation (Theorem 4.1.3), the use
of the curry leaf trick to give an understandable proof of many results such as
|f(x)− fn(x)| = limm→∞ |fm(x)− fn(x)| ≤ ε (Theorem 7.3.12), and the empha-
sis on the LUB property of R throughout the course.

Experts may find that the present book lacks a few topics which are included
in a standard first course in real analysis such as a rigorous treatment of real num-
ber system, basic notions of metric spaces, and perhaps, the Riemann-Stieltjes
integral. We find that the students find a rigorous treatment of the real number
system in a first course, especially in the beginning, too abstract and too abstruse,
and unless they are extremely committed, they are driven away from analysis.
We suggest that it may be dealt with after a first course in real analysis and the
construction of R may be carried out in detail. As for the second topic, we believe
that the introduction to topological and metric space concepts may be introduced
in a second course in real analysis which may deal with several variable calculus
and measure theory. It is our experience that a thorough introduction of Riemann
integral via Darboux sums offers geometric insights to the concepts and proofs to
the students while if we started with the Riemann-Stieltjes integral, it hides the
very same insights. Students who have gone through the Riemann integral find
it easier to master the Stieltjes integral within a couple of lectures.

Our original intention was to introduce these topics briefly in three appen-
dices, but to keep the book in reasonable size we shelved the idea. We are open
to include them in future editions if a large number of readers, especially the
teachers, demand it.

The book has more than 100 pictures. All the pictures were drawn using
the free software Sage, GeoGebra, and TikZ. The book, of course, is typeset in
TEX/LATEX. We thank the creators of these wonderful tools.

We thank the participants of the MTTS Programme and the faculty who
appreciated the way Analysis was taught in the MTTS camps and who urged us
to write a book based on our experience in these camps. We shall be satisfied if
students find that their confidence in Analysis is enhanced by the book.

We would like to receive comments, suggestions, and corrections from
the readers of the book. They may be sent to our email addresses
ajit72@gmail.com or to kumaresa@gmail.com. Please mark the subject
as Real Analysis (Comments). We shall maintain a list of errata at
http://main.mtts.org.in/downloads.

Ajit Kumar

S. Kumaresan



To the Students

We wrote this book with the aim of this being used for self-study.

There are many excellent books in real analysis. Many of them are student
friendly. Their exposition is clear, precise, and exemplary more often than not. All
of them, if we may say so, are aimed at students who are mathematically mature
enough and who have an implicit faith that by repeated drill and rigor, they
would absorb the tricks of the subject. Also, they assume that the readers have
access to teachers who know the subject well and who can steer their students
toward the understanding of the subject.

This book aims at students who are not sure of why they have to learn the
subject. They are often puzzled about the mortal rigor of the subject. They start
wondering how in the world the teacher knew how to prove the result. Most often,
they do not even ask why those results were thought to be true or conceived of.
The book addresses typically those students who do not have access to peers or
teachers who are experts, but are willing to learn on their own. They also want
to understand the whys and hows rather than simply believe it is good to learn
these in an abstract and formal way and that things will work out.

Almost everything is learned in the early years of our life by observation and
mimicking. We wrote the book keeping this principle in mind. In our writing, we
often exhibit our raw thought process and the kind of questions we ask ourselves
when we attempt to prove a result or solve a problem. Hopefully, you as the
reader may pick up this process either consciously or unconsciously.

This books offers insights into the way a typical mathematician works. He
observes a pattern, explores further or conducts experiments by means of looking
at or creating examples, tries to understand the underlying principles and comes
up with guesses or conjectures, and proves it rigorously based on his explorations.
The proofs typically incorporate many of his nebulous ideas in a professional
manner. In a typical exposition which tries to be concise and very precise, these
aspects of the professional life are never brought out. Also, any subject has its
own ethos, a particular way of looking at things and a few standard tricks which
take care of almost nine cases out of ten, at least a large number of cases. This
book makes a very serious and committed attempt to initiate the students in a
friendly way to these aspects of Real Analysis.

All concepts, definitions, and result/theorems are motivated by a variety of
means—by geometric thinking, by drawing analogies with real-world phenomena,
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xiv TO THE STUDENTS

or by drawing parallels within the realm of mathematics and so on. Insightful
discussions and a plan of attack (called as strategy in the book) precede almost
every proof. Then we carefully explain how these ideas translate into rigorous
and precise proofs.

To master any subject, along with formalism, one needs to develop a feeling
for it. This can be achieved by various means, by geometric thinking, by drawing
analogies with real-world phenomena, or by drawing parallels within the realm
of mathematics and so on. This book employs all these and more. It also aims
to train the readers how the ideas gathered by these methods are translated
into a formal and rigorous writing. Almost all proofs start with a strategy which
captures the essential ideas of the proof and then we work out the details. This
way the readers do not miss the forest for the trees. Many a time teachers go
through the proofs in a very formal way. The students are convinced that the proof
is logically correct but may be left with a feeling of inadequacy or overwhelmed
with smothering details.

Let us warn you that some of our writing (especially the parts that aim to
motivate or lay down strategy) may sound vague and you may not be able to ap-
preciate it the first time. Please keep in mind that when trying to understand any
phenomenon, human beings start with vague questions, nebulous explanations,
which in turn give rise to more precise pointed questions. This process repeats
and finally leads to a correct answer. Nothing, as a rule, was served on a platter
while humans started wondering about various phenomena. After a few weeks of
study, you will begin to understand their role in the development of the concepts
and proofs.

There are quite a few exercises, and a few of them have hints. Some of the
hints are again questions! Needless to say, we expect you to make serious attempts
to solve them on your own and only after repeated failures should you look at
the hints.

We are confident that this book fills a much felt need and empowers the
students to think analysis on their own and take charge of their understanding.

We shall be amply rewarded if you appreciate our efforts and enjoy doing
analysis. You may send your comments and suggestions to the email addresses
mentioned in the preface.

Ajit Kumar
Mumbai, India

S. Kumaresan
Hyderabad, India
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Real Number System

Contents
1.1 Algebra of the Real Number System . . . . . . . . . . . . . . . . 1

1.2 Upper and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . 3

1.3 LUB Property and Its Applications . . . . . . . . . . . . . . . . 7

1.4 Absolute Value and Triangle Inequality . . . . . . . . . . . . . . 20

In this chapter, we shall acquaint ourselves with the real number system.
We introduce the set of real numbers in an informal way. Once this is done,
the most important property of the real number system, known as the least
upper bound property, is introduced. We assume that you know the set N of
natural numbers, the set Z of integers, and the set Q of rational numbers. You
know that N ⊂ Z ⊂ Q. You also know the arithmetic operations, addition and
multiplication of two natural numbers, integers, and rational numbers. You also
know the order relation m < n between two integers, more generally between two
rational numbers.

1.1 Algebra of the Real Number System

The set R of real numbers is a set which contains Q and on which we continue to
have arithmetic operations and an order relation. We now list the properties of
the real number system. The reader should not be overwhelmed by the list. All
of them must be familiar to him.

The properties of the addition of real numbers are listed below.

(A1) x+ y = y + x for x, y ∈ R. (Commutativity of Addition)

(A2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ R. (Associativity of Addition)

(A3) There exists a unique element 0 ∈ R such that x + 0 = 0 + x = x for all
x ∈ R. (Existence of Additive Identity or Zero)

1
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(A4) For every x ∈ R, there exists a unique element y ∈ R such that x+ y = 0.
We denote this y by −x. (Existence of Additive Inverse)

The properties of the multiplication of real numbers are listed below.

(M1) x · y = y · x for all x, y ∈ R. (Commutativity of Multiplication)

(M2) x · (y · z) = (x · y) · z for all x, y, z ∈ R. (Associativity of Multiplication)

(M3) There exists a unique element 1 ∈ R such that x · 1 = 1 · x = x for all
x ∈ R. (Existence of Multiplicative Identity)

(M4) Given x 6= 0 in R, there exists a unique y such that xy = 1 = yx. We denote
this y by x−1 or by 1

x . (Existence of Multiplicative Inverse or Reciprocal)

Finally we have the distributive law which says how the two operations interact
with each other.
(D) For all x, y, z ∈ R, we have x · (y + z) = x · y + x · z. (Distributivity of
multiplication · over addition +.)

There is an order relation on R which satisfies the Law of Trichotomy. Given
any two real numbers x and y, one and exactly one of the following is true:

Law of Trichotomy: x = y, x < y, or y < x.

We often write y > x to denote x < y. Also, the symbol x ≤ y means either x = y
or x < y, and so on.

Remark 1.1.1. Let x, y ∈ R. Assume that x ≤ y and y ≤ x. We claim that
x = y. If false, then either, x < y or y < x by law of trichotomy. Assume that
we have x < y. Since y ≤ x, either x = y or y < x. Neither can be true, since we
assumed x 6= y and hence concluded x < y from the first inequality x ≤ y. Hence
we conclude that the second inequality cannot be true, a contradiction. Thus our
assumption that x 6= y is not tenable.

Proposition 1.1.2. We list some of the important facts about this order relation
in R.

(1) If x < y and y < z, then x < z. (Transitivity)

(2) If x < y and z ∈ R, then x+ z < y + z.

(3) If x < y and z > 0, then xz < yz.

(4) If x < y, then −y < −x.

(5) For any x ∈ R, x2 ≥ 0. In particular, 0 < 1.

(6) If x > 0 and y < 0, then xy < 0.

(7) If 0 < x < y, then 0 < 1/y < 1/x.
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Many other well-known order relations can be derived from the above list.
Just to test your understanding, do the following exercises.

Exercise Set 1.1.3.

(1) For x < y, we have x < x+y
2 < y. The point (x + y)/2 is known as the

midpoint between x and y.

(2) If x ≤ y + z for all z > 0, then x ≤ y.

(3) For 0 < x < y, we have 0 < x2 < y2 and 0 <
√
x <

√
y, assuming the

existence of
√
x and

√
y. More generally, if x and y are positive, then x < y

iff xn < yn for all n ∈ N.

(4) For 0 < x < y, we have
√
xy < x+y

2 .

An important note: We are certain that you would have been taught to asso-
ciate real numbers as points on a number line. In this book we shall use this to
understand many concepts and results and to arrive at ideas for a proof. But rest
assured that all our proofs will be rigorous and in fact they will train you in trans-
lating geometric ideas into rigorous proofs that will be accepted by professional
mathematicians.

1.2 Upper and Lower Bounds

Definition 1.2.1. Let A ⊂ R be nonempty. We say that a real number α is an
upper bound of A if, for each x ∈ A, we have x ≤ α. Geometrically, this means
that elements of A are to the left of α on the number line. Look at Figure 1.1.

In terms of quantifiers, α is an upper bound of A if

∀x ∈ A(x ≤ α).

α

A

Figure 1.1: α is an upper bound of A.

A real number α is not an upper bound of A if there exists at least one x ∈ A
such that x > α. This means that in the number line, we can find an element of
A to the right of α. See Figure 1.2.
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α

A

x

Figure 1.2: α is not an upper bound of A.

If α is an upper bound of A and α′ > α, then α′ is also an upper bound of A.
See Figure 1.3.

α α′

A

Figure 1.3: Upper bound of a set is not unique.

Lower bounds of a nonempty subset of R are defined analogously.
If α is a lower bound of A, where can you find elements of A in the number

line with reference to α? When do you say a real number is not a lower bound of
A? Express these in terms of quantifiers.

There exists a lower bound for N in R. Does there exist an upper bound for N
in R? The answer is No and it requires a proof which involves the LUB property
of R, the single most important property of R. See Theorem 1.3.2.

Definition 1.2.2. ∅ 6= A ⊂ R is said to be bounded above in R if there exists
α ∈ R which is an upper bound of A. That is, if there exists α ∈ R such that for
each x ∈ A, we have x ≤ α.

Note that in terms of quantifiers, we may write it as follows. A nonempty
subset A ⊂ R is bounded above in R if

∃ α ∈ R (∀x ∈ A (x ≤ α)).

Subsets of R bounded below in R are defined analogously. Readers are encour-
aged to write this definition.

We urge the readers to go through Appendix A to review the role of quantifiers
in mathematics and the mathematical way of negating statements which involve
quantifiers. A quick review will prepare you to understand what follows.

A is not bounded above in R if for each α ∈ R, there exists x ∈ A (which
depends on α) such that x > α. Look at Figure 1.4.

In terms of quantifiers, we write it as follows. A subset A ⊂ R is not bounded
above in R if

∀α ∈ R (∃x ∈ A (x > α)).
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A

α xα β xβ

Figure 1.4: Set which is not bounded above.

Can you visualize this in a number line?
When do you say A ⊂ R is not bounded below in R?
An upper bound of a set need not be an element of the set. For example, if

A = (a, b) is an interval, then b is an upper bound of A but is not an element of
A. If an upper bound of A is an element of A, then it is called a maximum of A.
Can you show that if M ∈ A is a maximum of A, then it is unique? That is, if
M ′ is also a maximum of A, then you are required to prove M = M ′.

When do you say an element of a set A is a minimum of the set? Is it unique?

Example 1.2.3.

(1) If ∅ 6= A ⊂ R is finite, then an upper bound of A belongs to A.

Let us prove it by induction on the number n of elements in A. If n = 1, then
the result is clear. Let n = 2 and A = {a, b}. Then by law of trichotomy,
either a < b or a > b. In the first case, b is the maximum while in the second
a is the maximum. Assume the result for any subset of n elements. Let
A = {a1, . . . , an, an+1} be a set with n+ 1 elements. Then by induction the
set B := {a1, . . . , an} has a maximum, say, b = aj ∈ B. Now the two-elements
set C := {aj , an+1} has a maximum, say c ∈ C. Let M be a maximum of
the two–element set {b, c}. Note that M ∈ {a1, . . . , an+1}. Then for any
1 ≤ i ≤ n, we have ai ≤ b ≤ M and an+1 ≤ c ≤ M . Thus M ∈ A is a
maximum of A.

(2) Any lower bound of a nonempty subset A of R is less than or equal to an
upper bound of A. Let α be a lower bound of A and β an upper bound of A.
Fix an element a ∈ A. Then α ≤ a and a ≤ β. That is, α ≤ a ≤ β or α ≤ β.
(Observe that we made use of the fact that A is nonempty.)

Let us look at A = (0, 1). Clearly 1 is an upper bound of A. Intuitively, it is
clear that any upper bound of A must be greater than or equal to 1. Thus, 1 is
the least among all upper bounds of A. The next definition captures this idea.

Definition 1.2.4. Let ∅ 6= A ⊂ R be bounded above. A real number α ∈ R is
said to be a least upper bound A if (i) α is an upper bound of A and (ii) if β is
an upper bound of A, then α ≤ β.

A greatest lower bound of a subset of R bounded below in R is defined analo-
gously.
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Proposition 1.2.5. Let A ⊂ R be a nonempty subset bounded above in R. If α
and β are least upper bounds of A, then α = β, that is, the least upper bound of
a nonempty subset bounded above in R is unique.

Proof. Since α is a least upper bound of A and β is a least upper bound and
hence an upper bound of A, we conclude that α ≤ β. Similarly, since β is a least
upper bound of A and α is a least upper bound and hence an upper bound of A,
we conclude that β ≤ α. It follows that α = β, by Remark 1.1.1.

In view of the last proposition, it makes sense to say α is the least upper
bound of A. We use the notation lub A to denote the least upper bound of A.
The symbol LUB is a shorthand notation for least upper bound. The least upper
bound α of a set A is also known as the supremum of A and is denoted by supA.

Look at B := (0, 1). Clearly 0 is a lower bound of B. It is intuitively clear
that if β is a lower bound of A, then β ≤ 0. Thus 0 is the greatest among all
lower bounds of B. Therefore it makes sense to define a greatest lower bound of a
nonempty subset of R which is bounded below in R. The reader should attempt
to formulate its definition before he reads it below.

We say that β ∈ R is a greatest lower bound of a nonempty subset B ⊂ R
which is bounded below in R if (i) β is a lower bound of B and (ii) if γ is any
lower bound of B, then γ ≤ β. It is easy to show that if β and β′ are greatest
lower bounds of a set B, then β = β′. We therefore say the greatest lower bound
of a set.

What do the symbols glb B and GLB stand for? The glb B is also called the
infimum of B and is denoted by inf B.

The following is the most useful characterization of the LUB.

Proposition 1.2.6. A real number α ∈ R is the least upper bound of A iff (i)
α is an upper bound of A and (ii) if β < α, then β is not an upper bound of A,
that is, if β < α, then there exists x ∈ A such that x > β.

Proof. Let α be the LUB of A. Let β < α be given. Since β < α, and α is the
LUB of A, β cannot be an upper bound of A. Hence there exists x ∈ A such that
x > β. Look at Figure 1.5.

Conversely, let α be an upper bound of A with the property that for any
β < α, there exists x ∈ A such that x > β. We need to prove that α is the LUB
of A. Let β be an upper bound of A. We claim that β ≥ α. If false, then β < α.
Hence by hypothesis, there exists x ∈ A such that x > β. That is, β is not an

αβ
x

A

Figure 1.5: α is the least upper bound of A.

upper bound, contradicting our assumption. Hence β ≥ α.
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Remark 1.2.7. Most often the proposition above is used by taking β = α − ε
for some ε > 0.

Example 1.2.8. If an upper bound α of A belongs to A, then lub A = α. Thus
the maximum of a set, if it exists, is the LUB of the set.

Exercise 1.2.9. State and prove the results for GLB analogous to Proposi-
tions 1.2.5 and 1.2.6.

Exercise 1.2.10. What is the analogue of Example 1.2.8 for GLB?

Example 1.2.11. Let A = (0, 1) := {x ∈ R : 0 < x < 1}. Then lub A = 1 and
glb A = 0. To prove the first, observe that if 0 < β < 1, then (1 + β)/2 ∈ A.

Clearly, 1 is an upper bound for A. Let b be an upper bound of A. Since
1/2 ∈ A, we have 0 < 1/2 ≤ b. We claim b ≥ 1. If not, b < 1. Hence b ∈ (0, 1).
Now the midpoint x := (b+ 1)/2 ∈ A, but x− b = (1− b)/2 > 0 or x > b. That
is, b is not an upper bound of A. Look at Figure 1.6.

1+b
2

b
0

1
2

1

Figure 1.6: LUB of (0, 1).

Can you adapt this argument to conclude lub (a, b) = b?

Example 1.2.12. Let I be a nonempty set. Assume that we are given two
subsets A and B of R which are indexed by I. That is, A := {ai : i ∈ I} ⊂ R and
B := {bi : i ∈ I} ⊂ R. Assume further that ai ≤ bi for each i ∈ I. Let us assume
that both the sets are bounded above and α := lub A and β := lub B. Then we
claim α ≤ β. For, β is an upper bound of A. If ai ∈ A, then ai ≤ bi ≤ β and
hence the claim. Since α := lub A, and β is an upper bound of A, it follows that
α ≤ β.

Now assume that ai ≤ bi for each i ∈ I. Let us assume that both the sets are
bounded below and α := glb A and β := glb B. Then α is a lower bound for B
since if bj ∈ B, then α ≤ aj ≤ bj . Hence the lower bound α of B is less than or
equal to the GLB of B, namely β.

1.3 LUB Property and Its Applications

Assume that A ⊂ R is bounded above in R. Hence there is a real number which is
an upper bound of A. The question now arises whether there exists a real number
α which will be the least upper bound of A. The LUB property of R asserts the
existence of such an α.
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LUB Property of R:

Given any nonempty subset of R which is bounded above in R, there
exists α ∈ R such that α = lub A.

Thus, any subset of R which has an upper bound in R has the lub in R.
Note that lub A need not be in A. See Example 1.2.11.
The LUB property of R is the single most important property of the real

number system and all key results in real analysis depend on it. It is also known
as the order–completeness of R.

Remark 1.3.1. The set Q of rational numbers satisfies all the properties listed
in Section 1.1. However, it does not enjoy the LUB property. We shall see later
(Remark 1.3.20) that the subset {x ∈ Q : x2 < 2} is bounded above in Q and
does not have an LUB in Q.

As first two applications of the LUB property, we establish two versions of
the Archimedean property.

Theorem 1.3.2 (Archimedean Property).
(AP1): N is not bounded above in R. That is, given any x ∈ R, there exists n ∈ N
such that x > n.
(AP2): Given x, y ∈ R with x > 0, there exists n ∈ N such that nx > y.

Proof. (AP1): We prove this result by contradiction. Assume that N is bounded
above in R. By the LUB property of R, there exists α ∈ R such that α = lub N.
Then for each k ∈ N, we have k ≤ α. Since we wish to exploit the fact that α
is the LUB of N and since we are dealing with integers, we consider α − 1 < α.
Then α− 1 is not an upper bound of N and hence there exists N ∈ N such that
N > α − 1. Adding 1 to both sides yields N + 1 > α. Since N + 1 ∈ N, we are
forced to conclude that α is not an upper bound of N. Hence our assumption that
N is bounded above is wrong.

(AP2): Proof by contradiction. If false, then there exists x > 0, y ∈ R such
that for each n ∈ N, we must have nx ≤ y. Since x > 0, we have n ≤ y/x for all
n ∈ N. That is, y/x is an upper bound for N. This contradicts (AP1).

Remark 1.3.3. The version AP2 is the basis of all units and measurements! It
says, any tiny quantity can be used as a unit against which others are measured.

Proposition 1.3.4. Both the Archimedean principles are equivalent.

Proof. Since we deduced AP2 from AP1, we need only show that AP2 implies
AP1.

It is enough to show that no α ∈ R is an upper bound of N. Given α ∈ R, let
x = 1 and y = α. Then by AP2, there exists n ∈ N such that nx > y, that is,
n > α. This means α is not an upper bound of A.
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The next couple of results are easy consequences of the Archimedean property.
Let not the simplicity of their proofs deceive you. They are perhaps the most
useful tools in analysis.

Theorem 1.3.5. (1) Given x > 0, there exists n ∈ N such that x > 1/n.
(2) Let x ≥ 0. Then x = 0 iff for each n ∈ N, we have x ≤ 1/n.

Proof. We apply AP2 with y = 1 and x. Then there exists n ∈ N such that
nx > 1. Hence x > 1/n. This proves (1).

(2). If x = 0, clearly, for each n ∈ N, x ≤ 1/n. We prove the converse by
contradiction. Let, if possible, x > 0. Then by (1), there exists N ∈ N such that
x > 1/N . This contradicts our hypothesis that for each n ∈ N, x ≤ 1/n.

Exercise 1.3.6. Use the last result to give a proof of lub (0, 1) = 1 and
glb (0, 1) = 0.

Remark 1.3.7. Typical use of Theorem 1.3.5 in Analysis: when we want to show
two real numbers a, b are equal, we show that |a− b| ≤ 1/n for all n ∈ N.

Exercise Set 1.3.8. Typical uses of the Archimedean property.

(1) Let Jn := (0, 1
n ). Show that ∩nJn := {x ∈ R : ∀n ∈ N, x ∈ Jn} = ∅.

(2) Let Jn := [n,∞). Show that ∩nJn = ∅.

(3) Let Jn := (1/n, 1). Show that ∪nJn := {x ∈ R : ∃n ∈ N, x ∈ Jn} = (0, 1).

(4) Write [0, 1] = ∩nJn where Jn’s are open intervals containing [0, 1].

Exercise Set 1.3.9.

(1) Show that, for a, b ∈ R, a ≤ b iff a ≤ b+ ε for all ε > 0.

(2) Prove by induction that 2n > n for all n ∈ N. Hence conclude that for any
given ε > 0, there exists N ∈ N such that if n ≥ N , then 2−n < ε.

Proposition 1.3.10. The set Z of integers is neither bounded above nor bounded
below.

Proof. Let us first prove that Z is not bounded above in R. For, if α ∈ R is an
upper bound of Z, then for each n ∈ N ⊂ Z, we have n ≤ α. Hence N is bounded
above in R, contradicting the Archimedean property (AP1).

Now we prove Z is not bounded below in R. If β ∈ R is a lower bound of Z,
then for any n ∈ N, we have −n ∈ Z and hence −n ≥ β. That is, for each n ∈ N,
we have n ≤ −β, again contradicting the Archimedean property (AP1).

Proposition 1.3.11 (Greatest Integer Function). Let x ∈ R. Then there exists
a unique m ∈ Z such that m ≤ x < m+ 1.
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Proof. Let S := {k ∈ Z : k ≤ x}. We claim that S 6= ∅. For, otherwise, for each
k ∈ Z, we must have k > x. Let n ∈ N be arbitrary. Then k = −n ∈ Z and
hence −n = k > x. It follows that n < −x. Hence −x is an upper bound for N,
contradicting the Archimedean property. This proves our claim.

Furthermore, x is an upper bound of S, by the very definition of S.
Let α ∈ R be its least upper bound. Since α − 1 < α, α − 1 is not an upper

bound of S. Then there exists k ∈ S such that k > α− 1. (See Figure 1.7.) Since
k ∈ S, k ≤ x. We claim that k + 1 > x. For, if false, then k + 1 ≤ x. Therefore,
k+ 1 ∈ S. Since α is an upper bound for S, we must have k+ 1 < α or k < α−1.
This contradicts our choice of k. Hence we have x < k + 1. Thus, k ≤ x < k + 1.

The proposition follows if we take m = k.

k + 1k αα− 1 α− 1 k k + 1 α

Figure 1.7: Greatest integer function.

Next we prove that m is unique. Let n also satisfy n ≤ x < n+ 1. If m 6= n,
without loss of generality, assume that m < n so that n ≥ m+ 1. (Why?) Since
m ≤ x < m+ 1 holds, we deduce that m ≤ x < m+ 1 ≤ n. In particular, n > x,
a contradiction to our assumption that n ≤ x < n+ 1.

Observe that if k+ 1 < x, the figure on the right of Figure 1.7 shows that the
interval [α−1, α] of length 1 contains [k, k+ 1] of length 1 properly, as k > α−1.
This apparent contradiction shows k + 1 > x, giving another proof.

Exercise 1.3.12. (i) Show that any nonempty subset of Z which is bounded
above in R has a maximum.

(ii) Formulate an analogue for the case of subsets of Z bounded below in R
and prove it.

The unique integer m such that m ≤ x < m+ 1 is called the greatest integer
less than or equal to x. It is often denoted by [x]. It is also called the floor of
x and is denoted by bxc in computer science. The number x − bxc is called the
fractional part of x. We observe that 0 ≤ x− bxc < 1.

Theorem 1.3.13 (Density of Q in R). Given a, b ∈ R with a < b, there exists
r ∈ Q such that a < x < b.

Strategy: Assuming the existence of such an r, we write it as r = m
n

with n > 0.

So, we have a < m
n
< b, that is, na < y < nb. Thus we are claiming that the interval

(nx, ny) contains an integer. It is geometrically obvious that a sufficient condition

for an interval J = (α, β) to have an integer in it is that its length β − α is greater

than 1. In our case, the length of (na, nb) is nb− na = n(b− a) > 1. Archimedean

property assures of such n’s. The m we are looking for is the one next to [na].
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Proof. Since b − a > 0, by AP2, there exists n ∈ N such that n(b − a) > 1. Let
k = [na] and m := k + 1. Then clearly, na < m. We claim m < nb. Look at
Figure 1.8.

nbmna[na] [na] na nb m

Figure 1.8: Density of Q.

If m > nb, then the interval (na, nb) ⊂ [m−1,m]. The length of the interval

[na, nb] is > 1 while that of [m − 1,m] = 1. This seems to be absurd. We

turn this geometric reasoning into a proof using inequalities.

Consider

1 = (k + 1)− k ≥ nb− na = n(b− a) > 1, a contradiction.

Hence we have m < nb. Thus, we obtain na < m < nb or a < m/n < b.

Corollary 1.3.14. Given a, b ∈ R with a < b, there exists t /∈ Q such that
a < t < b.

Proof. Consider the real numbers a−
√

2 < b−
√

2 and apply the last result. Let
us work out the details.

By the density of rationals, there exists r ∈ Q such that a−
√

2 < r < b−
√

2.
We add

√
2 to each of the terms in the inequality to obtain a < r +

√
2 < b.

We claim r +
√

2 is irrational. For, otherwise, s := r +
√

2 ∈ Q. It follows that
s − r =

√
2 ∈ Q. But we know that

√
2 is not rational. (See Proposition 1.3.16

below.)

Thus between any two real numbers there exists a rational number as well as
an irrational number. How many such rational/irrational numbers exist between
the given two distinct real numbers?

Exercise Set 1.3.15.

(1) Let a ∈ R. Let Ca := {r ∈ Q : r < a}. Show that lub Ca = a. Is the map
a 7→ Ca of R into the power set P (R) one to one?

(2) Given any open interval (a, b), a < b, show that the set (a, b)∩Q is infinite.

(3) Let t > 0 and a < b be real numbers. Show that there exists r ∈ Q such that
a < tr < b.
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The next result generalizes the well-known fact that
√

2 is irrational.

Proposition 1.3.16. Let p be any prime. Then there exists no rational number
r such that r2 = p.

Proof. Let r = m/n ∈ Q be such that r2 = p. We assume that m,n ∈ N and
they do not have common factors (other than 1). We have m2 = pn2. The prime
number p divides the RHS1 and hence p divides m2. Since p is a prime, this means
that p divides m. If we write m = pk, then we obtain p2k2 = pn2 or pk2 = n2. We
conclude that p divides RHS and hence p divides n. Thus, p is a common factor
of m and n, a contradiction. We therefore conclude that no such r exists.

Remark 1.3.17. We can use the fundamental theorem of arithmetic to prove√
2 is irrational and extend the argument to show that

√
n is irrational where n

is not a square (that is, n 6= m2, for any integer m).

Thus there exists no solution in Q to the equations X2 = n where n is not
a square. We contrast this with the next result which says that for any positive
real number and a positive integer n, n-th roots exists in R.

Theorem 1.3.18 (Existence of n-th roots of positive real numbers). Let α ∈ R
be nonnegative and n ∈ N. Then there exists a unique non-negative x ∈ R such
that xn = α.

Strategy: Look at Figure 1.9. What we are looking for is the intersection
of the graphs of the functions y = α and y = xn. The common point will
have coordinates (x, xn) and (x, α). Hence it will follow that xn = α.

Now how do we plan to get such an x? We work backward. Let b ≥ 0 be
such that bn = α. Now b = lub [0, b) and any t ∈ [0, b) satisfies tn < α.
Hence b may be thought of as the LUB of the set S := {t ≥ 0 : tn < α}.
Now if S is non-empty and bounded above, let c := lub S. We hope to show
that cn = α.

0

y = α

y = xn

x

(x, xn)

Figure 1.9: Graph of y = xn.

1RHS stands for the right-hand side. What does LHS stand for?
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We show that cn < α or cn > α cannot happen. See Figure 1.10. If cn < α,
the picture shows that we can find c1 > c, c1 very near to c, such that
we still have cn1 < α, c1 ∈ S. This shows that c1 ∈ S. Hence c1 ≤ c, a
contradiction.

y = α

y = xn

y = cn

y = cn1

c c1

(x, xn)

Figure 1.10: When cn < α.

y = α

y = xny = cn

y = cn2

cc2

Figure 1.11: When cn > α.

If cn > α, Figure 1.11 shows that we can find a c2 < c, c2 very near to c
but we still have cn2 > α. Since c2 < c, there exists t ∈ S such that t > c2
and hence tn > cn > α, a contradiction. Hence cn = α.

Now c1 > c and is very near to c and still retains cn1 < α. How do we look
for such c1? Naturally if k ∈ N is very large, we expect c1 = c + 1

k
is very

near to c and (c+ 1
n

)n < α.

Similarly, for c2 we look for a k ∈ N such that (c− 1
k

)n > α.

In the first case, it behooves us to use the binomial expansion. We try to
find an estimate of the form (c+ 1/k)n ≤ cn + C

k
for some constant C. So,

it suffices to make sure C/k < α− cn, possible by Archimedean property.

In the second case, we try to find an estimate of the form (c−1/k)n ≥ cn−C
k

.

So, it suffices to make sure cn − C
k
> α.

Proof. If α = 0, the result is obvious, so we assume that α > 0 in the following.
We define

S := {t ∈ R : t ≥ 0 and tn ≤ α}.

Since 0 ∈ S, we see that S is not empty. It is bounded above. For, by Archimedean
property of R, we can find N ∈ N such that N > α. We claim that α is an upper
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bound for S. If this is false, then there exists t ∈ S such that t > N . But, then
we have

tn > Nn ≥ N > α,

a contradiction, since for any t ∈ S, we have tn ≤ α. Hence we conclude that N
is an upper bound for S. Thus, S is a nonempty subset of R, which is bounded
above. By the LUB property of R, there exists x ∈ R such that x is the LUB of
S. We claim that xn = α.

Exactly one of the following is true: (i) xn < α, (ii) xn > α, or (iii) xn = α.
We shall show that the first two possibilities do not arise.

Case (i): Assume that xn < α. For any k ∈ N, we have

(x+ 1/k)n = xn +
n∑
j=1

(
n

j

)
xn−j(1/kj)

≤ xn +

n∑
j=1

(
n

j

)
xn−j(1/k)

= xn + C/k, where C :=

n∑
j=1

(
n

j

)
xn−j .

If we choose k such that xn + C/k < α, that is, for k > C/(α − xn), it follows
that (x+ 1/k)n < α.

Case (ii): Assume that xn > α. We have (−1)j(1/kj) > −1/k for k ∈ N,
j ≥ 1. We use this below.

(x− 1/k)n = xn +

n∑
j=1

(
n

j

)
(−1)jxn−j(1/kj)

≥ xn −
n∑
j=1

(
n

j

)
xn−j(1/k)

= xn − C/k, where C :=

n∑
j=1

(
n

j

)
xn−j .

If we choose k such that xn − C/k > α, that is, if we take k > C/(xn − α), it
follows that (x− 1/k)n > α.

We now show that if x and y are non-negative real numbers such that xn =
yn = α, then x = y. Look at the following algebraic identity:

(xn − yn) ≡ (x− y) · [xn−1 + xn−2y + · · ·+ xyn−2 + yn−1].

If x and y are nonnegative with xn = yn and if x 6= y, say, x > y, then the
left-hand side is zero while both the factors in brackets on the right are strictly
positive, a contradiction.

This completes the proof of the theorem.
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How to get the algebraic identity

(xn − yn) ≡ (x− y) · [xn−1 + xn−2y + · · ·+ xyn−2 + yn−1]?

Recall how to sum a geometric series: sn := 1 + t + t2 + · · · + tn−1. Multiply
both sides by t to get tsn = t+ · · ·+ tn. Subtract one from the other and get the
formula for sn. In the formula for sn substitute y/x for t and simplify.

Remark 1.3.19. The proof of the last theorem brings out some standard tricks
in analysis. Analysis uses inequalities to prove equalities and also to compare
“unknown” objects with “known” objects. If we want to establish A < B, we
may try to “simplify” the expression for A so that we get A ≤ C and C ≤ D and
so on. Finally we may end up with A ≤ C ≤ D · · · ≤ G. G may be simple enough
to put the appropriate conditions so as to make it less than B. Consequently, we
obtain A ≤ B. Go through the way the estimates for (x+ 1/k)n and (x− 1/k)n

were obtained. Do not be discouraged if you do not understand these vague
remarks. As you go along, you will begin to appreciate this.

Remark 1.3.20. Observe that the argument of the proof in Theorem 1.3.18 can
be applied to the set A := {x ∈ Q : x2 < 2} ⊂ Q (which is bounded above in Q
by 2) to conclude that if x ∈ Q is the LUB of A, then x2 = 2. (In the quoted
proof, the numbers x ± 1

k ∈ Q!) This contradicts Proposition 1.3.16. Hence we
conclude that the ordered field Q does not enjoy the LUB property.

The interested reader should write down a complete proof of this.

Definition 1.3.21. A subset J ⊂ R is said to be an interval if a, b ∈ J and if
a < x < b, we then have x ∈ J :

∀a, b ∈ J and a < x < b =⇒ x ∈ J.

A real number x such that a < x < b is said to be between a and b.

Example 1.3.22. Let a ≤ b be real numbers. We define

[a, b] := {x ∈ R : a ≤ x ≤ b}
(a, b) := {x ∈ R : a < x < b}
[a, b) := {x ∈ R : a ≤ x < b}
(a, b] := {x ∈ R : a < x ≤ b}

[a,∞) := {x ∈ R : x ≥ a}
(a,∞) := {x ∈ R : x > a}

(−∞, b] := {x ∈ R : x ≤ b}
(−∞, b) := {x ∈ R : x < b}

(−∞,∞) := R.

Each subset of the list above is an interval. We shall prove this for J = (a, b] as
an example. Let x, y ∈ J and x < z < y. We are required to prove that z ∈ (a, b].
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We observe that a < x < z < y ≤ b. Hence it follows that a < z < b and hence
a < z ≤ b.

Note that we have used ∞ and −∞ as a place holder in the definitions of
the last five subsets. In the definition of (a,∞), there is one and only condition
for a real number x to be in (a,∞), namely, x > a. Compare and contrast this
for x ∈ R to be in (a, b). We require that x satisfies two conditions x > a and
x < b. In the last case, there is no condition to be imposed on x ∈ R for it to be
a member of (−∞,∞)!

Any interval which lies in the first four types is called a finite or bounded
interval. The last five are called infinite or unbounded intervals.

Note that unlike many textbooks we have not insisted on a < b while defining
bounded intervals. In particular, if a = b, then [a, b] = {a} is an interval and
(a, a) = ∅ is an interval.

The intervals [a, b], [a,∞), (−∞, b] are called closed intervals. The intervals
of the form [a, b), (a, b] are called semi-open (or semi-closed) intervals.

The intervals (a, b), (a,∞) and (−∞, b) are called open intervals.
It can be shown that any interval must be one of the types listed above.

Let [a, b] and [c, d] be intervals such that [c, d] ⊂ [a, b]. Then we have a ≤ c ≤
d ≤ b. Look at Figure 1.12. (How to prove this? Since c ∈ [c, d] ⊂ [a, b], c ∈ [a, b].
That is a ≤ c ≤ b. Similarly, a ≤ d ≤ b.)

a bc d

Figure 1.12: [c, d] ⊂ [a, b].

The next result deals with a sequence (Jn) of nested intervals, that is, Jn+1 ⊂
Jn for n ∈ N. We assume that each one of them is bounded and closed. Let us
look at some examples.

Let Jn := [a− 1
n , b+ 1

n ]. What is ∩nJn? Using the Archimedean property, we
see that ∩n = [a, b].

Let Jn := [a, b+ 1
n ]. Here too we obtain ∩nJn = [a, b].

Let Jn := [− 1
n ,

1
n ]. We find that ∩n = {0}. If you experiment a bit more, you

will be convinced that under the stated conditions, ∩nJn 6= ∅. This is the content
of the next theorem.

Theorem 1.3.23 (Nested Interval Theorem). Let Jn := [an, bn] be intervals in
R such that Jn+1 ⊆ Jn for all n ∈ N. Then ∩Jn 6= ∅.

Strategy: Assume that the result is true. Then there exists c ∈ R such that

an ≤ c ≤ bn. This says that c is an upper bound of A := {an : n ∈ N} and each bk
is an upper bound of A. Hence c is less than or equal to many upper bounds. An

obvious choice for c is therefore lub A.
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Proof. Let A be the set of left endpoints of Jn. Thus, A := {a ∈ R : a =
an for some n}. A is nonempty.

We claim that bk is an upper bound for A for each k ∈ N, that is, an ≤ bk for
all n and k.

If k ≤ n, then [an, bn] ⊆ [ak, bk] and hence an ≤ bn ≤ bk. See Figure 1.13.

ak bkan bn

Figure 1.13: Nested interval: k ≤ n.

If k > n, then an ≤ ak ≤ bk. See Figure 1.14. Thus the claim is proved.

ak bnan bk

Figure 1.14: Nested interval: k > n.

By the LUB axiom there exists c ∈ R such that c = supA. We claim that
c ∈ Jn for all n. Since c is an upper bound for A, we have an ≤ c for all n. Since
each bn is an upper bound for A and c is the least upper bound for A, we have
c ≤ bn. Thus we conclude that an ≤ c ≤ bn or c ∈ Jn for all n. Hence c ∈ ∩Jn.

Definition 1.3.24. Let x1, x2, . . ., xn ∈ R be given. A convex linear combination
of {xj : 1 ≤ j ≤ n} is any real number of the form t1x1 + . . . + tnxn where (i)
tj ≥ 0 for 1 ≤ j ≤ n and (ii) t1 + . . .+ tn = 1.

Note that if n = 2, we can write any convex linear combination of x, y ∈ R as
(1− t)x+ ty for t ∈ [0, 1]. Observe that (1− t)x+ ty = x+ t(y − x).

Definition 1.3.25. A subset J ⊂ R is said to be convex if for any x, y ∈ J and
t ∈ [0, 1] we have (1− t)x+ ty ∈ J .

Exercise Set 1.3.26.

(1) Show that J ⊂ R is convex iff for any n ∈ N, xj ∈ J , 1 ≤ j ≤ n and tj ∈ [0, 1]
with t1 + . . .+ tn = 1, we have t1x1 + . . .+ tnxn ∈ J .

That is, J is convex iff any convex linear combination of any finite set of
elements of J lies in J .

(2) Show that a subset J ⊂ R is an interval iff J is convex.
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(3) Let aj ∈ R, 1 ≤ j ≤ n. Let m := min{aj : 1 ≤ j ≤ n} and M := max{aj : 1 ≤
j ≤ n}. Let t1, . . . , tn be non-negative real numbers such that t1+· · ·+tn = 1.
Show that t1a1 + · · ·+ tnan ∈ [m,M ].

Exercise Set 1.3.27 (Exercises on LUB and GLB properties of R).

(1) What can you say about A if lub A = glb A?

(2) Prove that α ∈ R is the lub of A iff (i) α is an upper bound of A and (ii) for
any ε > 0, there exists x ∈ A such that x > α− ε.
Formulate an analogue for glb.

(3) Let A,B be nonempty subsets of R with A ⊂ B. Prove

glb B ≤ glb A ≤ lub A ≤ lub B.

(4) Let A = {ai : i ∈ I} and B = {bi : i ∈ I} be nonempty subsets of R indexed
by I. Assume that for each i ∈ I, we have ai ≤ bi. Prove that glb A ≤ glb B
if A and B are bounded below. What is the analogous result if A and B are
bounded above?

(5) Let A,B be nonempty subsets of R. Assume that a ≤ b for all a ∈ A and
b ∈ B. Show that lub A ≤ glb B.

(6) Let A,B ⊂ R be bounded above. Find a relation between lub (A∪B), lub A
and lub B.

Formulate an analogous question when the sets are bounded below and an-
swer it.

(7) For A ⊂ R, we define

−A := {y ∈ R : ∃x ∈ A such that y = −x}.

Thus −A is the set of all negatives of elements of A.

(a) Let A = Z. What is −A?

(b) If A = [−1, 2], what is −A?

Assume that A is bounded above and α := lub A. Show that −A is bounded
below and that glb (−A) = −α.

Can you formulate the analogous result (for −B) if β = glb B?

(8) Formulate the GLB property of R (in a way analogous to the LUB property
of R).

(9) Show that LUB property holds iff the GLB property holds true in R.
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(10) Let A,B ⊂ R be nonempty. Define

A+B := {x ∈ R : ∃ (a ∈ A, b ∈ B) such that x = a+ b}
= {a+ b : a ∈ A, b ∈ B}.

(a) Let A = [−1, 2] = B. What is A+B?

(b) Let A = B = N. What is A+B?

(c) Let A = B = Z. What is A+B?

(d) Let A = B = Q. What is A+B?

(e) Let A = B be the set of all irrational numbers. What is A+B?

(11) Let α := lub A. Let b ∈ R. Let b+A := {b+ a : a ∈ A}. Find lub (b+A).

(12) Let α = lub A and β = lub B. Show that A+B is bounded above and that
lub (A+B) = α+ β.

(13) Let α := lub A. Let b ∈ R be positive. Let bA := {ba : a ∈ A}. Find lub (bA).
Investigate what result is possible when b < 0.

(14) Let A,B be nonempty subsets of positive real numbers. Let α := lub A and
β := lub B. Define A ·B := {ab : a ∈ b ∈ B}. Show that lub (A ·B) = α · β.

(15) Let A ⊂ R with glb A > 0. Let B := {x−1 : x ∈ A}. Show that B is bounded
above and relate its lub with the glb of A.

(16) Let ∅ 6= A ⊂ R be bounded above in R. Let B be the set of upper bounds of
A. Show that B is bounded below and that lub A = glb B.

(17) Show that glb {1/n : n ∈ N} = 0.

(18) Show that lub {1− 1
n2 : n ∈ N} = 1.

(19) Let A := {x ∈ R : x2 − 5x+ 6 < 0}. Find the lub and glb of A.

(20) Find the glb of {x+ x−1 : x > 0}. Is the set bounded above?

(21) Let A := { 1
3 ±

n
3n+1 |n ∈ N}. Show that lub A = 2/3 and glb A = 0.

(22) Find the lub and glb of
{
m+n
mn : m,n ∈ N

}
.

(23) Find the glb and lub of the set of real numbers in (0, 1) whose decimal
expansion contains only 0’s and 1’s.

(24) Let x, y ∈ R be such that x ≤ y + 1
n for all n ∈ N. Show that x ≤ y.

(25) What is the relevance of (1) and (2) of Exercise 1.3.8 to the nested interval
theorem?
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1.4 Absolute Value and Triangle Inequality

Definition 1.4.1 (Absolute value of a real number). For x ∈ R, we define

|x| =

{
x, if x > 0

−x, if x ≤ 0.

Note that |x| = max{x,−x}. If we draw the graphs of the functions f : x 7→ x
and g : x 7→ −x, the graph of x 7→ |x| is max{f(x), g(x)}. Look at Figures 1.15–
1.16.

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

0

y = x

y = −x

Figure 1.15: Graph of y = ±x.
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0

y = |x|

Figure 1.16: Graph of y = |x|.

The next result deals with all the important properties of the absolute value
function on R.

Theorem 1.4.2. The following are true:

(1) |ab| = |a| |b| for all a, b ∈ R.

(2) |a|2 = a2 for any a ∈ R. In particular, |x| =
√
x2, the unique nonnegative

square root of x2.

(3) ±a ≤ |a| for all a ∈ R.

(4) − |a| ≤ a ≤ |a| for all a ∈ R.

(5) |x| < ε iff x ∈ (−ε, ε).

(6) |x− a| < ε iff x ∈ (a− ε, a+ ε).

(7) Triangle Inequality. |a+ b| ≤ |a| + |b| for all a, b ∈ R. Equality holds iff
both a and b are on the same side of 0.

(8) ||a| − |b|| ≤ |a− b| for all a, b ∈ R.

(9) max{a, b} = 1
2 (a + b + |a− b|) and min{a, b} = 1

2 (a + b − |a− b|) for any
a, b ∈ R.
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Proof. To prove (1), observe that |ab| is either ab or −ab. If one of them is zero,
the result is obvious. So, we assume that both are nonzero and hence |ab| > 0.

Case (1): |ab| = ab. Since |ab| is positive, both a and b are either negative or
positive. In any case, ab = (−a)(−b). If both are positive, then a = |a| and b = |b|
so that ab = |a| |b|. If both are negative, then (−a)(−b) = |a| |b|.

Case (2): |ab| = −ab. In this case, one of them is negative and the other is
positive. Assume that a < 0. Then |a| = −a. Thus |a| |b| = (−a)b = −ab = |ab|.

We have proved (1).
We now prove (4). Since −a ≤ |a|, we have − |a| ≤ a. Combined with the

inequality a ≤ |a|, we get (4).
To prove (5), assume |x| < ε. Then max{−x, x} < ε. Hence x < ε and −x < ε,

or x > −ε. Thus, we obtain −ε < x < ε.
(6) follows easily from (5):

|x− a| < ε ⇐⇒ −ε < x− a < ε ⇐⇒ a− ε < x < a+ ε.

We prove (7). Consider |x+ y|. Observe the following:

x+ y ≤ |x|+ |y| by (iii)

−x− y ≤ |x|+ |y| by (iii).

Thus, max{x + y,−(x + y)} ≤ |x| + |y|. Since |x+ y| = max{x + y,−(x + y)},
the triangle inequality follows.

Let us analyze when equality arises. Assume that |x+ y| = |x|+ |y|.
Case 1): |x+ y| = x + y so that x + y = |x| + |y|. It follows that 0 = (|x| −

x) + (|y| − y). By (3), we see that |x| − x ≥ 0 and |y| − y ≥ 0. Since the sum of
two nonnegative numbers is zero, we deduce that each of the terms is zero. Hence
x = |x| and y = |y|. In particular, both are nonnegative.

Case 2): |x+ y| = −(x + y). Then −x − y = |x| + |y|. Hence 0 = (|x| +
x) + (|y| + y). Since the LHS, the sum of two nonnegative numbers (by (iii)), is
zero, we deduce that each of the terms is zero. Hence −x = |x| and −y = |y|. In
particular, both x and y are non positive.

To summarize, if the equality holds in the triangle inequality, then both x and
y are of the same sign.

The converse is easy to see. If x < 0 and y < 0, then |x| = −x, |y| = −y.
Also, x+ y < 0 so that |x+ y| = max{x+ y,−x− y} = −x− y = |x|+ |y|. The
other case is similar.

Thus we have proved that |x+ y| = |x| + |y| if and only if both x and y are
of the same sign.

We prove (8). |a| = |(a− b) + b| ≤ |a− b| + |b|. From this, we obtain, |a| −
|b| ≤ |a− b|. Interchanging a and b in this we get |b| − |a| ≤ |b− a|. Hence,
||a| − |b|| := max{|a| − |b| , |b| − |a|} ≤ |a− b|.

(9). How does one get such an expression for max{a, b} or min{a, b}? Note
that (a+ b)/2 is the midpoint of a and b. The distance between them is |a− b|.
Hence, if we move to the left half the distance from the midpoint, then we must
get the minimum. That is, min{a, b} = (a+b)/2−|a− b| /2. Similarly, if we move
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to the right half the distance from the midpoint, then we must get the maximum.
That is, max{a, b} = (a+ b)/2 + |a− b| /2.

Having guessed this, it is easy to verify it. Let b > a. Then max{α, b} = b. and
hence |a− b| /2 = (b−a)/2. We have (a+b)/2+|a− b| /2 = (a+b)/2+(b−a)/2 =
b.

Remark 1.4.3. It is very useful to think of |a− b| as the distance between a
and b. In particular, |x| is the distance of x from 0.

Definition 1.4.4. A subset A ⊂ R is said to be bounded in R iff it is both
bounded above and bounded below. That is, there exist α ∈ R and β ∈ R such
that for all x ∈ A, we have α ≤ x ≤ β.

Geometrically this means that A ⊂ (α, β).

Example 1.4.5. The set of rationals in [−5, 1] is bounded in R.
For a, b ∈ R, each interval of the form [a, b], (a, b], (a, b), and [a, b) is bounded.

Look at A1 := [−3,−2], A2 := [−3, 5], A3 := [3, 5]. Can you find an Mi > 0,
1 ≤ i ≤ 3 such that the following holds?

∀x ∈ Ai, we have |x| ≤Mi.

Do you observe any pattern?

Proposition 1.4.6. A subset A ⊂ R is bounded in R iff there exists M > 0 such
that −M ≤ x ≤ M for all x ∈ A, that is, A is bounded iff there exists M > 0
such that |x| ≤M for all x ∈ A.

Proof. Let A ⊂ R be bounded. The examples investigated above should have
led you to conclude the following: If α and β are the lower and upper bounds,
respectively, then we may take M as max{|α| , |β|}.

We need to estimate |x|, for x ∈ A. Since |x| = max{x,−x}, we need to find
estimates for x and −x. Now it is given that α ≤ x ≤ β. From this it follows that
−α ≥ −x ≥ −β.

Now, if |x| = x, then

|x| = x ≤ β ≤ |β| ≤M.

On the other hand, if |x| = −x, then we have

|x| = −x ≤ −α ≤ |α| ≤M.

Hence we have proved that for each x ∈ A, we have |x| ≤M .
The converse is true, since for each x ∈ A, we have −M ≤ x ≤M , that is, A

is both bounded above and bounded below.

Example 1.4.7. Subsets of R are defined by equalities and inequalities. We do
the following as samples.
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(1) A:={x ∈ R : |x− a| = |x− b|} (where a 6= b) = {a+b
2 }.

|x− a| = |x− b| says that the distances of x from a and b are the same. Think-
ing geometrically, we see that there is only one such real number, namely the
midpoint c := (a+ b)/2 of a and b. See Figure 1.17. How do we prove this?

ba x = a+b
2

Figure 1.17: Example 1.4.7: Figure 1.

Assume a < b. If x < a, then 0 < |x− a| = a−x < b−x = |x− b| and hence
x is not in the set A. See Figure 1.18.

bax

Figure 1.18: Example 1.4.7: Figure 2.

If x > b, then 0 < |x− b| = x − b < x − a = |x− a|. Hence x /∈ A. See
Figure 1.19.

ba x

Figure 1.19: Example 1.4.7: Figure 3.

Let a ≤ x ≤ b. Then by law of trichotomy, exactly one of the following is
true. (i) x < c, (ii) x > c, or (iii) x = c.

In the first case, |x− a| = x − a < c − a < b − a = |b− a|. Hence such an
x /∈ A.

In the second, |x− b| = b− x > b− c = (a+ b)/2 whereas |x− a| = x− a >
c− a = (a+ b)/2. Hence x /∈ A.

Clearly, c ∈ A. Hence we conclude that A = {(a+ b)/2}.
What happens when a = b? In this case, A = R.
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(2) A := {x ∈ R : x+2
x−1 < 4} = (−∞, 1) ∪ (2,∞). The temptation would be to

clear off the fraction by multiplying both sides of the inequality by x−1. We
need to take care of the sign of x− 1.

Case 1. x− 1 > 0. Then we obtain

x+ 2

x− 1
< 4 ⇐⇒ x+ 2 < 4(x− 1) ⇐⇒ 6 < 3x ⇐⇒ x > 2.

Case 2. x− 1 < 0. We obtain

x+ 2

x− 1
< 4 ⇐⇒ x+ 2 > 4(x− 1) ⇐⇒ 6 > 3x ⇐⇒ x < 2.

Note that this condition is superfluous, since x < 1!

Thus, we get A ⊂ (−∞, 1) ∪ (2,∞). Equality is easily checked.

(3) {x ∈ R :
∣∣∣ 2x−3

3x−2

∣∣∣ = 2} = {1/4, 7/8}.

Case 1.
∣∣∣ 2x−3

3x−2

∣∣∣ = 2x−3
3x−2 . We have

2x− 3

3x− 2
= 2 iff 2x− 3 = 6x− 4 iff 1 = 4x iff x = 1/4.

Case 2.
∣∣∣ 2x−3

3x−2

∣∣∣ = − 2x−3
3x−2 .

2x− 3

3x− 2
= −2 iff 2x− 3 = 4− 6x iff − 7 = −8x iff x = 7/8.

(4) Identify A := {x ∈ R :
∣∣∣ 3−2x

2+x

∣∣∣ < 2} = (−1/4,∞).

A real x ∈ R lies in A iff

−2 <
3− 2x

2 + x
< 2.

Before we clear the fraction, we need to be aware of two cases (a) 2 + x > 0
and (b) 2 + x < 0. Accordingly, A = A+ ∪A− where

A+ := {x ∈ R : −2 <
3− 2x

2 + x
< 2 and x+ 2 > 0}

A− := {x ∈ R : −2 <
3− 2x

2 + x
< 2 and x+ 2 < 0}.

We identify A+ first. x ∈ A+ iff x > −2 and −2 < 3−2x
2+x < 2, that is, iff

x > −2 and −2(2 + x) < 3− 2x < 2(2 + x).

x ∈ A+ ⇐⇒ −4− 2x < 3− 2x and 3− 2x < 4 + 2x and x > −2

⇐⇒ −4 < 3 and − 1 < 4x and x > −2

⇐⇒ −4 < 3 and x > −1/4 and x > −2.
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Hence x ∈ A+ iff x satisfies all the three conditions. Note that the first
condition does not involve x and is always true. Hence, any x ∈ R satisfies
the first condition. If x satisfies the second condition x > −1/4, it satisfies
the third. Hence we conclude that A+ = {x ∈ R : x > −1/4}.
We identify A−.

x ∈ A− ⇐⇒ −4− 2x > 3− 2x and 3− 2x > 4 + 2x and x < −2

⇐⇒ −4 > 3 and − 1 > 4x and x > −2

⇐⇒ −4 < 3 and x < −1/4 and x > −2.

If x ∈ R lies in A−, all three conditions are met. But the first condition can
never be satisfied. That is, no x ∈ R can be in A−. Hence we conclude that
A− = ∅. Therefore, A = {x ∈ R : x > −1/4}.

(5) {x ∈ R : x4 − 5x2 + 4 < 0} = (−2,−1) ∪ (1, 2).

We rewrite x4− 5x2 + 4 = (x2− 4)(x2− 1). Hence the product is negative iff
the factors of opposite signs.

Case 1: x2 − 4 > 0 and x2 − 1 < 0. Hence x2 > 4 and x2 < 1. This is
impossible. Hence this case does not arise.

Case 2: x2−4 < 0 and x2−1 > 0. Hence x2 < 4 and x2 > 1. The first condition
says x ∈ (−2, 2) and the second says x > 1 or x < −1. We therefore conclude
the set is (−2,−1) ∪ (1, 2).

The main purpose of the following set of problems is to make you acquire
facility in dealing with inequalities.

Exercise Set 1.4.8. Identify the following subsets of R:

(1) {x ∈ R : |3x+ 2| > 4 |x− 1|}.

(2) {x ∈ R :
∣∣∣ x
x+1

∣∣∣ > x
x+1 where x 6= −1}.

(3) {x ∈ R :
∣∣∣x+1
x+5

∣∣∣ < 1 where x 6= −5}.

(4) {x ∈ R : x2 > 3x+ 4}.

(5) {x ∈ R : 1 < x2 < 4}.

(6) {x ∈ R : 1/x < x}.

(7) {x ∈ R : 1/x < x2}.

(8) {x ∈ R : |4x− 5| < 13}.

(9) {x ∈ R :
∣∣x2 − 1

∣∣ < 3}.

(10) {x ∈ R : |x+ 1|+ |x− 2| = 7}.
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(11) {x ∈ R : |x|+ |x+ 1| < 2}.

(12) {x ∈ R : 2x2 + 5x+ 3 > 0}.

(13) {x ∈ R : 2x
3 −

x2−3
2x + 1

2 <
x
6}.
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Sequences arise naturally when we want to approximate quantities. For in-
stance, when wish to use decimal expansion for the rational number 1/3 we get a
sequence 0.3, 0.33, 0.333, . . .. We also understand that each term is approximately
equal to 1/3 up to certain level of accuracy. What do we mean by this? If we want
the difference between 1/3 and the approximation to be less than, say, 10−3, we

may take any one of the decimal numbers 0.

n−times︷ ︸︸ ︷
3 . . . 3 where n > 3. Or, if we want

to use decimal expansion for
√

2, we look at

1.4, 1.41, 1.414, 1.4142, 1.41421, . . . , 1.4142135623730950488016887242 . . . .

The idea of a sequence (xn) and its convergence to x ∈ R is another way of
saying that we give a sequence of approximations xn to x in such a way that if
one prescribes a level of accuracy, we may ask him to take any xn after some
N -th term onward. Each such will be near to x to a desired level of accuracy.

It is our considered opinion that students who master this chapter will begin
to appreciate analysis and the way the proofs are considered.

27
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2.1 Sequences and Their Convergence

Definition 2.1.1. Let X be a nonempty set. A sequence in X is a function
f : N → X. We let xn := f(n) and call xn the n-th term of the sequence. One
usually denotes f by (xn) or as an infinite tuple (x1, x2, . . . , xn, . . .).

Remark 2.1.2. Suppose (xn) is a sequence in R. If we plot the points of this
sequence, as the graph of the function f : N→ R, it is a set of points {(k, xk) ≡
(k, f(k)) : k ∈ N} in the plane. Look at Figure 2.1.

−1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−3

−2

2

4

6

8

9

0

(1, x1)

(2, x2)

(3, x3)

(4, x4)

(5, x5)

(10, x10)

(6, x6)

(7, x7)

(8, x8)

(9, x9)

(11, x11)

(12, x12)

(13, x13)

Figure 2.1: Graph of a sequence.

Example 2.1.3. Let us look at some examples of sequences. (Readers are en-
couraged to plot the points of these sequences.)

(1) Fix a real number c ∈ R and define xn = c for all n. The sequence is
(c, c, c, . . .). This is called a constant sequence.

(2) Let xn = 1
n , the sequence is

(
1, 1

2 ,
1
3 ,

1
4 , . . . ,

1
n , . . .

)
.

(3) Let xn = (−1)n+1

n , the sequence is
(

1,− 1
2 ,

1
3 ,−

1
4 , . . . ,

1
2k−1 ,−

1
2k , . . .

)
.

(4) Let xn = (−1)n, the sequence is (−1, 1,−1, 1 . . .).

(5) Let xn = n, the sequence is (1, 2, 3, 4, . . .).

(6) Let xn = 2n, the sequence is (2, 4, 8, 16, . . .).

(7) Let xn = 1
2n , the sequence is

(
1
2 ,

1
4 ,

1
8 ,

1
16 , . . .

)
.
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(8) Let x1 = x2 = 1 and define xn = xn−1 + xn−2 for all n ≥ 3. The sequence is
(1, 1, 2, 3, 5, 8, 13, 21, 34, 53, . . .).

(9) Let xn = 2n+1
n2−3 . Then the first few terms of this sequence are

(− 3
2 , 5,

7
6 ,

9
13 ,

11
22 ,

13
33 , . . .).

(10) Let x1 = 0.3, x2 = 0.33, x3 = 0.333, . . . , xn = 0. 33 . . . 3︸ ︷︷ ︸
n−times

.

Item 10 of Example 2.1.3 explains the decimal expansion of 1
3 . Note that

1
3 − xn < 1

10n for all n. Also xn approximates 1
3 , in the sense that if someone

wants to approximate 1
3 with an error less than 1

1010 , then we can take xn for
n ≥ 10. This example captures the essence of the next definition.

Let yn := 0. 99 . . . 9︸ ︷︷ ︸
n−times

. What can you say about (yn)?

Definition 2.1.4. Let (xn) be a real sequence. We say that (xn) converges to
x ∈ R if for any given ε > 0, there exists N ∈ N such that for all k ≥ N , we have
xk ∈ (x − ε, x + ε), that is, for k ≥ N , we have |x− xk| < ε. The number x is
called a limit of the sequence (xn). We then write xn → x. We also say that (xn)
is convergent to x. We write this as limn xn = x.

We say that a sequence (xn) is divergent if it is not convergent.
If f : N → R is a sequence, denoted by (xn), its restriction to the subset

{k ∈ N : k ≥ N} is denoted by (xn)n≥N . It is called a tail of the sequence (xn).
Thus if (xn) converges to x, then we want the entire tail after N to lie in the
interval (x− ε, x+ ε). Look at Figure 2.2.

Figure 2.2: Tail of a convergent sequence.

Also note that if we take N1 > N , then for for all k ≥ N1, xk ∈ (x− ε, x+ ε).
Therefore, N is not unique. Thus if N “works” for ε > 0, then any N1 > N also
will do.

Remark 2.1.5. Suppose (xn) is a sequence of real numbers converging to `.
Geometrically, it means that if we plot the graph of this sequence and draw an
ε-band around y = `, say, y = `− ε to y = `+ ε, then there exists an integer N
such that for all n ≥ N the points (n, xn) lie inside this band. See Figure 2.3.

The definition of convergence of (xn) can be written in terms of quantifiers
as follows:
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Figure 2.3: Graph of a convergent sequence.

We say that (xn) converges to x if

∀ε > 0 (∃n0 ∈ N (∀n ≥ n0 (xn ∈ (x− ε, x+ ε)))) .

Equivalently, (xn) converges to x if

∀ε > 0 (∃n0 ∈ N (∀n ≥ n0 (|x− xn| < ε))) .

Exercise 2.1.6. What does it mean to say that a sequence (xn) does not converge
to x? Write it in words and then in terms of quantifiers.

Definition 2.1.7. We say that a sequence (xn) of real numbers is convergent if
there exists x ∈ R such that xn → x. Note that if we want to say that (xn) is
convergent, we need to find x ∈ R and then show xn → x. In terms of quantifiers,
this definition may be written as

(xn) is convergent if ∃x ∈ R (∀ε > 0 (∃N ∈ N (∀k ≥ N(xn ∈ (x− ε, x+ ε)))) .

If a sequence is not convergent, we also say that it is divergent.

Let us look at convergence and nonconvergence of the sequences discussed
earlier. A crucial point in convergence of a sequence is to first make a guess for
a limit x and then estimate |x− xn|.

Example 2.1.8. Let us consider the constant sequence xn = c for all n. It is easy
to see that sequence converges and the limit should be c. Note that |xn − c| = 0
for all n. This means, for any ε > 0, |xn − c| < ε for all n. So, if ε > 0 is given,
we may take N = 1. Then |xn − c| = 0 < ε for all n ≥ 1 = N .
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Example 2.1.9. Let us consider the sequence (xn) where xn = 1
n . If you plot

the points of this sequence on the real line it is easy to see that this sequence
should have limit x = 0. We claim that 1

n → 0.
Let ε > 0 be given. Let us estimate |xn − x| =

∣∣ 1
n − 0

∣∣ = 1
n . We want to

choose N such that for all n ≥ N , |xn − x| < ε, that is, 1
n < ε or n > 1

ε . Such an
n exists, by the Archimedean property.

Thus, choose an integer N > 1
ε by the Archimedean property. Then for all

n ≥ N , we have

|xn − x| =
∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
≤ 1

N
< ε.

Hence 1
n → 0.

What can you say about a sequence defined as xn = 1
an+b where a, b ∈ R and

a 6= 0?

Example 2.1.10. Consider xn = 1
2n . Once again, if we look at the points of this

sequence on the real line, it is easy to see that this sequence should converge to
0.

Let ε > 0 be given. We have to find N ∈ N such that for all n ≥ N

|xn − x| =
∣∣∣∣ 1

2n
− 0

∣∣∣∣ =
1

2n
< ε.

Note that for all n ∈ N, 2n > n (Item 2 of Exercise 1.3.9). Hence 1
2n < 1

n for all
n ∈ N. Thus for all n ∈ N, we have

|xn − x| =
∣∣∣∣ 1

2n
− 0

∣∣∣∣ =
1

2n
<

1

n
.

Again, as in the last example, we choose an integer N such that N > 1
ε by the

Archimedean property, then for all n ≥ N , we have

|xn − x| =
∣∣∣∣ 1

2n
− 0

∣∣∣∣ =
1

2n
<

1

n
< ε.

Remark 2.1.11. The reader must have observed that the natural number N ,
while not unique, depends on the given ε > 0 while checking for convergence. In
view of this, when we want to be precise or when there are more than one ε, we
may denote N by N(ε) to show its dependence on ε.

Example 2.1.12. Consider the sequence xn = n. It is not difficult to see intu-
itively that this sequence does not converge. Assume the contrary. Let xn converge
to a real number x. For ε = 1, there exists a natural number N such that the
tail of the sequence (xn)n≥N lies in the interval (x − 1, x + 1). In particular,
n ∈ (x − 1, x + 1) for all n ≥ N . If we let M := max{x + 1, N − 1}, then M
is an upper bound for N. This contradicts the Archimedean property. Hence we
conclude that (xn) is not convergent.
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Example 2.1.13. Consider the sequence xn = (−1)n. Suppose this sequence
converges to a real number x. Let ε > 0. Then there exists a natural number N
such that xn ∈ (x − ε, x + ε) for all n ≥ N . In particular, 1 and −1, both must
be in the interval (x − ε, x + ε). (Why? For example, if k = 2N, 2N + 1, then
xk = −1, xk = 1.) Look at Figure 2.4. What does it mean for ε? The picture
suggests that 2ε > 2. The interval [−1, 1] ⊂ (x − ε, x + ε) and hence the length
2ε of (x− ε, x+ ε) must be at least that of the subinterval [−1, 1]. But what we
have shown is that this must happen for any ε > 0. This is absurd, if ε ≤ 1.

How does a textbook proof go now?

Let xn → x. Choose ε > 0 such that ε < 1. Let N ∈ N be such that for
all k ≥ N , we have xk ∈ (x − ε, x + ε). In particular, −1 = x2N , 1 = x2N+1 ∈
(x− ε, x+ ε). Since 1 < x+ ε and −1 > x− ε and hence −(−1) < −(x− ε), we
obtain

2 = 1− (−1) < x+ ε− (x− ε) = 2ε.

That is, 1 < ε. This is a contradiction. Hence we conclude that (xn) does not
converge to x. Since x ∈ R is arbitrary, it follows that (xn) is divergent.

Figure 2.4: Divergence of (−1)n.

The reader should observe that we translated our geometric idea about the
lengths of [−1, 1] and (x− ε, x+ ε) into the inequality above. Though a diligent
reader may follow the logic and find the proof complete, he may be puzzled how
we know that we have to arrive such an inequality and get a contradiction. It is
one of the aims of the book to show you how many such thought processes hide
behind a carefully executed proof.

Example 2.1.14. Let xn = 2n+1
n2−3 .

In this sequence, both numerator and denominator go to∞. (We will explain this
in detail in later section.) However, the denominator being quadratic in n goes
to ∞ much faster than the numerator. Therefore, we can expect this sequence

to converge to zero. Thus, we need to estimate
∣∣∣ 2n+1
n2−3 − 0

∣∣∣ = 2n+1
n2−3 for n ≥ 2.

The main idea is to get an estimate of the form
∣∣∣ 2n+1
n2−3

∣∣∣ ≤ C 1
n for some constant

C > 0. Note that C
n can be made as small as possible. There is no unique way of

achieving this. One can obtain different bounds, depending upon the estimates

used. We shall look at least two ways of estimating
∣∣∣ 2n+1
n2−3

∣∣∣.
Note that 2n+ 1 ≤ 2n+ n for all n and also n2 − 3 ≥ n2 − n for all n > 3.
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Hence for n > 3, we have∣∣∣∣2n+ 1

n2 − 3

∣∣∣∣ =
2n+ 1

n2 − 3
≤ 2n+ n

n2 − n
=

3

n− 1
.

Note that the right-hand side can be made as small as possible for sufficiently
large n.

Let ε > 0 be given. Choose N > 3 ∈ N such that 3
N−1 < ε. That is, N > 3

ε +1.
Such an N exists by the Archimedean property. For any n > N , we have∣∣∣∣2n+ 1

n2 − 3

∣∣∣∣ ≤ 3

n− 1
≤ 3

N − 1
< ε.

We can also estimate
∣∣∣ 2n+1
n2−3

∣∣∣ as follows:∣∣∣∣2n+ 1

n2 − 3

∣∣∣∣ ≤ ∣∣∣∣2n+ 1

n2 − 4

∣∣∣∣ ≤ ∣∣∣∣2n+ 4

n2 − 4

∣∣∣∣ =
2

n− 2
.

In this case we choose N > 2
ε + 2.

An observant reader must have noticed that in the cases when (xn) is conver-
gent, the moment we guessed a possible limit, we stopped looking for other real
numbers y such that xn → y. Why did we do so? Is it possible for a sequence xn
to converge to two distinct real numbers x and y? Look at Figure 2.5. It should
convince you that it is not possible.

xk for k ≥ N

x
x− ε x+ ε

y
y − ε y + ε

xk for k ≥ N

Figure 2.5: Uniqueness of limit.

Assume x < y. Motivated by the picture, we are looking for an ε such that
x + ε < y − ε. That is, 2ε < y − x. Assume ε = y−x

2 . We claim that (x − ε, x +
ε) ∩ (y − ε, y + ε) = ∅. For, if z ∈ (x− ε, x+ ε) ∩ (y − ε, y + ε), then

|y − x| ≤ |y − z|+ |z − x| < y − x
2

+
y − x

2
= |y − x| ,

which is a contradiction.
Since xn → x and xn → y, for given ε = y−x

2 , there exist natural numbers n1

and n2 such that |xn − x| < ε/2 for all n ≥ n1 and |xn − y| < ε/2 for all n ≥ n2.
For n = n1 + n2, xn must be in each of the intervals (x − ε, x + ε) and

(y − ε, y + ε). This contradicts the fact that the intervals (x − ε, x + ε) and
(y − ε, y + ε) are disjoint.

We now give a second proof to show that if xn → x and xn → y , then x = y.
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Proposition 2.1.15 (Uniqueness of the limit). If xn → x and xn → y , then
x = y.

Strategy: By Theorem 1.3.5, it is enough to show that for given any ε > 0,

|x− y| < ε. This means we need to estimate |x− y|, and we know how to estimate

|xn − x| and |xn − y|. Now the triangle inequality comes to our help.

Proof. Let ε > 0 be given. Since xn → x and xn → y, there exist integers
n1, n2 such that for k ≥ n1, we have |xk − x| < ε/2 and for k ≥ n2, we have
|xk − y| < ε/2. Consider N = max{n1, n2}. Then for all k ≥ N , we have

|x− y| = |x− xk + xk − y| ≤ |xk − x|+ |xk − y| <
ε

2
+
ε

2
= ε.

Exercise 2.1.16. Prove that each of the following sequences (an) converges to
a limit a. Given ε > 0, find an n0 ∈ N such that |an − a| < ε for n ≥ n0.

(1) an = 1/(n+ 1)

(2) an = (n+ 1)/(2n+ 3)

(3) an = n/(n2 − n+ 1)

(4) an = 1/2n

(5) an = 2/
√
n

(6) an =
√
n+ 1−

√
n

Lemma 2.1.17. Let xn → x, xn, x ∈ R. Fix N ∈ N. Define a sequence (yn) such
that yn := xn if n ≥ N while yk ∈ R could be any real number for 1 ≤ k < N .
Then yn → x.

Thus, if we alter a finite number of terms of a convergent sequence, the new
sequence still converges to the limit of the original sequence.

Strategy: To prove yk → x, we need to estimate |yk − x|.
If k ≥ N , then yk = xk; therefore we need to estimate |xk − x|. Since xk → x, we

know how to estimate |xk − x|.

Proof. Let ε > 0 be given. There exists an integer n1 such that for k ≥ n1,
|xk − x| < ε. Thus if n0 = max{n1, N}, then yk = xk for k ≥ n0. Hence we have

k ≥ n0 =⇒ |yk − x| = |xk − x| < ε.

Since ε > 0 is arbitrary, it follows that yn → x.

Proposition 2.1.18. Let (xn) be a sequence of real numbers.

(i) If xn → x, then |xn| → |x|. However the converse is not true.

(ii) The sequence xn → 0 iff |xn| → 0.

(iii) The sequence xn → x iff xn − x→ 0 iff |xn − x| → 0.
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Proof. To prove (i), we need to estimate ||xn| − |x||. Since we know how to esti-
mate |xn − x|, we use the inequality (8) on page 20. Therefore, we obtain

||xn| − |x|| ≤ |xn − x|

and we know how to estimate |xn − x|.
Let ε > 0 be given. Then there exists N ∈ N such that for all n ≥ N , we have

|xn − x| < ε. Hence for all n ≥ N , we have

||xn| − |x|| ≤ |xn − x| < ε.

To see that the converse is not true, consider the sequence xn = (−1)n. Look
at Example 2.1.13.

(ii) We only need to prove that if |xn| → 0, then xn → 0. Let ε > 0 be given.
Since |xn| → 0, there exists N ∈ N such that for all k ≥ N , ||xk| − 0| = |xk| < ε.
So for k ≥ N , we have |xk − 0| = |xk| < ε.

(iii) follows from (ii).

Exercise 2.1.19. Let bn ≥ 0 and bn → 0. Assume that there exists an integer
N such that |an − a| ≤ bn for all n ≥ N . Prove that an → a.

Proposition 2.1.20. Let (xn) be a sequence of real numbers. Let xn → x and
x > 0. Then there exists N ∈ N such that xk >

x
2 for k ≥ N .

Proof. Look at Figure 2.6. As suggested by the picture, we take ε = x
2 . Since

xn → x, for this ε, there exists N ∈ N such that for k ≥ N , xk ∈ (x− ε, x+ ε) =(
x
2 ,

3x
2

)
. In particular, for k ≥ N , we have xk >

x
2 .

Figure 2.6: Figure for Proposition 2.1.20.

Remark 2.1.21. The last result says that if xn → x and if x > 0, then except
for a finite number of terms, all xn > 0. Note that this is a corollary of the
proposition but weaker than the proposition.

What is the analogue of the above proposition if x < 0?

Let (xn) be a sequence of real numbers. Let xn → x < 0. Then there exists
N ∈ N such that xk <

x
2 for k ≥ N . In particular, xn < 0 for all large n.

Can you think of a (single) formulation which encompasses both these results?

Proposition 2.1.22. Let (xn) be a real sequence such that xn → x. Assume that
x 6= 0. Then there exists N such that for all k ≥ N , we have |xk| ≥ |x| /2.
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Proof. This is done above in Proposition 2.1.20 (and the remarks following it) in
a geometric way for the case of real sequences.

To do the general case, let N correspond to ε := |x| /2. Then for k ≥ N , we
have

|x| ≤ |x− xk|+ |xk| < ε+ |xk| so that |xk| > |x| − ε =
|x|
2
.

This proves the proposition.

Definition 2.1.23. A sequence (xn) of real numbers is said to be bounded if
there exists C > 0 such that |xn| ≤ C for all n ∈ N.

If the sequence (xn) is the function f : N → R, then the set {xn : n ∈ N} is
the image of f . Note that (xn) is bounded iff the image set {xn : n ∈ N} of the
sequence is a bounded subset of R.

Example 2.1.24. Let us look at Example 2.1.3. Except items (5), (6), and (8),
all other sequences are bounded.

Proposition 2.1.25. Every convergent sequence of real numbers is bounded.

Strategy: Let (xn) be a sequence of real numbers converging to x. To show the
boundedness of (xn), we need to estimate |xk|. But we know how to estimate
|xk − x| for large k. We write

|xk| = |xk − x+ x| ≤ |x− xk|+ |x| .

Proof. Let ε = 1. Since xn → x, there exists N ∈ N such that, for k ≥ N , we
have |xk − x| < 1. Then

|xk| < |x− xk|+ |x| = 1 + |x| for k ≥ N.

To get an estimate for all xn, we let C := max{|x1| , . . . , |xN−1| , 1 + |x|}. Then
it is easy to see that C is an upper bound of (xn).

Is the converse of the above proposition true? Consider the sequence ((−1)n).
It is bounded but not convergent. See Example 2.1.13.

Given two sequences (xn) and (yn) in R and λ ∈ R, we can construct three
new sequences as follows. The sum (zn) is a new sequence such that zn = xn+yn,
that is, the n-th term of the new sequence is the sum xn + yn of the n-th terms.
We denote (zn) by (xn) + (yn).

The product (tn) is a new sequence such that tn = xnyn. We denote the
product sequence by (xnyn).

If λ ∈ R, we can define a new sequence (un) such that un = λxn. We denote
this new sequence by λ(xn).

We may now ask: If (xn) and (yn) are convergent, can we conclude the newly
constructed sequences are also convergent? The next result answers this in the
affirmative.
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Theorem 2.1.26 (Algebra of Convergent Sequences). Let xn → x, yn → y and
α ∈ R. Then:

(1) xn + yn → x+ y.

(2) αxn → αx.

(3) xn · yn → xy.

(4) 1
xn
→ 1

x provided that x 6= 0. (Note that by Proposition 2.1.22, there exists a
natural number N such that for all n ≥ N the terms xn 6= 0 and hence 1/xn
makes sense.)

Proof.

Strategy for (1): To prove (1), we need to estimate, |(xn + yn)− (x+ y)|. Using
the triangle inequality, we get,

|(xn + yn)− (x− y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y| .

Since xn → x, yn → y we know how to estimate each of this term on the right-hand

side.

Let ε > 0 be given. Since xn → x, there exists a natural number n1, such that
for all k ≥ n1, we have |xk − x| < ε

2 . Similarly, there exists a natural number
n2, such that for k ≥ n2, we have |yk − y| < ε

2 . Now choose, N := max{n1, n2}.
Then for all k ≥ N , we have |xk − x| < ε

2 and |yk − y| < ε
2 . Therefore, for all

k ≥ N ,

|(xk − yk)− (x− y)| ≤ |xk − x|+ |yk − y| <
ε

2
+
ε

2
= ε.

Strategy for (2): In order to prove (2), we need to estimate |αxn − αx| =

|α| |xn − x|. Since we know how to estimate |xn − x|, the natural temptation is

to choose N ∈ N such that |xn − x| < ε
|α| . However, if α = 0, then this does

not make sense. Note that if α = 0, then (αxn) is a constant sequence and hence

αxn → 0 = αx. So we may assume α 6= 0.

Let ε > 0 be given and α 6= 0. Since xn → x, there exists N ∈ N such that
for all k ≥ N , we have |xk − x| < ε

|α| . Hence for all k ≥ N , we have

|αxk − αx| = |α| |xk − x| < |α| ×
ε

|α|
= ε.

Strategy for (3): To prove (3), we need to estimate |xnyn − xy|. Since xn → x
and yn → y, we know how to estimate |xn − x| and |yn − y|. Somehow we need to
bring in these two terms in the estimate of |xnyn − xy|. This is achieved by adding
and subtracting the cross term xny (or you can also add xyn). Thus we have

|xnyn − xy| = |xnyn − xny + xny − xy| ≤ |xn| |yn − y|+ |y| |xn − x| .
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Since, (xn) is convergent, by Proposition 2.1.25, it is bounded. Therefore, there
exists C > 0 such that |xn| ≤ C for all n ∈ N . Now the above inequality can be
written as

|xnyn − xy| ≤ |xn| |yn − y|+ |y| |xn − x| ≤ C |yn − y|+ (|y|+ 1) |xn − x| .

Now it is easy to estimate |xnyn − xy|.

Now we go for a textbook proof of (3).
Let ε > 0 be given. Since (xn) is convergent, there exists C > 0 such that

|xn| ≤ C for all n ∈ N. (2.1)

Since xn → x, there exists a natural number n1 such that

k ≥ n1 =⇒ |xk − x| <
ε

2(|y|+ 1)
. (2.2)

Similarly, there exists a natural number n2 such that

k ≥ n2 =⇒ |yk − y| <
ε

2C
. (2.3)

Choose, N = max{n1, n2}. Then for all k ≥ N , we have

|xkyk − xy| = |xkyk − xky + xky − xy|
= |xk(yk − y) + y(xk − x)|
≤ |xk| |yk − y|+ |y| |xk − x|
≤ C |yk − y|+ (|y|+ 1) |xk − x| , by (2.1)

≤ C ε

2C
+ (|y|+ 1)

ε

2(|y|+ 1)
, by (2.2) and (2.3)

= ε.

In the above set of equations we have used |y|+ 1 as an upper bound for |y|.
Do you understand why?

Strategy for (4): To prove (4), we need to estimate
∣∣∣ 1
xn
− 1

x

∣∣∣. We have∣∣∣∣ 1

xn
− 1

x

∣∣∣∣ =

∣∣∣∣x− xnxxn

∣∣∣∣
=

1

|xn|
1

|x| |x− xn|

≤ 2

|x|
1

|x| |x− xn| , say, for n ≥ n1 using Proposition 2.1.22.

This inequality gives us an idea how to estimate
∣∣∣ 1
xn
− 1

x

∣∣∣ to complete the proof.

Let ε > 0 be given. Since xn → x and x 6= 0, by Proposition 2.1.22, there
exists n1 ∈ N such that

k ≥ n1 =⇒ |xn| >
|x|
2
. (2.4)
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Also there exists n2 ∈ N, such that

k ≥ n2 =⇒ |xk − x| <
ε |x|2

2
. (2.5)

Now choose N = max{n1, n2}, Then, for all k ≥ N , we have∣∣∣∣ 1

xk
− 1

x

∣∣∣∣ =

∣∣∣∣x− xkxxk

∣∣∣∣
=

1

|xk|
1

|x|
|x− xk|

<
2

|x|
1

|x|
|x− xk| , by (2.4)

<
2

|x|
1

|x|
× ε |x|2

2
, by (2.5)

= ε.

This completes the proof.

The above theorem gives rise to a natural vector space structure on the set
of all real convergent sequences and a linear transformation from it to R. This is
the content of the next proposition.

Proposition 2.1.27. The set C of convergent sequences of real numbers form a
real vector space under the operations: (xn) + (yn) := (xn + yn) and α · (xn) :=
(αxn).

Moreover, the map (xn) 7→ limxn from C to R is a linear transformation.

Proof. We shall only sketch the argument. By the algebra of convergent se-
quences, the sequence (xn) + (yn) := (xn + yn) is convergent. Hence C is closed
under the addition. Similarly, if λ ∈ R, the sequence λ(xn) := (λxn) is convergent
and hence C is closed under scalar multiplication. That C is a vector space under
these operations is easy to check. Also we have

lim[(xn) + (yn)] = lim(xn + yn) = x+ y = limxn + lim yn.

Similarly
limλ(xn) = lim(λxn) = λx = λ limxn.

The displayed equations show that the map (xn) 7→ limxn is a linear transfor-
mation.

Exercise Set 2.1.28.

(1) Given that xn → 1, identify the limits of the sequences whose n-th terms are
(a) 1− xn, (b) 2xn + 5, (c) (4 + x2

n)/xn.
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(2) Let xn → x. Assume that xn ≥ 0 for all n. Then show that x ≥ 0.

(3) Let an ≤ bn for n ∈ N. Assume that an → a and bn → b. Show that a ≤ b.

(4) Let a ≤ xn ≤ b for n ∈ N. If xn → x, show that a ≤ x ≤ b.

(5) Let (xn) and (yn) be convergent. Let sn := min{xn, yn} and tn :=
max{xn, yn}. Are the sequences (sn) and (tn) convergent?

(6) Show that the set of bounded (real) sequences form a real vector space.

(7) True or False: If (xn) and (xnyn) are bounded, then (yn) is bounded.

(8) Let xn ≥ 0, xn → x. Prove that
√
xn →

√
x.

(9) True or False: If (xn) and (yn) are sequences such that xnyn → 0, then one
of the sequences converges to 0.

(10) Let (xn) be a sequence. Prove that xn → 0 iff x2
n → 0.

(11) Let an → 0. What can you say about the sequence (ann)?

(12) Let (xn) and (yn) be two real sequences. Let (zn) be a new sequence defined
(x1, y1, x2, y2, . . .). (Can you write down explicit expression for zn?) Show
that (zn) is convergent iff both the sequences converge to the same limit.

(13) Let (xn) be given. Let sn := x2n−1 and tn := x2n, n ≥ 1. We thus get two
new sequences. Note that (sn) = (x1, x3, x5, . . .). (What is (tn)?) Show that
(xn) is convergent iff both (sn) and (tn) converge to the same limit.

(This is same as the last exercise, packaged differently!)

(14) Let (xn) be a sequence. Assume that xn → 0. Let σ : N → N be a bijection.
Define a new sequence yn := xσ(n). Show that yn → 0.

(15) Let xn :=
(
1− 1

2

) (
1− 1

3

)
· · ·
(

1− 1
n+1

)
. Show that (xn) is convergent.

(16) Given any real number a, show that there exists a sequence, say (xn) of
rationals such that xn → a. Similarly, there exists a sequence of irrationals,
say (yn) such that yn → a.

2.2 Cauchy Sequences

Let (xn) be a convergent sequence converging to x. Let ε > 0, be given. Let
N ∈ N such that for all k ≥ N , we have |xk − x| < ε. Look at Figure 2.7. When
m,n ≥ N , what can you say about |xm − xn|?

This motivates the following definition.

Definition 2.2.1 (Cauchy Sequence). A sequence (xn) in R is said to be Cauchy
if for each ε > 0 there exists N ∈ N such that for all m,n ≥ N we have
|xn − xm| < ε.
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Figure 2.7: Cauchy sequence.

Example 2.2.2. Any real convergent sequence is Cauchy.
Assume that xn → x. We want to prove that (xn) is Cauchy. That is, we need
to estimate |xn − xm|. Since xn → x, we know how to estimate |xn − x| and
|x− xm|. We use the triangle inequality to estimate |xn − xm|.

Let ε > 0 be given. Since xn → x, there exists N ∈ N such that for all k ≥ N
we have |xk − x| < ε

2 . Let m,n ≥ N , then

|xm − xn| = |(xm − x) + (xn − x)| ≤ |xm − x|+ |xn − x| <
ε

2
+
ε

2
= ε.

One may ask now whether the converse of the previous example is true. The
answer is yes. In fact, the only examples of Cauchy sequences in R are convergent
sequences. This is the context of the next theorem.

Theorem 2.2.3 (Cauchy Completeness of R). A real sequence (xn) is Cauchy
iff it is convergent.

Proof. We have already proved that every convergent sequence is a Cauchy se-
quence. We now prove its converse. That is, if (xn) is Cauchy, then it is convergent.

Strategy: This is more like a motivation than a strategy. Assume that xn → x.

Then x = lub (−∞, x). Thus for any y < x, there exists N ∈ N such that xk > y

for k ≥ N . We collect y ∈ R with the property that xk > y for all large values of k

into set E. We show this set is nonempty, and bounded above. Given ε > 0, let N

correspond to the Cauchy condition of (xn). We show xN − ε ∈ E and xN + ε is an

upper bound of E. If x = lub E, we use the facts that xN − ε ∈ E and xN + ε is an

upper bound of E to show |x− xN | < ε. Since we know how to estimate |xn − xN |,
the result will follow by triangle inequality.

Let E := {x ∈ R : ∃ N such that n ≥ N =⇒ x < xn}.
Let δ > 0. Since (xn) is Cauchy, there exists n0 = n0(δ) such that for all

m,n ≥ n0, |xm − xn| < δ. In particular, for all n ≥ n0, |xn0
− xn| < δ. That is,

we have

n ≥ n0 =⇒ xn ∈ (xn0 − δ, xn0 + δ), in particular, xn < xn0 + δ. (2.6)

Claim 1. xn0
− δ ∈ E. For, if we take N = n0(δ), then n ≥ n0 =⇒ xn >

xn0
− δ.
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Claim 2. xn0 + δ is an upper bound of E. If not, let x ∈ E be such that
x > xn0 + δ. This means that there exists some N such that for all n ≥ N
xn ≥ x > xn0

+ δ. In particular, for all n ≥ max{n0, N}, we have xn > xn0
+ δ.

This contradicts (2.6).
Claims (1) and (2) show that E is a nonempty set and is bounded above.
Let ` := lub E.
Claim 3. xn → `.
Let ε > 0 be given. We have to estimate |xn − `| using the fact that (xn) is

Cauchy and ` = lub E. Since (xn) is Cauchy, there exists, n0 = n0(ε) such that
for all n ≥ n0, we have |xn − xn0

| < ε
2 .

By claim (1), xn0
− ε/2 ∈ E. This implies xn0

− ε/2 ≤ `. On the other hand
` ≤ xn0 + ε/2 by Claim (2). Therefore |xn0 − `| ≤ ε/2.

Now for all n ≥ n0, we have

|xn − `| ≤ |xn − xn0 |+ |xn0 − `| < ε/2 + ε/2 = ε.

This completes the proof.

Lemma 2.2.4. Any Cauchy sequence is bounded.

Proof. This is obvious since any Cauchy sequence is convergent and convergent
sequences are bounded.

Let us give a direct proof adapting the proof of Proposition 2.1.25.
If (xn) is Cauchy, for ε = 1, there exists N such that k,m ≥ N , we have

|xk − xm| < ε = 1. In particular, if we take m = N , we obtain for k ≥ N ,
|xk − xN | < 1. Hence it follows that |xk| ≤ |xk − xN | + |xN | < 1 + |xN |. Let
C := max{|x1| , . . . , |xN−1| , 1 + |xN |}. Then it is easy to show that |xn| ≤ C for
all n.

Exercise Set 2.2.5.

(1) Prove that the sum of two Cauchy sequences and the product of two Cauchy
sequences are Cauchy.

(2) Let (xn) be a sequence such that |xn| ≤ 1+n
1+n+2n2 for all n ∈ N. Prove that

(xn) is Cauchy.

(3) If (xn) is a Cauchy sequence of integers, what can you say about the sequence?

(4) Let (xn) be a sequence and let a > 1. Assume that |xk+1 − xk| <
a−k for all k ∈ N. Show that (xn) is Cauchy.

(5) Let (xn) be a sequence such that

|xn+1 − xn| ≤ c |xn − xn−1| ,

for some constant c with 0 < c < 1. Show that (xn) is convergent.
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2.3 Monotone Sequences

Definition 2.3.1. We say a sequence (xn) of real numbers is increasing if for
each n, we have xn ≤ xn+1. Clearly, any increasing sequence is bounded below
by x1. Hence such a sequence is bounded iff it is bounded above.

We say that (xn) is strictly increasing if xn < xn+1 for all n ∈ N.

Define decreasing sequences. When is it bounded? A sequence (xn) is said to
be monotone if it is either increasing or decreasing.

Proposition 2.3.2. Let (xn) be an increasing sequence. Then it is convergent
iff it is bounded above.

Proof. Let (xn) be increasing and bounded above. We need to show that (xn) is
convergent.

Let x(N) := {xn : n ∈ N} be the image of the sequence x. Note that x(N) is
nonempty and bounded above. Let ` be the lub of this set. We claim that xn → `.
Look at Figure 2.8.

Figure 2.8: Increasing and bounded above sequence.

Let ε > 0. Note that `− ε is not an upper bound of x(N). Hence there exists
N ∈ N such that xN > `− ε. Since the sequence is increasing, for all n ≥ N , we
have xN ≤ xn and hence `− ε < xN ≤ xn ≤ ` < `+ ε, that is, xn → `.

The converse of this result is very easy, since any convergent sequence is
bounded.

What is the analogous result in the case of decreasing sequences?

Let (xn) be a decreasing sequence. Then it is convergent iff it is bounded

below.
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Notation: The symbol xn ↘ x stands for the statement that the sequence (xn)
is decreasing and convergent to x. What should the symbol xn ↗ x mean?

Example 2.3.3. We shall give two important recurring examples.

(1) Let 0 ≤ r < 1 and xn := rn. If r = 0, the sequence is the zero sequence and
hence is convergent. So we shall assume that 0 < r < 1. Since rn > rn+1 for
n ∈ N, the sequence (xn) is decreasing. It is bounded below by zero. So we
conclude that it is convergent. Let xn → `. Now by the algebra of convergent
sequences rxn → r`. But rxn = xn+1 and hence rxn → `. Hence by the
uniqueness of the limit, we conclude r` = `. Since 0 < r < 1, we deduce that
` = 0. Hence for 0 ≤ r < 1, the sequence (rn) converges to 0.

(2) Let the notation be as in the last example. Consider now sn := 1+r+· · ·+rn.
If r = 0, the sequence (sn) is the constant sequence 1 and is convergent.
Assume 0 < r < 1. Since sn+1 = sn + rn+1 > sn, the sequence (sn) is
increasing. It is bounded above:

sn =
1− rn+1

1− r
≤ 1

1− r
.

We therefore conclude that (sn) is convergent. Since

sn =
1− rn+1

1− r
=

1

1− r
+
rn+1

1− r
,

it follows from the algebra of convergent sequences that sn → 1
1−r .

Exercise Set 2.3.4.

(1) Let xn := 1
n+1 + 1

n+2 + · · · + 1
2n . Show that (xn) is convergent to a limit at

most 1.

(2) Let (xn) be a sequence of positive real numbers. Assume that xn+1

xn
→ ` with

` < 1. Show that xn → 0.

(3) Let an := n!
nn . Show that an → 0.

(4) Let (an) be bounded. Assume that an+1 ≥ an − 2−n. Show that (an) is
convergent.

The Number e
We were lucky in Examples 2.3.3 to find the limits explicitly. In general it may not
be possible. In fact, some real numbers are defined as the limit of such sequences.
For instance, consider xn :=

(
1 + 1

n

)n
. We shall show that (xn) is increasing and

bounded above. Therefore, it is convergent. The real number which is the limit
of this sequence is denoted by e and called the Euler number.

We shall outline the existence of limit of the sequence xn =
(
1 + 1

n

)n
using

the following steps:
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(1) By binomial theorem

xn = 1 +

n∑
k=1

n!

k! (n− k)!
n−k

= 1 +

n∑
k=1

1

k!

n(n− 1) · · · (n− k + 1)

nk

= 1 +

n∑
k=1

1

k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
. (2.7)

(2) We claim that xn < xn+1. That is, xn is an increasing sequence.

xn = 1 +

n∑
k=1

1

k!

(
1− 1

n

)
(1− 2

n
) · · ·

(
1− k − 1

n

)

< 1 +

n∑
k=1

1

k!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·
(

1− k − 1

n+ 1

)
< xn+1.

(3) From (2.7), we see that xn ≤ 1 +
∑n
k=1

1
k! .

(4) 1 +
∑n
k=1

1
k! < 1 + 1 +

∑n−1
k=1

1
2k = 1 + 1−2−n

1−1/2 < 1 + 1
1/2 = 3. From (3), it

follows that xn < 3 for n ∈ N.

(5) Thus (xn) is increasing and bounded above and hence by the Proposi-
tion 2.3.2, limxn exists. Let e := limxn.

Proposition 2.3.5. Let yn :=
∑n
k=0

1
k! . Then lim yn = e.

Proof. We take xn =
(
1 + 1

n

)n
. The proof follows from the following steps.

(1) From Step 3 of the last example, we know that xn ≤ yn and hence e =
limxn ≤ lim yn (by item 3 of Exercise 2.1.28.)

(2) For n > m omitting terms for k ≥ m+ 1 from (2.7) we get:

xn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

m!

(
1− 1

n

)
· · ·
(

1− m− 1

n

)
.

Fix m. Then for any n > m, we have xn > ym and hence e := lub {xn} > ym.
Since ym < e for all m, we deduce that lub {ym} ≤ e.

(3) Hence e := limn→∞(1 + 1
n )n = limn

(∑n
k=0

1
k!

)
.
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Proposition 2.3.6. e is irrational.

Proof. Suppose e is a rational number. Let e = p
q with q ∈ N. Note that q > 1.

(Why?)

Let sq :=
∑q
k=0

1
k! . Since e is the lub of {

∑m
k=0

1
k! : m ∈ N}, it follows that

e ≥
∑N
k=0

1
k! for any N ∈ N. In particular, e − sq ≥

∑N
k=0

1
k! −

∑q
k=0

1
k! for any

N ≥ q. We conclude that

e = sq + lub


N∑

k=q+1

1

k!
: N > q

 = sq + lub RNq ,

where RNq :=
∑N
k=q+1

1
k! . We observe that for N > q,

N∑
k=q+1

1

k!
=

1

(q + 1)!
+

1

(q + 1)!

1

q + 2
+

1

(q + 1)!

1

(q + 2)(q + 3)
+ · · ·

+
1

(q + 1)!

1

(q + 2) · · ·N

≤ 1

(q + 1)!

(
1 +

1

(q + 1)
+

1

(q + 1)2
+ · · ·+ 1

(q + 1)N−q−1

)
=

1

(q + 1)!

N−q−1∑
r=0

1

(q + 1)r

≤ 1

(q + 1)!

1

q
.

(Can you justify the last inequality above?) Hence we conclude that e ≤ sq +
1

(q+1)!
1
q .

We multiply both sides of the inequality e − sq < 1
(q+1)!

1
q by (q + 1)!. Since

e = p/q, we deduce (q+1)!e ∈ N. It is clear that (q+1)!(sq) ∈ N. Hence it follows
that (q + 1)!(e − sq) < 1

q . This is absurd. So we are forced to conclude that e is
irrational.

2.4 Sandwich Lemma

An easy and very useful result is the following. If we guess that a sequence
(zn) converges to α and we want to prove it rigorously, the lemma suggests an
approach. Find lower and upper bounds xn and yn for zn such that xn → α and
yn → α. Notice that this is typical of analysis.

Lemma 2.4.1 (Sandwich Lemma). Let (xn), (yn) and (zn) be sequences such
that (i) xn → α and yn → α and (ii) xn ≤ zn ≤ yn for all n. Then zn → α.
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Strategy: Let ε > 0 be given. Note that for sufficiently large k, both xk and yk lie

inside the interval (α−ε, α+ε). Since xk ≤ zk ≤ yk for all k, zk must also lie in the

interval (α − ε, α + ε) for sufficiently large k. In particular, zn must also converge

to α. This is the basic idea of the proof.

Proof. Look at Figure 2.9.

Figure 2.9: Sandwich lemma.

For given ε > 0, choose n1, n2 such that for all k ≥ n1, we have xk ∈ (α −
ε, α+ ε) and for all k ≥ n2, we have yk ∈ (α− ε, α+ ε). Let N = max{n1, n2}.

Then for k ≥ N , we observe

α− ε < xk ≤ zk and zk ≤ yk < α+ ε.

That is, zk ∈ (α− ε, α+ ε) for all k ≥ N . Hence zk → α.

Example 2.4.2 (Typical uses of the sandwich lemma).

(1) Let a ∈ R. For each n ∈ N, select any element xn ∈ (a − 1
n , a + 1

n ). Then
xn → a. (Note that this simple observation will be repeatedly used in the
book!)

For, a− 1
n < xn < a+ 1

n . The result follows from (the algebra of convergent
sequences and) the sandwich lemma.

(2) We have sinn
n → 0, as −1/n ≤ (sinn)/n ≤ 1/n.

(3) Given any real number x, there exist sequences (xn) of real numbers xn → x

Hint: For each n ∈ N, take xn with x− 1/n < xn < x.

(4) Given any real number x, there exist sequences (sn) of rational numbers and
(tn) of irrational numbers such that sn → x and tn → x.

Hint: By density of rationals there exists r such that x − 1/n < r < x. Call
this r as rn.

(5) Let α := lub A ⊂ R. Then there exists a sequence (an) in A such that
an → α.

Hint: α−1/n is not an upper bound of A. Let an ∈ A be such that α−1/n <
an ≤ α.

Formulate the analogous result for glb.
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Exercise Set 2.4.3. Use the sandwich lemma to solve the following.

(1) Let (an) be a bounded (real) sequence and (xn) converge to 0. Then show
that anxn → 0.

(2) The sequence
√
n+ 1−

√
n→ 0.

(3) xn := 1√
n2+1

+ 1√
n2+2

+ · · ·+ 1√
n2+n

→ 1.

(4) Let 0 < a < b. The sequence ((an + bn)1/n)→ b.

Theorem 2.4.4 (Nested Interval Theorem – Standard Version). Let Jn :=
[an, bn] be intervals in R such that Jn+1 ⊆ Jn for all n ∈ N. Assume further
that bn− an → 0, that is, the sequence of lengths of Jn’s goes to zero. Then there
exists a unique c such that ∩nJn = {c}.

Proof. We have already seen (Theorem 1.3.23) that there exists at least one
c ∈ ∩nJn. Let c, d ∈ ∩nJn. Assume that c ≤ d. Then, since an ≤ c ≤ d ≤ bn, we
see that 0 ≤ d − c ≤ bn − an. Since bn − an → 0, it follows from the sandwich
lemma that d− c = 0.

Exercise 2.4.5. If xn → x and xn ≥ 0, then x ≥ 0. (If x < 0, use Propo-
sition 2.1.20 to arrive at xn < 0 for n > n0.) However, if each xn > 0 and if
xn → x, then x need not be positive. Can you give an example?

2.5 Some Important Limits

Analysis deals with unknown sequences or functions by trying to compare their
behavior with known things. If we want to be adept in this technique, it is of
paramount importance that we have a quite good command over commonly oc-
curring sequences and functions. In this section, we deal with some of the most
often used sequences and their convergence questions.

Theorem 2.5.1. We have the following important limits:

(1) Let 0 ≤ r < 1 and xn := rn. Then xn → 0.

(2) Let −1 < t < 1. Then tn → 0.

(3) Let |r| < 1. Then nrn → 0.

(4) Let a > 0. Then a1/n → 1.

(5) n1/n → 1.

(6) Fix a ∈ R. Then an

n! → 0.
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Proof. We start with the proof of 1. We have already seen this in Example 2.3.3.
Let us look at another proof of this result. If 0 < r < 1, then we can write

r = 1/(1 + h) for some h > 0. Using binomial theorem, we have

(1 + h)n = 1 + nh+
n(n− 1)

2
+ · · ·+ hn > nh, (2.8)

since all terms are positive.
In particular, rn = 1

(1+h)n ≤
1
nh for all n. Thus we have 0 ≤ rn ≤ 1

nh for all

n. Hence by the sandwich lemma, we have rn → 0.

Proof of 2: Let −1 < t < 1. Then tn → 0.
tn → 0 iff |tn| = |t|n → 0 in view of Proposition 2.1.18. Now the result follows

from the last item.

Proof of 3: Let |r| < 1. Then nrn → 0.
Notice that the sequence n is unbounded, whereas rn → 0. In fact, n diverges

to ∞ as we shall see later. Thus if we say nrn → 0, it means that rn goes to 0
much faster that n diverging to ∞. For example, if xn = n and yn = 1

n2 , then
xnyn → 0. On the other hand, if zn = 1√

n
then xnzn →∞.

It is enough to prove the result for 0 < r < 1.
If you try to use the estimate, as in Equation (2.8), we end up 0 ≤ nrn ≤ 1

h
from which we cannot conclude nrn → 0. Therefore, to take care of the presence
of n in nrn, we need an estimate of the form rn ≤ C 1

n2 for some constant C. This
is achieved by retaining the quadratic term in the binomial expansion of (1+h)n.
More precisely

(1 + h)n = 1 + nh+
n(n− 1)

2
+ · · ·+ hn >

n(n− 1)

2
h2, (2.9)

since all terms are positive. Thus we have 0 ≤ nrn ≤ 2
h2(n−1) for all n ≥ 2. Hence

using the Sandwich lemma, we have nrn → 0.
What can you say about the sequence (n2rn)? Is there any way to generalize

this?

Proof of 4: Let a > 0. Then a1/n → 1.
If a > 1, then we claim that a1/n > 1. Note that we have seen if 0 ≤ a ≤ b,

then 0 ≤ an ≤ bn for any natural number n. Also when a > 0, a1/n is uniquely
defined. (See Item 3 of Exercise 1.1.3.) Suppose, a1/n ≤ 1, then a ≤ 1 which is a
contradiction.

If a > 1, then we can write a1/n = 1 + hn, with hn > 0. (Do you understand
why we are using a1/n = 1 +hn and not a1/n = 1 +h unlike the previous proof?)
This implies a = (1 + hn)n ≥ nhn, and hence 0 ≤ hn ≤ a

n . This means, hn → 0.

Therefore, a1/n → 1 as desired.
When 0 < a < 1, we apply the result to b1/n where b = 1/a > 1. Observe

that a1/n = 1/(b1/n). By the first case, we have b1/n → 1, and hence using the
algebra of limits, 1/(b1/n)→ 1. This proves that lim a1/n = lim 1/(b1/n) = 1.
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Proof of 5: n1/n → 1.
For n > 1, we have n1/n > 1 as seen in the last item. So we can write

n1/n = 1 + hn with hn > 0. It is enough to show that hn → 0. From (2.9), we
have

n = (1 + hn)n ≥ n(n− 1)

2
h2
n.

This implies 0 ≤ h2
n ≤ 2

n−1 . Hence h2
n → 0 by the sandwich lemma. Hence hn → 0

using Item 10 of Exercise 2.1.28.
Now we can give another proof of the item (4).
Note that 1 ≤ a1/n ≤ n1/n for n ≥ a. Hence by item (5) and the sandwich

lemma, we have a1/n → 1.

Proof of 6: Fix a ∈ R. Then an

n! → 0. Note that it is enough to show that
|a|n
n! → 0. In particular, it is enough to show that an

n! → 0 for a > 0.
Assume a > 0. By the Archimedean property, there exists N ∈ N such that

N > a. Then, for n ≥ N , we have

an

n!
=
(a

1

a

2
· · · a

N

) a

N + 1
· · · a

n

≤ Cr−Nrn, where C :=
(a

1

a

2
· · · a

N

)
and r :=

a

N
.

Thus we get 0 ≤ an

n! ≤ Cr
−Nrn. Since 0 < r < 1, rn → 0 and hence Cr−Nrn → 0.

Hence by the sandwich lemma we have an

n! → 0.

Exercise 2.5.2. Let a > 1. Show that n
an → 0.

The next result employs an often used trick in analysis, which we call the Divide
and Conquer trick. Suppose that we want to estimate a sum of infinite terms or

a definite integral of the form
∫ b
a
f(x) dx. We split the sum into two parts, first

consisting of terms which are well behaved and second consisting of the remaining
terms. In the case of the integral, we split the domain into two parts, say, the set
A of points at which the function is well-behaved and B the rest. We then try
to get control over the set B and use a crude estimate of f over B. In the case
of sums, we try to get some crude estimate for the terms in the second part and
try to control the size of the second part. For example, suppose, xn → 0, then
for any ε > 0, there exists N ∈ N such that for k ≥ N , |xk| < ε. However, we do
not have any control over x1, . . . , xN−1. But the number of such terms is at the
most N − 1.

Theorem 2.5.3. Let xn → 0. Let (sn) be the sequence of arithmetic means (or
averages) defined by sn := x1+···+xn

n . Then sn → 0.

Proof. We need to estimate |sn|. As suggested prior to the proof, we employ the
divide and conquer trick. We break sn into two parts.

sn =

[
x1 + · · ·+ xN−1

n

]
+

[
xN + · · ·+ xn

n

]
.
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The terms in the second bracket are “well behaved” and terms in the first bracket
are only finitely many in number.

Since (xn) is convergent, there exists M > 0 such that |xn| ≤ M for all n.
Hence we have an estimate for |sn|:

|sn| ≤
(N − 1)M

n
+

(n−N + 1)

n
ε ≤ (N − 1)M

n
+ ε.

By taking n sufficiently large, the first term can also be made less than ε.

Now we shall write a detailed proof.

Given ε > 0, choose N such that for k ≥ N , |xk| < ε/2. Since (xn) is
convergent, it is bounded. Let M be such that |xk| ≤M for all k. Choose n1 such
that n ≥ n1 implies (MN)/n < ε/2. Observe that for n ≥ max{n1, N}

|sn| =
|(x1 + · · ·+ xN ) + (xN+1 + · · ·+ xn)|

n

≤ MN

n
+

(n−N)

n

ε

2
= ε.

Corollary 2.5.4. Let xn → x. Then applying the last result to the sequence
yn := xn − x, we conclude that the sequence (sn) of arithmetic means converges
to x.

Corollary 2.5.5. Let xn → x and yn → y. Then

x1yn + x2yn−1 + · · ·+ xny1

n
→ xy.

Proof. Let un := x1yn + x2yn−1 + · · ·+ xny1. Let sn :=
∑n
k=1 xk. Adding and

subtracting the term (x1 + · · ·+ xn)y in un, we get

un = (x1 + · · ·+ xn)y + [x1(yn − y) + · · ·+ xn(y1 − y)]

= sny + vn, say.

If M is a bound for (xn), then we have the estimate

|vn| ≤M (|yn − y|+ · · ·+ |y1 − y|) .

Since yn → y, (yn − y)→ 0, hence by Theorem 2.5.3, we conclude that vn
n → 0.

We now observe

un
n

=
sny

n
+
vn
n
→ yx+ 0, by Corollary (2.5.4).
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2.6 Sequences Diverging to ±∞
Definition 2.6.1. Let (xn) be a real sequence. We say that (xn) diverges to +∞
(or simply diverges to ∞) if for any R ∈ R there exists N ∈ N such that n ≥ N
implies xn > R.

Note that ∞ is just a symbol and it is not a real number. The symbol “xn →
∞” means exactly what is defined above.

If a sequence (xn) diverges to ∞, geometrically, this means if we look at the
points of the sequence and take line y = R, then there exists a natural number
N such that all the points (n, xn) for n ≥ N lie above the line y = R. Look at
Figure 2.10.

Figure 2.10: Sequence diverging to ∞.

Formulate an analogous notion of a sequence diverging to −∞.
Note that any sequence diverging to ∞ or −∞ is unbounded.
It is easy to see if a sequence of real numbers diverges to ∞ (or to −∞), then

it is not convergent. (Can you see why?)

Example 2.6.2. Let xn := n, and yn := 2n. Then the sequences (xn) and (yn)
diverge to infinity.

Hint: First one follows directly from the Archimedean property. For the second
one, use induction on n to show that 2n > n for all n.

Example 2.6.3. Let x2k−1 := 1 and x2k = 2k. This sequence is unbounded;
however, it does not diverge to ∞.

For if R = 1, then given any N ∈ N, 2N−1 ≥ N but x2N−1 = 1 is not greater
than R.
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Example 2.6.4.

(1) Let a > 1. Then an →∞.

Since a > 0, we can write a = a + h for some h > 0. For any n, we have
an = (1 + h)n > nh. Let R ∈ R. By the Archimedean property there exists,
n ∈ N such that nh > R.

(2) (n!)1/n diverges to ∞.

Let R > 0 be given. Since Rn

n! → 0 by Item 6 of Exercise 2.5.1, there exists

N , such that for all n ≥ N , Rn/n! < 1, That is, Rn < n!. Hence (n!)1/n > R
for n ≥ N . This proves the result.

(3) Consider the sequence (xn) where xn = (−1)nn. This sequence is divergent,
(that is, not convergent!) but divergent neither to ∞ nor to −∞.

Exercise Set 2.6.5.

(1) Let xn > 0. Then xn → 0 iff 1/xn → +∞. What happens if xn < 0 and
limxn = 0?

The sequence xn := (−1)n

n → 0 but the sequence of reciprocals is ((−1)nn).
Refer to Item 3 of Example 2.6.4.

(2) Let xn :=
∑n
k=1

1
k . Show that the sequence (xn) diverges to ∞.

(3) Let (xn) be a sequence in (0,∞). Let yn :=
∑n
k=1(xk + 1

xk
). Show that (yn)

diverges to ∞.

(4) Let (xn) and (yn) be sequences of positive reals. Assume that limxn/yn =
A > 0. Show limxn = +∞ iff lim yn = +∞.

(5) Show that lim an2+b
cn+d =∞ if ac > 0.

(6) Let (an) be a sequence of positive reals. Assume that lim an+1

an
= α. Then

show that lim(an)
1
n = α.

(7) Use the last item to find the “limit” of n

(n!)
1
n

.

(8) Find the limit of (a
n−bn
an+bn ) where a, b ∈ (0,∞).

2.7 Subsequences

Definition 2.7.1. Let x : N → R be a sequence. Then a subsequence is the
restriction of x to an infinite subset S of N.
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For example, if S is a set of even integers, then the subsequence is

(x2, x4, . . . , x2n, . . .).

Similarly, if S is a set of prime numbers, then the subsequence is

(x2, x3, x5, x7, x11, x13, . . .).

If we restrict a sequence to the set of prime numbers, is it a subsequence? Can
we exhibit its terms explicitly?

We suggest that the reader understand the statement of the next result and
return to its proof later. We need to use the well-ordering principle of N thrice
in the proof. Let us state it.

Well-Ordering Principle. If S ⊂ N is nonempty, then it has a least element,
that is, there exists ` ∈ S such that ` ≤ x for all x ∈ S.

Proposition 2.7.2. An infinite subset S ⊂ N can be listed as {n1 < n2 < · · · <
nk < nk+1 · · · }.

Proof. Let n1 be the least element of S. Now choose n2 as the least element of
S \ {n1}. Note that n1 < n2. Assume that we have chosen n1, . . . , nk ∈ S such
that n1 < n2 < · · · < nk. Define Sk := S\{n1, . . . , nk}. Then it is easy to see that
Sk 6= ∅. (Why?) Let nk+1 be the least element of Sk. Thus we have a recursively
defined sequence of integers. Observe that by our choice nk ≥ k for each k ∈ N.

We claim that this process exhausts S. Suppose T := S \ {nk : k ∈ N} 6= ∅
and m be the least element of T . (Note that m is an element of S!) Consider
A := {k ∈ N : nk ≥ m}. Since nm ≥ m, we deduce that A 6= ∅. Let k be the
least element of A. Then we must have nk−1 < m. Since m /∈ Sk−1, since m ≤ nk
and since nk is the least element of Sk−1, we conclude that m = nk. But this is
a contradiction to the fact that m ∈ T .

In view of the last proposition, the standard practice is to denote the subse-
quence as (xnk

) where n1 < n2 < · · · < nk < nk+1 < · · · .

Most useful/handy observation: nk ≥ k for all k.

For, n1 ≥ 1. Now, n2 is the least element of S \ {n1} and hence n2 > n1 ≥ 1.
Hence n2 ≥ 2. We conclude that nk ≥ k by induction.

Let (xn) be a sequence and (xnk
) be a subsequence. What does it mean to

say that the subsequence converges to x?
Let us define a new sequence (yk) where yk := xnk

. Then we say xnk
→ x iff

yk → x. That is, for a given ε > 0 there exists k0 ∈ N such that for k ≥ k0, we
must have |yk − x| < ε, which is the same as saying that

for k ≥ k0, we have |xnk
− x| < ε.
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Lemma 2.7.3. If xn → x, and if (xnk
) is a subsequence, then xnk

→ x as
k →∞.

Proof. Let ε > 0 be given. Since xn → x, there exists N ∈ N such that for k ≥ N ,
|xk − x| < ε. Note that if k ≥ N , then nk ≥ k ≥ N . Hence, for k ≥ N , we have
|xnk

− x| < ε. This implies that (xnk
) converges to x.

Theorem 2.7.4 (Existence of a monotone subsequence of a real sequence). Given
any real sequence (xn) there exists a monotone subsequence.

Motivation: Imagine the following scenario. Scientists have predicted the eruption

of a dormant volcano in an island in the Indian ocean. There are lots of tourists

pouring into the island to watch the spectacular show of Nature. The local business

has constructed an infinite number of towers lined in front of the volcano, numbered

serially. The n-th tower is of height xn. See Figure 2.11. As tourists, we would like

to observe the event from the tallest tower and at the same time the one farthest

from the volcano. If we observe from the n-th tower, we want the heights xm of

the towers that are in front of the n-th tower to satisfy xm < xn for m > n. This

suggests us to consider the set S of the serial numbers of the towers that are suitable

for observation.

Figure 2.11: Observation towers.

Proof. Consider the set S defined by

S := {n ∈ N : xm < xn for m > n}.

There are two cases: S is finite or infinite.
Case 1. S is finite. Let N be any natural number such that k ≤ N for all k ∈ S.

Let n1 > N . Then n1 /∈ S. Hence there exists n2 > n1 such that xn2 ≥ xn1 . Since
n2 > n1 > N , n2 /∈ S. Hence we can find an n3 > n2 such that xn3 ≥ xn2 . This
way, we can find a monotone nondecreasing (increasing) subsequence, (xnk

).
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Case 2. S is infinite. Let n1 be the least element of S. Let n2 be the least
element of S \ {n1} and so on. We thus have a listing of S:

n1 < n2 < n3 < · · ·

Since nk−1 is an element of S and since nk−1 < nk, we see that xnk
< xnk−1

, for
all k. We now have a monotone decreasing sequence.

Theorem 2.7.5 (Bolzano-Weierstrass Theorem). If (xn) is a bounded real se-
quence, it has a convergent subsequence.

Proof. By Theorem 2.7.4, (xn) has a monotone subsequence, say (xnk
). Since

(xn) is bounded, (xnk
) is also bounded. Thus (xnk

) is monotone and bounded.
Hence it is convergent.

Theorem 2.7.6. Let (xn) be Cauchy. Let a subsequence (xnk
) converge to x.

Then xn → x.

Strategy: We need to estimate |xn − x|. What we know is how to estimate
|xn − xm| and |xnk − x|. So we use triangle inequality.

|xn − x| ≤ |x− xm|+ |xm − xn| .

If m = nk for some large k, we can estimate |x− xm|, since xnk → x. If m and n

are very large, since the sequence (xn) is Cauchy, we can estimate |xm − xn|. So we

need to choose the “intermediary/curry leaf” m so that we can estimate both the

terms as we wish.

Proof. Let ε > 0 be given. Since xnk
→ x, there exists k1 such that

k ≥ k1 =⇒ |xnk
− x| < ε.

For the same ε, since (xn) is Cauchy, there exists k2 such that

m,n ≥ k2 =⇒ |xm − xn| < ε.

Let N := max{k1, k2}. Fix an k ≥ N . Let m = nk. Then m = nk ≥ k ≥ k1 and
hence |x− xm| < ε. If n ≥ N , then n ≥ k2. It follows that |xn − xm| < ε, since
m = nk ≥ k ≥ k2. We are now ready to complete the proof. For n ≥ N , we have

|x− xn| ≤ |x− xm|+ |xm − xn| < 2ε.

It follows that xn → x.

The proof above uses a trick which we shall refer to as the “curry leaf trick.”
In Indian cooking, curry leaves are used to enhance the aroma and to garnish
the dishes, but they are mostly thrown out while one eats the dishes. The integer
m in the proof is one such. Go through the proof of Proposition 2.1.15. Did we
employ the curry leaf trick there?

We can now give a second proof of the Cauchy completeness of R.
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Theorem 2.7.7. If (xn) is a Cauchy sequence in R, then there exists x ∈ R such
xn → x.

Proof. Let (xn) be a Cauchy sequence in R. By Lemma 2.2.4 it is bounded. Now
using the Bolzano-Weierstrass Theorem 2.7.5, it has a convergent subsequence,
say, (xnk

). Hence the original sequence (xn) is convergent by Theorem 2.7.6.

Do subsequences arise naturally in mathematics?

Exercise 2.7.8. Let (an) be a sequence. Prove that (an) is divergent iff for each
a ∈ R, there exists an ε > 0 and a subsequence (xnk

) such that |a− ank
| ≥ ε for

all k.

Example 2.7.9. Some typical uses of subsequences.

(1) Consider the sequence a1/n where a > 1.

We proved in Item (4) on page 48, that a1/n is bounded below by 1. It is
easy to show that a1/n is decreasing. Hence it is convergent. Let us assume
that a1/n → `.

Then subsequence (a1/2n) is also convergent to ` by Lemma 2.7.3. Hence
(a1/2n)2 = a1/n → `2. Thus by the uniqueness of limit, we have `2 = `. This
implies ` = 1. (Why?)

(2) Assume that the sequence (n1/n) is convergent. We wish to find its limit.

Let (n1/n) converge to `. Then ((2n)1/2n) → ` by Lemma 2.7.3. Therefore,
((2n)1/2n)2 → `2. But ((2n)1/2n)2 = 21/nn1/n. From the last item, 21/n → 1.
Hence 21/nn1/n → ` by algebra of limits. Thus by the uniqueness of limit, we
have `2 = `. That is, ` = 1.

(3) Show that the sequence ((−1)n) is divergent.

Suppose ((−1)n) is convergent. Then by Lemma 2.7.3, every subsequence of
((−1)n) converges to the same limit. The subsequence of even terms con-
verges to 1, whereas the subsequence of odd terms converges to −1. Hence
we conclude that ((−1)n) is not convergent.

Exercise Set 2.7.10.

(1) Prove that the sequence (xn) where xn := (n2+13n−41) cos(2n)
n2+2n+1 has a convergent

subsequence.

(2) True or false: For any sequence (xn), the sequence yn := xn

1+|xn| has a conver-

gent subsequence.

(3) True or false: A sequence (xn) is bounded iff every subsequence of (xn) has
a convergent subsequence.
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(4) Prove that a sequence (xn) is unbounded iff there exists a subsequence (xnk
)

such that |xnk
| ≥ k for each k ∈ N.

(5) Let (an) be a sequence. Prove that (an) is divergent iff for each a ∈ R, there
exists an ε > 0 and a subsequence (xnk

) such that |a− ank
| ≥ ε for all k.

(6) Show that if a monotone sequence has a convergent subsequence, then it is
convergent.

(7) Let {rn} be an enumeration of all rationals in [0, 1]. Show that {rn} is not
convergent.

Exercise Set 2.7.11 (Typical uses of Bolzano-Weierstrass theorem).

(1) The sequence (sin(n)) has a convergent subsequence.

(2) True or false: A sequence (xn) is bounded iff every subsequence of (xn) has
a convergent subsequence.

2.8 Sequences Defined Recursively

If you recall, the sequence defined in Item 8 of Example 2.1.3, the n-th term of
this sequence is not defined explicitly in terms of n. Rather it is defined in terms
of previous two terms. Such sequences whose n-th term is defined in terms of pre-
vious terms are called recursive sequences or sequences defined recursively. This
type of sequence occurs naturally. In this section we shall look at some examples
of sequences defined recursively and find their limits if they are convergent.

Example 2.8.1. Let a and b be any two distinct real numbers. Let x1 = a and
x2 = b. Define xn+2 := xn+xn+1

2 . Mark points of this sequence on the real line.
What can you say about this sequence? See Figure 2.12..

a = x1 b = x2
x3 x4x5 x6

Figure 2.12: Figure for Example 2.8.1.

We claim that (xn) is convergent. Note that it is enough to show that it is a
Cauchy sequence. We need to estimate |xn − xm|. First of all, let us look at

|xn − xn−1| =
∣∣∣∣xn−1 + xn−2

2
− xn−1

∣∣∣∣ =

∣∣∣∣xn−2 − xn−1

2

∣∣∣∣ =

∣∣∣∣xn−2 − xn−3

22

∣∣∣∣ .
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Continuing this way inductively, we get

|xn − xn−1| =
x2 − x1

2n−2
=
b− a
2n−2

.

Now we can estimate |xn − xm|. Let n > m. Then

|xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|

=
|b− a|
2n−2

+
b− a
2n−3

+ · · ·+ b− a
2m−1

=
|b− a|
2m−1

[
1 +

1

2
+ · · ·+ 1

2n−m−1

]
≤ |b− a|

2m−1
× 1

2

=
|b− a|

2m
.

(In the above we made use of the fact that the sequence (
∑n
k=0

1
2k ) is increasing

and converges to 1/2, the lub of its terms. See Item 2 of Example 2.3.3 on page 44.)
Now let us show that (xn) is Cauchy. Let ε > 0 be given. Since the sequence
1
2k → 0, there exists N ∈ N such that for all k ≥ N , we have 1

2k < ε
|b−a| .

Therefore, for m,n ≥ N , we have

|xn − xm| ≤
|b− a|

2m
< |b− a| ε

|b− a|
= ε.

Thus (xn) is a Cauchy sequence and hence it converges by the Cauchy complete-
ness theorem. However, we do not have its limit explicitly.

It can be shown that the limit is 1
3 (a+ 2b).

Example 2.8.2. Square Roots. Let x1 = 2, define

xn+1 =
1

2

(
xn +

2

xn

)
.

We claim that this sequence is convergent and it converges to
√

2.

Note that xn+1 = 1
2

(
xn + 2

xn

)
implies x2

n−2xn+1 +2 = 0. This is a quadratic

in xn. Since xn ∈ R. This quadratic has a real solution. This means that its
discriminant is nonnegative. That is, 4x2

n+1 − 8 ≥ 0. This implies x2
n ≥ 2 for all

n. In particular, xn is bounded below.
Next we claim that xn is a decreasing sequence. We have

xn+1 − xn =
1

2

(
xn +

2

xn

)
− xn

=
2− x2

n

2xn
≤ 0 from the last claim.
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Thus we have proved that (xn) is a decreasing sequence which is bounded below.
Hence it is convergent.

Let xn → `. Then by the algebra of limits, the left-hand side converges to `
where as the right-hand side converges to 1

2 (`+ 2
` ). Hence, ` is a positive solution

of `2 − 2 = 0. This mean ` =
√

2.
Given α > 0, can you modify the sequence to produce one which converges

to
√
α?

Exercise Set 2.8.3. Find the limits (if they exist) of the following recursively
defined sequences.

(1) x1 =
√

2, xn =
√

2 +
√
xn−1 for n ≥ 2.

(2) x1 = 1, xn =
√

2xn−1 for n ≥ 2.

(3) For a > 0, let x1 be any positive real number and xn+1 = 1
2

(
xn + a

xn

)
.

(4) Let 0 < a ≤ x1 ≤ x2 ≤ b. Define xn =
√

(xn−1xn−2) for n ≥ 3. Show that
a ≤ xn ≤ b and |xn+1 − xn| ≤ b

a+b |xn − xn−1| for n ≥ 2. Prove (xn) is
convergent.

(5) Let 0 < y1 < x1. Define

xn+1 =
xn + yn

2
and yn+1 =

√
xnyn, for n ∈ N.

(a) Prove that (yn) is increasing and bounded above while (xn) is decreasing
and bounded below.

(b) Prove that 0 < xn+1 − yn+1 < 2−n(x1 − y1) for n ∈ N.

(c) Prove that xn and yn converge to the same limit.

(6) Let x1 ≥ 0, and define recursively xn+1 =
√

2 + xn for n ∈ N. Show that if
the sequence is convergent, then the limit is 2.

(7) Let 0 ≤ x1 ≤ 1. Define xn+1 := 1 −
√

1− xn for n ∈ N. Show that if the
sequence is convergent, then the limit is either 0 or 1.

Exercise Set 2.8.4 (Euler’s constant). Let

γn =

n∑
k=1

1

k
− log n =

n∑
k=1

1

k
−
∫ n

1

t−1dt.

(1) Show that γn is a decreasing sequence.

(2) Show that 0 < γn ≤ 1 for all n.

(3) lim γn exists and is denoted by γ.

The real number γ is called the Euler’s constant . At the time of writing this
book, it is not known whether γ is rational or not!
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Exercise Set 2.8.5 (Fibonacci’s sequence). Let x0 = 1, x1 = 1. Define (xn)
recursively by xn = xn−1+xn−2, n ≥ 2. This (xn) is called the Fibonacci sequence.
Let γn := xn

xn−1
, n ≥ 1. Then prove the following:

(1) (xn) is divergent.

(2) (i) 1 ≤ γn ≤ 2, (ii) γn+1 = 1 + 1
γn

.

(3) (γ2n) is decreasing.

(4) (γ2n+1) is increasing.

(5) (γ2n) and (γ2n+1) are convergent. The limits of both of these sequences satisfy
the equation `2 − `− 1 = 0.

(6) lim γn = 1+
√

5
2 . This limit is called the golden ratio.

Exercise 2.8.6. Let (an) be a sequence such that |an − am| < ε for all m,n ≥ N .
If an → a, show that |an − a| ≤ ε for all n ≥ N . (An easy but often used result.)

Exercise Set 2.8.7 (Miscellaneous Exercises).

(1) Decide for what values of x, the sequences whose n-th term is xn := x+xn

1+xn is
convergent.

(2) Find the limit of the sequence whose n-th term is 1+a+a2+···+an−1

n! .

(3) Let an := n
2n . Show that lim an = 0.

(4) Let a ∈ R. Consider x1 = a, x2 = 1+a
2 , and by induction xn := 1+xn−1

2 . Can
you guess what (xn) converges to? Draw pictures and guess the limit and
prove your guess.

(5) Consider the sequence

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2,

√
2 +

√
2 +

√
2 +
√

2, . . . ,

Show that xn → 2.

(6) Prove that the sequence (sinn) is divergent.
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In this chapter, we shall define continuity of functions and study their prop-
erties. Unlike books at this level, we shall start with a definition which makes
use of our knowledge of convergent sequences. Later we shall give an equivalent
definition. At the end we shall give the definition of a limit of a function at a
point and use it to give a third definition of continuity of a function at a point.
First two definitions allow us to define the continuity at a point of a function
defined on an arbitrary subset of R.

3.1 Continuous Functions

Definition 3.1.1. Let J ⊂ R. (An important class of subsets J are intervals of
any kind.)

Let f : J → R be a function and a ∈ J . We say that f is continuous at a if
for every sequence (xn) in J with xn → a, we have f(xn)→ f(a).

We say that f is continuous on J if it is continuous at every point a ∈ J .

Remark 3.1.2. The crucial point of the definition is that (i) the sequences are
in the domain of f converging to a point of the domain and (ii) we need to verify

63
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the condition of the definition for each such sequence in the domain converging
to a. See Item 3 of Example 3.1.3.

The second crucial point is that even if xn → a, it may happen that (f(xn))
may converge to a limit other than f(a) or worse, (f(xn)) may not converge at
all! See Item 4 of Example 3.1.3.

Example 3.1.3. We now look at examples of continuous and non-continuous
functions.

(1) Let f be a constant function on J , say, f(x) = c for x ∈ J . Then f is
continuous on J .

Let a ∈ J . Let (xn) be any sequence in J such that xn → a. Then f(xn) = c
for each n, that is, the sequence (f(xn)) is a constant sequence and hence
f(xn)→ c = f(a). Therefore we conclude that f is continuous at a. Since a
is arbitrary, f is continuous on J .

(2) Let f(x) := x for all x ∈ J . Then f is continuous on J .

Let a ∈ J and (xn) be a sequence in J converging to a. Then f(xn) = xn
and hence f(xn) = xn → a = f(a). We conclude that f is continuous at a.
Since a ∈ J is arbitrary, f is continuous on J .

More generally, f(x) := xn is continuous on R, n ∈ N.

(3) Let f : R→ R be given by f(x) = 1 if x ∈ Q and 0 otherwise. Then f is not
continuous at any point of R. This is known as Dirichlet’s function.

Let a = 0. Let xn = 1/n. Then xn → 0. Since f(xn) = 1 for n ∈ N, the
sequence (f(xn)) is a constant sequence converging to 1 = f(0). But on the

other hand, if we let yn =
√

2
n , then (yn) is a sequence in the domain of f

converging to 0. We have f(xn) = 0 so that f(xn) → 0. By the uniqueness
of the limit, f(xn) does not converge to 1 = f(0). Hence we conclude that f
is not continuous at 0.

Consider the sequence (xn) defined by xn = 1
n , if n is odd and xn =

√
2
n , if n

is even. Then by Exercise 13 on page 40, xn → 0. But the sequence (f(xn))
is (1, 0, 1, 0, . . .), a sequence in which 1 and 0 alternate and hence does not
even converge, let alone converge to f(0) = 1. Hence f is not continuous at
a = 0. Now go back to Remark 3.1.2 and understand what it says.

We claim that f is not continuous at any a ∈ R. We know from Item 4 of
Example 2.4.2 on page 47 that there exist sequences (xn) of rationals and (yn)
a sequence of irrationals such that xn → a and yn → a. We have f(xn) = 1
and f(yn) = 0. Hence f(xn) → 1 whereas f(yn) → 0. Now, f(a) = 1 if
a ∈ Q and 0 otherwise. Let us assume the latter for definiteness sake. Then
f(xn) does not converge to f(a). We conclude that f is not continuous at
a. Similarly, if a ∈ Q, then f(yn) does not converge to f(a) = 1. Hence f is
continuous nowhere on R.
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(4) Let f : R→ R be given by f(x) =

{
0, if x < 0

1, if x ≥ 0.

Look at Figure 3.1 of the graph of this function.

−5 −4 −3 −2 −1 1 2 3 4
0

1

0

Figure 3.1: Figure for item 4 of Example 3.1.3.

Your earlier encounter with the notion of continuity at school level should
lead you to infer that f is continuous at all nonzero a but not at 0. Your
guess is correct and we shall prove it.

Let a 6= 0. Either a > 0 or a < 0. Let us assume a < 0. If (xn) is real
sequence converging to a, then we know (from Proposition 2.1.22) that there
exists N ∈ N such that xk < 0 for k ≥ N . Hence the sequence (f(xn)) is
such that f(xk) = 0 for k ≥ N (Remark 2.1.21). Hence f(xn) → 0 = f(a).
We conclude that f is continuous at a. Similarly, we can conclude that f is
continuous at a > 0.

What happens at a = 0? Consider xn = 1/n, yn = −1/n, and zn = (−1)n/n.
All three sequences converge to 0. But we have f(xn)→ 1, f(yn)→ −1 and
the worst of all is (f(zn)), which does not converge at all! Therefore, f is not
continuous at 0.

Thus f is continuous at all nonzero elements of R and is not continuous at 0.

(5) Let f : R→ R be given by f(x) =

{
x2, if x ≥ 0

x, if x < 0.

Look at the graph of f . (See Figure 3.2.) You will be convinced of the conti-
nuity of f .

If a 6= 0, the continuity at a is established by the same argument as in the last
example. At a = 0, we need to show that if xn → 0, then f(xn)→ 0. Now xn
could be non-negative or negative so that f(xn) could be x2

n or xn. If xn → 0,
there exists N such that for k ≥ N , we have |xk| ≤ 1 and hence

∣∣x2
k

∣∣ ≤ |xk|.
For such k, we have |f(xk)| ≤ |xk|. Since xn → 0 iff |xn| → 0, we see that
0 ≤ |f(xk)| ≤ |xk|. By the sandwich lemma, it follows that |f(xk)| → 0 and
hence f(xk)→ 0. That is, f is continuous at 0.

Let m,n ∈ N. Consider f(x) =

{
xn, if x ≥ 0

xm, if x < 0.
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−2 −1 1 2

−1

1

2

0

Figure 3.2: Figure for item 5 of Example 3.1.3.

What can you say about the continuity of f?

(6) Let R∗ = R \ {0}. Let f : R∗ → R∗ be given by f(x) = 1/x. Then f is
continuous on R∗.
This is easy. If a ∈ R∗ and (xn) is a sequence in R∗, then xn → a im-
plies 1/xn → 1/a by the algebra of convergent sequences, (Item 4 of Theo-
rem 2.1.26). Hence f is continuous at a and hence on all of R∗.

(7) Let f : R→ R be given by

f(x) =

{
α, if x < 0

ax2 − bx+ c, if x ≥ 0.

What value of α ensures the continuity of f at 0?

If (sn) is a sequence such that sn < 0 and sn → 0, then f(sn)→ α. If f has
to be continuous at 0, then f(sn) → f(0) = c. Hence a necessary condition
for the continuity of f at 0 is that α = c.

To complete the proof, we need to show that if α = c, then f is continuous
at 0. Let xn → 0. We need to estimate |f(xn)− c|. We have

|f(xn)− c| =

{
0, if xn < 0

ax2
n − bxn, otherwise.

(3.1)

Since xn → 0, by the algebra of convergent sequences, ax2
n− bxn → 0. Given

ε > 0, there exists N ∈ N such that for k ≥ N , we have
∣∣ax2

k − bxk
∣∣ < ε.

Hence (3.1) becomes |f(xk)− c| < ε for k ≥ N . Hence, f is continuous at 0.
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Exercise Set 3.1.4.

(1) Let f : J → R be continuous. Let J1 ⊂ J . Let g be the restriction of f to J1.
Show that g is continuous on J1.

(2) Let f(x) = 3x for x ∈ Q and f(x) = x+ 8 for x ∈ R \Q. Find the points at
which f is continuous.

(3) Let f(x) = x if x ∈ Q and f(x) = 0 if x /∈ Q. Then show that f is continuous
only at x = 0.

(4) Let f : R → R be continuous. Assume that f(r) = 0 for r ∈ Q. Show that
f = 0.

(5) Let f, g : R → R be continuous. If f(x) = g(x) for x ∈ Q, then show that
f = g.

(6) Let f : R → R be continuous which is also an additive homomorphism, that
is, f(x+ y) = f(x) + f(y) for all x, y ∈ R. Then f(x) = λx where λ = f(1).

(7) Let

f(x) =

{
x sin(1/x), if x 6= 0

0, if x = 0.

Show that f is continuous at 0.

(8) Let f : R→ R be defined by f(x) = x− [x], where [x] stands for the greatest
integer less than or equal to x. At what points is f continuous?

(9) Let f : R → R be defined by f(x) = min{x − [x], 1 + [x] − x}, that is, the
minimum of the distances of x from [x] and [x] + 1. At what points is f
continuous?

(10) Let f : J → R be continuous. Let α ∈ Im (f). Let S := f−1(α). Show that if
(xn) is a sequence in S converging to an element a ∈ J , then a ∈ S.

Let f, g be real-valued functions defined on a subset J ⊂ R and α ∈ R. We
define new functions f + g, fg, αf , |f | and 1/h if h(x) 6= 0 for x ∈ J as follows.

(f + g)(x) := f(x) + g(x), x ∈ J,
(fg)(x) := f(x)g(x), x ∈ J,
(αf)(x) := αf(x), x ∈ J,

(1/h)(x) := 1/h(x), x ∈ J,
|f | (x) := |f(x)| , x ∈ J.

Note that the expressions on the RHS of the definitions involve standard arith-
metic operations on R. For example, f(x)g(x) is the product of the two real
numbers f(x) and g(x).
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Theorem 3.1.5 (Algebra of Continuous Functions). Let f, g : J → R be contin-
uous at a ∈ J . Let α ∈ R. Then:

1. f + g is continuous at a.
2. αf is continuous at a.
3. The set of functions from J → R continuous at a is a real vector space.
4. The product fg is continuous at a.
5. Assume further that f(a) 6= 0. Then there exists δ > 0 such that for each

x ∈ (a−δ, a+δ)∩J → R, we have f(x) 6= 0. The function 1
f : (a−δ, a+δ)∩J → R

is continuous at a.
6. |f | is continuous at a.
7. Let h(x) := max{f(x), g(x)}. Then h is continuous at a. Similarly, the func-

tion k(x) := min{f(x), g(x)} is continuous at a.
8. Let fi : Ji → R be continuous at ai ∈ Ji, i = 1, 2. Assume that f1(J1) ⊂ J2

and a2 = f1(a1). Then the composition f2 ◦ f1 is continuous at a1.

Proof. You will see the advantage of our definition of continuity. All proofs are
immediate applications of the analogous results in the theory of convergent se-
quences.

To prove (1), let (xn) be a sequence in J such that xn → a. We need to prove
that (f + g)(xn)→ (f + g)(a). By definition, (f + g)(xn) = f(xn) + g(xn). Since
f and g are continuous at a, we have f(xn) → f(a) and g(xn) → g(a). By the
algebra of convergent sequences, we have f(xn) + g(xn)→ f(a) + g(a). That is,
(f + g)(xn)→ f(a) + g(a). Since (f + g)(a) = f(a) + g(a), we have proved that
for any sequence xn → a, we have (f + g)(xn)→ (f + g)(a). Therefore, f + g is
continuous at a.

We were very elaborate here so that you could see how the definitions are
used.

Proof of (2) is similar and left to the reader.

(3) follows from (1) and (2) and involves a detailed verification of the axioms
of a vector space.

Let us prove (4). Let (xn) be a sequence in J such that xn → a. We need
to prove that (fg)(xn) → (fg)(a). Now, (fg)(xn) = f(xn)g(xn). Since f and g
are continuous at a, we have f(xn) → f(a) and g(xn) → g(a). By the algebra
of convergent sequences, we have f(xn)g(xn) → f(a)g(a). That is, (fg)(xn) →
f(a)g(a). Since (fg)(a) = f(a)g(a), we have proved that for any sequence xn → a,
we have (fg)(xn) → (fg)(a). Therefore, fg is continuous at a. (What we have
done here is to cut and paste the proof of (1) and replaced addition by product!)

We now prove (5) by contradiction. To exploit the continuity at a, we need to
generate a sequence (xn) in J such that xn → a. As we have pointed out earlier
in Item 1 of Example 2.4.2, we have to look at intervals of the form (a− 1

n , a+ 1
n ).

Now if no δ > 0 is as required in (5), then δ := 1/n will not be as required. In
particular, for δ = 1/n, there exists xn ∈ (a− 1

n , a+ 1
n )∩ J such that f(xn) = 0.

By the sandwich lemma, xn → a. Since f is continuous at a, we must have
f(xn) → f(a). Since f(xn) = 0 for all n ∈ N, f(xn) → 0. By the uniqueness
of the limit, we conclude f(a) = 0, a contradiction. We therefore conclude that
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there exists δ > 0 such that f(x) 6= 0 for x ∈ (a − δ, a + δ) ∩ J . Hence 1/f is
defined on (a− δ, a+ δ) ∩ J . (Note that a lies in the intersection.)

To complete the proof of (5), we need to establish 1/f is continuous at a ∈
Ja := (a − δ, a + δ) ∩ J . Let (xn) be a sequence in Ja such that xn → a. Since
f(xn) 6= 0, by algebra of convergent sequences, we conclude that 1/f(xn) →
1/f(a). Since 1/f(xn) = (1/f)(xn) etc., we have shown that 1/f is continuous
at a.

We now prove (6). With the notation established above in (1)–(4), we need
to prove that |f | (xn) → |f | (a). Since f is continuous at a, f(xn) → f(a), and
hence |f(xn)| → |f(a)|. That is, |f | (xn)→ |f | (a). Thus, |f | is continuous at a.

To prove (7), we recall Item 9 of Theorem 1.4.2. We have

max{f, g}(x) =
(f(x) + g(x)) + |f(x)− g(x)|

2
=

1

2
((f + g) + |f − g|) (x)

min{f, g}(x) =
(f(x) + g(x))− |f(x)− g(x)|

2
=

1

2
((f + g)− |f − g|) (x).

The functions on the rightmost side of these equations are continuous by (1), (2),
and (6). Hence the result follows.

You might have noticed, while talking continuity of f , that we allowed the
domain J to be any nonempty subset of R. Let us look at some interesting
examples of J which are not intervals.

Let J = {a}. (Technically this is an interval!) Let f : J → R be any function.
If (xn) is a sequence in J , then necessarily xn = a for all n ∈ N. Hence xn → a
and (f(xn)) is the constant sequence (f(a)). It follows that f is continuous at a
and hence on J . Thus we conclude that f : J → R is continuous.

Let J := {a1, . . . , an}. Let f : J → R. Let a := aj for a fixed 1 ≤ j ≤ n. If (xn)
is a sequence in J such that xn → a, then there exists N ∈ N such that xn = xj
for n ≥ N . (Why? Take ε := min{|ak − aj | : k 6= j, 1 ≤ k ≤ n} > 0. Then there
exists N ∈ N such that |xn − a| < ε. This can happen only when xn = a by our
choice of ε.) Hence it turns out that the sequence (f(xn)) is eventually constant,
the constant being f(a). Consequently, f(xn) → f(a). Hence f is continuous at
a. Since a ∈ J was arbitrary, f is continuous on J . We conclude that f : J → R
is continuous on J .

You can argue in a similar way to prove that any function f : Z → R is
continuous.

Remark 3.1.6. This remark may be skipped on first reading. Go through the
proof in the last paragraph. What made the proof work?

A careful study will yield the following conclusion. If the set J is such thatε :=
inf{|x− y| : x, y ∈ J : x 6= y} is positive, then we can repeat the same argument
to conclude that any f : J → R is continuous.

Note, however, that this condition is a sufficient condition but not necessary.
See Item 10 of Example 3.2.3 on page 77.
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We could have also attacked the case of finite A as follows. If A :=
{a1, . . . , an}, let Ak := {ak}, 1 ≤ k ≤ n. Then dA = min{dAk

: 1 ≤ k ≤ n}
is continuous by item 5 of Theorem 3.1.5.

The general case of A is a little difficult. We shall return to this later; see
Example 3.2.5 on page 77.

Example 3.1.7. If A ⊂ R is a nonempty subset, define f(x) := glb {|x− a| : a ∈
A}. Then f is continuous on R and is usually denoted by dA. Look at Figure 3.3
for A = {a}, A = {a, b} and A = [a, b], (a, b).

Figure 3.3: Graph of distance function.

Exercise 3.1.8. Let A = Z. Write down dA explicitly and draw its graph. This
function and functions in Example 3.1.7 are typical “saw-tooth” functions. Do
you understand why they are called so?

Exercise Set 3.1.9.

(1) Let f(x) := x and g(x) := x2 for x ∈ R. Find max{f, g} and draw its graph.

(2) Let f, g : [−π, π] → R be given by f(x) := cosx and g(x) := sinx. Draw the
graph of min{f, g}. See Figure 3.4.

Figure 3.4: min{sinx, cosx}.



3.2. ε-δ DEFINITION OF CONTINUITY 71

(3) Any polynomial function f : J → R of the form f(x) := a0 +a1x+ · · ·+anx
n

is continuous on J .

(4) A rational function is a function of the form f(x) = p(x)
q(x) where p, q are

polynomial functions. The domain of a rational function is the complement
(in R) of the set of points at which q takes the value 0. The rational functions
are continuous on their domains of definition.

3.2 ε-δ Definition of Continuity

We now give the standard definition of continuity using ε - δ. To understand this
definition, consider the following situation. Think of f as a process which will
produce a new material y if x is its ingredient. If the customer wants an output
y0, we know that if we can input x0, our process is so reliable that we shall get
y0. In real life, we cannot be sure of the purity or genuineness of the input x0.
The customer is aware of this and he sets his limit of error tolerance ε > 0. He
says that he is ready to accept y provided it is “ε-close” to y0. Since our process
f is reliable, we know if we can ensure an input x which is δ-close to x0, we shall
end up with an output y = f(x), which will be ε-close to the desired output. Do
not worry too much if you find all this too vague. Even thinking along these lines
will make you appreciate the next definition.

Definition 3.2.1. Let f : J → R be given and a ∈ J . We say that f is continuous
at a if for any given ε > 0, there exists δ > 0 such that

x ∈ J and |x− a| < δ =⇒ |f(x)− f(a)| < ε. (3.2)

We offer two pictures (Figures 3.5 and 3.6) to visualize this definition.

a f(a)
f(a)− ε f(a) + εa− δ a+ δ

x∈ f(x)∈

f
symbol means x ∈ (a− δ, a+ δ)

Figure 3.5: Continuity of f at a.

Theorem 3.2.2. The definitions of continuity in Definition 3.1.1 and Defini-
tion 3.2.1 are equivalent.

Proof. Let f be continuous at a according to Definition 3.1.1. We now show that f
is continuous according to ε-δ definition. We prove this by contradiction. Assume
the contrary. Then there exists ε > 0 for which no δ as required exists. This means
that if a δ > 0 is given, there exists x ∈ J∩(a−δ, a+δ) such that |f(x)− f(a)| ≥ ε.
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aa− δ a+ δ

f(a)

f(a) + ε

f(a)− ε

y = f(x)

Figure 3.6: ε-δ definition of continuity.

As said earlier, we want to find a sequence (xn) in J converging to a. For each
δ = 1/k, we have xk ∈ J ∩ (a − 1/k, a + 1/k) with |f(xk)− f(a)| ≥ ε. Since
xk → a, we must have f(xk) → f(a), that is, |f(xk)− f(a)| → 0. This cannot
happen, since |f(xk)− f(a)| ≥ ε for all k ∈ N. This contradiction shows that our
assumption that no such δ as required in Definition 3.2.1 is wrong.

Assume that f is continuous according to the ε–δ definition. Let xn ∈ J be
such that xn → a. To prove f(xn) → f(a), let ε > 0 be given. Then by the ε-δ
definition applied to f , there exists δ > 0 such that (3.2) holds. Since xn → a,
for the δ > 0, there exists N such that

n ≥ N =⇒ |xn − a| < δ.

It follows that if n ≥ N , xn ∈ (a−δ, a+δ) and hence f(xn) ∈ (f(a)−ε, f(a)+ε).
That is, f(xn)→ f(a).

Example 3.2.3. We look at some examples and prove their continuity or oth-
erwise using the ε - δ definition. This will give us enough practice to work with
the ε-δ definition. The basic idea to show the continuity of f at a is to obtain an
estimate of the form

|f(x)− f(a)| ≤ Ca |x− a| ,

where Ca > 0 may depend on a. There are situations when this may not work. See
Item 9 of Example 3.2.3 below. In Items 3 and 6, one can choose Ca independent
of a.

(1) Let f : R→ R be defined by f(x) = x.

To check continuity at a, we need to estimate |f(x)− f(a)| = |x− a|. We
wish to have |f(x)− f(a)| = |x− a| < ε, whenever |x− a| < δ. This suggests
that if ε > 0 is given, we may take δ = ε. Now for a textbook proof.
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Let a ∈ R. Let ε > 0 be given. Let δ = ε. Then for any x with |x− a| < δ,
we have

|f(x)− f(a)| = |x− a| < δ = ε.

(2) Let f : R→ R be defined by f(x) = x2.

We need to estimate |f(x)− f(a)| to check of continuity of f at a. Now

|f(x)− f(a)| =
∣∣x2 − a2

∣∣ = |(x+ a)(x− a)| = |x+ a| |x− a| .

Since we want an estimate of the form |f(x)− f(a)| ≤ Ca |x− a|, an obvious
thing to do is to form the estimate

|f(x)− f(a)| ≤ (|x|+ |a|) |x− a| .

We need to estimate |x| in terms of a. Assume that we have found a δ. Then
|x| = |x− a+ a| ≤ |x− a|+ |a| < δ+ |a|. If a δ works, any δ′ ≤ δ also works,
and we may as well assume that δ < 1. Hence we get an estimate of the form
|x| < 1 + |a|. That is, we are restricting x in the interval (a− 1, a+ 1). The
final estimate therefore is of the form

|f(x)− f(a)| ≤ (1 + 2 |a|) |x− a| .

So, if we want |f(x)− f(a)| < ε, it is enough to make sure (1+2 |a|) |x− a| <
ε. That is, we need to ensure |x− a| < ε/(1+2 |a|). This suggests that we take
δ < ε/(1+2 |a|). Since we also wanted the first estimate, namely, |x| < |a|+1,
so we need to take δ < min{1, ε

1+2|a|}. Now we are ready for a textbook proof.

Fix a ∈ R. Let ε > 0 be given. Choose δ < min{1, ε
1+2|a|}. Let x ∈ R be such

that |x− a| < δ. Then |x− a| < 1 so that |x| = |x− a+ a| ≤ |x− a|+ |a| <
1 + |a|. Consider

|f(x)− f(a)| =
∣∣x2 − a2

∣∣ = |x+ a| |x− a|
≤ (|x|+ |a|) |x− a|
≤ (1 + 2 |a|) |x− a|
< (1 + 2 |a|)δ < ε.

Thus, f is continuous at a ∈ R and hence on R, since a was an arbitrary
element of R.

(3) Let R > 0 and f : [−R,R]→ R be defined as f(x) = x2.

Here it is a very straightforward estimate. Proceeding as in the last example,
we arrive at |f(x)− f(a)| ≤ (|x|+ |a|) |x− a|. Since both x, a ∈ [−R,R], we
have obvious estimates |x| ≤ R and |a| ≤ R. Hence we have |f(x)− f(a)| ≤
2R |x− a|. So we need to ensure 2R |x− a| < ε. This leads us to take any
positive δ < ε

2R .
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We now write down a textbook proof. Let a ∈ [−R,R] and let ε > 0 be given.
Choose 0 < δ < ε

2R . Let |x− a| < δ and x ∈ [−R,R]. We then have

|f(x)− f(a)| ≤ |x+ a| |x− a|
≤ (|x|+ |a|) |x− a|
≤ (R+R) |x− a|

< 2R
ε

2R
= ε.

(4) Consider f : R → R defined by f(x) = xn, very similar to item 2 of Exam-
ple 3.2.3 above. We need to estimate

|f(x)− f(a)|
= |xn − an|
=
∣∣(x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1

∣∣
≤ |x− a|

(∣∣xn−1
∣∣+
∣∣xn−2a

∣∣+ · · ·+
∣∣an−1

∣∣)
≤ |x− a|

[
(1 + |a|)n−1 + |a| (1 + |a|)n−2 + · · ·+ an−1

]
≤ |x− a|

[
(1 + |a|)n−1 + (1 + |a|)n−1 + · · ·+ (1 + |a|)n−1

]
= n(1 + |a|n−1

) |x− a| .

Let Ca := n(1 + |a|n−1
) so that |f(x)− f(a)| ≤ Ca |x− a|. We therefore are

led to take δ < min
{

1, ε
Ca(1+|a|n−1)

}
.

Can you write a textbook proof on your own now?

(5) Let f : (0,∞)→ R be given by f(x) = x−1. Go through the proof of 1/xn →
1/x on page 39. Let a > 0 be given. We need to estimate∣∣∣∣ 1x − 1

a

∣∣∣∣ =

∣∣∣∣x− axa

∣∣∣∣
=

1

x

1

a
|x− a|

≤ 2

a

1

a
|x− a| for x >

a

2
.

So, for a given ε > 0, , we take δ < min{a2 ,
a2ε
2 }.

Write down a textbook proof now.

(6) Fix α > 0. Let f : (α,∞)→ R be given by f(x) = x−1.

The twist here is similar to item 3 of Example 3.2.3.

Proceeding as in the last example, we arrive at

|f(x)− f(a)| ≤ 1

xa
|x− a| ≤ 1

α2
|x− a| ,

since x, a ≥ α. Hence we may choose δ < α2ε
2 .
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(7) Let f : (0,∞)→ R be given by f(x) := x1/n for a fixed n ∈ N.

If our aim is to find an estimate of the form

|f(x)− f(a)| =
∣∣∣x1/n − a1/n

∣∣∣ ≤ Ca |x− a| ,
the way out seems to be to use the identity

tn − sn = (t− s)(tn−1 + · · ·+ sn−1).

Let t := x1/n and s := a1/n. Then

|x− a| = |tn − sn| = |t− s|
∣∣tn−1 + · · ·+ sn−1

∣∣ .
What we want is a lower bound for the RHS. If we restrict x so that x >
a/2, then the RHS is greater than or equal to |t− s|n(a/2)n−1. Let Ca :=
n(a/2)n−1. Then we obtain an estimate of the form

|x− a| ≥ C |t− s| or |t− s| ≤ 1

Ca
|x− a| .

Since we need to ensure that 1
Ca
|x− a| < ε, we may take a positive δ < Caε.

Since we also wanted x > a/2, the choice of δ is any positive number less
than min{a2 , Caε}. Now you may write down a textbook proof.

(8) Let f : R→ R, f(x) =

{
x2, if x < 0

x, if x ≥ 0.

If a 6= 0, we may restrict x so that the sign of x is the same as that of a. For
example, we may confine ourselves to (−∞, a/2) if a < 0 or to (a/2,∞) if
a > 0. This means that we need to take δ < |a| /2.

Let a > 0 and x > a/2. Then

|f(x)− f(a)| = |x− a| .

This suggests that we take δ < min{a2 , ε}.
Let a < 0 and x < 0. Then

|f(x)− f(a)| =
∣∣x2 − a2

∣∣ = |x+ a| |x− a| ≤ (|x|+ |a|) |x− a| .

If we restrict x to an −a interval around a, that is, if x ∈ (−2a, 0), then the
estimate above leads us to |f(x)− f(a)| ≤ 3 |a| |x− a|. Thus we may choose
δ such that 0 < δ < ε

3|a| .

Let a = 0. Then f(x) could be x2 or x. Hence |f(x)− f(a)| could therefore
be either

∣∣x2 − a2
∣∣ =

∣∣x2
∣∣ or |x− a| = |x|. If we restrict x so that |x| < 1, we

have
∣∣x2
∣∣ ≤ |x|. Hence for |x| < 1, we have

|f(x)− f(a)| ≤ |x| .

This suggests that we may take δ < min{1, ε}.
Needless to say, you are expected to write a textbook proof of all the cases.



76 CHAPTER 3. CONTINUITY

(9) Thomae’s function: Let f : (0, 1)→ R given by

f(x) =

{
0, x is irrational

1/q, x = p/q with p, q ∈ N, p, q have no common factor.

We shall show that f is continuous at all irrational points and not continuous
at any rational point of (0, 1).

Let a ∈ Q ∩ (0, 1). We need to estimate |f(x)− f(a)|. If x is irrational, then
|f(x)− f(a)| = |f(a)| = 1/q where x = p/q in lowest terms.If ε < 1/q, then
there is no hope of making |f(x)− f(a)| < ε if x is irrational. By the density
of irrationals, we can always find an irrational x ∈ (a− δ, a+ δ). Hence f is
not continuous at a.

Let us write down a textbook proof. Let a = p/q ∈ (0, 1) in lowest terms.
We claim f is not continuous at a. We shall prove this by contradiction.
Let us choose 0 < ε < 1/q. Suppose there exists δ > 0 such that for x ∈
(a− δ, a+ δ)∩ (0, 1), we have |f(x)− f(a)| < ε. Now (a− δ, a+ δ)∩ (0, 1) is
an open interval. There exists an irrational x ∈ (a− δ, a+ δ) ∩ (0, 1), by the
density of irrationals. For this irrational x, we obtain

|f(x)− f(a)| = |0− f(a)| = 1

q
> ε,

a contradiction. This establishes the claim.

Now let a ∈ (0, 1) be irrational. We need to estimate |f(x)− f(a)|. If x is
also irrational, then |f(x)− f(a)| = 0. So, we need to concentrate on rational
x = p/q, in lowest terms. In such a case, |f(x)− f(a)| = 1/q. If we want
1/q < ε, then we want q > 1/ε. There are only finitely many such rational
numbers in (0, 1). Since a is irrational, we can choose a δ > 0 such that
(a − δ, a + δ) avoids these finitely many rational numbers. For any rational
r = p/q in (a − δ, a + δ), we have q > 1/ε. We now work out a proof based
on this argument.

Let ε > 0 be given. If r = p/q (with p, q ∈ N and gcd(p, q) = 1) is a rational
number in (0, 1), then f(r) = 1/q is less than ε iff q > 1/ε. The number
of such positive integers is at most [1/ε], the integral part of 1/ε. Now if
r = p/q ∈ (0, 1) with 1/q ≥ ε, then 1 ≤ p < q. Hence the set of all rational
numbers p/q ∈ (0, 1) with 1/q ≥ ε is

{p/q : 1 ≤ q < [1/ε], 1 ≤ p < q}.

This is a finite set, say, {rk = pk/qk : 1 ≤ k ≤ N}. Since a is irrational,
a 6= rk for 1 ≤ k ≤ N . Therefore, |a− rk| > 0 for 1 ≤ k ≤ N . It follows that
δ := min{|a− rk| : 1 ≤ k ≤ n} > 0. If |x− a| < δ and x = p/q, then q ≥ 1/ε.
Hence we obtain

|f(x)− f(a)| =

{
0, if x is irrational

1/q < ε, if x is rational.
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That is, f is continuous at irrational numbers in (0, 1).

(10) Consider J = { 1
n : n ∈ N}. Let f : J → R be any function. Let a = 1

k ∈ J be
fixed. We claim that f is continuous at a.

Consider the interval Jk := ( 1
k+1 ,

1
k−1 ), if k ≥ 2 and ( 1

2 , 1] if k = 1, the only
element of J in Jk is 1/k.

Note that if we choose 0 < δ < 1
k −

1
k+1 = min{ 1

k −
1
k+1 ,

1
k−1 −

1
k}, if k ≥ 2,

then we conclude if x ∈ (a−α, a+ δ)∩ J then x = a. If ε > 0 is any positive
number, this choice of δ will do the job.

Note that min{|x− y| : x, y ∈ J, x 6= y} = 0. Compare this with a remark in
Example 3.1.7.

(11) Consider J = { 1
n : n ∈ N} ∪ {0}. As seen in the last example, we can show

that any f : J → R is continuous at any a = 1/k. But, the continuity of f at
0 leads to an interesting connection with convergent sequences.

To give you some indication of this, consider a sequence yn := f(1/n) and
y := f(0). Do you see the connection?

We claim that f is continuous at 0 iff yn → y.

Assume that f is continuous at 0. Since 1/n→ 0, by continuity of f at 0, it
follows that yn ≡ f(1/n)→ f(0) = y.

Conversely, if yn → 0, we prove that f is continuous at 0. Let ε > 0 be given.
Since yn → 0,

∃N ∈ N such that n ≥ N =⇒ |yn − y| < ε. (3.3)

Let 0 < δ < 1/N . Now if x ∈ J , then x = 1/k for some k ∈ N. So, |x− 0| < δ
is the same as saying that 1/k < δ and hence k > N . Hence

|f(x)− f(0)| = |f(1/k)− f(0)| < ε, by (3.3).

Exercise 3.2.4. We say that a function f : J → R is Lipschitz on J if there
exists L > 0 such that |f(x)− f(y)| ≤ L |x− y| for all x, y ∈ J . Show that any
Lipschitz function is continuous.

The slope of the chord joining the points (x, f(x)) and (y, f(y)) on the graph

of f is f(x)−f(y)
x−y . Hence f is Lipschitz iff the set of slopes of all possible chords

on the graph of f is bounded in R.

Example 3.2.5. We show that the function dA of Example 3.1.7 is Lipschitz
on R. Let x, y ∈ R. For any a ∈ A, we have |x− a| ≤ |x− y| + |y − a|. Let
ra := |x− a| and sa := |x− y| + |y − a|. Then the sets R := {ra : a ∈ A} and
S := {sa : a ∈ A} are indexed by the same set A and we have ra ≤ sa for
each a ∈ A. We have already seen (Item 4 of Exercise 1.3.27 on page 18) that
glb R ≤ glb S. Clearly, glb R = dA(x) and glb S = |x− y|+dA(y). We therefore
obtain

dA(x) ≤ |x− y|+ dA(y) and hence dA(x)− dA(y) ≤ |x− y| .
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Interchanging x and y in this inequality, we get dA(y) − dA(x) ≤ |x− y|. Thus,
± (dA(x)− dA(y)) ≤ |x− y|. We have thus proved |dA(x)− dA(y)| ≤ |x− y|.

Exercise 3.2.6. Let f : J → R be continuous at c with f(c) 6= 0. Use ε-δ
definition to show that there exists δ > 0 such that |f(x)| > |f(c)| /2 for all
x ∈ (c− δ, c+ δ) ∩ J .

In particular, if f(c) > 0, then there exists δ > 0 such that f(x) > f(c)/2 for
all x ∈ (c− δ, c+ δ) ∩ J .

What is the analogue of this when f(c) < 0? Conclude that if f is continuous
at c and if f(c) 6= 0, then f retains the sign of f(c) in an open interval containing
c.

Exercise 3.2.7. Let f : J → R be continuous at a ∈ J . Show that f is locally
bounded, that is, there exist δ > 0 and M > 0 such that

∀ x ∈ (a− δ, a+ δ) ∩ J =⇒ |f(x)| ≤M.

Remark 3.2.8. The results of the last two exercises are about the local properties
of continuous functions. We shall apply them to get some global results. See
Theorem 3.3.1 and Theorem 3.4.2.

Remark 3.2.9. To verify whether or not a function is continuous at a point
a ∈ J , we do not have to know the values of f at each and every point of J ; we
need only to know the values f(x) for x ∈ J “near” a or “close to” a, that is, for
all x ∈ (a− δ, a+ δ) ∩ J for some δ > 0.

3.3 Intermediate Value Theorem

Let f : [a, b]→ R be a continuous function such that f(a) and f(b) are of opposite
signs. Draw the graphs of a few such functions, say, at least one for which f(a) > 0
(necessarily f(b) < 0) and another one for which f(a) < 0. Do you notice anything
in each of the cases? Does the graph meet the x-axis? Can you formulate a result
based on your observations?

Theorem 3.3.1, Theorem 3.4.1, and Theorem 3.4.6 are the most important
global results on continuity. See Remark 3.4.4.

Theorem 3.3.1 (Intermediate Value Theorem). Let f : [a, b] → R be a contin-
uous function such that f(a) < 0 < f(b). Then there exists c ∈ (a, b) such that
f(c) = 0.
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Strategy: See Figures 3.7, and 3.8. We wish to locate the “first” c from a such
that f(c) = 0. For all a ≤ x < c, we observe that f(t) < 0 on [a, x]. The required
point c is the lub of all such x. This suggests us to consider

E := {x ∈ [a, b] : f(y) ≤ 0 for y ∈ [a, x]}.

By the local property of f , the set E 6= ∅ and bounded above byb. Using again the

local property, we can show that f(c) < 0 and f(c) > 0 are not possible.

Figure 3.7: IVT, Figure 1. Figure 3.8: IVT, Figure 2.

Proof. We define E := {x ∈ [a, b] : f(y) ≤ 0 for y ∈ [a, x]}.
Using the continuity of f at a for ε = −f(a)/2, we can find a δ > 0 such that

f(x) ∈ (3f(a)/2, f(a)/2) for all x ∈ [a, a+ δ). This shows that a+ δ/2 ∈ E. (See
Figure 3.9.)

Since E is bounded by b, there is c ∈ R such that c = supE. Clearly we have
a+ δ/2 ≤ c ≤ b and hence c ∈ (a, b]. We claim that c ∈ E and that f(c) = 0.
Case 1. Assume that f(c) > 0. Then by Exercise 3.2.6, there exists δ > 0 such that
for x ∈ (c−δ, c+δ)∩[a, b], we have f(x) > 0. Since c−δ < c, there exists x ∈ E such
that c− δ < x. Since x ∈ E, we have f(t) ≤ 0, for t ∈ [a, x] = [a, c− δ]∪ (c− δ, x],
a contradiction. See Figure 3.10.

Figure 3.9: IVT, Figure 3. Figure 3.10: IVT, Figure 4.

Case 2. Assume that f(c) < 0. Then by Exercise 3.2.6, there exists δ > 0 such that
for x ∈ (c− δ, c+ δ)∩ [a, b], we have f(x) < 0. Since c− δ < c, there exists x ∈ E
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such that f(t) ≤ 0, for t ∈ [a, x]. Hence f(t) ≤ 0 for all t ∈ [a, x]∪(c−δ, c+δ/2] =
[a, c+ δ/2]. That is, c+ δ/2 ∈ E, contradicting c = lub E. See Figure 3.11.

Figure 3.11: IVT, Figure 5.

Hence we are forced to conclude that f(c) = 0.

2nd Proof. Let J0 := [a, b]. Let c1 be the mid–point of [a, b]. Now there are three
possibilities for f(c1). It is zero, negative, or positive. If f(c1) = 0, then the proof
is over. If not, we choose one of the intervals [a, c1] or [c1, b] so that f assumes
values with opposite signs at the end points. To spell it out, if f(c1) < 0, then
we take the subinterval [c1, b]. If f(c1) > 0, then we take the subinterval [a, c1].
The chosen subinterval will be called J1 and we write it as [a1, b1].

We now bisect the interval J1 and choose one of the two subintervals as
J2 := [a2, b2] so that f takes values with opposite signs at the end points. We
continue this process recursively. We thus obtain a sequence (Jn) of intervals with
the following properties:

(i) If Jn = [an, bn], then f(an) ≤ 0 and f(bn) ≥ 0.
(ii) Jn+1 ⊂ Jn.
(iii) `(Jn) = 2−n`(J0) = 2−n(b− a).
By nested interval theorem (Theorem 2.4.4), there exists a unique c ∈ ∩Jn.

Since an, bn, c ∈ Jn, we have

|c− an| ≤ `(Jn) = 2−n(b− a) and |c− bn| ≤ `(Jn) = 2−n(b− a).

Hence it follows that lim an = c = lim bn. Since c ∈ J and f is continuous on J ,
we have

f(an)→ f(c) and f(bn)→ f(c).

Since f(an) ≤ 0 for all n, it follows that limn f(an) ≤ 0, that is, f(c) ≤ 0, (by the
analogue of Item 2 in Exercise 2.1.28). In an analogous way, f(c) = lim f(bn) ≥ 0.
We are forced to conclude that f(c) = 0. The proof is complete.
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Theorem 3.3.2 (Intermediate Value Theorem – Standard Version). Let
g : [a, b] → R be a continuous function. Let λ be a real number between g(a)
and g(b). Then there exists c ∈ (a, b) such that g(c) = λ.

Proof. Strategy: Apply the previous version to the function f(x) = g(x)− λ.

Assume without loss of generality, g(a) < λ < g(b). Then f(a) < 0 and
f(b) > 0. Also g is continuous on [a, b]. Hence, by Theorem 3.3.1, there exists a
c ∈ (a, b) such that f(c) = 0. That is, g(c) = λ.

Remark 3.3.3. We made a crucial use of the LUB property of R in the proofs
of the theorems above. They are not true, for example, in Q. We shall be brief.
Consider the interval [0, 2] ∩Q and the continuous function f(x) = x2 − 2. Then
f(0) < 0 while f(2) > 0. We know that there exists no rational number α whose
square is 2. Recall also that we have shown that Q does not enjoy the LUB
property (Remark 1.3.20).

Exercise Set 3.3.4. Three typical applications of the intermediate value theo-
rem.

(1) Let J ⊂ R be an interval. Let f : J → R be continuous and f(x) 6= 0 for any
x ∈ J . Show that either f > 0 on J or f < 0 on J .

(2) Let f : R→ R be continuous taking values in Z or in Q. Then show that f is
a constant function.

(3) Let f : [a, b]→ R be a non-constant continuous function. Show that f([a, b])
is uncountable.

Remark 3.3.5. The intermediate value theorem says that the image of an in-
terval under a continuous function is again an interval. Let J ⊂ R be an interval.
Let f : J → R be continuous. We claim thatf(J) is an interval. Let y1, y2 ∈ f(J).
Assume that y1 < y < y2. We need to show that y ∈ f(J). Let yj = f(xj),
j = 1, 2 with xj ∈ J . Then by the intermediate value theorem, there exists x
between x1 and x2 such that f(x) = y. Hence the claim follows.

Theorem 3.3.6 (Existence of n-th Roots). Let α ≥ 0 and n ∈ N. Then there
exists β ≥ 0 such that βn = α.

Strategy: If we draw the graph of y = xn on [0,∞), it is obvious that the graph

intersects the line y = α. (See Figure 3.12.) The point of intersection is of the form

(x, xn = α).
We wish to appeal to the intermediate value theorem. In view of the picture above,

the obvious choice for f is f(x) = xn. We then need to find a and b such that

an < α < bn. Since α ≥ 0, we may take a = 0. Since we want bn > α, we may

choose an N ∈ N such that Nn > α. This suggests that we use the Archimedean

property. Choose N > α, then Nn > α.

Proof. Choose N ∈ N such that N > α. Then Nn ≥ N > α. Consider
f : [0,∞) → [0,∞) defined by f(x) = xn − α. Then f(0) ≤ 0 and f(N) > 0.
Intermediate value theorem applied to the pair (f, [0, N ]) yields a c ∈ [0, N ] such
that f(c) = 0, that is, cn = α.
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y = xn

y = α

Figure 3.12: Existence of nth root.

Theorem 3.3.7. Any polynomial of odd degree with real coefficients has a real
zero.

Strategy: It is enough to prove that a monic polynomial

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0, (aj ∈ R, 0 ≤ j ≤ n− 1),

of odd degree has a real zero. (Why?)

The basic idea is that as X → ∞, Xn dominates all other terms of the

polynomial. For instance, consider P (X) := X3−103X2−2012. If α > 0 is

very large, we see that the sign of P (α) is positive, though there are very

large negative terms. How do we show that Xn dominates other terms?

How do we show that the sequence (n2) goes to ∞ much faster than the

sequence (n)? It is done by considering the sequence (n2/n). Similarly,

we write P (X) = XnQ(1/X), where Q is a polynomial in 1/X. In the

example above, P (X) = X3
(

1− 103

X
− 100

X3

)
. Now each of the terms in the

expression of Q(1/X) is very close to zero if |X| is very large. Hence the

term in the brackets is positive. Hence the sign of P (X) for large values of

|X| will depend on the sign of Xn. Since n is odd, it follows that for large

negative α, P (α) < 0 and for large positive α, P (α) > 0. Now we can apply

the intermediate value theorem.

Proof. We write P (X) = Xn
(
1 + an−1

X + · · ·+ a0
Xn

)
. Note that if N ∈ N, then∣∣ aj

Nn−j

∣∣ ≤ ∣∣ajN ∣∣for any 1 ≤ j ≤ n. Let C :=
∑n−1
j=0 |aj |. We then have∣∣∣an−1

N
+ · · ·+ a0

Nn

∣∣∣ ≤ ∣∣∣an−1

N

∣∣∣+
∣∣∣an−2

N2

∣∣∣+ · · ·+
∣∣∣ a0

Nn

∣∣∣
≤
∣∣∣an−1

N

∣∣∣+
∣∣∣an−2

N

∣∣∣+ · · ·+
∣∣∣a0

N

∣∣∣
=
C

N
.
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We can choose N ∈ N such that C
N < 1/2. If |X| > N , we have the estimate∣∣an−1

N + · · ·+ a0
Nn

∣∣ < 1/2. That is, we have

1/2 ≤ 1 +
an−1

X
+ · · ·+ a0

Xn
≤ 3/2. (3.4)

Consequently, P (X) ≤ Xn/2 < 0 if X < −N and P (X) ≥ Xn/2 > 0 if
X > N . Now the intermediate value theorem asserts the existence of a zero of P
in (−2N, 2N).

Remark 3.3.8. The inequality (3.4) is true for all n ∈ N, not necessarily for
odd integers. This is a very basic inequality about polynomial functions. It says
something about the behavior of the polynomial function as |x| → ∞.

Theorem 3.3.9 (Fixed Point Theorem). Let f : [a, b] → [a, b] be continuous.
Then there exists c ∈ [a, b] such that f(c) = c. (Such a c is called a fixed point of
f .)

Proof. Consider g(x) := f(x)− x. Then g(a) ≥ 0 and g(b) ≤ 0. Apply intermedi-
ate value theorem to g.

To appreciate this, try to draw the graph of the continuous functions stated in
the theorem. Mark the points (a, f(a)) and (b, f(b)). Note that a ≤ f(a), f(b) ≤ b.
Try to join them by a curve without lifting your hands off the paper. Draw the
diagonal line y = x in the square. Do you see that they intersect? See Figure 3.13.

Figure 3.13: Fixed point theorem.

Exercise Set 3.3.10.

(1) Prove that x = cosx for some x ∈ (0, π/2).
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(2) Prove that xex = 1 for some x ∈ (0, 1).

(3) Are there continuous functions f : R → R such that f(x) /∈ Q for x ∈
Q and f(x) ∈ Q for x /∈ Q?

(4) Let f : [0, 1] → R be continuous. Assume that the image of f lies in [1, 2] ∪
(5, 10) and that f(1/2) ∈ [0, 1]. What can you conclude about the image of
f?

(5) Let f : [0, 2π] → [0, 2π] be continuous such that f(0) = f(2π). Show that
there exists x ∈ [0, 2π] such that f(x) = f(x+ π).

(6) Let p be a real polynomial function of odd degree. Show that p : R→ R is an
onto function.

(7) Show that x4 + 5x3 − 7 has at least two real roots.

(8) Let p(X) := a0 + a1X + · · · + anX
n. If a0an < 0, show that p has at least

two real roots.

(9) Let J be an interval and f : J → R be continuous and 1-1. Then f is strictly
monotone.

(10) Let I be an interval and f : I → R be strictly monotone. If f(I) is an interval,
show that f is continuous.

(11) Use the last item to conclude that the function x 7→ x1/n from [0,∞)→ [0,∞)
is continuous.

3.4 Extreme Value Theorem

Draw the graphs of continuous functions on closed and bounded intervals. Is it
possible for you to make them unbounded? For example, can you draw the graph
of a continuous function on [0, 1] which takes all positive real numbers as its
values?

Theorem 3.4.1 (Weierstrass Theorem). Let f : [a, b]→ R be a continuous func-
tion. Then f is bounded.

Strategy: The strategy for this proof is very similar to that of the Intermediate

Value Theorem. Here we use the local boundedness result, Exercise 3.2.7. Since f is

bounded around a, the set of points x such that f is bounded on [a, x] is nonempty.

If c is the LUB of this set, then c must be b. For, otherwise, f is bounded around

c and hence there exists c1 > c such that f is bounded on [a, c1].

Proof. Let E := {x ∈ J := [a, b] : f is bounded on [a, x]}. The conclusion of the
theorem is that b ∈ E.

Since f is continuous at a, using Exercise 3.2.7, we see that f is bounded on
[a, a + δ) for some δ > 0. Hence a + δ/2 ∈ E. Obviously, E is bounded by b.
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Let c = supE. Since a + δ/2 ∈ E we have a ≤ c. Since b is an upper bound for
E, c ≤ b. Thus a ≤ c ≤ b. We intend to show that c ∈ E and c = b. This will
complete the proof.

Since f is continuous at c, it is locally bounded, say, on (c − δ, c + δ) ∩ J .
Let x ∈ E be such that c − δ < x ≤ c. Then clearly, f is bounded on [a, c] ⊂
[a, x] ∪ ((c− δ, c+ δ) ∩ J). In particular, c ∈ E. If c < b, choose δ1 such that (i)
0 < δ1 < δ and (ii) c+δ1 < b. The above argument shows that c+δ1 ∈ E if c 6= b.
This contradicts the fact that c = supE. Hence c = b. This proves the result.

Strategy for second proof: If the result is false, we shall have a sequence

(xn) such that |f(xn)| > n. By Bolzano–Weierstrass theorem (2.7.5), there exists

a subsequence converging to an element x ∈ [a, b]. But then f is locally bounded

around x whereas xn’s, for arbitrarily large n, lie in the interval around x.

Second Proof. If false, there exists a sequence (xn) in [a, b] such that |f(xn)| > n
for each n ∈ N. Since [a, b] is compact, there exists a subsequence, say, (xnk

),
which converges to x ∈ [a, b]. Since |f | is continuous, we must have |f(xnk

)| →
|f(x)|, in particular, the sequence (|f(xnk

)|) is bounded, a contradiction.

Strategy for third proof: The idea for the third proof is to use nested interval

theorem. If f is not bounded on [a, b], it is not bounded on at least one of the

bisecting subintervals. Inductively, we have a nested sequence of intervals. The

function f is bounded around the common point of this nested sequence. But for

large values of n, all subintervals lie in this interval around x on which f is bounded.

Third Proof. Assume that f is not bounded on [a, b]. Then f is not bounded on
one of the subintervals, [a, (a+ b)/2] and [(a+ b)/2, b]. (Why?)

For, if |f(x)| ≤M1 for x ∈ [a, (a+b)/2] and |f(x)| ≤M2 for x ∈ [(a+b)/2, b],

then |f(x)| ≤M := max{M1,M2}, for x ∈ [a, b].

Choose such an interval and call it J1 = [a1, b1]. Note that the length of J1 is half
that of J = [a, b]. Bisect J1 into two intervals of equal length. The function f is
not bounded on at least one of the subintervals, call it J2 = [a2, b2]. Note that
b2−a2 = (b1−a1)/2 = (b−a)/22. Assume by induction, for n ≥ 2, we have chosen
Jn ⊂ Jn−1 such that the length of Jn is 2−n(b−a) and such that f is unbounded
on Jn. Bisect Jn into subintervals of equal length. Then f is not bounded on at
least one of them, call it Jn+1. Then Jn+1 ⊂ Jn and the length of Jn+1 is half
of the length of Jn and hence is 2−(n+1)(b − a). Thus we obtain a sequence of
intervals (Jn) with the following properties: (1) f is not bounded on each of the
Jn’s, (2) Jn+1 ⊂ Jn for each n, and (3) the length of Jn is 2−n(b − a). By the
nested interval theorem (Theorem 2.4.4), there exists a unique c common to all
these intervals. Using Exercise 3.2.7, we see that f is bounded on (c − δ, c + δ)
for some δ > 0.

We claim that there exists N such that if n ≥ N , we have Jn ⊂ (c−δ, c+δ). Let
x ∈ Jn. Then we estimate the distance |x− c|: |x− c| < 2−n(b−a). Since we want
to show that Jn ⊂ (c−δ, c+δ) for all large n, we need to show that for any x ∈ Jn,
we have |x− c| < δ. But, both x and c lie in Jn and hence |x− c| ≤ 2−n(b− a).
Hence we need to ensure that 2−n(b− a) < δ. Since 2−n(b− a)→ 0, there exists
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N ∈ N such that for all n ≥ N , we have |2−n(b− a)− 0| = 2−n(b−a) < δ. Hence
the claim is proved.

Since f is bounded on (c− δ, c+ δ), it is bounded on Jn ⊂ (c− δ, c+ δ). This
leads to a contradiction, since f is not bounded on Jn’s.

Remark 3.4.2. Note that the first proofs of the intermediate value theorem
and Weierstrass theorem are quite similar. We defined appropriate subsets of
[a, b] and applied the corresponding local result (Exercise 3.2.6 and Exercise 3.2.7
respectively) to get the global result. See also Remark 3.2.8.

Remark 3.4.3. If the domain is not bounded or if the domain is not closed,
then Weierstrass theorem is not true. For example, if J = (0, 1) and f(x) = 1

x ,
then f is not bounded on J .

If J = (a,∞) and f(x) = x, then f is not bounded on J .

Remark 3.4.4. The last two theorems (Theorems 3.3.1 and 3.4.1) are global
results in the following sense.

In the first case, we imposed a restriction on the domain, namely, that it is an
interval. If the domain is not an interval, the conclusion does not remain valid.

In the second result, we imposed the condition that the interval be closed and
bounded.

Remark 3.4.5. If we carefully examine the second proof, we see that we needed
only the following fact about the domain J of f :

If (xn) is a sequence in J , then it has a convergent subsequence whose limit
lies in J .

Subsets of R with this property are called compact subsets. What the second
proof yields is the following more general version.

Let J ⊂ R be a nonempty compact subset. If f : J → R is continuous, then f
is bounded on J .

If J is any closed and bounded interval, then J is compact. There are sets
which not intervals but are compact. For example, J = {1/n : n ∈ N} ∪ {0} is
compact.

Theorem 3.4.6 (Extreme Values Theorem). Let the hypothesis be as in the
Weierstrass theorem. Then there exists x1, x2 ∈ [a, b] such that f(x1) ≤ f(x) ≤
f(x2) for all x ∈ [a, b]. (In other words, a continuous function f on a closed and
bounded interval is bounded and attains its LUB and GLB.)

Proof. Let M := lub {f(x) : a ≤ x ≤ b}. If there exists no x ∈ [a, b] such that
f(x) = M , then M − f(x) is continuous at each x ∈ [a, b] and M − f(x) > 0 for
all x ∈ [a, b]. If we let g(x) := 1/(M − f(x)) for x ∈ [a, b], then g is continuous on
[a, b]. By Theorem 3.4.1, there exists A > 0 such that g(x) ≤ A for all x ∈ [a, b].
But then we have, for all x ∈ [a, b], g(x) := 1

M−f(x) ≤ A or M − f(x) ≥ 1
A . Thus

we conclude that f(x) ≤M − (1/A) for x ∈ [a, b]. It follows that lub {f(x) : x ∈
[a, b]} ≤M− 1

A . This contradicts our hypothesis that M = lub {f(x) : x ∈ [a, b]}.
We therefore conclude that there exists x2 ∈ [a, b] such that f(x2) = M .



3.5. MONOTONE FUNCTIONS 87

Let m := glb {f(x) : a ≤ x ≤ b}. Arguing similarly, we can find an x1 ∈ [a, b]
such that f(x1) = m.

Second Proof. Since M − 1
n < M = lub {f(x) : x ∈ J}, there exists xn ∈ J

such that M − 1
n < f(xn) ≤ M . Hence f(xn) → M . By Bolzano–Weierstrass,

there exists a subsequence (xnk
) such that xnk

converges to some x ∈ J . By
continuity of f at x, f(xnk

)→ f(x). Conclude that f(x) = M .

Look at the examples: (i) f : (0, 1] → R given by f(x) = 1/x. This is a
continuous unbounded function. The interval here, though bounded, is not closed
at the end points. (ii) f : (−1, 1) → R defined by f(x) := 1

1−|x| . (iii) f : R → R
defined by f(x) = x.

None of these examples contradict Theorem 3.4.1.
Note that the theorem remains true if J is assumed to be a compact subset.

See Remark 3.4.5. Which proof can be adapted to prove this more general result?

Exercise Set 3.4.7.

(1) Let f : [a, b]→ R be continuous. Show that f([a, b]) = [c, d] for some c, d ∈ R
with c ≤ d. Can you identify c, d?

(2) Does there exist a continuous function f : [0, 1]→ (0,∞) which is onto?

(3) Does there exist a continuous function f : [a, b]→ (0, 1) which is onto?

(4) Let f : [a, b] → R be continuous such that f(x) > 0 for all x ∈ [a, b]. Show
that there exists δ such that f(x) > δ for all x ∈ [a, b].

(5) Construct a continuous bijection f : [a, b]→ [c, d] such that f−1 is continuous.

(6) Construct a continuous function from (0, 1) onto [0, 1]. Can such a function
be one-one?

(7) Let f : R → R be continuous. Assume that f(x) → 0 as |x| → ∞. (Do you
understand this? If not, you may come back after completing this chapter.)
Show that there exists c ∈ R such that either f(x) ≤ f(c) or f(x) ≥ f(c) for
all x ∈ R. Give an example of a function in which only one of these happens.

(8) Let f : R → R be a function such that (i) f(R) ⊂ (−2,−1) ∪ [1, 5) and (ii)
f(0) = e. Can you give realistic bounds for f?

3.5 Monotone Functions

Definition 3.5.1. We say that a function f : J ⊂ R→ R is strictly increasing if
for all x, y ∈ J with x < y, we have f(x) < f(y).

One defines strictly decreasing in a similar way. A monotone function is either
strictly increasing or strictly decreasing.
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We shall formulate and prove the results for strictly increasing functions.
Analogous results for decreasing functions f can be arrived at in a similar way
or by applying the result for the increasing functions to −f .

Proposition 3.5.2. Let J ⊂ R be an interval. Let f : J → R be continuous and
one-one. Let a, c, b ∈ J be such that a < c < b. Then f(c) lies between f(a) and
f(b), that is either f(a) < f(c) < f(b) or f(a) > f(c) > f(b) holds.

Proof. Since f is one-one, we assume without loss of generality that f(a) < f(b).
If the result is false, either f(c) < f(a) or f(c) > f(b).

Let us look at the first case. (See Figure 3.14.) Since f(c) < f(a) < f(b),
y = f(a) lies between the values of f at the end points of [c, b]. Hence there exists
x ∈ (c, b) such that f(x) = y = f(a). Since x > a, this contradicts the fact that
f is one-one.

b

f(b)

a

f(a)

xc

f(c)

Figure 3.14: Prop. 3.5.2: Figure 1.

b

f(b)

a

f(a)

c

f(c)
y

x1 x2

Figure 3.15: Prop. 3.5.2: Figure 2.

In case you did not like the way we used y, you may proceed as follows. (See
Figure 3.15.) Fix any y such that f(c) < y < f(a). By intermediate value theorem
applied to the pair (f, [a, c]), there exists x1 ∈ (a, c) such that f(x1) = y. Since
f(a) < f(b), we also have f(c) < y < f(b). Hence there exists x2 ∈ (c, b) such
that f(x2) = y. Clearly x1 6= x2.

The second case when f(c) > f(b) is similarly dealt with.

Theorem 3.5.3. Let J ⊂ R be an interval. Let f : J → R be continuous and
one-one. Then f is monotone.

Proof. Fix a, b ∈ J , say with a < b. We assume without loss of generality that
f(a) < f(b). We need to show that for all x, y ∈ J with x < y we have f(x) <
f(y).

(i) If x < a, then x < a < b and hence f(x) < f(a) < f(b), by Proposi-
tion 3.5.2.

(ii) If a < x < b, then f(a) < f(x) < f(b), by Proposition 3.5.2.
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(iii) If b < x, then f(a) < f(b) < f(x), by Proposition 3.5.2.

In particular, f(x) < f(a) if x < a and f(x) > f(a) if x > a. (3.5)

If x < a < y, then f(x) < f(a) < f(y) by (3.5).
If x < y < a, then f(x) < f(a) by (3.5) and f(x) < f(y) < f(a) by Proposi-

tion 3.5.2.
If a < x < y, then f(a) < f(y) by (3.5) and f(a) < f(x) < f(y) by Proposi-

tion 3.5.2.
Hence f is strictly increasing.

Remark 3.5.4. Recall that the intermediate value theorem says that the image
of an interval under a continuous function is an interval. (Remark 3.3.5.)

What is the converse of this statement? The converse is in general not true.
(Can you give an example?) A partial converse is found in the next result.

Proposition 3.5.5. Let J be an interval and f : J → R be monotone. Assume
that f(J) = I is an interval. Then f is continuous.

Proof. We deal with the case when f is strictly increasing. Let a ∈ J . Assume
that a is not an endpoint of J . We prove the continuity of f at a using the ε-δ
definition. Look at Figure 3.16.

f(a)

α βx1 x2

f(x1)

f(x2)

f(a)− η

f(a) + η

s1 s2a

f(a)− ε

f(a) + ε

Figure 3.16: Figure for Proposition 3.5.5.

Since a is not an endpoint of J , there exists x1, x2 ∈ J such that x1 < a < x2

and hence f(x1) < f(a) < f(x2). It follows that there exists η > 0 such that
(f(a)− η, f(a) + η) ⊂ (f(x1), f(x2)) ⊂ I.

Let ε > 0 be given. We may assume ε < η. Let s1, s2 ∈ J be such that
f(s1) = f(a) − ε and f(s2) = f(a) + ε. Let δ := min{a − s1, s2 − a}. If x ∈
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(a − δ, a + δ) ⊂ (s1, s2), then f(a) − ε = f(s1) ≤ f(x) < f(s2) = f(a) + ε, that
is, if x ∈ (a− δ, a+ δ), then f(x) ∈ (f(a)− ε, f(a) + ε).

If a is an endpoint of J , an obvious modification of the proof works.

Corollary 3.5.6 (Inverse Function Theorem). Let f : J → R be an increasing
continuous function on an interval J . Then f(J) is an interval, f : J → f(J) is
a bijection and the inverse f−1 : f(J)→ J is continuous.

Proof. Note that f−1 is an increasing function. By Remark 3.3.5, the image f(J)
is an interval. Its image under the increasing function f−1 is the interval J . Hence,
by the last theorem, f−1 is continuous.

Remark 3.5.7. Consider the n-th root function f : [0,∞) → [0,∞) given by
f(x) := x1/n. We can use the last item to conclude that f is continuous, a fact
seen by us in Item 7 in Example 3.2.3 on page 75.

3.6 Limits

Definition 3.6.1. Let J ⊂ R be an interval and a ∈ J . Let f : J \ {a} → R be a
function. We say that limx→a f(x) exists if there exists ` ∈ R such that for any
given ε > 0, there exists δ > 0 such that (see Figure 3.17)

x ∈ J and 0 < |x− a| < δ =⇒ |f(x)− `| < ε. (3.6)

If limx→a f(x) exists, we say that the limit of the function f as x tends to a
exists. Note that a need not be in the domain of f . Even if a lies in the domain
of f , ` need not be f(a). We let limx→a f(x) stand for ` and call ` as “the” limit
of f as x→ a.

aa− δ a+ δ

`

`+ ε

`− ε

y = f(x)

Figure 3.17: ε− δ–definition of limit.
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Standing assumption: Observe that if δ > 0 satisfies (3.6), then any δ1 < δ will
also satisfy (3.6). Hence we may as well assume that δ is such that (a−δ, a+δ) ⊂ J .

Theorem 3.6.2. With the notation of the last item, the limit ` is unique.

Proof. Assume that limx→a f(x) = `1 and limx→a f(x) = `2. We are required to
prove that `1 = `2. The proof is very similar to that of the uniqueness of the limit
of a convergent sequence (Proposition 2.1.15).

Given ε > 0, there exist δj , such that (a− δj , a+ δj) ⊂ J, j = 1, 2 and

0 < |x− a| < δj =⇒ |f(x)− `j | < ε, j = 1, 2. (3.7)

If `1 6= `2, we can choose ε > 0 such that the sets (`1−ε, `1+ε)∩(`2−ε, `2+ε) = ∅.
Now if we choose x such that 0 < |x− a| < min{δ1, δ2}, then (3.7) says that
f(x) ∈ (`1 − ε, `1 + ε) ∩ (`2 − ε, `2 + ε), a contradiction.

Remark 3.6.3. There is a subtle point in the proof above. To arrive at a con-
tradiction, we choose an x such that 0 < |x− a| < min{δ1, δ2}. How do we know
that such an x exists?

We used the fact that the domain of f is an interval minus a point. For if we
let δ = min{δ1, δ2}, then x := a + δ/2 ∈ J . If J is any subset, though we can
define limx→a f(x) = `, ` need not be unique.

Consider J = Z and any function f : J → R. We claim limx→0 f(x) = ` for
any ` ∈ R. (Why?) Hence the limit is not unique.

The crucial fact that we needed to prove uniqueness is the observation that in
any interval of the form (a−δ, a+δ), we can find points (other than a) belonging
to the domain of f .

If you do not completely understand this remark, review this again after some
time.

Exercise 3.6.4. Let f : R→ R be given by f(x) = x2−4
x−2 for x 6= 2 and f(2) = e.

Then limx→2 f(x) = 4. Prove this using the ε− δ definition.

Exercise Set 3.6.5. Find the limits using the ε− δ definition.

(1) limx→a
x3−a3
x−a .

(2) limx→0 x sin(1/x).

(3) limx→2
x2−4
x2−2x .

(4) limx→6

√
x+ 3.

Theorem 3.6.6. Let J ⊂ R be an interval. Let a ∈ J . Let f : J \ {a} → R be
given. Then limx→a f(x) = ` iff for every sequence (xn) with xn ∈ J \ {a} with
the property that xn → a, we have f(xn)→ `.
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Proof. The proof is quite similar to that of Theorem 3.2.2. The reader is en-
couraged to review the proof of Theorem 3.2.2 and write a proof of the present
theorem on his own.

Let limx→a f(x) = `. Let (xn) be a sequence in J \ {a} such that xn → a. We
are required to show that f(xn)→ `. Let ε > 0 be given. Since limx→a f(x) = l,
for this ε, there exists a δ > 0 such that 0 < |x− a| < δ implies that |f(x)− `| <
ε. Since xn → a, for this δ, there exists N ∈ N such that n ≥ N implies that
|xn − a| < δ. Hence it follows that for n ≥ N , we have |f(xn)− `| < ε, that is,
f(xn)→ `.

If the converse is not true, then there exists ε > 0 such that for any given δ > 0,
there exists xδ ∈ (a− α, a+ α), such that xδ 6= a and such that |f(xδ)− `| ≥ ε.
Apply this to each δ = 1/n, n ∈ N, to get xn ∈ (a − 1/n, a + 1/n) ∩ J with
xn 6= a and |f(xn)− `| ≥ ε. By the sandwich lemma, xn → a. Note that (xn) is
a sequence in J \ {a}, but f(xn) does not converge to `.

Is there an analogue of the sandwich lemma for the limits of functions?

Lemma 3.6.7. Let f, g, h be defined on J \ {a}. Assume that
(1) f(x) ≤ h(x) ≤ g(x), for x ∈ J , x 6= a.
(2) limx→a f(x) = ` = limx→a g(x).

Then limx→a h(x) = `.

Proof. This is an easy consequence of the last result and the sandwich lemma for
sequences. The reader is encouraged to write a proof.

Let f : J → R and c ∈ J be given. Is there any relation between limx→c f(x)
and the continuity of f at c?

Theorem 3.6.8. Let J ⊂ R be an interval and a ∈ J . Assume that f : J → R
is a function. Then f is continuous at a iff limx→a f(x) exists and the limit is
f(a).

Proof. Assume that f is continuous at a. Now, by continuity at a, for any sequence
(xn) in J with xn → a, we have f(xn) → f(a). In view of the last theorem, we
deduce that limx→a f(x) exists and the limit is f(a).

Conversely, assume that f is defined on J , in particular at a, and that
limx→a f(x) = f(a). We need to show that f is continuous at a. We shall prove
this by the ε–δ definition of continuity at a and the limit concept. Let ε > 0 be
given. Since limx→a f(x) = f(a), for the given ε, there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− f(a)| < ε.

Observe that the inequality above holds even for x = a. Thus f is continuous at
a.

Remark 3.6.9. In old textbooks, continuity is defined using the limit concept.
Later it became standard to define continuity using the ε–δ definition.
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The drawback of using limits to define continuity is easily understood if one
goes through Remark 3.6.3. While we can define continuity on an arbitrary subset
of R, to define limx→a f(x), we need to put a restriction on a so that the limit is
unique. We leave it to the reader to ponder over this.

Formulate results analogous to algebra of convergent sequences and algebra
of continuous functions. Do you see their proofs in your mind? State the theorem
and give a sketch of how it reduces to sequences in view of Theorem 3.6.6.

Theorem 3.6.10 (Algebra of Finite Limits). Let J ⊂ R be an interval. Let
fk : J \ {a}, k = 1, 2 be given. Assume that limx→a fk(x) = `k ∈ R. Let α ∈ R.
Then:

(i) limx→a(f1 + f2)(x) = `1 + `2.
(ii) limx→a(αfk)(x) = α`k.
(iii) limx→a(fg)(x) = `1`2.
(iv) Assume that `1 6= 0. Then f1(x) 6= 0 for all x ∈ (a − δ, a + δ) for some

δ > 0, x 6= a. We also have limx→a
1
f1

(x) = 1/`1.

Proof. The proof is easy in view of Theorem 3.6.6 and the algebra of convergent
sequences. We leave it to the reader.

Can you think of a result on the existence of a limit for a composition of
functions?

Theorem 3.6.11. If limx→a f(x) = α and if g is defined in an interval con-
taining α and is continuous at α, then limx→a(g ◦ f)(x) exists and it is g(α).

Proof. This proof may be compared with that of Item 8 of Theorem 3.1.5.
Assume that g is defined on (α − r, α + r). Let ε > 0 be given. We need to

estimate |(g ◦ f)(x)− g(α)|. Let (xn) be a sequence in J \ {a} such that xn → a.
It follows that f(xn)→ α. Hence there exists N such that for all n ≥ N , f(xn) ∈
(α−r, α+r). Now the sequence (f(xn))n≥N converges to α. Since g is continuous
at α, we have g(f(xn)) → g(α). Thus, we have shown that (g ◦ f)(xn) → g(α).
In view of Theorem 3.6.6, the result follows.

How do we define one-sided limits such as limx→a+ f(x)? Easy. In the defini-
tion of limx→a f(x), we need to restrict x to those x > a. That is, limx→a+ f(x) =
` if for ε > 0 there exists δ > 0 such that

x > a, x ∈ J and 0 < |x− a| < δ =⇒ |f(x)− `| < ε.

The definition limx→a− f(x) is left to the reader.
What is the relation between the one-sided limits limx→a+ f(x), limx→a− f(x)

and the limit limx→a f(x)?

Theorem 3.6.12. Let J ⊂ R be an interval, a ∈ J . Let f : J \ {a} → R be
a function. Then limx→a f(x) exists iff the one-sided limits limx→a+ f(x) and
limx→a− f(x) exist and are equal.
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Proof. Easy. If limx→a f(x) = ` exists, then for a given ε > 0, we can find a δ > 0
such that x ∈ J and |x− a| < δ =⇒ |f(x)− `| < ε. Clearly, if x > a, x ∈ J and
0 < |x− a| < δ. we have |f(x)− `| < ε. Thus, limx→a+ f(x) exists and the limit
is `. Similarly, limx→a− f(x) = `.

Conversely, assume that the one-sided limits exists and their common value
is `. Now given ε > 0, there exists δ1 > 0 and δ2 > 0 such that

x > a, x ∈ J, 0 < |x− a| < δ1 =⇒ |f(x)− `| < ε,

x < a, x ∈ J, 0 < |x− a| < δ2 =⇒ |f(x)− `| < ε.

Let δ := min{δ1, δ2}. It is clear that we have

x ∈ J, 0 < |x− a| < δ =⇒ |f(x)− `| < ε.

This proves the theorem.

How do we assign a meaning to the symbol limx→∞ f(x) = ` for a function
f : (a,∞)→ R?

Given ε > 0, we need to find an interval around ∞ such that for x in the
interval, we have |f(x)− `| < ε. A little thought leads us to consider the intervals
of the form (R,∞), R > a.

limx→∞ f(x) = ` if for a given ε > 0, there exists R such that for x > R we
have |f(x)− `| < ε.

How do we assign a meaning to limx→−∞ f(x) = ` for a function
f : (−∞, a) → R? Here the interval around −∞ is an interval of the form
(−∞, R), where R < a. Hence the definition is as follows.

limx→−∞ f(x) = ` if for a given ε > 0, there exists R > 0 such that for
x < −R we have |f(x)− `| < ε. (We require −R < a.)

How do we assign a meaning to the symbol limx→a f(x) = ∞? Hint: Recall
how we defined a sequence diverging to infinity (page 52).

We say that limx→a f(x) =∞ if for any given M > 0 there exists δ > 0 such
that 0 < |x− a| < δ implies that f(x) > M . (See Figure 3.18.)

Figure 3.18: f(x)→∞ as x→ α. Figure 3.19: f(x)→∞ as x→∞.

How do we assign a meaning to the symbol limx→∞ f(x) =∞? And so on!
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We say that limx→∞ f(x) = ∞ if for any given M > 0 there exists R > 0
such that for x > R, we have f(x) > M . (See Figure 3.19.)

Example 3.6.13. We now give some examples for you to practice the definitions
of limits.

(1) Let f : R∗ → R be given by f(x) := x/ |x|. Then limx→0+ f(x) = 1 and
limx→0− f(x) = −1. We need to estimate |f(x)− 1| for x > 0. Since f(x) = 1
for x > 0, for any given ε > 0 we may choose any δ > 0.

(2) limx→0 f(x) = 0 where f(x) = |x| if x 6= 0 and f(0) = 23.

(3) limx→0
1
x2 = 0.

(4) limx→0+
1
x =∞ and limx→0−

1
x = −∞.

We shall prove the first. Let M > 0 be given. Now if x > 0, we have f(x) > M
if 1/x > M , that is, if 0 < x < 1/M . Hence we choose 0 < δ < 1/M . For
0 < x < δ, we have f(x) = 1/x > 1/δ > M .

(5) Let f : R → R be defined by f(x) = (−1)n

n sin(πx) for x ∈ [n, n + 1). Then
limx→±∞ f(x) = 0.

Remark 3.6.14. Using the Equation (3.4) in Theorem 3.3.7, we see that for an
odd-degree polynomial P (X) with leading coefficient 1

lim
x→∞

P (X) =∞ and lim
x→−∞

P (X) = −∞.

If P (X) is of even degree with leading coefficient 1, what are limx→∞ P (X) and
limx→−∞ P (X)?

Exercise 3.6.15. Let J ⊂ R be an interval. Assume that a ∈ J and that
f : J \ {a} → R is such that limx→a f(x) = `. If we define f(a) = `, then f is
continuous at a.

A typical and standard example is f : R∗ → R given by f(x) := sin x
x . It is

well known that, limx→0 f(x) = 1. Hence if we define g(x) := f(x) for x 6= 0 and
g(0) = 1, then g : R→ R is continuous.

Limit as a Tree Diagram

We exhibit the definitions of various limits as a tree diagram. See Figure 3.20. It
lists all the possibilities and shows us a unified way of defining all possible limits.

We may formulate the various definitions above in a uniform fashion as follows.
We say that the limit of limx→a f(x) at x = a exists and is ` if

∀J` (∃Ja (∀x ∈ Ja (f(x) ∈ J`))) ,

where Ja is an interval around a but not containing a and J` is an interval around
`. We tabulate Ja and J` in various cases.
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lim
x→a

f(x) = `

a

a finite

a− a a+

a infinite

−∞ +∞

`

` finite ` infinite

−∞ +∞

Figure 3.20: Limits: tree diagram.

Table for Ja

a a− a a+ a = −∞ a = +∞

Ja (a− δ, a) (a− δ, a+ δ) \ {a} (a, a+ δ) (−∞, r) (r,∞)

Table for J`

` ` finite ` = −∞ ` = +∞

J` (`− ε, `+ ε) (−∞, R) (R,∞)

Remark 3.6.16 (Indeterminate Forms). Go through the proof of Theo-
rem 3.6.10. Do we have an analogue if the limits are also allowed to be infinite?
Look at the following examples:

(i) f(x) = x and g(x) = x−c, h(x) = −x+c, c ∈ R. We have limx→∞ f(x) =∞,
limx→∞ g(x) = ∞, and limx→∞ h(x) = −∞. We have limx→∞(f − g)(x) = c =
limx→∞(f + h)(x). Thus, the limit of the sum of functions need not be the sum
of limits. Note that these examples are instances of the so-called indeterminate
form ∞−∞.

(ii) Let f(x) = cx2 and g(x) = 1
1+x2 . Then limx→∞ f(x) =∞, limx→∞ g(x) =

0, but limx→∞(fg)(x) = c. This example gives rise to the indeterminate form of
the type ∞× 0.

(iii) Let f(x) = cx2 and g(x) = 1
x2 . Then limx→0 f(x) = 0 and limx→0 g(x) =

∞, but limx→0(fg)(x) = c.

(iv) Let f(x) = x, g(x) = 1
x2 , h(x) = 1

x3 . Then we have limx→0 f(x) = 0,
limx→0 g(x) = ∞, and limx→0 h(x) does not exist. But, limx→0(fg)(x) does
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not exist, limx→0(fh)(x) = 0. On the other hand, if we let f(x) = x2 and
g(x) = x4, then limx→0 f(x) = 0 = limx→0 g(x), but limx→0( fg )(x) = ∞ while

limx→0( gf )(x) = 0.

If we define f(x) = cx and g(x) = x, what is limx→0
f
g (x)? Note that all these

give rise to an indeterminate of the form
0

0
.

We hope that the reader understands how the so-called indeterminate forms
arise. These examples should convince you that we cannot blindly apply the
algebra of limits rule in these examples as the limits may not exist or if they
exist, the result may depend on the relative behavior of the functions near the
point where the limit is taken.

L’Hospital’s rules, which you learned in calculus courses, give us some contexts
in which these limits can be found. Refer to Section 4.3.

We shall have a closer look at the relation between the existence of one-sided
limits and the continuity in the case of an increasing function.

Look at the graphs of the following increasing functions. Do you see what
happens at the points of discontinuity?

Example 3.6.17. The floor function f : R → R defined by f(x) := [x]. See
Figure 3.21.

Example 3.6.18. f : R → R defined by f(x) := [x] for x /∈ Z and f(x) =
x+ (1/2) if x ∈ Z. See Figure 3.22.

Figure 3.21: Example 3.6.17. Figure 3.22: Example 3.6.18.

Theorem 3.6.19. Let J ⊂ R be an interval and f : J → R be increasing. Assume
that c ∈ J is not an endpoint of J . Then:
(i) limx→c− f = lub {f(x) : x ∈ J ;x < c}.
(ii) limx→c+ f = glb {f(x) : x ∈ J ;x > c}.

Proof. We shall prove (i). Let ` := lub {f(x) : x ∈ J ;x < c}. We wish to prove
that limx→c− f = `. Let ε > 0 be given. Therefore, there exists x0 ∈ J , x0 < c
such that f(x0) > ` − ε. Now for x ∈ J , x > x0, that is, for x ∈ J ∩ (x0, c), we
have f(x) > f(x0) > ` − ε. If we choose δ > 0 such that x0 < c − δ, the result
follows.

(ii) is proved in a similar way.
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Compare this proof with that of the convergence of an increasing sequence
bounded above. (See Theorem 2.3.2.)

What is the analogue of the last item for decreasing functions?

Theorem 3.6.20. Let the hypothesis be as in Theorem 3.6.19. Then the following
are equivalent:

(i) f is continuous at c.
(ii) limx→c− f = f(c) = limx→c+ f .
(iii) lub {f(x) : x ∈ J ;x < c} = f(c) = glb {f(x) : x ∈ J ;x > c}.

Proof. In view of Theorem 3.6.19, (ii) is equivalent to (iii). So, it is enough to
prove that (i) is equivalent to (iii).

Let E1 := {f(x) : x ∈ J ;x < c} and E2 := {f(x) : x ∈ J ;x > c}.
(i) =⇒ (iii): Let `− := lub {f(x) : x ∈ J ;x < c} and `+ := glb {f(x) : x ∈

J ;x > c}. Since f is increasing, it is clear that `− ≤ f(c) ≤ `+. It suffices to
show that `− = `+. We shall prove this by contradiction. Let ε > 0 be such that
`− < f(c)− ε < f(c) + ε < `+. (See Figure 3.23.)

l−

l+

f(c)

a c b

Figure 3.23: Figure for Theorem 3.6.20.

By continuity at c, there exists δ > 0 such that

x ∈ J ∩ (c− δ, c+ δ) =⇒ |f(x)− f(c)| < ε.

We deduce that if c− δ < x < c, we have f(x) > f(c)− ε > l−. Hence lub {f(x) :
x ∈ J ;x < c} ≤ `− − ε, a contradiction.

Formulate an analogous result for decreasing functions.
What is the formulation if c is an endpoint of J?

Definition 3.6.21. Let J ⊂ R be an interval and f : J → R be increasing.
Assume that c ∈ J is not an endpoint of J . The jump at c is defined as

jf (c) := lim
x→c+

f − lim
x→c−

f ≡ glb {f(x) : x ∈ J ;x > c} − lub {f(x) : x ∈ J ;x < c}.

How is the jump jf (c) defined if c is an endpoint?
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Proposition 3.6.22. Let J ⊂ R be an interval and f : J → R be increasing.
Then f is continuous at c ∈ J iff jf (c) = 0.

Proof. This is immediate from Theorem 3.6.20.

Definition 3.6.23. A set E is said to be countable if there exists a one-one map
of E into Q.

Theorem 3.6.24. Let J ⊂ R be an interval and f : J → R be monotone. Then
the set D of points of J at which f is discontinuous is countable.

Proof. Assume that f is increasing. Then c ∈ J belongs to D iff the interval
Jc := (f(c−), f(c+)) is nonempty. For, c, d ∈ D, with, say, c < d, the intervals Jc
and Jd are disjoint. (Why?) Look at Figure 3.24.

f(c )

f(c+)

f(d )

f(d+)

a c d b

Figure 3.24: (f(c ), f(c+)) ∩ (f(d ), f(d+)) = ∅.

Let c < t < d. Since f(c+) ≡ glb {f(x) : x > c}, and since t > c, we see

that f(c+) ≤ f(t). Similarly, f(d−) ≡ lub {f(y) : y < d}. Since t < d,

we see that f(t) ≤ f(d−). Thus, f(c+) ≤ f(t) ≤ f(d−). In particular,

f(c+) ≤ f(d−). Hence if y ∈ Jc ∩ Jd, then y < f(c+) and y > f(d−), that

is, f(d−) < y < f(c+), in particular, f(d−) < f(c+), a contradiction.

Thus the collection {Jc : c ∈ D} is a pairwise disjoint family of open intervals.
Such a collection is countable. For, choose rc ∈ Jc ∩ Q. Since {Jc : c ∈ D} is
pairwise disjoint, the map c 7→ rc from D to Q is one-one.

3.7 Uniform Continuity

Definition 3.7.1. Let J ⊂ R be any subset. A function f : J → R is uniformly
continuous on J if for each ε > 0 there exists δ > 0 such that

x1, x2 ∈ J with |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε.

Note that if we wish to establish uniform continuity of a function on a domain,
we need to estimate |f(x1)− f(x2)| for any two arbitrary points in the domain
of f .
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In particular, if f is uniformly continuous on J , then f is continuous on J .
Let a ∈ J and ε > 0 be given. Since f is uniformly continuous on J , for the given
ε > 0, there exists a δ > 0 such that for all x1, x2 ∈ J with |x1 − x2| < δ, we have
|f(x1)− f(x2)| < ε. Clearly, if x ∈ J and if |x− a| < δ, then |f(x)− f(a)| < ε.
Observe that δ is the same for all a ∈ J .

A note of caution: The observation in the last paragraph is a corollary of the
definition of uniform continuity. Many beginners place undue emphasis on this
with the result that they end up estimating |f(x)− f(a)| and look for a uniform
δ. It is advisable to start estimating |f(x1)− f(x2)| for x1, x2 in the domain. See
Item 3 of Example 3.2.3.

Remark 3.7.2. Every uniformly continuous function is continuous, but the con-
verse is not true.

Remark 3.7.3. Unlike continuity, uniform continuity is a global concept.

The notion of uniform continuity of f gives us control on the variation of the
images of a pair of points which are close to each other independent of where they
lie in domain of f . Go through Example 3.7.4 and Example 3.7.5. In these two
examples, it is instructive to draw the graphs of the functions under discussion
and try to understand the remark above.

Example 3.7.4. Let α > 0. Let f : (0,∞)→ R be given by f(x) = 1/x. Then f
is uniformly continuous on (α,∞). (See Figure 3.25.)

f(x) = 1/x

ε1

ε2

ε3

δ δ δ

Figure 3.25: Uniform continuity of 1/x.
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|f(x)− f(y)| = |x− y|
xy

≤ |x− y|
α2

.

This suggests that if ε > 0 is given, then we choose δ ≤ α2ε. Now write a textbook
proof.

The function g : (0,∞)→ R given by g(x) = 1/x is not uniformly continuous.
Assume the contrary. Look at the graph of f near x = 0. You will notice that if x
and y are very close to each other and are also very near to 0 (which is not in the
domain of f , though), their values vary very much. This suggests to us a method
of attack. If f is uniformly continuous on (0,∞), then for ε = 1, there exists
δ > 0. How do we choose points which are δ-close and are close to 0? Points of
the form 1/n for n� 0 are close to zero. This suggests that we choose x = 1/N
and y = 1/2N . To make them δ-close, we choose 1

N < δ. Then |f(x)− f(y)| ≥ 1.
Now you can write a textbook proof.

Example 3.7.5. (See Figure 3.26.)

−R Rx y

f(y)
f(x)

yx

f(y)

f(x)

Figure 3.26: f(x) = x2 on [−R,R].

Let f : R → R be given by f(x) = x2. Let A be any bounded subset of R,
say, A = [−R,R]. Then f is uniformly continuous on A but not on R! If you
look at the graph of f , you will notice that if x is very large (that is, near to
∞), and if y is very near to x, the variations in f(x) and f(y) become large.
If f were uniformly continuous on R, then for ε = 1 we can find a δ as in the
definition. Choose N so that N > 1/δ. Take x = N and y = N + 1/N . Then
|f(x)− f(y)| ≥ 2.

If x, y ∈ [−R,R], then

|f(x)− f(y)| = |x+ y| |x− y| ≤ 2R |x− y| ,
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which establishes the uniform continuity of f on [−R,R].

Exercise 3.7.6. Any Lipschitz function is uniformly continuous. (See Exer-
cise 3.2.4 on page 77.)

Exercise 3.7.7. Let J ⊂ be an interval. Let f : J → R be differentiable with
bounded derivative, that is, |f ′(x)| ≤ L for some L > 0. Then f is Lipschitz with
Lipschitz constant L. In particular, f is uniformly continuous on J . Hint: Recall
the mean value theorem (Theorem 4.2.5).

Specific examples: f(x) = sinx, g(x) = cosx are Lipschitz on R. The inverse
of tan, tan−1 : (−π/2, π/2)→ R is Lipschitz.

Exercise Set 3.7.8.

(1) Let f : J → R be uniformly continuous. Then f maps Cauchy sequences in
J to Cauchy sequences in R.

(2) The converse of the last exercise is not true.

Theorem 3.7.9. Let J be a closed and bounded interval. Then any continuous
function f : J → R is uniformly continuous.

Proof. If f is not uniformly continuous, then there exists ε > 0 such that for all
1/n we can find an, bn ∈ J such that |an − bn| < 1/n but |f(an)− f(bn)| ≥ ε. By
Bolzano-Weierstrass theorem, there exists a subsequence (ank

) such that ank
→

a ∈ J . Observe that

|bnk
− a| ≤ |bnk

− ank
|+ |ank

− a| .

It follows that bnk
→ a. By continuity, f(ank

) → f(a) and also f(bnk
) → f(a).

In particular, for all sufficiently large k, we must have |f(ank
)− f(bnk

)| < ε, a
contradiction.

Remark 3.7.10. The theorem remains true of we assume that J is a compact
subset of R. See Remark 3.4.5.

Example 3.7.11. If ∅ 6= A ⊆ R, show that f = dA is uniformly continuous
where dA(x) := glb {|x− a| : a ∈ A}. (See Example 3.2.5.)

Exercise Set 3.7.12.

(1) Let f : R → R be continuous and periodic with period p > 0. That is, for
all x ∈ R, we have f(x + p) = f(x). Show that f is uniformly continuous.
(Examples are the sine and cosine functions sin and cos with period p = 2π.)

(2) Let f(x) = 1
x+1 cosx2 on [0,∞). Show f is uniformly continuous.

(3) Let f be uniformly continuous on [a, c] and also on [c, b]. Show that it is
uniformly continuous on [a, b].
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(4) Let f : [0,∞) be continuous. Assume that f is uniformly continuous on [R,∞)
for some R > 0. Show that f is uniformly continuous on [0,∞).

(5) Let f(x) = x1/2 on [0,∞). Is f uniformly continuous?

(6) Show that f(x) = |sin x|
x is uniformly continuous on (−1, 0) and (0, 1) but not

on (−1, 0) ∪ (0, 1). Compare this exercise with Exercise 3 above.

(7) A function f : R→ R is uniformly continuous iff whenever (xn)and (yn) are
sequences of R such that |xn − yn| → 0, then we have |f(xn)− f(yn)| → 0.

(8) Let f : B ⊂ R→ R be uniformly continuous on a bounded set B. Show that
f(B) is bounded.

(9) Let f : J ⊂ R → R be uniformly continuous with |f(x)| ≥ η > 0 for all
x ∈ X. Then 1/f is uniformly continuous on J .

(10) Let f(x) :=
√
x for x ∈ [0, 1]. Then f is uniformly continuous but not Lips-

chitz on [0, 1].

Hence the converse of Exercise 3.7.6 is not true.

(11) Check for uniform continuity of the functions on their domains:
(a) f(x) := sin(1/x), x ∈ (0, 1].
(b) g(x) := x sin(1/x), x ∈ (0, 1].

3.8 Continuous Extensions

This section is optional. The material in this section is not used in the rest of the
book. However, a keen reader is advised to go through this section as it raises
some standard questions and solves them employing useful tools of analysis.

Let X and Y be sets and A ⊂ B ⊂ X. Let f : A → Y be given. We say a
function g : B → Y is an extension of f (to B) if g(a) = f(a) for a ∈ A.

Example 3.8.1. Let X, Y , A, and f be as above. Fix z ∈ Y . Define

g(x) =

{
f(x), x ∈ A
z, x /∈ A.

Clearly g is an extension of f . Our construction also shows that such an extension
need not be unique. (Why?)

Example 3.8.2. Let X = R = Y and A = R \ {2}. Let f(x) = x2−4
x−2 , x ∈ A.

Note that f is continuous on A. Consider g(x) = f(x) for x ∈ A and g(2) = 4.
Also, h(x) = f(x) for x ∈ A and h(2) = 0. Then both g and h are extensions of
f . But we prefer g since g is continuous. The function g is called a continuous
extension of f .
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Exercise 3.8.3. Keep the notation of the last exercise. Can we have two distinct
continuous extensions of f?

Exercise 3.8.4. This is a generalization of the last exercise. Let A ⊂ B ⊂ R.
Assume that for any given b ∈ B, there exists a sequence (an) in A such that an →
b. Let f : A→ R be continuous. Show that if g and h are continuous extensions of
f to B, then g = h. That is, under the stated assumptions, continuous extensions
are unique.

Example 3.8.5. The most standard example is the function f : R∗ → R defined
by f(x) = sin x

x for x 6= 0. This is continuous on R∗. If we define g(0) = 1 and
g(x) = f(x) for x 6= 0, then g is a continuous extension of f .

Another standard example is the function f : R∗ → R defined by f(x) =
x sin(1/x) for x 6= 0. This is continuous on R∗. If we define g(0) = 0 and g(x) =
f(x) for x 6= 0, then g is a continuous extension of f .

Do continuous extensions always exist?

Exercise Set 3.8.6. Let A = {x ∈ R : x > 0}. Define f(x) = 1/x for x ∈ A.
Consider B := {x ∈ R : x ≥ 0}. Show that there exists no continuous extension
of f to B.

We are now ready to state a positive and a most useful result in this direction.

Theorem 3.8.7. Let A ⊂ B ⊂ R. Assume that for any given b ∈ B, there exists
a sequence (an) in A such that an → b. Let f : A → R be uniformly continuous.
Then there exists a unique continuous extension g : B → R of f . Furthermore, g
is also uniformly continuous on B.

Strategy: Given b ∈ B, we choose (an) in A such that an → b. By the uni-
form continuity of f , the sequence (f(an)) is Cauchy in R (Exercise 3.7.8.1)
and hence is convergent, say, to c. We would like to define g(b) = c. (Why
would we like it this way?)

There is an ambiguity here. What happens if we got another sequence
(xn) in A such that xn → b? The sequence (f(xn)) is Cauchy and it may
converge to d ∈ R. Do we let g(b) = c or g(b) = d? We shall show that if
(xn) in A converges to b, the sequences (f(xn)) converge to the same limit
c := lim f(an).

Now that g is defined without ambiguity, we show that such a g is uniformly
continuous on B.

Let x, y ∈ B. We need to estimate |g(x)− g(y)|. If (xn) and (yn) are se-
quences in A such that xn → x and yn → y, we then have the following
estimate:

|g(x)− g(y)| ≤ |g(x)− g(xn)|+ |g(xn)− g(yn)|+ |g(yn)− g(y)|
≤ |g(x)− f(xn)|+ |f(xn)− f(yn)|+ |f(yn)− g(y)| . (3.8)
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It is now easy to estimate the three terms on the right side. Give ε > 0, we
choose N ∈ N such that

n ≥ N =⇒ |f(xn)− g(x)| < ε/3 & |f(yn)− g(y)| < ε/3.

(How can we do this?) By the uniform continuity of f , for a give ε > 0,
we can find δ > 0 so that if s, t ∈ A with |s− t| < δ, we then have
|f(s)− f(t)| < ε/3. As seen earlier, we can find N2 ∈ N such that for
n ≥ N2, we have

|xn − yn| ≤ |xn − x|+ |x− y|+ |yn − y| < 3× δ/3.

This allows us to estimate the middle term in (3.8):

|f(xn)− f(yn)| < ε/3.

See below how we turn these ideas into a precise proof.

Proof. Let b ∈ B. Let (an) be a sequence in A such that an → b. By Exer-
cise 3.7.8.1, the sequence (f(an)) is Cauchy in R and hence is convergent, say, to
c. Let (xn) be any sequence in A such that xn → b. We shall show that f(xn)→ c.
Let ε > 0 be given. By the uniform continuity of f on A, for the given ε, there
exists δ > 0 such that for

x, y ∈ A and |x− y| < δ =⇒ |f(x)− f(y)| < ε/2. (3.9)

Since an → b and xn → b, for δ as above, there exists N1 such that for all n ≥ N1,
we have |xn − b| < δ/2 and |an − a| < δ/2. We obtain

n ≥ N1 =⇒ |xn − an| ≤ |xn − b|+ |an − b| < δ.

We deduce the following:

If n ≥ N1, then |f(xn)− f(an)| < ε/2. (3.10)

Since f(an)→ c, for the given ε > 0, there exists N2 such that

n ≥ N2 =⇒ |f(an)− c| < ε/2. (3.11)

We observe, for n ≥ max{N1, N2}, that

|f(xn)− c| ≤ |f(xn)− f(an)|+ |f(an)− c|
< ε/2 + ε/2, using (3.10), (3.11).

This proves that f(xn)→ c.
What we have shown tells us that we can define g(b) = lim f(an) without

ambiguity, provided that (an) is a sequence in A converging to b.1

1The correct technical jargon is that g is well-defined.
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Observe that this also applies to if b ∈ A! (Why? We may take the constant
sequence (b).) Hence g(a) = f(a) for a ∈ A. Thus we have an extension g of f to
B.

We now show that g so defined is uniformly continuous on B. Let ε > 0 be
given. Let δ > 0 be chosen so that

s, t ∈ A and |s− t| < δ =⇒ |f(s)− f(t)| < ε/3. (3.12)

Let x, y ∈ B such that |x− y| < δ/3. Since xn → x and yn → y, we can find
N1 ∈ N such that for n ≥ N1, we have

|xn − x| < δ/3 and |yn − y| < δ/3.

It follows that for n ≥ N1, we have

|xn − yn| ≤ |xn − x|+ |x− y|+ |y − yn| < δ. (3.13)

Since f(xn) → g(x) and f(yn) → g(y), for ε as above, there exists N2 ∈ N
such that

n ≥ N2 =⇒ |f(xn)− g(x)| < ε/3 & |f(yn)− g(y)| < ε/3. (3.14)

We are now ready to estimate |g(x)− g(y)| for x, y ∈ B with |x− y| < δ/3.
Choose an n ≥ max{N1, N2}. We then have

|g(x)− g(y)| ≤ |g(x)− g(xn)|+ |g(xn)− g(yn)|+ |g(yn)− g(y)|
≤ |g(x)− f(xn)|+ |f(xn)− f(yn)|+ |f(yn)− g(y)| .

The first and the third terms on the right is less than ε/3 thanks to (3.14). The
middle term is less than ε/3 by (3.13) and (3.12).

Did you observe that we used the curry-leaves trick in the proof of (3.8)?

We now apply this result to define ax for a > 0 and x ∈ R. We make some
preliminary observations.

For n ∈ N, an makes sense. Since a > 0, a−1 makes sense, namely, the
reciprocal 1/a of a. Hence we define a−n := (1/a)n. If we define a0 = 1, then the
law of exponents holds:

am+n = aman for all m,n ∈ Z.

We wish to extend this to rational exponents, that is, we wish to define ar

for r ∈ Q. Let us write r = m/n with n ∈ N and with m and n relatively prime.
(This means that they do not have any nontrivial common divisors.) There are
two ways to define ar:

(1) the n-th positive root of am and
(2) the m-th power of n-th positive root of a.
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It is easy to see that both the definitions lead to the same positive real number.
We need to show that (a1/n)m = (am)1/n.

If we let b = a1/n be the unique positive n-th root of a, we need to show that
b is the unique n-th root of am. We have bn = a so that (bn)m = (bm)n = am.
That is, bm is the unique n-th root of am.

The definition is made in such a way that the law of exponents holds: ar+s =
aras for r, s ∈ Q. Also, if r < s, then ar < as.

Let R > 0 be fixed. We show that the map f : r 7→ ar is uniformly continuous
on AR := [−R,R] ∩Q. We start the proof by establishing the continuity of f at
0 ∈ AR.

Given ε > 0, choose n > a such that 1 < n
1
n < 1 + ε. Let 0 < r < 1

n . Then

observe that ar < a
1
n < n

1
n < 1+ε. Thus, if xn > 0, limxn = 0, then lim axn = 1.

Also, a−xn = 1
axn → 1.

Let ε > 0 be given. Let δ > 0 correspond to the continuity of f at 0 for a−Rε.
Now let x, y ∈ AR be such that |x− y| < δ. . Then, we have

|ax − ay| = ax
∣∣ax−y − 1

∣∣ < aRa−Rε.

We conclude that f is uniformly continuous on AR. Therefore, there exists a
unique continuous extension g of f to [−R,R]. We denote g(x) = ax for |x| ≤ R.
Note that if R2 > R1 > 0 is given and the continuous extensions are denoted
by g1 and g2 respectively, we have g1 = g2 on [−R1, R1] by the uniqueness of
the continuous extension. We thus have a unique continuous function g : R→ R
denoted by g(x) = ax which agrees with our definition of am/n if x = m/n.

Exercise 3.8.8. Show that for all x, y ∈ R, we have ax+y = axay.

Exercise 3.8.9. If f is continuous, not identically zero, and satisfies the func-
tional equation f(x + y) = f(x)f(y) for all x, y ∈ R, then f(x) = ax for some
a > 0.

Exercise 3.8.10. Define the function exp(x) :=
∑∞
n=0

xn

n! . Then exp(x) = ex.
This exercise is best done at the end of Section 7.5.

Exercise 3.8.11. Let a > 1. Let f(x) = ax. Define loga(x) = u if au = x. Then
loga is well-defined on the set of positive reals. Since it is the inverse of f , it is
continuous, one-one and strictly increasing.

Exercise 3.8.12. Prove the following:

(1) loga(xy) = loga(x) + loga(y) for all x, y ∈ R+.

(2) loga(1) = 0.

(3) loga(xy) = y loga(x) for all x > 0 and y ∈ R.

(4) logx y logy z = logx z whenever both sides make sense.
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The basic idea of differential calculus (as perceived by modern mathematics)
is to approximate (at a point) a given function by an affine (linear) function (or
a first-degree polynomial).

Let J be an interval and c ∈ J . Let f : J → R be given. We wish to ap-
proximate f(x) for x near c by a polynomial of the form a + b(x − c). To keep
the notation simple, let us assume c = 0. What is meant by approximation? If
E(x) := f(x) − a − bx is the error by taking the value of f(x) as a + bx near 0,
what we want is that the error goes to zero much faster than x goes to zero. As

we have seen earlier this means that limx→0
f(x)−a−bx

x = 0.

If this happens, then limx→0(f(x) − a − bx) = 0. We thus arrive at a =
limx→0 f(x). In particular, if f is continuous at 0, then a = f(0). Hence the
requirement for a function f to be approximable at 0 is that there exists a real

number b such that lim
x→0

f(x)− f(0)

x
= b.

If such is the case, we say that f is differentiable at c = 0 and denote the
(unique) real number b by f ′(0). It is called the derivative of f at 0.

In general, f is said to be differentiable at c, if there exists a real number α
such that

lim
x→c

f(x)− f(c)

x− c
= α.

109
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We say that f is differentiable at c ∈ J if we can approximate the increment
f(x) − f(c) ≡ f(c + h) − f(c) in the dependent variable by a linear polynomial
α(x− c) = αh in the increment of the independent variable. Approximation here
means that the error should go to zero much faster than the increment going to
zero.

4.1 Differentiability of Functions

Definition 4.1.1. Let J be an interval and c ∈ J . Let f : J → R. Then f is said
to be differentiable at c, if there exists a real number α such that

lim
x→c

f(x)− f(c)

x− c
= α. (4.1)

It is sometimes useful to use the variable h for the increment x − c and
reformulate (4.1) as follows:

f is said to be differentiable at c, if there exists a real number α such that

lim
h→0

f(c+ h)− f(c)

h
= α. (4.2)

In view of the definition of limit, the differentiability condition in (4.1) can
be defined using ε-δ as follows.

We say that f is differentiable at c if there exists α ∈ R such that for any
given ε > 0, there exists a δ > 0 such that

x ∈ J and 0 < |x− c| < δ =⇒ |f(x)− f(c)− α(x− c)| < ε |x− c| . (4.3)

We say that f is differentiable on J if it is differentiable at each c ∈ J .

To check if a given function is differentiable at x = c, the basic idea is write
the term f(x)−f(c) as α(x− c)+ ‘something’ and check whether something goes
to zero much faster than x− c goes to zero.

Example 4.1.2.

(1) Let f : J → R be a constant, say, C. Then f is differentiable at c ∈ J with
f ′(c) = 0.

In this case, we have f(x) − f(c) = 0 for all c. Therefore, an obvious choice
for α is 0.

Let c be any real number and ε > 0 be given. Let α = 0. Let us estimate the
error term:

|f(x)− f(c)− α(x− c)| = |C − C − α(x− c)| = |α| |(x− c)| = 0.

This suggests that we can choose any δ > 0. Thus if f is a constant function,
then it is differentiable on R with f ′(c) = 0 for c ∈ R.
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(2) Let f : J → R be given by f(x) = ax+ b.

Let c be an arbitrary real number. Consider the expression f(x) − f(c) =
a(x− c). This suggests, α = f ′(c) = a.

Let ε > 0 be given. Now, let us try to estimate the error term:

|f(x)− f(c)− α(x− c)| = |a(x− c)− a(x− c)| = 0.

This suggests that we can choose any δ > 0 for any ε > 0.

Let ε > 0 be given. Let δ > 0 be arbitrary. We estimate the error term:

|f(x)− f(c)− α(x− c)| = 0 < ε |x− c| .

Since c is an arbitrary real number, f is differentiable on R, and f ′(c) = a.

(3) If f : J → R is given by f(x) = xn, n ∈ N, then f ′(c) = ncn−1.

Let c be an arbitrary real number. Let us look at

f(c+ h)− f(c) = (c+ h)n − cn

= cn + ncn−1h+

(
n

2

)
cn−2h2 + · · ·+ hn − cn

= ncn−1h+ terms involving higher powers of h.

This suggests that we take α = ncn−1.

With this choice of α, we estimate the error.

∣∣f(c+ h)− f(c)− ncn−1h
∣∣ =

∣∣∣∣∣
n∑
k=2

(
n

k

)
cn−khk

∣∣∣∣∣
≤

n∑
k=2

(
n

k

)
|c|n−k |h|k

≤
n∑
k=2

(
n

k

)
|c|n−k |h|2 for |h| < 1

= |h|2
[

n∑
k=2

(
n

k

)
|c|n−k

]
= |h|2M,

where M :=
∑n
k=2

(
n
k

)
|c|n−k.

The above approximation suggests that we may take δ = ε/M .

Now let us look at a formal proof.

For given ε > 0, choose δ = min{1, εM }. For x such that 0 < |h| < δ, using
the above estimates, we have∣∣f(c+ h)− f(c)− ncn−1h

∣∣ ≤ ∣∣h2
∣∣M < ε |h| .
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Hence f is differentiable at c and f ′(c) = ncn−1. Since c is arbitrary, f is
differentiable on R.

The next result gives a powerful, and at the same time a very simple charac-
terization of differentiability of a function at a point.

Theorem 4.1.3. Let f : J → R be given. Then f is differentiable at c ∈ J iff
there exists a function f1 : J → R satisfying the following two conditions:

1. We have
f(x) = f(c) + f1(x)(x− c) for x ∈ J. (4.4)

2. f1 is continuous at c.
In such a case, f ′(c) = f1(c).

Proof. Let us assume that there exists a function f1 : J → R continuous at c such
that

f(x) = f(c) + f1(x)(x− c) for x ∈ J.
We need to prove that f is differentiable at x = c and f ′(c) = f1(c). It is easy to
see that under this assumption we have

|f(x)− f(c)− f1(c)(x− c)| = |x− c| |f1(x)− f1(c)| .

Let ε > 0 be given. Since f1 is continuous at c, there exists δ > 0 such that
for all x with |x− c| < δ, we have |f1(x)− f1(c)| < ε. Hence, for all x with
0 < |x− c| < δ, we get

|f(x)− f(c)− f1(c)(x− c)| = |x− c| |f1(x)− f1(c)| < ε |x− c| .

Thus f is differentiable at x = c.
Assume that f is differentiable at c. We have to find an f1 satisfying the two

conditions. The first condition that f(x) = f(c) + f1(x)(x− c) for all x ∈ J leads
us to arrive at

f1(x) =
f(x)− f(x)

x− c
, for x ∈ J, x 6= c.

We need to define f1(c). Since f1 should be continuous at c, we must have
limx→c f1(x) = f1(c). By substituting the expression for f1(x), x 6= c, we see

that f1(c) = limx→c
f(x)−f(c)

x−c . Since by our hypothesis, f is differentiable at c,
this suggests that we define f1(c) = f ′(c). Thus we have defined f1 on J . We now
turn to a formal proof.

Define

f1(x) :=

{
f(x)−f(c)

x−c , for x ∈ J and x 6= c

f ′(c), if x = c.

From the very definition, it follows that for x ∈ J , we have f(x) = f(c) +
f1(x)(x− c). Since

lim
x→c

f1(x) = lim
x→c

f(x)− f(c)

x− c
= f ′(c) = f1(c),

the continuity of f1 at c follows.
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In spite of its simplicity, this is a very powerful characterization of differentia-
bility at a point. We illustrate its use in the next few examples. Recall how our
definition of continuity using sequences reduced the proofs of algebra of contin-
uous functions to those of algebra of convergent sequences. Our characterization
above will reduce the problem of proving the algebra of differentiable functions
to the algebra of continuous functions.

Example 4.1.4.

(1) Let f(x) = 1
x for x 6= 0. Then f is differentiable at c 6= 0 and f ′(c) = − 1

c2

for c 6= 0.

We have

f(x)− f(c) =
1

x
− 1

c
=
c− x
cx

=

[
−1

cx

]
(x− c).

This suggests that we define f1(x) := −1
cx for x 6= 0. We then have f(x) =

f(c) + f1(x)(x − c). Clearly f1 is continuous for x 6= 0. This proves that
f(x) = 1

x is differentiable at any c 6= 0 and that f ′(c) = f1(c) = −1/c2.

(2) Let f(x) = xn for x ∈ R. We have

f(x)− f(c) = (x− c)[xn−1 + xn−2c+ · · ·+ xcn−2 + cn−1].

Thus we are led to define f1(x) := xn−1 + xn−2c+ · · ·+ xcn−2 + cn−1.

It is clear that f1 is continuous at x = c and that f1(c) = ncn−1. Hence f is
differentiable at c and that f ′(c) = ncn−1.

(3) Let n ∈ N. We now show that f : (0,∞)→ (0,∞) defined by f(x) := x1/n is
differentiable. We shall adopt the notation of Example 7 on page 75. It would
be a good idea to revisit the example now. Let a > 0 be fixed.

We would like to guess f1 by looking at x1/n − a1/n. We set t := x1/n and
s := a1/n and arrive at

t− s = (x− a)
1

tn−1 + · · ·+ sn−1
.

This suggests that we define f1(x) = 1

x
n−1
n +···+a

n−1
n

. Clearly, f1 is as required

and we have f1(a) = 1

na
n−1
n

= 1
na

1
n−1.

(4) Let f(x) = ex, x ∈ R. Using the standard facts about the exponential func-
tion, we show that f ′(c) = ec. As we have not rigorously defined the expo-
nential function and also we are going to use infinite series expansion, the
argument below is not satisfactory at this level. However, the purpose of
this is to show the reader how to guess f1 in a formal way and justify the
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steps rigorously later. If the reader is not happy with this, he may skip this
example.

f(x)− f(c) = ec(exe−c − 1) = ec(ex−c − 1)

= ec(x− c)
∞∑
n=1

(x− c)n−1

n!

=

[
ec
∞∑
n=1

(x− c)n−1

n!

]
(x− c)

= f1(x)(x− c).

The steps above can be justified. We can show that f1 is continuous and that
f1(c) = ec and it is continuous at c.

Exercise 4.1.5. Let m,n be positive integers. Define

f(x) =

{
xn for x ≥ 0

xm for x < 0.

Discuss the differentiability of f at x = 0.

Proposition 4.1.6. If f is differentiable at c, then f is continuous at c.

Proof. We use the notation of Theorem 4.1.3. Since f1 is continuous at x = c,
f1(x)(x− c) is also continuous at c. Hence f(x) = f(c) + f1(x)(x− c) continuous
at c.

Remark 4.1.7. Like continuity, differentiability is also a local concept. That is,
to check whether a function f : J → R is differentiable at c or not, we need to
know f only on a small interval (c− δ, c+ δ) around c. This is evident from the
definition of derivative as the limit of difference quotient.

Theorem 4.1.8 (Algebra of Differentiable Functions). Let f, g : J → R be dif-
ferentiable at c ∈ J . Then the following hold:
(a) f + g is differentiable at c with (f + g)′(c) = f ′(c) + g′(c).
(b) αf is differentiable at c with (αf)′(c) = αf ′(c).
(c) fg is differentiable at c with (fg)′(c) = f(c)g′(c) + f ′(c)g(c).
(d) If f is differentiable at c with f(c) 6= 0, then ϕ := 1/f is differentiable at c

with ϕ′(c) = − f ′(c)
(f(c))2 .

Strategy: In each of the proofs, we exploit the existence of f1 as stipulated in
Theorem 4.1.3 and manipulate the expressions to find the required auxiliary
function f1.

Proof. We first prove (a). Since f and g are differentiable at c, using Theo-
rem 4.1.3, there exist continuous functions f1 and g1, respectively, such that
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f(x) = f(c) + f1(x)(x − c) and g(x) = g(c) + g1(x)(x − c). Define h(x) :=
f(x) + g(x). Then,

h(x) = f(x) + g(x) = [f(c) + g(c)] + [f1((x) + g1(x)](x− c).

We define h1(x) = f1(x) + g1(x). Then h1 is continuous at c. Hence f + g is
differentiable at c and (f + g)′(c) = f ′(c) + g′(c).

We now prove (b). Since f is differentiable at c, using Theorem 4.1.3, there
exists a continuous function f1 such that f(x) = f(c) + f1(x)(x − c). Hence
αf(x) = αf(c) + αf1(x)(x − c). Note that αf is continuous at c. Therefore, αf
is differentiable at c and its derivative is αf ′(c).

To prove (c), let us write ϕ(x) := (fg)(x) = f(x)g(x). We again make use of
the existences of continuous functions f1 and g1 such that f(x) = f(c)+f1(x)(x−
c) and g(x) = g(c) + g1(x)(x− c). We multiply the expressions for f(x) and g(x)
to get an expression for ϕ(x) and try to guess the auxiliary ϕ1 below.

ϕ(x) = [f(c) + f1(x)(x− c)][g(c) + g1(x)](x− c)
= ϕ(c) + f(c)g1(x)(x− c) + g(c)f1(x)(x− c) + f1(x)(g1(x)(x− c)2

= ϕ(c) + [f(c)g1(x) + g(c)f1(x) + f1(x)g1(x)(x− c)](x− c).

This suggests that we define

ϕ1(x) := [f(c)g1(x) + g(c)f1(x) + f1(x)g1(x)(x− c)].

Then ϕ is as required and its value at c is f(c)g1(c) + g(c)f1(c). This proves that
fg is differentiable at c and its derivative at c is given by f(c)g1(c) + g(c)f1(c) =
f(c)g′(c) + g(c)f ′(c).

Before we prove (d), let us make some preliminary remarks. Since we assume
f is differentiable at c, it is continuous at c. Since f(c) 6= 0, there exists δ > 0
such that for x ∈ (c−δ, c+δ) ⊂ J , we have f(x) 6= 0. (See Theorem 3.1.5.) Hence
the function 1/f is defined on the interval (c− δ, c+ δ).

Given that f is differentiable at c and f(c) 6= 0. Using Theorem 4.1.3, there
exists a continuous function f1 such that f(x) = f(c)+f1(x)(x−c). Let g = 1/f .
We need to find a continuous function g1 such that g(x) = g(c) + g1(x)(x − c).
Let us look at

g(x)− g(c) =
1

f(c) + f1(x)(x− c)
− 1

f(c)

=
−f1(x)

f(c)[f(c) + f1(x)(x− c)]
(x− c).

Note that f(x) = f(c)+f1(x)(x− c) 6= 0 in the open interval (c− δ, c+ δ). Define

g1(x) := −f1(x)
f(c)[f(c)+f1(x)(x−c)] . Note that g1(x) makes sense, as the denominator

does not vanish on (c − δ, c + δ). Also g1 is continuous at c and g1(c) = −f ′(c)
f(c)2 .

Hence g = 1/f is differentiable at c and its derivative is − f ′(c)
f(c)2 .
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Corollary 4.1.9. Let Da(J) (respectively Ca(J)) denote the set of functions on
J differentiable (respectively continuous) at a. Then Da(J) is a vector subspace
of Ca(J).

Proof. This follows from Theorem 4.1.8.

Exercise Set 4.1.10.

(1) Show that f : R→ R given by f(x) = |x| is not differentiable at x = 0.

(2) Let f : R → R be given by f(x) = x2 if x ∈ Q and f(x) = 0 if x /∈ Q. Show
that f is differentiable at x = 0. Find f ′(0).

(3) Show that f(x) = x1/3 is not differentiable at x = 0.

(4) Let n ∈ N. Define f : R → R by f(x) = xn for x ≥ 0 and f(x) = 0 if x < 0.
For which values of n,

(a) is f continuous at 0?

(b) is f differentiable at 0?

(c) is f ′ continuous at 0?

(d) is f ′ differentiable at 0?

(5) Let f : R→ R be differentiable. Let n ∈ N. Fix a ∈ R. Find

lim
x→a

anf(x)− xnf(a)

x− a
.

(6) Can you generalize the last exercise?

(7) Let f : J → R be differentiable. Let xn < c < yn be such that yn − xn → 0.
Show that

lim
n→∞

f(yn)− f(xn)

yn − xn
= f ′(c).

(8) Use the identity 1 + x + · · · + xn = 1−xn+1

1−x for x 6= 1 to arrive at a formula

for the sum 1 + x+ 2x2 + · · ·+ nxn.

(9) Let f : R → R be an even function, that is, f(−x) = f(x) for all x ∈ R.
Assume that f is differentiable. Show that f ′ is odd.

(10) Let f : (a, b) → R be differentiable at c ∈ (a, b). Assume that f ′(x) 6= 0.
Show that there exists δ > 0 such that for x ∈ (c− δ, c+ δ) ∩ (a, b), we have
f(x) 6= f(c).
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Theorem 4.1.11 (Chain Rule). Let f : J → R be differentiable and f(J) ⊂ J1,
an interval and if g : J1 → R is differentiable at f(c), then g ◦ f is differentiable
at c with (g ◦ f)′(c) = g′(f(c)) · f ′(c).

Proof. Since f is differentiable at x = c, there exists f1 : J → R which is contin-
uous at c such that

f(x) = f(c) + f1(x)(x− c) and f ′(c) = f1(c).

Similarly, there exists g1 : J1 → R, continuous at d = f(c) ∈ J1 such that

g(y) = g(d) + g1(y)(y − d), and g′(d) = g1(d) for y ∈ J1. (4.5)

Let h = g ◦ f . We have to find a function h1 : J → R which continuous at c
such that

h(x) = h(c) + h1(x)(x− c) = g(f(c)) + h1(x)(x− c).

Consider the composition

(g ◦ f)(x) = g(f(x)) = g(f(c) + f1(x)(x− c))
= g(d+ f1(x)(x− c))
= g(y), where y = d+ f1(x)(x− c).

Using (4.5), the last expression on the right can be written as

g(y) = g(d) + g1(y)(y − d)

= g(d) + g1[f(c) + f1(x)(x− c)][f(c) + f1(x)(x− c)− f(c)]

= g(f(c)) + g1(f(c) + f1(x)(x− c))f1(x)(x− c).

The right-hand side of the above equation suggests that we may choose

h1(x) = g1(f(c) + f1(x)(x− c))f1(x).

It follows from the continuity of composition of continuous functions and algebra
of continuous functions that h1 is continuous at c. Also, we have

h1(c) = g1(f(c))f1(c) = g′(f(c))f ′(c).

This completes the proof.

Example 4.1.12. We shall assume that the properties of the following functions
and their derivatives are known.

(1) f(x) = ex, f ′(x) = ex.

(2) f(x) = log x, x > 0, f ′(x) = 1/x.

(3) f(x) = sinx, f ′(x) = cosx.
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(4) f(x) = cosx, f ′(x) = − sinx.

Example 4.1.13. Let α ∈ R and x > 0. Recall the definition of xα from your
calculus course. We define xα := eα log x. Thus, we have a function ϕ : (0,∞)→ R
defined by ϕ(x) := xα. Note that ϕ is the composition of f : x 7→ α log x followed
by g : t 7→ et. Hence by the Chain rule, ϕ is differentiable and we have

ϕ′(x) = g′(f(x))f ′(x) =
(
eα log x

) (α
x

)
= (αxα)

(
1

x

)
= αxα−1.

Exercise Set 4.1.14.

(1) Let f : R → R be differentiable at x = 0. Define g(x) = f(x2). Show that g
is differentiable at 0 (i) by Theorem 4.1.3 and (ii) by the chain rule.

(2) Let r ∈ Q. Define f(x) = xr sin(1/x) for x 6= 0 and f(0) = 0. For what values
of r, is f differentiable at 0?

There are two important ways of looking at derivatives. One interpretation is
physical and the other is geometric.

Let f : [a, b]→ R be a function. One thinks of the domain as the time interval
and f(t)− f(c) as the distance traveled by a particle in t− c units of time and so

that the velocity is f(t)−f(c)
t−c . The derivative which is the limit of these velocities

as t → c is called the instantaneous velocity of the motion of the particle at the
instant t = c. This is a very useful way of looking at the derivative.

The geometric interpretation of the derivative f ′(c) is that it is the slope of
the tangent line at (c, f(c)) to the graph {(t, f(t)) : t ∈ [a, b]}. Figure 4.1 shows
that the tangent line is the limiting position of the chords.

P

y = f(x)

Q
Q1
Q3

Figure 4.1: Tangent line is the limiting position of the chords.

What does Exercise 4.1.10.7 say? The slope of the chord joining (xn, f(xn))

and (yn, f(yn)) is f(yn)−f(xn)
yn−xn

. Thus if xn < c < yn, xn → c and yn → c, then the
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sequence
(
f(yn)−f(xn)

yn−xn

)
of the slopes of the chords converge to the slope of the

tangent at (c, f(c)) to the graph.

Look at Figure 3.3 on page 70. Are these graphs of differentiable functions?

Students should notice that if the graph of a function has sharp corners, then
it is not differentiable at such points. (See Figure 4.2). You may recall the graph
of |x|. Do you think min{sinx, cosx} is differentiable on R? Figure 3.4 on page 70
may help you decide.

Figure 4.2: Non-differentiable functions at x = 1.

Exercise Set 4.1.15.

1. Construct a continuous function f : R → R which is not differentiable at
x = 2.

2. Construct a continuous function f : R → R which is not differentiable at
integers.

Weierstrass has constructed a function f : R → R which is continuous on R
but differentiable nowhere. See Appendix E in [2].

4.2 Mean Value Theorems

As the reader has already learned from calculus courses, differential calculus is a
powerful tool in problems of maxima–minima. In this section we shall establish
the so-called first derivative test. There are certain misconceptions here, so we
shall start with precise definitions.

Definition 4.2.1. Let J ⊂ R be an interval and f : J → R be a function. We
say that a point c ∈ J is a point of local maximum if there exists δ > 0 such that
(c− δ, c+ δ) ⊂ J and f(x) ≤ f(c) for all x ∈ (c− δ, c+ δ). (Look at Figure 4.3.)

A local minimum is defined similarly. A point c is said to be a local extremum
if it is either a local maximum or a local minimum.
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C

cc− δ c+ δ

Figure 4.3: Local maximum.

A point x0 ∈ J is said to be a point of (global) maximum on J if f(x) ≤ f(x0)
for all x ∈ J . Global minimum is defined similarly.

How do we define global extremum?
Note that a local extremum need not be a global extremum. Similarly, a global

extremum need not be a local extremum.
The points of local minimum and local maximum should be “interior points”

in the domain. In Figure 4.4, the points, c1, c3, and c5 are local maximum whereas
c2 and c4 are points of local minimum. The point c1 is the global maximum and
c2 is the global minimum.

Do you believe that there is any relation between a global maximum and a
local maximum? For example, is any global maximum necessarily a local maxi-
mum? or is any local maximum necessarily a global maximum?

c1

c2
c3 c5

c4

Figure 4.4: Local maximum and minimum.

Example 4.2.2. Look at f : [a, b] → R where f(x) = x. Then b is a point of
global maximum but not a local maximum. What can you say about a?
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On the other hand, look at g : [−2π, 2π] → R defined by g(x) = cosx. The
point x = 0 is a local maximum as well as a global maximum. What can you say
about the points x = ±2π?

Theorem 4.2.3. Let J ⊂ R be an interval. Let f : J → R be differentiable on J
and c ∈ J . If c is a local extremum of f , then f ′(c) = 0.

Strategy: Let c be a local maximum of f . Look at the difference quotient
f(c+h)−f(c)

h
. It is ≤ 0 if h > 0 and is ≥ 0 if h < 0. So if you take one-sided

limits, the right-side limit should be ≤ 0 and the left-side limit should be ≥ 0.

Hence the limit must be 0.

Proof. Let f have local maximum at c. Then there exists a δ > 0 such that
f(x) ≤ f(c) for all x ∈ (c−δ, c+δ). That is, f(c+h) ≤ f(c) and f(c−h) ≤ f(c) for

all h ∈ (−δ, δ). Since f is differentiable at c, we have f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

f ′(c) = lim
h→0+

f(c+ h)− f(c)

h
≤ 0 and f ′(c) = lim

h→0−

f(c+ h)− f(c)

h
≥ 0.

Thus from the above two inequalities, we deduce f ′(c) = 0.
The proof when c is a local minimum is similar.

Question: Where did we use the fact that c is a local maximum in the proof?
Compare the result with the function of f of Example 4.2.2. What are f ′(b),
f ′(a)?

Theorem 4.2.4 (Rolle’s Theorem). Let f : [a, b]→ R be such that (i) f is con-
tinuous on [a, b], (ii) f is differentiable on (a, b), and (iii) f(a) = f(b). Then
there exists c ∈ (a, b) such that f ′(c) = 0.

The geometric interpretation is that there exists c ∈ (a, b) such that the slope
of the tangent to the graph of f at c equals zero. That is, the tangent at (c, f(c))
is parallel to the x-axis. (See Figure 4.5.)

a b

c1

c2

c3 c5

c4

Figure 4.5: Rolle’s theorem.
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Strategy: Draw a few pictures of differentiable functions satisfying f(a) = f(b).

You will observe that the likely choices of c are points of local extremum. Since

f is continuous on the closed and bounded interval, what we are assured of is

the existence of global extrema! If the maximum of f and the minimum of f are

different, then one of them is assumed by f at point in (a, b). We show that such

a point is a local extremum. What happens if the maximum and minimum of f

coincide?

Proof. By the extreme value theorem (Theorem 3.4.6), there exist x1, x2 ∈ [a, b]
such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b]. If f(x1) = f(x2), then the result
is trivial. (Why? For any x ∈ [a, b] we have f(x1) ≤ f(x) ≤ f(x2). Hence f is a
constant. So, for any c ∈ (a, b), we obtain f ′(c) = 0.)

If f(x1) 6= f(x2), then at least one of x1, x2 is different from a and b. (Why?
Since f(a) = f(b), {x1, x2} = {a, b} would imply f(x1) = f(x2), a contradiction.)

Suppose x2 is different from a and b. Hence a < x2 < b. Let c = x2. Let
δ := min{c−a, b−c}. It follows that (c−δ, c+δ) ⊂ (a, b). Since c = x2 is a global
maximum, we have f(x) ≤ f(c) for x ∈ (c− δ, c+ δ). Therefore we conclude that
c is local maximum of f . By Theorem 4.2.3 we have f ′(c) = 0.

Next we look at the most important result in differentiation.

Theorem 4.2.5 (Mean Value Theorem). Let f : [a, b] → R be such that (i) f
is continuous on [a, b] and (ii) f is differentiable on (a, b). Then there exists
c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a). (4.6)

We rewrite (4.6) as f(b)−f(a)
b−a = f ′(c). Now the left side is the slope of the

chord joining (a, f(a)) and (b, f(b)). As mentioned earlier, we may consider f ′(c)
as the slope of the tangent of the tangent line at (c, f(c)) to the graph of f .
Thus we arrive at the geometric interpretation: Under the given conditions, there
exists c such that the slope of the tangent to the graph of f at c equals that of
the chord joining the two points (a, f(a) and (b, f(b)). Look at Figure 4.6.

a

b

c2

c1

E

Figure 4.6: Mean value theorem.
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Strategy: The basic idea is to apply Rolle’s theorem. That means, we need to get

a function ϕ(x) such that ϕ(a) = ϕ(b). One natural way to get this is to look at

the difference between the graph of f(x) and the chord joining the points (a, f(a))

and (b, f(b)). Note that the equation of the chord is, y−f(a)
f(a)−f(b) = x−a

a−b . Therefore,

the equation of the chord is `(x) = f(a) + f(b)−f(a)
b−a (x − a). That is, the function

we would like to consider is ϕ(x) := f(x)− `(x).

Proof. Consider g(x) = f(x)−`(x), where `(x) := f(a)+ f(b)−f(a)
b−a (x−a). Clearly,

g(a) = g(b) = 0 and g satisfies all conditions of Rolle’s theorem. Hence there exists
c ∈ (a, b) such that g′(c) = 0. This implies,

f ′(c)− `′(c) = 0 =⇒ f(b)− f(a) = f ′(c)(b− a).

This completes the proof.

The mean value theorem is also known as Lagrange’s mean value theorem. It
is the single most important result in the theory of differentiation. Below are some
typical applications. Many beginners try to prove the first two applications below
ab initio, that is, they try to deduce them from the definition of the derivative.
Please keep it in mind that perhaps the only way to derive them is to use the
mean value theorem.

Example 4.2.6 (Applications of MVT).

(1) Let J be an interval and f : J → R be differentiable with f ′(x) = 0 for all
x ∈ J . Then f is a constant on J .

For any x, y ∈ J , by MVT, we have f(y) − f(x) = f ′(z)(y − x) for some
z between x and y. Since f ′(z) = 0, we get f(y) = f(x) for all x, y ∈ J .
This implies that f is a constant function. (Why? Fix x0 ∈ J . Then for each
x ∈ J , f(x) = f(x0).)

Is this result true if J is not an interval?

Note that the concept of differentiability of a function f can be defined on
a set U , which is also the union of open intervals. However, it may happen
that f : U → R is differentiable with f ′ = 0 on U , but f is not a constant.
For instance, consider U = (−1, 0) ∪ (0, 1) and f(x) = −1 on (−1, 0) and
f(x) = 1 on (0, 1). Then f ′(x) = 0 for all x, but f is not a constant function.

(2) Let J be an interval and f : J → R be differentiable with f ′(x) > 0 for x ∈ J .
Then f is increasing on J .

For any x, y ∈ J with x < y by MVT, we have f(y) − f(x) = f ′(z)(y − x)
for some z between x and y. Since f ′(z) > 0 and y − x > 0, the right
side is positive. This implies, if x < y, then f(x) < f(y). Thus f is strictly
increasing.

What is the corresponding result when f ′(x) < 0 for x ∈ J? Formulate the
result and prove it.
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(3) The following application was already seen while discussing uniform continu-
ity. Look at Exercise 3.7.7 on page 102.

Let f : J → R be differentiable. Assume that there exists M > 0 such that
|f ′(x)| ≤M . Then f is uniformly continuous on J .

We need to estimate |f(x1)− f(x2)| for x1, x2 ∈ J . Since J is an interval by
the MVT, there exists c in between x1 and x2 such that f(x1) − f(x2) =
f ′(c)(x1 − x2). Hence

|f(x1)− f(x2)| = |f ′(c)| |(x1 − x2)| ≤M |x1 − x2| .

We conclude that f is Lipschitz and hence uniformly continuous. See Exer-
cise 3.7.6.

Note that in each of the three applications we used the hypothesis that the
domain of f is an interval J . If x, y ∈ J , then the interval [x, y] ⊂ J so that the
point c given by the mean value theorem lies in J . Hence our hypothesis on the
derivative of f can be applied to f ′(c).

Remark 4.2.7. It should be noted that to conclude that f is increasing in Item 2
in Example 4.2.6 above, we required that f ′ > 0 on J .

A common mistake is that some beginners believe that if f ′(c) > 0 then f is
increasing in an interval of the form (c− δ, c+ δ). This is false. A counterexample
is given in Item 11 in Exercise 4.2.16.

Exercise 4.2.8. Let f : R→ R be such that |f(x)− f(y)| ≤ (x− y)2 for all x, y.
Show that f is differentiable, and the derivative is zero. Hence conclude that f
is a constant.

The mean value theorem is quite useful in proving certain inequalities. Here
are some samples.

Example 4.2.9. We have ex > 1 + x for all x ∈ R.
Suppose x > 0. Consider the function f(x) = ex on the interval [0, x]. Since ex

is a differentiable on R, we can apply mean value theorem to f on the interval
[0, x]. Hence there exists c ∈ (0, x) such that

ex − e0 = f ′(c)(x− 0) = ecx.

Note that f ′(x) = ex > 1 for x > 0. So the displayed equation yields ex − 1 =
ecx > x.

If x < 0, then consider the interval [x, 0].

Example 4.2.10. We have y−x
y < log y

x <
y−x
x , 0 < x < y.

Let 0 < x < y and f(x) = log x on [x, y]. We know that log x is a differentiable
function on x > 0. Hence using the MVT, there exists c ∈ (x, y) such that

log y − log x =
1

c
(y − x) =⇒ log

y

x
= (y − x)

1

c
.
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Since 0 < x < c < y, we have 1
y <

1
c <

1
x . Hence we get

y − x
y

< log
y

x
=

1

c
(y − x) <

y − x
x

. (4.7)

Exercise Set 4.2.11. Some standard applications.
(1) Prove that ex > ex for x ∈ R.
(2) Prove that x

1+x < log(1 + x) < x, x > 0.

(3) Prove that n(b− a)an−1 < bn − an < n(b− a)bn−1, 0 < a < b.
(4) Show that sinx ≤ x for x > 0.
(5) Show that 0 < 1

x log
(
ex−1
x

)
< 1 for x > 0.

(6) Prove that sin x
x is strictly increasing on (0, π/2).

Which is greater, eπ or πe? We prove a more general inequality which answers
this question:

Example 4.2.12. If e ≤ a < b, then ab > ba.
Using (4.7), we have

b− a
b

< log

(
b

a

)
<
b− a
a

.

Since a log
(
b
a

)
< b− a, we have ba

aa = ea log(b/a) < eb−a. That is, ba < eb−aaa. If
e ≤ a, then et ≤ at for t ≥ 0 and hence we conclude that ba < eb−aaa ≤ ab−aaa =
ab.

Theorem 4.2.13 (Inverse Function Theorem). Let f : I := (a, b) → R be con-
tinuously differentiable with f ′(x) 6= 0 for all x. Then (i) f is strictly monotone.
(ii) f(I) = J is an interval and (ii) g := f−1 is (continuous and) differentiable
on the interval J := f((a, b)) and we have

g′(f(x)) =
1

f ′(x)
=

1

f ′(g(y))
for all x = g(y) ∈ [a, b].

Proof. Since f ′ is continuous on I, by the intermediate value theorem exactly
one of the following holds: either f ′ > 0 or f ′ < 0 on I. (Why?) Hence f is
strictly monotone on I. By Proposition 3.5.4, J is an interval. Note that by
Corollary 3.5.6, the inverse function g is continuous on J . Fix c ∈ (a, b). Let
d := f(c). Then

g(y)− g(d)

y − d
=

x− c
f(x)− f(c)

=
1

f(x)−f(c)
x−c

. (4.8)

Since g is continuous, if (yn) is a sequence in J converging to d, then xn :=
g(yn)→ c. Hence

lim
n→∞

g(yn)− g(d)

yn − d
= lim
n→∞

1
f(xn)−f(c)

x−c

=
1

f ′(c)
.
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Since this is true for any sequence (yn) in J converging to d, we conclude that

lim
y→d

g(y)− g(d)

y − d
=

1

f ′(c)
.

One may also take limy→d in (4.8) and observe that y → d iff x → c, thanks to
the continuity of f and g.

Exercise 4.2.14. Let f : (0,∞) → (0,∞) be defined by f(x) = x1/n. Use the
inverse function theorem to compute the derivative of f .

Theorem 4.2.15 (Cauchy’s Form of MVT). Let f, g : [a, b]→ R be differentiable.
Assume that g′(x) 6= 0 for any x ∈ (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
. (4.9)

Geometrically, Cauchy’s form of MVT means the following:
We look at the map t 7→ (g(t), f(t)) from J to R2 as a parameterized curve

in the plane. For example, t 7→ (cos t, sin t), t ∈ [0, 2π] is a parameterization of a
circle. If f : [a, b] → R is a function, then t 7→ (t, f(t)) is a parameterization of
the graph of the function.

Then the slope of the chord joining the points (g(a), f(a)) and (g(b), f(b)) is
f(b)−f(a)
g(b)−g(a) . The tangent “vector” to the parameterized curve at a point (g(c), f(c))

is (g′(c), f ′(c)) and hence the tangent line at c has the slope f ′(c)/g′(c). Thus
Cauchy’s mean value theorem says that there exists a point t0 ∈ (a, b) such that
slope f ′(t0)/g′(t0) of the tangent to the curve at t0 is equal to the slope of the
chord joining the end points of the curve. Look at Figure 4.7.

Figure 4.7: Cauchy mean value theorem.
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Strategy: The basic idea is to use Rolle’s theorem. That is, we wish to get a

function h(x) satisfying conditions of Rolle’s theorem and that h′(c) = 0 gives

f ′(c)/g′(c). If we look at h(x) = f(x)− λg(x) and find λ so that h(a) = h(b).

Proof. Note that g(a) 6= g(b). (Why?) Otherwise, by Rolle’s theorem there exists
c ∈ (a, b) such that g′(c) = 0. This is a contradiction.

Let h(x) := f(x) − λg(x) where λ ∈ R is chosen so that h(b) = h(a). It

is easy to see that λ = f(b)−f(a)
g(b)−g(a) . It is clear that h satisfies the condition of

Rolle’s theorem on [a, b]. By Rolle’s theorem, there exists c ∈ (a, b) such that

h′(c) = 0. This implies λ = f ′(c)
g′(c) . Hence there exists c ∈ (a, b) such that there

exists c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

As observed in the remark on the geometric interpretation, if g(x) = x in the
Cauchy mean value theorem, it reduces to Lagrange mean value theorem.

Exercise Set 4.2.16.

(1) Let P (X) :=
∑n
k=0 akX

k, n ≥ 2 be a real polynomial. Assume that all the
roots of P lie in R. Show that all the roots of its derivative P ′(X) also are
real.

(2) Does there exist a differentiable function f : R → R such that f ′(x) = 0 if
x < 0 and f ′(x) = 1 if x > 0?

(3) Let f : R→ R be differentiable such that |f ′(x)| ≤M for some M > 0 for all
x ∈ R.

(a) Show that f is uniformly continuous on R.

(b) If ε > 0 is sufficiently small, then show that the function gε(x) :=
x+ εf(x) is one-one.

(4) Let f : (a, b)→ R be differentiable at x ∈ (a, b). Prove that

lim
h→0

f(x+ h)− f(x− h)

2h
= f ′(x).

Give an example of a function where the limit exists but the function is not
differentiable.

(5) Let f : [0, 2] → R be given by f(x) :=
√

2x− x2. Show that f satisfies the
conditions of Rolle’s theorem. Find a c such that f ′(c) = 0.

(6) Use MVT to establish the following inequalities:

(a) Let b > a > 0. Show that b1/n − a1/n < (b− a)1/n.
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(b) Show that |sinx− sin y| ≤ |x− y|.
(c) Show that

nxn−1(y − x) ≤ yn − xn ≤ nyn−1(y − x) for 0 ≤ x ≤ y.

(d) Bernoulli’s Inequality. Let α > 0 and h ≥ −1. Then

(1 + h)α ≤ 1 + αh, for 0 < α ≤ 1, (4.10)

(1 + h)α ≥ 1 + αh, for α ≥ 1. (4.11)

(7) Assume that f : (a, b) → R is differentiable on (a, b) except possibly at c ∈
(a, b). Assume that limx→c f

′(x) exists. Prove that f ′(c) exists and f ′ is
continuous at c.

(8) Show that the function f(x) = x3 − 3x2 + 17 is not one-one on the interval
[−1, 1].

(9) Prove that the equation x3− 3x2 + b = 0 has at most one root in the interval
[0, 1].

(10) Show that cosx = x3 + x2 + 4x has exactly one root in [0, π/2].

(11) Let f(x) = x+ 2x2 sin(1/x) for x 6= 0 and f(0) = 0. Show that f ′(0) = 1 but
f is not monotonic in any interval around 0.

(12) Let J be an open interval and f, g : J → R be differentiable. Assume that
f(a) = 0 = f(b) for a, b ∈ J with a < b. Show that f ′(c) + f(c)g′(c) = 0 for
some c ∈ (a, b).

(13) Let f, g : R→ R be differentiable. Assume that f(0) = g(0) and f ′(x) ≤ g′(x)
for all x ∈ R. Show that f(x) ≤ g(x) for x ≥ 0.

(14) Let f : R → R be differentiable. Assume that 1 ≤ f ′(x) ≤ 2 for x ∈ R and
f(0) = 0. Prove that x ≤ f(x) ≤ 2x for x ≥ 0.

(15) Let f, g : R → R be differentiable. Let a ∈ R. Define h(x) = f(x) for x < a
and h(x) = g(x) for x ≥ a. Find necessary and sufficient conditions which will
ensure that h is differentiable at a. (This is a gluing lemma for differentiable
functions.)

(16) Let f : [2, 5] → R be continuous and be differentiable on (2,5). Assume that
f ′(x) = (f(x))2 + π for all x ∈ (2, 5). True or false: f(5)− f(2) = 3.

(17) Let f : (0,∞)→ R be differentiable. If f ′(x)→ ` as x→∞, then show that
f(x)/x→ ` as x→∞.

(18) Let f : (a, b) → R be differentiable. Assume that limx→a+ f(x) =
limx→b− f(x). Show that there exists c ∈ (a, b) such that f ′(c) = 0.
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(19) Let f : (0, 1] → R be differentiable with |f ′(x)| < 1. Define an := f(1/n).
Show that (an) converges.

(20) Let f : [a, b] → R be continuous and differentiable on (a, b). Assume further
that f(a) = f(b) = 0. Prove that for any given λ ∈ R, there exists c ∈ (a, b)
such that f ′(c) = λf(c).

(21) Let f, g : [a, b]→ R be continuous and differentiable on (a, b). Assume further
that f(a) = f(b) = 0. Prove that for any given λ ∈ R, there exists c ∈ (a, b)
such that f ′(c) + g′(c)f(c) = 0.

(22) Show that f(x) := x |x| is differentiable for all x ∈ R. What is f ′(x)? Is f ′

continuous? Does f ′′ exist?

(23) Let f : R → R be differentiable with f(0) = −3. Assume that f ′(x) ≤ 5 for
x ∈ R. How large can f(2) possibly be?

(24) Let f : R→ R be differentiable with f(1) = 10 and f ′(x) ≥ 2 for 1 ≤ x ≤ 4.
How small can f(4) possibly be?

(25) Let f(x) = 1/x for x 6= 0 and g(x) =

{
1/x, if x > 0

1 + (1/x), if x < 0.

Let h = f − g. Then h′ = 0 but h is not a constant. Explain.

(26) Let f : [0, 1]→ R be continuous. Assume that f ′(x) 6= 0 for x ∈ (0, 1). Show
that f(0) 6= f(1).

(27) Show that on the graph of any quadratic polynomial f the chord joining the
points (a, f(a)) and (b, f(b)) is parallel to the tangent line at the midpoint
of a and b.

(28) Let n = 2k−1 ∈ N. Let f(x) = xn for x ∈ R. Show that f maps R bijectively
onto itself.

(29) Let f(x) = x2k + ax+ b, k ∈ N, a, b ∈ R. Show that f has at most two zeros
in R.

(30) Let f : (0,∞)→ R be differentiable. Assume that f(0) = 0 and f ′ is increas-
ing. Prove that f(x)/x is increasing.

(31) Let f : [a, b]→ R be differentiable. Assume that there exists no x ∈ [a, b] such
that f(x) = 0 = f ′(x). Prove that the set {t ∈ [a, b] : f(t) = 0} of zeros of f
is finite.

(32) Let f : [a, b] → [a, b] be differentiable. Assume that f ′(x) 6= 1 for x ∈ [a, b].
Prove that f has a unique fixed point in [a, b].
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4.3 L’Hospital’s Rules

As an application to the Cauchy mean value theorem, we look at L’Hospital’s
Rules.

Theorem 4.3.1 (L’Hospital’s Rule). Let J be an open interval. Let either a ∈ J
or a is an endpoint of J . (Note that it may happen that a = ±∞!) Assume that
(i) f, g : J \ {a} → R is differentiable,
(ii) g(x) 6= 0 6= g′(x) for x ∈ J \ {a}, and
(iii) A := limx→a f(x) = limx→a g(x) where A is either 0 or ∞.

Assume that B := limx→a
f ′(x)
g′(x) exists either in R or B = ±∞. Then

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
≡ B.

Strategy: The trick is to to bring the expression f(x)/g(x) to the form f(x)−f(c)
g(x)−g(c)

so that Cauchy’s mean value theorem can be applied. The proofs below show a

clever way of achieving this. They are worth going through a couple of times to

master the tricks of analysis.

Proof. We attend to a simple case first where A = 0, a ∈ R, and B ∈ R.
Set f(a) = 0 = g(a). Then f and g are continuous on J . Let (xn) be a

sequence in J such that either xn > a or xn < a for all n ∈ N and xn → a. By
Cauchy’s MVT, there exists cn between a and xn such that

f(xn)− f(a)

g(xn)− g(a)
=
f ′(cn)

g′(cn)
.

Since f(a) = 0 = g(a), it follows that

f(xn)

g(xn)
=
f(xn)− f(a)

g(xn)− g(a)
=
f ′(cn)

g′(cn)
.

Clearly, cn → a. By hypothesis, the sequence f ′(cn)/g′(cn) → B and hence the
result.

Let us now look at the case when A = ∞. Write h(x) = f(x) − Bg(x),
x ∈ J \ {a}. Then h′(x) = f ′(x)−Bg′(x) so that

lim
x→a

h′(x)

g′(x)
= 0.

We want to show that limx→a
h(x)
g(x) = 0. Let ε > 0 be given. Then there exists

δ1 > 0 such that

g(x) > 0 and

∣∣∣∣h′(x)

g′(x)

∣∣∣∣ < ε

2
for x ∈ (a, a+ δ1]. (4.12)
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If x ∈ (a, a+ δ1), then by Cauchy’s mean value theorem,

h(x)− h(a+ δ1)

g(x)− g(a+ δ1)
=
h′(cx)

g′(cx)
for some cx ∈ (x, a+ δ1). (4.13)

From (4.12)–(4.13), we get∣∣∣∣h(x)− h(a+ δ1)

g(x)− g(a+ δ1)

∣∣∣∣ < ε

2
for x ∈ (a, a+ δ1). (4.14)

Since limx→a g(x) =∞, there exists δ2 < δ1 such that

g(x) > g(a+ δ1) for x ∈ (a, a+ δ2). (4.15)

From (4.12) and (4.15), we deduce

0 < g(x)− g(a+ δ1) < g(x), for x ∈ (a, a+ δ2). (4.16)

From (4.14) and (4.16), we get

|h(x)− h(a+ δ1)|
g(x)

<
|h(x)− h(a+ δ1)|
g(x)− g(a+ δ1)

<
ε

2
, for x ∈ (a, a+ δ2). (4.17)

Now choose δ3 < δ2 so that

|h(a+ δ1)|
g(x)

<
ε

2
for x ∈ (a, a+ δ3). (4.18)

Algebra gives us
h(x)

g(x)
=
h(x)− h(a+ δ1)

g(x)
+
h(a+ δ1)

g(x)
.

Using this, if x ∈ (a, a+ δ3), we have∣∣∣∣h(x)

g(x)

∣∣∣∣ ≤ |h(x)− h(a+ δ1)|
g(x)

+
|h(a+ δ1)|

g(x)
. (4.19)

Hence by (4.17) and (4.18)∣∣∣∣h(x)

g(x)

∣∣∣∣ < ε, for x ∈ (a, a+ δ3). (4.20)

(4.20) says that limx→a
h(x)
g(x) = 0. Since

f(x)

g(x)
=
h(x)

g(x)
+B,

the result follows.
The other cases are left to the reader as instructive exercises.
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Our proof above follows the exposition in [4].

Example 4.3.2. We now give a few typical applications. It is important that the
reader should keep in mind that the conclusions say something about the behavior
of functions such as which of the two goes to zero or to infinity faster/slower.
Analysis most often deals with the comparison of the behavior of functions.

(1) f(x) = log x and g(x) = x for x > 0. We know that limx→∞ f(x) = ∞ and
limx→∞ g(x) =∞. Also,

lim
x→∞

f ′(x)

g′(x)
= 0 so that lim

x→∞

log x

x
= 0.

(2) Repeated application of L’Hospital’s rule yields

lim
x→∞

xn

ex
= lim
x→∞

nxn−1

ex
= · · · = lim

x→∞

n!

ex
= 0.

(3) Recall that limx→0+ f(1/x) = limx→∞ f(x). (Why?) From the last item we
conclude

lim
x→0+

x−ne−1/x = 0.

(4) The last example gives rise to an interesting example of a function. Consider

f(x) :=

{
e−1/x for x > 0

0 for x ≤ 0.

Then we have from the last item,

f ′(0) = lim
x→0+

g(x)− g(0)

x
= lim
x→0+

e−1/x

x
= 0.

(5)

g(x) :=

{
e−1/x2

for x 6= 0

0 for x = 0.

Then

g′(0) = lim
x→0+

g(x)− g(0)

x
= lim
x→0+

e−1/x2

x
= 0.

Theorem 4.3.3 (Darboux Theorem). Let f : [a, b]→ R be differentiable. Assume
that f ′(a) < λ < f ′(b). Then there exists c ∈ (a, b) such that f ′(c) = λ. (Thus,
though f ′ need not be continuous, it enjoys the intermediate value property.)
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Proof. Let f ′(a) < λ < f ′(b) and consider g(x) = f(x)− λx. Then g is differen-
tiable on [a, b]. Note that g′(a) < 0 and g′(b) > 0.

It attains a global minimum at some c ∈ [a, b]. We claim that c cannot be any
of the endpoints. For, if c = a, then g(a+ h)− g(a) ≥ 0 for h > 0 and hence

g′(a) = lim
h→0+

g(a+ h)− g(a)

h
≥ 0.

This contradicts our observation that g′(a) < 0. Similarly, if c = b, then g(b−h)−
g(b) ≥ 0 so that the difference quotient g(b−h)−g(b)

−h ≤ 0. Hence we conclude that

g′(b) = limh→0−
g(b+h)−g(b)

h ≤ 0. This contradicts the fact that g′(b) > 0. Hence
we conclude that a < c < b. Hence c is a local minimum for the differentiable
function g. It follows that g′(c) = 0, that is, f ′(c) = λ.

Remark 4.3.4. Why can’t we work with a maximum? How does the argument
go if we assume f ′(b) < λ < f ′(a)?

Exercise 4.3.5. The proof above says something about the derivative of func-
tions at the endpoints, if the endpoints turn out to be points of extrema of f .
Can you derive them?

To make sure that the Darboux theorem can be applied to a larger class of
functions, we look at some functions which are differentiable and whose deriva-
tives are not continuous.

Example 4.3.6. Define

f(x) =

{
x2 sin 1

x , x 6= 0

0, x = 0.

Then f is differentiable at all points including 0. Then

f ′(x) =

{
2x sin 1

x − cos 1
x , x 6= 0

0, x = 0.

It is easy to see that f ′ is not continuous. Look at Figures 4.8–4.9 for the graphs
of f and f ′. For example, if we consider xn = 1

nπ , then xn → 0. But cosxn =
cosnπ = (−1)n is not convergent. Hence we conclude that f ′ is not continuous
at x = 0.

According to Darboux theorem, f ′ enjoys the intermediate value property,
even though it is not continuous.
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Figure 4.8: Example 4.3.6, graph of f . Figure 4.9: Example 4.3.6, graph of f ′.

Exercise Set 4.3.7.

(1) What are all the differentiable functions f : [0, 1] → R the slopes of the
tangents to their graphs are always rational?

(2) Let f : (a, b) → R be differentiable. Assume that f ′(x) 6= 0 for x ∈ (a, b).
Show that f is monotone on (a, b).

4.4 Higher-order Derivatives

Let J be an interval. Let f : J → R be differentiable on J . Since the derivative at
c ∈ J is unique, we have a (well-defined) function f ′ : J → R given by x 7→ f ′(x).
Let c ∈ J . If f ′ : J → R is differentiable at c, then we say that f has a second-
order derivative at c and it is denoted by f ′′(c) or by f (2)(c). If f ′′(c) exists for
all c ∈ J , we say that f is twice differentiable on J . The number f ′′(c) is called
the second derivative of f at c.

Note that to talk of f being twice differentiable at c, it is not enough if f is
differentiable at c. It has to be differentiable in an interval around c.

How do we define thrice differentiable and third derivative of f?

Assume that we have defined f (n−1), (n−1)-th order derivative of f on J . We
then say f is n-times differentiable on J if the function f (n−1) is differentiable
on J . If it exists, we denote the derivative of f (n−1) by f (n). The number f (n)(c)
is called the n-th derivative of f at c.

Note that if f ′′ exists, then f ′ is continuous. We say f is C1 on J and write
f ∈ C1(J) if f is differentiable and f ′ is continuous. Such a function is said to
be continuously differentiable. (Do you recall an example of a function which is
differentiable but its derivatives are not continuous?)

How do we define n-times continuously differentiable? If f (n) exists on J and
if it is continuous on J , we say that f is n-times continuously differentiable on J
and denote it by f ∈ Cn(J). We also say that f is a Cn-function or a function
of class Cn.
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If f is a function all of whose derivatives exist, it is called an infinitely differ-
entiable function, or a smooth function. Note that if f is smooth, then it is Ck for
all k ∈ N. Because of this, one also says that f is C∞ when it is smooth. (Note
that we do not define the infinite-th derivative of f !)

Are there C∞ functions? Yes, constants, more generally polynomials, the
transcendental functions such the exponential, logarithmic, trigonometric, and
hyperbolic functions in their respective domains.

Let us look at some examples.

Example 4.4.1.

(1) Any polynomial function is a smooth function.

(2) ex, sinx, and cosx are smooth functions.

(3) Let f(x) :=

{
xn, x > 0

0, x ≤ 0.

Then f is (n− 1)-times differentiable at x = 0. However, f (n)(0) does exist.

(4) Let f(x) :=

{
xn sin(1/x), x 6= 0

0, x = 0.

Then f (k)(0) exists for all k < n, but f (n)(0) does not exist.

(5) Let f(x) =

{
x2, if x < 0

x3, if x ≥ 0.

Then f ′(0) exists but f ′′(0) does not.

(6) Let f(x) := |x|. Define g1(x) :=
∫ x

0
f(t) dt. Then, by the fundamental the-

orem of calculus, g1 is differentiable with derivative g′1(x) = f(x). Define
recursively, gn(x) :=

∫ x
0
gn−1(t) dt. Then gn is n-times continuously differen-

tiable, but not (n+ 1)-times differentiable.

(7) The function in item 5 of Example 4.3.2 is infinitely differentiable with
g(n)(0) = 0. See Example 4.5.3 on page 139.

Exercise 4.4.2. Let m,n ∈ N. Consider the function

f(x) :=

{
xn, x > 0

xm, x ≤ 0.

Discuss its higher-order differentiability.

Proposition 4.4.3 (Leibniz Formula). If h = fg is a product of two functions
with derivatives up to order n, then

h(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x). (4.21)
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Proof. We use induction on n, the order of derivative. We know from the product
rule of derivative

h′(x) = f(x)g′(x) + f ′(x)g′(x) =

(
1

0

)
f (0)(x)g(1)(x) +

(
1

1

)
f (1)(x)g(0)(x).

This means that the result is true for n = 1. Let n = 2.

h′′(x) = (f(x)g′(x) + f ′(x)g′(x))
′

= f(x)g′′(x) + 2f ′(x)g′(x) + f ′′(x)g(x)

=

(
2

0

)
f(x)g′′(x) +

(
2

1

)
f ′(x)g′(x) +

(
2

2

)
f ′′(x)g(x).

Thus the result is also true for n = 2. Let us assume that the Leibniz rule is true
for n.

We shall prove it for n+ 1. Let h = fg with f and g both have derivatives of
order n+ 1.

h(n+1)(x) = (h(n))′(x)

=

(
n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x)

)′
by induction

=

n∑
k=0

(
n

k

)(
f (k)(x)g(n−k)(x)

)′
=

n∑
k=0

(
n

k

)[
f (k+1)(x)g(n−k)(x) + f (k)(x)g(n−k+1)(x)

]
=

n∑
k=0

(
n

k

)[
f (k+1)(x)g(n−k)(x)

]
+

n∑
k=0

(
n

k

)[
f (k)(x)g(n−k+1)(x)

]
. (4.22)

Here onward, the proof is exactly similar to that of the binomial theorem for
an integral exponent. We advise the reader to go through it and complete the
proof of the Leibniz formula.

Example 4.4.4. Let y = x2ekx. Use Leibniz theorem to find the yn. For n > 2,

yn =

(
n

0

)
dn

dxn
(ekx)x2 +

(
n

1

)
dn−1

dxn−1
(ekx)2x+

(
n

1

)
dn−2

dxn−2
(ekx)2 + 0

= knekxx2 + 2nkn−1ekxx+ n(n− 1)kn−2ekx.

4.5 Taylor’s Theorem

The simplest functions which we can easily construct and work with are polyno-
mial functions of the form

f(x) = a0 + a1x+ · · · anxn, ai ∈ R.
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The next class of functions are |x| and xα where α ∈ Q. The transcendental
functions such as exponential, trigonometric, and hyperbolic functions need a
lot of analysis even to define them rigorously. We would like to approximate a
function f : R → R by means of polynomial functions. We already know that
if the function is differentiable at a, we can approximate f(x) for x near a by a
first-degree polynomial, namely, f(a)+f ′(a)(x−a). We also have control over the
error. Taylor’s theorem extends this result to (n+1)-times differentiable functions
and approximates them by means of an n-th degree polynomial function.

Theorem 4.5.1 (Taylor’s Theorem). Assume that f : [a, b] → R is such that
f (n) is continuous on [a, b] and f (n+1)(x) exists on (a, b). Fix x0 ∈ [a, b]. Then
for each x ∈ [a, b] with x 6= x0, there exists c between x and x0 such that

f(x) = f(x0) +

n∑
k=1

(x− x0)k

k!
f (k)(x0) +

(x− x0)n+1

(n+ 1)!
f (n+1)(c). (4.23)

Strategy: Proof of any version of Taylor’s theorem involves some trick. The basic

idea is to apply Rolle’s theorem to a suitably defined function on the interval [x, x0]

or [x0, x]. The function is obtained by replacing x0 by t on the right-side expression

and choosing the coefficient M of (x−t)n+1 so that Rolle’s theorem can be applied.

Proof. Define

F (t) := f(t) +

n∑
k=1

(x− t)k

k!
f (k)(t) +M(x− t)n+1,

where M is chosen so that F (x0) = F (x) ≡ f(x). That is,

M =
1

(x− x0)n+1

(
f(x)− f(x0)−

n∑
k=1

(x− x0)k

k!
f (k)(x0)

)
.

This is possible since x 6= x0.
Note that the smallest interval, (either [x, x0] or [x0, x]), containing x and x0

lies inside [a, b], since x, x0 are points of an interval. Clearly, F is continuous on
[a, b], differentiable on (a, b) and F (x) = f(x) = F (x0).

Hence by Rolle’s theorem applied to the interval [x, x0] or [x0, x], as the case
may be, defined by x and x0, there exists c ∈ (a, b) such that

0 = F ′(c) =
(x− c)n

n!
f (n+1)(c)− (n+ 1)M(x− c)n.

Thus, M = f(n+1)(c)
(n+1)! . Hence

f(x) = F (x0) = f(x0) +

n∑
k=1

(x− x0)k

k!
f (k)(x0) +

(x− x0)n+1

(n+ 1)!
f (n+1)(c).

This is what we wanted.
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The right-hand side of (4.23) is called the n-th order (or n-th degree) Taylor
expansion of the function f at x0. The expression

f(x0) +

n∑
k=1

f (k)(x0)

k!
(x− x0)k

is called the n-th degree Taylor polynomial of f at x0.

The term f(n)(c)
n! (x − x0)n+1 is called the remainder term in the Taylor ex-

pansion. It is usually denoted by Rn. This form of the remainder is the simplest
and is known as the Lagrange’s form. There are two other forms which are more
useful: Cauchy’s form and the integral form of the remainder. We shall establish
the Cauchy form of remainder at the end of the chapter while the integral form
will be derived in Chapter 6.

The remainder term is the “error term” if we wish to approximate f near
x0 by the n-th order Taylor polynomial. If we assume that f (n+1) is bounded,
say, by M on (a, b), then Rn goes to zero much faster than (x− x0)n → 0, since∣∣∣ Rn(x)

(x−x0)n

∣∣∣ ≤ M
(n+1)! |x− x0|.

Illustration of Taylor’s approximation. Look at Figure 4.10. Notice that if
the degree of Taylor’s polynomial is higher, the approximation is better.

Figure 4.10: Illustration of Taylor’s series expansions.

Example 4.5.2. We now find the Taylor polynomials for some of the standard
functions.

(1) Let f(x) = xn. Let a ∈ R. Let us look at the Taylor expansion of f(x) about
a. Since it has to be a polynomial in powers of x−a, we think of the binomial
expansion

xn = (x− a+ a)n = an +

n∑
k=1

(
n

k

)
an−k(x− a)k.
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Observe that the coefficients of (x−a)k are precisely f (k)(a). Can the reader
write down the m-th degree Taylor’s polynomial of f(x) = xn around a?

(2) Consider f(x) = ex. Let us find the n-th degree Taylor polynomial of f(x) =
ex about x = 0.

Note that f (n)(x) = ex for all n ∈ N, therefore, f (n)(0) = 1 for all n. Hence
the n-th degree Taylor’s polynomial of f(x) = ex about x = 0 is given by

1 + x
1! + x2

2! + · · ·+ xn

n! .

(3) Let f(x) = sinx. It is easy to see that

f (n)(0) =


0, when n is even

1, when n = 1, 5, 9, 13, . . . , 4k + 1

−1, when n = 3, 7, 11, 15, . . . , 4k − 1.

Hence the n-th degree Taylor’s polynomial of sinx about x = 0 is given by

Tn(x) = f(0) +

n∑
k=0

f (n)(0)

k!
xk

= x− x3

3!
+
x5

5!
− · · ·+ ε

xp

p!
,

where p is n if n is odd and is n− 1 when n is even and where ε = +1 when
n = 4k + 1 and is −1 when n = 4k − 1.

(4) Let f(x) := log(1 + x) for x ∈ (−1,∞). Again, we shall find the n-degree
Taylor’s polynomial of f about x = 0. We have

f ′(x) =
1

1 + x
, f ′′(x) =

−1

(1 + x)2
, f ′′′(x) =

2

(1 + x)3
.

By induction, it is easy to show that

f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n
.

Hence the n-th degree Taylor’s polynomial of log(1 +x) about x = 0 is given
by

Tn(x) = f(0) +

n∑
k=0

f (n)(0)

k!
xk

= x− x2

2
+
x3

3
− x4

4
+ · · · ± xn

n
.

Example 4.5.3. We now construct a very interesting C∞ function which is very
useful in higher aspects of analysis. It is also significant in understanding the
subtle issues involved with Taylor expansions.
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Consider f : R→ R defined by

f(t) =

{
0, for t ≤ 0

exp(−1/t), for t > 0.

See Figure 4.11. We claim that f is infinitely differentiable on R.

Figure 4.11: Graph of the function in Example 4.5.3.

In view of item 2 of Example 4.5.2, we have

ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn+1

(n+ 1)!
+Rn+1,

where Rn+1 = ecxn+2

(n+1)! > 0, if x > 0. Observe that this implies that if x > 0,

we have ex > xk

k! for k ∈ N. If we replace x by 1/t where t > 0, we obtain

e1/t > 1
tn+1(n+1)! . This in turn leads us to conclude that e−1/t < (n + 1)!tn+1.

Finally, we get t−ne−1/t < (n + 1)!t for t > 0. By the sandwich lemma for the
limits (on page 92), we conclude that

lim
t→0+

t−ne−1/t = 0 for n ∈ Z+. (4.24)

By the algebra of limits, we conclude if p(1/t) := a0 + a1
t + · · ·+ an

tn , then

lim
t→0+

p(1/t)e−1/t = 0.

Now let us show that f (n)(0) = 0 for all n ∈ Z+. If we take n = 0 in (4.24),
it follows that limt→0+ f(t) = 0. Since f(t) = 0 for t ≤ 0, the continuity of f at
0 follows.



4.5. TAYLOR’S THEOREM 141

Let us now show that f is differentiable at 0. We start with the difference

quotient e−1/t−0
t = t−1e−1/t. By (4.24), the limit limt→0+

t−1e−1/t = 0. The

left-sided limit limt→0−
f(t)−f(0)

t is obviously zero and hence it follows that f is
differentiable at 0 with f ′(0) = 0.

What is f ′? We have

f ′(t) =

{
1
t2 e
−1/t, t > 0

0, t ≤ 0.

Clearly, f ′ is differentiable at any t 6= 0. We show that f ′′(0) = 0. We again need
to work with the case when the limit is t→ 0+. We have

lim
t→0+

t−2e−1/t − 0

t
= lim
t→0+

t−3e−1/t = 0, by (4.24).

Assume that we have proved that f (n)(0) = 0. We wish to show that
f (n+1)(0) = 0. Observe that the n-th derivative of e−1/t will be of the form

p(1/t) where the “degree” of p is n + 1. Hence limt→0+

p(1/t)e−1/t−0
t is of the

form limt→0+
p1(1/t)e−1/t where p1(1/t) = (1/t)p(1/t). Hence we conclude that

f (n+1)(0) = 0.

This shows that the function f is Cn for any n ∈ N and hence is infinitely
differentiable. The remarkable feature of this function is that all its Taylor poly-
nomials at x0 = 0 are 0, as f (k)(0) = 0 for any k ∈ Z+. What does this say about
the behavior of f near 0?

We know that any polynomial function is infinitely differentiable. We cannot
find a nonzero polynomial which is zero on a non-degenerate interval. (Why?)
We are going to construct an infinitely differentiable function which vanishes on
infinite intervals.

Exercise Set 4.5.4. This set extends the example above and leads to the con-
struction of a non-constant C∞ function which is zero outside an interval.

(1) Let f : R→ R defined by

f(t) =

{
e−

1
t2 , t > 0

0, t ≤ 0.

Look at Figure 4.12. Show that f is infinitely differentiable.
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Figure 4.12: Graph of the function in Item 1 of Exercise 4.5.4.

(2) Let f be as in Item 1 of Exercise 4.5.4. Let ε ∈ R. Define gε(t) := f(t)/(f(t)+
f(ε − t)) for t ∈ R. Then gε is differentiable, 0 ≤ gε ≤ 1, gε(t) = 0 iff t ≤ 0
and gε(t) = 1 iff t ≥ ε. See Figure 4.13.

Figure 4.13: Graph of the function in Item 2 of Exercise 4.5.4 for ε = 2.

(3) For 0 < a < b, define h[a,b](x) = ga(x)g−b(−x) . Look at the Figure 4.14.
Show that if h[a,b](x) 6= 0, then x ∈ [a, b]. We say that this is a C∞ function
whose “support” lies in [a, b].

Definition 4.5.5. Let f : J → R be a differentiable function on an interval J . A
point c ∈ J is a point of inflection of f if f(x)− f(c)− f ′(c)(x− c) changes sign
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Figure 4.14: Graph of the function in Item 3 of Exercise 4.5.4.

as x increases through c in an interval containing c. Geometrically, this means
that the graph as a curve crosses the tangent at the point of inflection. We let
T (x) := f(x)−f(c)−f ′(c)(x−c) denote the tangent to the graph of f at (c, f(c)).

We now give a sufficient condition for the local extrema of a C2-function.

Theorem 4.5.6. Let n ≥ 2, r > 0. Let f (n) be continuous on [a − r, a + r].
Assume that f (k)(a) = 0 for 1 ≤ k ≤ n − 1, but f (n)(a) 6= 0. If n is even, then
a is a local extremum. It is a minimum if f (n)(a) > 0 and a local maximum if
f (n)(a) < 0.
If n is odd, then a is a point of inflection.

Proof. By Taylor’s theorem we have

f(x) = f(a) +
(x− a)n

n!
f (n)(c), for some c between a and x. (4.25)

Let us first prove it when n is even. In this case (x− a)n ≥ 0 for all x. Now,
f (n)(a) < 0 implies that f (n)(c) < 0 for x near a by the continuity of f (n). Hence
(4.25) implies that f(x) ≤ f(a) for all such x. Thus a is a local maximum. The
other case is similar and left as an exercise.

What happens if n is odd?
Let n ≥ 3 be odd. We have

f(x)− f(a) =
(x− a)n

n!
f (n)(c).

Note that (x− a)n changes sign from positive to negative as x increases through
a. Now whatever the sign of f (n)(a), f(x) − f(a) changes sign as x increases
through a. Hence a is a point of inflection.
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Example 4.5.7. It is possible for f to have derivatives of all orders that all
vanish at a strict local maximizer. Let us consider

f(x) =

{
−e−

1
x2 , when x 6= 0

0, when x = 0.

It is easy to check that 0 is the global maximizer of f . Further, f has derivatives
of all order at 0 and they vanish.

4.6 Convex Functions

Look at the pictures. In Figure 4.15, if we draw any chord joining (x, f(x)) and
(y, f(y)) on the graph, the part of the graph of f on the interval [x, y] (or on
[y, x]) lies below the chord. Look at the Figure 4.16 in which this phenomenon
does not happen.

a bx1 y1x2 y2

y = f(x)

c1 c2

Figure 4.15: Convex function.

a y1 b
x1

y = f(x)

c1 c2

Figure 4.16: Non-convex function.

The functions of the first type are called convex functions.
We need a few definitions.
The line segment joining the two points (x1, f(x1)) and (x2, f(x2)) is given

by (1 − t)(x1, f(x1)) + t(x2, f(x2)) for t ∈ [0, 1]. This is a parametric version of
the equation (learned in coordinate/analytic geometry) for the line joining two
points in R2. For, if (x, y) is point on the line, then we can solve for t so that
(x, y) = (1 − t)(x1, f(x1)) + t(x2, f(x2)). Note that x = (1 − t)x1 + tx2 and
y = (1− t)f(x1) + tf(x2). That is, we have

x− x1 = t(x2 − x1) and y − f(x1) = t(f(x2)− f(x1)).

We arrive at t = x−x1

x2−x1
= y−f(x1)

f(x2)−f(x1) . Also note that x = (1 − t)x1 + tx2.

Hence the condition for the convexity of f is that for each t ∈ [0, 1], the y-
coordinate of (x, f(x)) must be less than or equal to the y-coordinate of (x =
(1 − t)x1 + tx2, f((1 − t)x1 + tf(x2)). We have thus arrived at the following
definition.
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Definition 4.6.1. Let J be intervals in R. A function f : J → R is said to be
convex if for all t ∈ [0, 1] and for all x, y ∈ J , the following inequality holds:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (4.26)

If for 0 < t < 1, strict inequality holds in (4.26), then the function is said to
be strictly convex.

We say that f is concave if the reverse inequality holds in (4.26). (See Fig-
ure 4.17.)

a by1x1

y = f(x)

c

Figure 4.17: Graph of a concave function.

Theorem 4.6.2 (Derivative Test for Convexity). Assume that f : [a, b] → R is
continuous and differentiable on (a, b). If f ′ is increasing on (a, b), then f is
convex on [a, b]. In particular, if f ′′ exists and is non-negative on (a, b), then f
is convex.

Proof. Let x, y ∈ J := [a, b]. Any point between x and y is given by z = (1 −
t)x+ ty for some 0 ≤ t ≤ 1. Write f(z) = (1− t)f(z) + tf(z). We wish to show

f(z) ≤ (1− t)f(x) + tf(y) =⇒ (1− t)f(z) + tf(z) ≤ (1− t)f(x) + tf(y).

In particular, it suffices to show that

(1− t) (f(z)− f(x)) ≤ t (f(y)− f(z)) . (4.27)

By the MVT, there exist x < r < z and z < s < y such that

f(z)− f(x) = f ′(r)(z − x) and f(y)− f(z) = f ′(s)(y − z).

Since (1− t)z + tz = z = (1− t)x+ ty, we have

(1− t)(z − x) = t(y − z). (4.28)

We have

(1− t)[f(z)− f(x)] = f ′(r)(1− t)(z − x)

= f ′(r)t(y − z) by (4.28)

≤ tf ′(s)(y − z) = t[f(y)− f(z)].

This establishes (4.27) and hence the theorem.
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Exercise 4.6.3. State and prove an analogue of Theorem 4.6.2 for concave func-
tions.

Example 4.6.4. Let f(x) := x3 − 6x2 + 9x. Let us examine the convexity of f .
We have f ′(x) = 3(x − 1)(x − 3) and f ′′(x) = 6x − 12. It is easy to see that

f ′′(x) > 0 if x > 2 and f ′′(x) < 0 if x < 2. Hence f is convex for x > 2 and
concave for x < 2.

Example 4.6.5 (Examples of convex functions.).

(1) ex is (strictly) convex on R.

(2) xα is convex on (0,∞) for α ≥ 1.

(3) −xα is strictly convex on (0,∞) for 0 < α < 1.

(4) x log x is strictly convex on (0,∞).

(5) f(x) = x4 is strictly convex but f ′′(0) = 0.

(6) f(x) = x+ (1/x) is convex on (0,∞).

(7) f(x) = 1/x is convex on (0,∞).

Theorem 4.6.6. If f : (a, b) → R is convex and c ∈ (a, b) is a local minimum,
then c is a minimum for f on (a, b). That is, local minima of convex functions
are global minima.

Remark 4.6.7. This result is one of the reasons why convex functions are very
useful in applications especially in optimization problems.

Proof. Let f : (a, b) → R be convex and c ∈ (a, b), a local minimum of f . If c is
not a point of global minimum, then there exists a d ∈ (a, b) (d ≤ c or d ≥ c) with
f(d) < f(c). Consider the curve γ(t) = (1 − t)c + td. Then γ(0) = c, γ(1) = d,
and

f(γ(t)) ≤ (1− t)f(c) + tf(d)

< (1− t)f(c) + tf(c), t 6= 0

= f(c), for all t ∈ (0, 1 ] . (4.29)

But for t sufficiently small, γ(t) ∈ (c− ε, c+ ε) so that

f(γ(t)) ≥ f(c) for 0 < t < ε,

which contradicts (4.29).

Theorem 4.6.8. Let f : [a, b]→ R be convex. Then for any x ∈ (a, b), we have

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x
. (4.30)
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Proof. Observe that

x = a+
x− a
b− a

(b− a) =

(
1− x− a

b− a

)
a+

(
x− a
b− a

)
b.

Since f is convex, we conclude that

f(x) ≤
(

1− x− a
b− a

)
f(a) +

(
x− a
b− a

)
f(b).

We deduce from this

(b− a)f(x) ≤ ((b− a)− (x− a)) f(a) + (x− a)f(b).

Rearranging the terms we obtain

(f(x)− f(a))(b− a) ≤ (f(b)− f(a))(x− a),

from which the leftmost inequality in (4.30) follows.
To arrive at the rightmost inequality in (4.30), start with

x = b+
x− b
b− a

=
b− x
b− a

a+

(
1− b− x

b− a

)
b.

Corollary 4.6.9. Let f : (a, b)→ R be differentiable. Then f is convex iff

f(y) ≥ f(x) + f ′(x)(y − x), for x, y ∈ (a, b). (4.31)

Proof. Assume that x < x1 < y. From (4.30), we get

f(x1)− f(x)

x1 − x
≤ f(y)− f(x)

y − x
.

In the above, we let x1 → x from the right, and we arrive at f ′(x) ≤ f(y)−f(x)
y−x .

This is the desired result.
If y < x, the proof above may be adapted.
Conversely, assume that f(y) ≥ f ′(x)(y − x) for x, y ∈ (a, b). We claim that

f ′ is increasing. Let x < y. We then have

f(y) ≥ f(x) + f ′(x)(y − x) (4.32)

f(x) ≥ f(y) + f ′(y)(x− y)

= f(y)− f ′(y)(y − x). (4.33)

We obtain

f(x) + f ′(y)(y − x) ≥ f(y), from (4.33)

≥ f(x) + f ′(x)(y − x), from (4.32).

The result follows from this.
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Corollary 4.6.10. Let f : (a, b) → R be differentiable. Let x0 ∈ (a, b) be such
that f ′(x0) = 0. Then f has a global minimum at x0.

Proof. Easy. For any x ∈ (a, b), in view of (4.31), we get

f(x) ≥ f(x0) + f ′(x0)(x− x0) = f(x0).

Exercise Set 4.6.11.

(1) Let f : (a, b) → R. Prove that f is convex iff the slopes of the chords is an
increasing function. (Formulate this rigorously and then prove it.)

(2) Use the last exercise to prove that a differentiable function f : (a, b) → R is
convex iff f ′ is increasing.

(3) Let g : J → R be convex. Then show that eg(x) is convex.

(4) Show that 1/g(x) is convex if g is concave and positive.

(5) If f, g : J → R are convex functions, then what can you say about f + g?
Justify your answer.

(6) If f, g : J → R are convex functions, then what can you say about max{f, g}
and min{f, g}?

(7) Let f : (a, b)→ R be convex and differentiable. Let c ∈ (a, b) be fixed. Prove
that for any x ∈ (a, b),

f(x)− f(c) ≥ f ′(c)(x− c).

What does this mean geometrically?

(8) Let f : R→ R be differentiable and convex. If f is bounded, prove that f is
a constant.

Application: AM-GM Inequality

Let x1, . . . , xn be non-negative real numbers. Their arithmetic mean and geomet-
ric mean are defined by

AM :=
x1 + · · ·+ xn

n
and GM := (x1 · · ·xn)1/n.

The inequality of the title says that the arithmetic mean is greater than or equal
to the geometric mean and equality holds iff all the xi’s are equal.

We prove this by mathematical induction and calculus. For n = 1, the state-
ment holds true with equality.

Assume that the AM-GM statement is true for any set of n non-negative real
numbers.
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Let n+ 1 non-negative real numbers x1, . . . , xn+1 be given. We need to prove
that

x1 + · · ·+ xn + xn+1

n+ 1
− (x1 · · ·xnxn+1)

1
n+1 ≥ 0, (4.34)

with equality only if all the n + 1 numbers are equal.
To avoid trivial cases, we may assume that all n+ 1 numbers are positive.
We consider the last number xn+1 as a variable and define the function

f(t) =
x1 + · · ·+ xn + t

n+ 1
− (x1 · · ·xnt)

1
n+1 , t > 0.

It suffices to show that f(t) ≥ 0 for all t > 0, with f(t) = 0 only if x1, . . . , xn
and t are all equal. We employ the first and second derivative tests of calculus.

We have

f ′(t) =
1

n+ 1
− 1

n+ 1
(x1 · · ·xn)

1
n+1 t−

n
n+1 , t > 0.

We are looking for points t0 such that f ′(t0) = 0. Thus we obtain

(x1 · · ·xn)
1

n+1 t
− n

n+1

0 = 1.

That is, t0 satisfies

t
n

n+1

0 = (x1 · · ·xn)
1

n+1 .

Or what is the same
t0 = (x1 · · ·xn)

1
n .

That is, the only critical point t0 of f is the geometric mean of x1, . . . , xn. Note
that if t = Rn for very large R� 1, f(t)→∞ as R→∞. Hence it follows that
f has a strict global minimum at t0. Note that f ′′ > 0 and hence the function is
convex. Hence t0 must be a point of global minimum. We now compute f(t0).

f(t0) =
x1 + · · ·+ xn + (x1 · · ·xn)1/n

n+ 1
− (x1 · · ·xn)

1
n+1 (x1 · · ·xn)

1
n(n+1)

=
x1 + · · ·+ xn

n+ 1
+

1

n+ 1
(x1 · · ·xn)

1
n − (x1 · · ·xn)

1
n

=
x1 + · · ·+ xn

n+ 1
− n

n+ 1
(x1 · · ·xn)

1
n

=
n

n+ 1

(x1 + · · ·+ xn
n

− (x1 · · ·xn)
1
n

)
.

The term within the brackets in the last step is non-negative in view of the
induction hypothesis. The hypothesis also says that we can have equality only
when x1, . . . , xn are all equal. In this case, their geometric mean t0 has the same
value. Hence, unless x1, . . . , xn, xn+1 are all equal, we have f(xn+1) > 0. This
completes the proof.

Convex functions are used to establish various inequalities. We refer the reader
to the article (g) in [8].
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4.7 Taylor’s Theorem: Cauchy’s Form of the Re-
mainder

Readers may omit this section on the first reading.
We establish a version of Taylor’s theorem in which the remainder term is

expressed in a form which allows us to get subtle estimates. The way to appreciate
its power is to see how it is used in the proof of binomial theorem for non-integral
indices. This is done in Section 7.7.

Theorem 4.7.1 (Taylor’s Theorem with Remainder). Let n and p be natural
numbers. Assume that f : [a, b] → R is such that f (n−1) is continuous on [a, b]
and f (n)(x) exists on (a, b). Then there exists c ∈ (a, b) such that

f(b) = f(a)+(b−a)f ′(a)+
(b− a)2

2!
f ′′(a)+· · ·+(b− a)n−1

(n− 1)!
f (n−1)(a)+Rn, (4.35)

where

Rn =
(b− c)n−p(b− a)p

p(n− 1)!
f (n)(c). (4.36)

In particular, when p = n, we get Lagrange’s form of the remainder

Rn =
(b− a)n

n!
f (n)(c), (4.37)

and when p = 1, we get Cauchy’s form of the remainder.

Rn = (b− a)
(b− c)n−1

(n− 1)!
f (n)(c), where c = a+ θ(b− a), 0 < θ < 1 (4.38)

=
(b− a)n

(n− 1)!
(1− θ)n−1f (n)(a+ θ(b− a)), where 0 < θ :=

(c− a)

(b− a)
< 1.

(4.39)

Proof. The proof is an obvious modification of an earlier proof.
Consider

F (x) = f(b)− f(x)− (b− x)f ′(x)− (b− x)2

2!
f ′′(x)− · · · − (b− x)n−1

(n− 1)!
f (n−1)(x).

We have for x ∈ (a, b),

F ′(x) =
−(b− x)n−1f (n)(x)

(n− 1)!
. (4.40)

We now define

g(x) = F (x)−
(
b− x
b− a

)p
F (a). (4.41)



4.7. CAUCHY’S FORM OF THE REMAINDER 151

The g is continuous on [a, b], and differentiable on (a, b) and g(a) = 0 = g(b).
Hence by Rolle’s theorem, there exists c ∈ (a, b) such that g′(c) = 0. Using the
definition of g in (4.41) we get

0 = g′(c) = F ′(c) +
p(b− c)p−1

(b− a)p
F (a). (4.42)

Using (4.40) in (4.42) and simplifying we get

(b− c)n−1

(n− 1)!
f (n)(c) =

p(b− c)p−1

(b− a)p
F (a). (4.43)

That is, F (a) = (b−c)n−p(b−a)p

p(n−1)! f (n)(c). This is what we set out to prove.

Lagrange’s form of the remainder (4.37) and Cauchy’s form (4.38) are obvious.
If we write c = a + θ(b − a) for some θ ∈ (0, 1), Cauchy’s form (4.39) of the
remainder is obtained from (4.36).

We shall see later the power of Cauchy’s form of the remainder in Section 7.7
where it is used to prove the convergence of the binomial series.
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Since the addition of real numbers is a binary operation, that is, a map +: R×
R → R, given an ordered pair (x, y) of real numbers we can add them to get
x+y := +(x, y). It is the associativity of the addition that allows us to add a given
finite ordered tuple (x1, . . . , xn). This is established in algebra books (especially
in group theory). To “add” an infinite tuple, that is, to add a sequence, (xn)
of real numbers, we need analysis to give a sensible meaning to “

∑∞
n=1 xn.” For

instance, if xn = (−1)n−1, and if we want to “add” them based on our earlier
experience we may manipulate the terms and end up with “different” answers as
follows.

1− 1 + 1− 1 + · · · = (1− 1) + (1− 1) + · · ·
= 0 + 0 + · · ·+ 0 + · · ·
= 0,

1− 1 + 1− 1 + · · · = 1 + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + · · ·
= 1.

This absurdity shows that we should define the “the sum” of a sequence (xn) of
real numbers in a rigorous way so as to avoid this.

When we write 1
3 = 0.3333 . . ., what do we mean by it? Recall that the right

side is the infinite sum 3
10 + 3

102 + 3
103 + · · · . We would like to arrive at a definition

of the sum of an infinite series using which we should be able to prove rigorously
1
3 = 0.33333 . . ..

153
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5.1 Convergence and Sum of an Infinite Series

Definition 5.1.1. Given a sequence (an) of real numbers, a formal sum of the
form

∑∞
n=1 an (or

∑
an, for short) is called an infinite series.

For any n ∈ N, the finite sum sn := a1 + · · · + an is called the (n-th) partial
sum of the series

∑
an.

A more formal definition of an infinite series is as follows. By the symbol∑
n an we mean the sequence (sn) where sn := a1 + · · ·+ an.
We say that the infinite series

∑
an is convergent if the sequence (sn) of

partial sums is convergent. In such a case, the limit s := lim sn is called the sum
of the series and we denote this fact by the symbol

∑
an = s.

We say that the series
∑
an is divergent if the sequence of its partial sums

is divergent.
The series

∑
n an is said to be absolutely convergent if the infinite series∑

n |an| is convergent. Note that a series
∑
an of non-negative terms, (that is,

an ≥ 0 for all n) is convergent iff it is absolutely convergent.
If a series is convergent but not absolutely convergent, then it is said to be

conditionally convergent.

Let us look at some examples of series and their convergence.

Example 5.1.2. Let (an) be a constant sequence an = c for all n. Then the
infinite series

∑
an is convergent iff c = 0. For, the partial sum is sn = nc. Thus

(sn) is convergent iff c = 0. (Why? Use the Archimedean property.)

Example 5.1.3. Let an be non-negative real numbers and assume that
∑
an is

convergent. Since sn+1 = sn+an+1, it follows that the sequence (sn) is increasing.
We have seen (Theorem 2.3.2) that (sn) is convergent iff it is bounded above.
Hence a series of non-negative terms is convergent iff the sequence of partial
sums is bounded. Note that if

∑
an is convergent, then

∑
an = lub {sn : n ∈ N}.

Example 5.1.4 (Geometric Series). This is the most important example. Let
z ∈ R be such that |z| < 1. Consider the infinite series

∑∞
n=0 z

n. We claim that
the series converges to α := 1/(1− z) for |z| < 1. Its n-th partial sum sn is given
by

sn :=

n∑
k=0

zk =
1− zn+1

1− z
.

Now, |α− sn| = zn+1

1−z , which converges to 0. Hence we conclude that
∑
zn = 1

1−z
if |z| < 1.

In particular,

0.3333 · · · =
∞∑
n=1

3

10n
=

3

10

∞∑
n=0

1

10n
=

3

10

1

1− 1
10

=
1

3
.

Also note that if |z| ≥ 1, then the n-term does not go to 0, so the series cannot
be convergent in this case. (See Corollary 5.1.11.)
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Exercise 5.1.5. What is 0.9999 · · · ?

Example 5.1.6 (Telescoping Series). Let (an) and (bn) be two sequences such
that an = bn+1 − bn, n ≥ 1. We note that s1 = a1 = b2 − b1, s2 = a1 + a2 =
(b2 − b1) + (b3 − b2) = b3 − b1 and

sn = a1 + · · ·+ an = (b2 − b1) + (b3 − b2) + · · ·+ (bn+1 − bn) = bn+1 − b1.

Thus we see that
∑
an converges iff lim bn exists, in which case we have∑

an = −b1 + lim bn.

A typical example:
∑

1
n(n+1) . For, observe that 1

n(n+1) = 1
n −

1
n+1 . Here bn =

−1/n so that the sum is −b1 + lim bn+1 = 1 + lim −1
n+1 = 1.

Example 5.1.7. Consider
∑∞
n=1

n
n4+n2+1 . This is one of the series for which we

can find the sum! We observe

an =
n

n4 + n2 + 1

=
n

(n2 + 1)2 − n2

=
n

(n2 + 1 + n)(n2 + 1− n)

=
1

2

[
1

n2 − n+ 1
− 1

n2 + n+ 1

]
.

Note that the sum in the brackets is a telescoping series with bn = 1
2

(
1

n2−n+1

)
.

Hence we get sn = 1
2 −

1
2

(
1

n2+n+1

)
→ 1

2 .

Example 5.1.8. Let us look at the series
∑
n

1
n2 of positive terms. Observe that

1
n2 <

1
n(n−1) for n ≥ 2. If sn denotes the partial sum of the series

∑
n

1
n2 and tn

that of
∑

1
n(n−1) , it follows that sn ≤ tn. Since (tn) is bounded above (Exam-

ple 5.1.6), the sequence (sn) is bounded above. Hence in view of Example 5.1.3
we see that the series

∑
n−2 is convergent.

This is a special case of the comparison test to be seen below.

Example 5.1.9 (Harmonic Series). The series
∑∞
n=1

1
n is divergent.

Observe that the harmonic series is a series of positive terms. Hence it is conver-
gent iff its partial sums are bounded above (see Example 5.1.3). We show that
the subsequence (s2k) is not bounded above. The key observation is that each of
the terms in

1

2k−1 + 1
+ · · ·+ 1

2k
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is greater than or equal to 1
2k and there are 2k−1 terms in the sum. Hence the

sum is greater than 2k−1 × 1
2k = 1

2 . We have the following estimates:

s1 = 1

s2 = 1 +
1

2
=

3

2

s22 = 1 +
1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

(
1

4
+

1

4

)
= 1 +

1

2
+ 2 · 1

4
= 1 +

1

2
+

1

2
= 1 +

2

2

s23 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
> 1 +

1

2
+ 2× 1

4
+ 22 × 1

23
= 1 +

3

2
so that

s2k = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)
> 1 +

1

2
+ · · ·+ 1

2︸ ︷︷ ︸
k−times

.

Hence s2k > 1 + k
2 . It follows that (sn) is not bounded above. We conclude that

the harmonic series
∑
n

1
n is not convergent.

Theorem 5.1.10 (Cauchy Criterion). The series
∑
an converges iff for each

ε > 0 there exists N ∈ N such that

n,m ≥ N =⇒ |sn − sm| < ε.

Thus, the series
∑
an converges iff for each ε > 0 there exists N ∈ N such that

n > m ≥ N =⇒ |am+1 + am+2 + · · ·+ an| < ε.

This Cauchy criterion is quite useful when we want to show that a series is
convergent without bothering to know its sum. See Theorem 5.1.17 for a typical
use.

Proof. Let
∑
an be convergent. Then the sequence (sn) of its partial sums is

convergent. We know that a real sequence is convergent iff it is Cauchy. Hence
(sn) is convergent iff it is Cauchy. The result follows from the very definition of
Cauchy sequences.

Corollary 5.1.11. If
∑
n an converges, then an → 0.
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Proof. We need to estimate |an|. The key observation is an = sn − sn−1 and
the fact that (sn) is convergent and hence is Cauchy. (Here (sn) is as usual the
sequence of the partial sums of the series

∑
an.)

Let ε > 0 be given. Since the sum
∑
an is convergent, the sequence (sn) of

partial sums is convergent and in particular, it is Cauchy. Hence for the given ε
there exists N ∈ N such that for n ≥ m ≥ N we have |sn − sm| < ε. Now if we
take any n ≥ N + 1, then an = sn− sn−1. Note that n− 1 ≥ N . Hence we obtain
|an| = |sn − sn−1| < ε for n ≥ N + 1. This proves that an → 0.

The converse of the above proposition is not true. See Example 5.1.9.

Remark 5.1.12. Most often we need the following observation on a convergent
series

∑
an. If

∑
n an = s, then

∑∞
n=N+1 an = s−

∑N
k=1 ak.

Now what is the meaning of the symbol
∑∞
n=N+1 an? We define a new se-

quence (bk) by setting bk := aN+k. The infinite series associated with the sequence
(bk) is denoted by

∑∞
n=N+1 an or simply by

∑
n≥N+1 an.

Let sn denote the partial sums of
∑
ak. Let σn :=

∑N+n
N+1 ak =

∑n
k=1 bk. Let

sN := a1 + · · ·+ aN . Then we have σn = sN+n − sN . Clearly, σn → s− sN . The
claim follows from this.

An important corollary, which is used most often, is the following.

Corollary 5.1.13. Given ε > 0, there exists N ∈ N such that the “tail” of the
series

∑∞
n=N+1 an < ε.

Proof. This is easy. Since sn → s, for ε > 0 there exists N ∈ N such that for
n ≥ N , sn ∈ (s− ε, s+ ε). In particular, s− ε < sN , that is, s− sN < ε. By the
last remark,

∑
n≥N+1 an = s− sN . Hence the corollary follows.

Exercise 5.1.14. Given a sequence (an), let us assume the associated infinite
series

∑
an is convergent. Let N ∈ N be fixed. Let bk ∈ R, 1 ≤ k ≤ N be given.

We form a new sequence (cn) where ck = bk for 1 ≤ k ≤ N and bk = ak for
k > N . Let s =

∑
an and b := b1 + · · ·+ bN . Show that

∑
cn is convergent and

that
∑
cn = s+ b− sN .

Given two series (whether or not convergent)
∑
an and

∑
bn, we may define

their sum as the infinite series associated with the sum (an+bn) of the sequences
(an) and (bn). Thus,

∑
an+

∑
bn :=

∑
(an+bn). Similarly, given a scalar λ ∈ R,

we define the scalar multiple λ
∑
an to be the series

∑
(λan).

Theorem 5.1.15 (Algebra of Convergent Series). Let
∑
an and

∑
bn be two

convergent series with their respective sums A and B, respectively.
(i) Their sum

∑
(an + bn) is convergent and we have

∑
(an + bn) = A+B.

(ii) The series λ
∑
an is convergent and we have λ

∑
an = λ ·A.

The set of all (real) convergent series is a vector space over R.
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Proof. The proofs are straightforward and the reader should go on his own.
Let (sn), (tn), and (σn) be the partial sums of the series

∑
an,

∑
bn, and∑

(an+bn). Observe that using standard algebraic facts about the commutativity
and associativity of addition, we obtain

σn = (a1 + b1) + · · ·+ (an + bn)

= (a1 + · · ·+ an) + (b1 + · · ·+ bn)

= sn + tn.

It follows from the algebra of convergent sequences that σn → A+B.
(ii) is left to the reader.

Remark 5.1.16. The ONLY way to deal with an infinite series is through its
partial sums and by using the definition of the sum of an infinite series.

We need to be careful when dealing with infinite series. Mindless alge-
braic/formal manipulations may lead to absurdities.

Let
s = 1− 1 + 1− 1 + · · ·+ (−1)n+1 + · · ·

(Note that s has no meaning, if we apply our knowledge of infinite series!) Then

−s = −1 + 1− 1 + 1 + · · · = 1 + (−1 + 1 + · · · )− 1 = s− 1.

Hence s = 1/2. On the other hand

s = (1− 1) + (1− 1) + · · · = 0.

Hence we arrive at the absurdity 0 = 1/2.

Proposition 5.1.17. If
∑
an is absolutely convergent, then

∑
n an is convergent.

Proof. Let sn and σn denote the partial sums of
∑
an and

∑
|an|, respectively.

It is enough to show that (sn) is Cauchy. (Why?) We have, for n > m,

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak| = σn − σm,

which converges to 0, as (σn) is convergent. Hence (sn) is Cauchy sequence.

The converse of the last proposition is not true. See Remark 5.2.8.

Theorem 5.1.18 (Comparison Test). Let
∑
an and

∑
n bn be series of non-

negative reals. Assume that an ≤ bn for all n. Then:
(i) if

∑
bn is convergent, then so is

∑
an,

(ii) if
∑
an is divergent, so is

∑
bn,

(iii) Let
∑
n bn be a series of positive reals. Assume that

∑
n bn is convergent

and that there exists N ∈ N such that |an| ≤ bn for all n ≥ N . Then
∑
n an is

absolutely convergent and hence convergent.
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Proof. Let sn and tn denote the n-th partial sums of
∑
an and

∑
bn, respectively.

Since ak ≤ bk for k ∈ N, we see that sn ≤ tn.
Now if

∑
bn is convergent, let tn → t. We know that t = lub {tn : n ∈ N}.

Hence sn ≤ tn ≤ t so that t is an upper bound of the set {sn : n ∈ N}. Thus, the
sequence (sn) of partial sums of the non-negative series

∑
an is bounded above.

It follows that
∑
an is convergent, say, to s. Since s = lub {sn}, we see that

s ≤ t.
If
∑
an is divergent, note that its partial sums form an increasing unbounded

sequence. Given M ∈ R, there exists N ∈ N such that for k ≥ N , we have
sk > M . Hence tk ≥ sk > M for such k. We conclude that

∑
bn is divergent.

Note that (iii) is an extension of (i). To prove this, we compare the series∑
n≥N |an| and

∑
n≥N bn to conclude that

∑
n≥N an is absolutely convergent and

hence convergent. Since
∑∞
n=1 an =

∑N−1
k=1 ak +

∑
k≥N ak, the result follows.

Example 5.1.19 (Harmonic p-series). Consider the series
∑
n

1
np . We claim that

the harmonic p-series is divergent if 0 < p ≤ 1 and is convergent if p > 1.
This is often used in conjunction with the comparison test.
The case when p = 1 is already done in Example 5.1.9.
For 0 < p < 1, observe that each of the terms in the sum of sn is greater than

or equal to n−p. Hence sn ≥ n · n−p = n1−p → ∞. Thus the series
∑∞
n=1 n

−p is
divergent for 0 < p < 1.

For p > 1, observe that

1

2p
+

1

3p
<

2

2p
=

2

2p

1

4p
+

1

5p
+

1

6p
+

1

7p
<

4

4p
=

(
2

2p

)2

1

8p
+

1

9p
+ · · ·+ 1

15p
<

8

8p
=

(
2

2p

)3

.

Now the geometric series
∑
k 2k/2pk is convergent if p > 1. It follows from the

comparison test that the p-harmonic series is convergent if p > 1.

Exercise Set 5.1.20 (Exercises for comparison test).

(1) Let bn > 0 and an/bn → ` > 0. Then either both
∑
an and

∑
bn converge

or both diverge.

(2) Let an > 0 and bn > 0. Assume that (an+1/an) ≤ (bn+1/bn) for all n. Show
that
(i) if

∑
bn converges, then

∑
an converges, and

(ii) if bn → 0 so does an.

Remark 5.1.21. The geometric series and the comparison test along with the
integral test are the most basic tricks in dealing with absolute convergence of an
infinite series.
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Theorem 5.1.22 (d’Alembert’s Ratio Test). Let
∑
n cn be a series of positive

reals. Assume that
lim
n
cn+1/cn = r.

Then the series
∑
n cn is

(i) convergent if 0 ≤ r < 1,
(ii) divergent if r > 1.
The test is inconclusive if r = 1.

Proof. If r < 1, choose an s such that r < s < 1. Then there exists N ∈ N such
that cn+1 ≤ scn for all n ≥ N . Hence cN+k ≤ skcN , for k ∈ N. The convergence
of
∑
cn follows.

If r > 1, then cn ≥ cN for all n ≥ N and hence
∑
cn is divergent as the n-th

term does not go to 0.
Can you think of why the test is inconclusive when r = 1? The failure of the

test when r = 1 follows from looking at the examples
∑
n 1/n and

∑
n 1/n2.

Theorem 5.1.23 (Cauchy’s Root Test). Let
∑
n an be a series of positive reals.

Assume that limn a
1/n
n = a. Then the series

∑
n an is convergent if 0 ≤ a < 1,

divergent if a > 1, and the test is inconclusive a = 1.

Proof. If a < 1, then choose α such that a < α < 1. Then an < αn for n ≥ N .
Hence by comparing with the geometric series

∑
n≥N α

n, the convergence of∑
n an follows. If a > 1, then an ≥ 1 for all large n and hence, the n-th term does

not approach zero.
Can you think of why the test is inconclusive when r = 1?
The examples

∑
n 1/n and

∑
1/n2 illustrate the failure of the test when

r = 1.

Exercise Set 5.1.24.

(1) Show that
∑
n

2nn!
nn is convergent.

(2) Is
∑
n

7n+1

9n convergent?

(3) Use your knowledge of infinite series to conclude that n
2n → 0.

(4) Show that the sequence
(
n!
nn

)
is convergent. Find its limit.

(5) Assume that
∑
an converges and

∑
an = s. Show that

∑
n(a2k + a2k−1)

converges and its sum is s.

(6) Let (an) be given such that an → 0. Show that there exists a subsequence
(ank

) such that the associated series
∑
k ank

is convergent.

(7) Show that the series
∑
n

1
2n−n is convergent.

(8) Let (an) be given. Assume that an > 0 for all n. Let sn denote the n-th
partial sum of the series

∑
n an. Show that the series

∑
n
sn
n is divergent.

Can you say anything more specific?
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(9) Let
∑
an be absolutely convergent. Assume that an + 1 6= 0 for any n. Show

that the series
∑ an

1+an
is absolutely convergent.

We shall now state and prove the integral test. We shall use some of the
results from the theory of integration, which will be established in Chapter 6.
(See page 202.)

If f : [a, b]→ R is continuous with α ≤ f(x) ≤ β for x ∈ [a, b], then

α(b− a) ≤
∫ b

a

f(x) dx ≤ β(b− a).

We can motivate this inequality geometrically by considering a non-negative func-
tion f and using the geometric interpretation of the definite integral.

Theorem 5.1.25 (Integral Test). Assume that f : [1,∞]→ [0,∞) is continuous
and decreasing. Let an := f(n) and bn :=

∫ n
1
f(t) dt. Then:

(i)
∑
an converges if (bn) converges,

(ii)
∑
an diverges if (bn) diverges.

Proof. Observe that for n ≥ 2, we have an ≤
∫ n
n−1

f(t) dt ≤ an−1 so that

n∑
k=2

ak ≤
∫ n

1

f(t) dt ≤
n−1∑
k=1

ak.

If the sequence (bn) converges, then (bn) is a bounded increasing sequence.∑n
k=2 ak ≤ bn. Hence (sn) is convergent.

If the integral diverges, then bn →∞. Since bn ≤
∑n−1
k=1 ak, the divergence of

the series follows.

In the following examples, you will again have to use results such as the
fundamental theorem of calculus to compute the integrals.

Exercise Set 5.1.26 (Typical applications of the integral test).

(1) The p-series
∑
n n
−p converges if p > 1 and diverges if p ≤ 1.

(2) The series
∑

1
(n+2) log(n+2) diverges.

(3) Show that the series
∑ logn

np is convergent if p > 0.

Theorem 5.1.27 (Cauchy Condensation Test). If (an) is a decreasing sequence
of non-negative terms, then

∑
an and

∑
k 2ka2k are either both convergent or

both divergent.

Proof. The argument below is similar to the one in Example 5.1.9. Observe

a3 + a4 ≥ 2a4

...

a2n−1+1 + a2n−1+2 + · · ·+ a2n ≥ 2n−1a2n .
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Adding these inequalities, we get

2n∑
k=1

ak >

2n∑
k=3

ak >

n∑
k=1

2k−1a2k . (5.1)

If
∑∞
k=1 2ka2k diverges so does

∑∞
k=1 2k−1a2k . Hence

∑
ak diverges.

Note that

a2 + a3 ≤ 2a2

...

a2n−1 + a2n−1+1 + · · ·+ a2n−1 ≤ 2n−1a2n−1.

Adding these inequalities, we get

a2 + a3 + · · ·+ a2n−1 ≤
n−1∑
k=1

2ka2k . (5.2)

If
∑∞
k=1 2ka2k is convergent, then arguing as above, we conclude that the series∑

ak is convergent.

Exercise 5.1.28 (A typical application of the condensation test). The series∑
1
np is convergent if p > 1 and divergent if p ≤ 1.

Theorem 5.1.29 (Abel-Pringsheim). If
∑
n an is a convergent series of non-

negative terms with (an) decreasing, then nan → 0.

Proof. Since
∑
an is convergent, there exists N such that |sn − sm| < ε for

n, n ≥ N . For k ≥ N ,

ka2k ≤ ak+1 + · · ·+ a2k = s2k − sk.

Thus, lim(2n)a2n → 0. Since a2n+1 ≤ a2n, we have

(2n+ 1)a2n+1 ≤ (2n+ 1)a2n ≤ (2n)a2n + a2n. (5.3)

Now the series
∑
an is convergent, the sequence (an) converges to 0 and hence

the subsequence (a2n) converges to zero. It follows from (5.3) that the sequence
((2n + 1)a2n+1) is convergent. Using Item 13 of Exercise 2.1.28 on page 40, we
conclude that nan → 0.

Remark 5.1.30. One may also deduce Abel-Pringsheim from the condensation
test. For

∑
2ka2k is convergent. Note that 2na2n → 0. Given k choose n such

that 2n ≤ k ≤ 2n+1. Then kak < 2n+1a2n = 2(2na2n)→ 0.
What does Abel-Pringsheim say? It says that if (an) is a decreasing se-

quence of non-negative reals and if the associated series
∑
an is convergent,

then an → 0 much faster than (1/n) going to zero. Compare this also with the
convergence/divergence of harmonic p-series.

Example 5.1.31. The series
∑

1
an+b , a > 0, b ≥ 0 is divergent. Note that (an)

is decreasing. If the given series is convergent, then nan → 0 by Abel-Pringsheim.
But nan = n

an+b →
1
a 6= 0.
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5.2 Abel’s Summation by Parts

The tests we have seen so far are for absolute convergence. There are infinite
series which are convergent but not absolutely convergent. These are often quite
subtle to handle. We give some tests which are useful to deal with such series.
The basic tool for these tests is the following Abel’s summation formula. If you
encounter a series which is not absolutely convergent, then you should resort to
summation by parts, if possible.

Theorem 5.2.1 (Abel’s Summation by Parts Formula). Let (an) and (bn) be
two sequences of real numbers. Define An := a1 + · · · + an. We then have the
identity

n∑
k=1

akbk = Anbn+1 −
n∑
k=1

Ak(bk+1 − bk). (5.4)

It follows that
∑
k akbk converges if (i) the series

∑
Ak(bk+1 − bk) and (ii) the

sequence (Anbn+1) converges.

The name should remind us of a similar one which we have seen in the calculus
course, namely integration by parts. We claim that (5.4) is similar to integration
by parts formula. Given a sequence (sn) of real numbers, we let ∆sk := sk+1 −
sk ≡ sk+1−sk

(k+1)−k (a formula which may be familiar from “Finite differences”). This is

a discrete version of a derivative with respect to the variable k. We let (sn) be the
sequence of partial sums of the series

∑
an. Hence the left side of (5.4) assumes

the form
∑n
k=1 bk∆sk. The right side is of the form snbn+1 −

∑n
k=1 sk∆bk. This

resembles the integration by parts formula∫ n

1

b ds = sb |n1 −
∫ n

1

s db.

Proof. Let A0 = 0. We have

n∑
k=1

akbk =

n∑
k=1

(Ak −Ak−1)bk

=

n∑
k=1

Akbk −
n∑
k=1

Akbk+1 +Anbn+1.

Equation (5.4) follows from this. The last conclusion is an easy consequence of
(5.4).

Lemma 5.2.2 (Abel’s Lemma). Keep the notation of the last item. Assume
further that (i) m ≤ An ≤ M for n ∈ N and (ii) (bn) is a decreasing sequence.
Then

mb1 ≤
n∑
k=1

akbk ≤Mb1. (5.5)
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Proof. The proof of (5.5) follows from the summation formula (5.4), the fact
bk − bk+1 ≥ 0 and telescoping:

n∑
k=1

akbk ≤M
n∑
k=1

(bk − bk+1) +Mbn+1

= M [(b1 − b2) + (b2 − b3) + · · ·+ (bn − bn+1) + bn+1]

= Mb1.

The left side inequality in (5.5) is proved in a similar way.

Theorem 5.2.3 (Dirichlet’s Test). The series
∑
akbk is convergent if the se-

quence (An) where An :=
∑n
k=1 ak is bounded and (bk) is decreasing to zero.

Proof. Assume that |An| ≤ M for all n. We have Anbn+1 → 0. In view of the
last item, it suffices to prove that

∑
k Ak(bk+1 − bk) is convergent. Since bk ↘ 0,

we have
|Ak(bk+1 − bk)| ≤M(bk − bk+1).

The series
∑
k(bk − bk+1) is telescoping. We conclude that

∑
k Ak(bk+1 − bk) is

absolutely convergent.

Let us look at an important example.

Example 5.2.4. Let bn ↘ 0. Then
∑
bn sinnx is convergent for all x ∈ R

and
∑
bn cosnx is convergent for all x ∈ R \ {2nπ : n ∈ Z}. Instead of using

the trigonometric formulas, we use Euler’s identity and de Moivre’s theorem
below, which involve complex numbers. If you do not like this, let us assure you
that the trigonometric identities (5.6)–(5.7) can be established using standard
trigonometric identities.

Consider the geometric series:

n∑
k=1

eikx = eix
1− einx

1− eix
= ei

(n+1)x
2

sin(nx/2)

sin(x/2)
.

Taking real and imaginary parts, we get

n∑
k=1

cos kx =
sin nx

2 cos(n+ 1)x2
sin x

2

(5.6)

n∑
k=1

sin kx =
sin nx

2 sin(n+ 1)x2
sin x

2

. (5.7)

We thus have the easy estimates∣∣∣∣∣
n∑
k=1

cos kx

∣∣∣∣∣ ≤ 1∣∣sin x
2

∣∣ and

∣∣∣∣∣
n∑
k=1

sin kx

∣∣∣∣∣ ≤ 1∣∣sin x
2

∣∣ if sin
x

2
6= 0.

Now it is easy to complete the proof.
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Theorem 5.2.5 (Dedekind’s Test). Let (an), (bn) be two complex sequences.
Let An := (a1 + · · · + an). Assume that (i) (An) is bounded, (ii)

∑
|bn+1 − bn|

is convergent and bn → 0. Then
∑
anbn is convergent. In fact,

∑
anbn =∑

An(bn+1 − bn).

Proof. We use Abel’s summation formula (5.4). Argue as in Dirichlet’s test.

Exercise 5.2.6 (Abel’s Test). Assume that the series
∑
ak is convergent and the

sequence (bk) is monotone and bounded. Then the series
∑
akbk is convergent.

Proof is quite similar to that of Dirichlet’s test 5.2.3.

Theorem 5.2.7 (Leibniz Test or Alternating Series Test). Let (tn) be a real
monotone sequence converging to zero. Then

∑
(−1)n−1tn is convergent and we

have
t1 − t2 ≤

∑
(−1)n−1tn ≤ t1.

Proof. The convergence of the series is an immediate corollary of Dirichlet’s test.
We indicate a direct proof which also exhibits the estimates for the sum.

Clearly s2n = (t1 − t2) + · · · (t2n−1 − t2n) is increasing. Also,

s2n = t1 − (t2 − t3)− · · · − (t2n−2 − t2n−1)− t2n ≤ t1.

Hence the sequence (s2n) is a bounded increasing sequence and hence is con-
vergent, say, to s ∈ R. We claim that sn → s. Given ε > 0, find N ∈ N such
that

n ≥ N =⇒ |s2n − s| < ε/2 and |t2n+1| < ε/2.

For n ≥ N , we have

|s2n+1 − s| ≤ |s2n + t2n+1 − s| ≤ |s2n − s|+ |t2n+1| < ε.

Remark 5.2.8. A typical example for the alternating series test is
∑ (−1)n

n . In
particular, we have an example of a series which is convergent but not absolutely
convergent.

5.3 Rearrangements of an Infinite Series

Let an n-tuple (a1, . . . , an) of real numbers be given. Let s = a1 + · · · + an be
the sum of the finite sequence. Let σ be a permutation of {1, . . . , n}. Note that
σ is a bijection of the set {1, . . . , n}. Consider the new n-tuple (aσ(1), . . . , aσ(n)).
Let t := aσ(1) + · · ·+aσ(n). Thanks to the commutativity and associativity of the
addition, we know that s = t. (Note that we do this often while adding a list of
numbers. We do not add them as per the listing. We may find two numbers quite
apart but may pair them off as they are easy to add up or they cancel out each
other.)
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Given an infinite sequence (an), assume that the associated infinite series∑
n an is convergent. Fix N ∈ N. Let now σ be a permutation of {1, . . . , N}.

Construct a new sequence (bk) where bk = aσ(k) for 1 ≤ k ≤ N and bk = ak
for k > N . Look at

∑
bn, the infinite series associated with the sequence (bn). Is∑

bn convergent and if so what is its sum? Let sn and tn denote the partial sums
of the series

∑
an and

∑
bn, respectively. If n = N , the finite sequence (or the

N -tuple (b1, . . . , bN ) is just a permutation of (a1, . . . , aN ). Hence we know that
sN = tN . (Note that it may happen sk 6= tk for k < N .) Also, tn = sn for n ≥ N .
It follows that tn → s := lim sn.

Can we extend this if σ is a permutation of N? What do we mean by this? Let
(an) be given. Let σ : N→ N be a bijection. (We may think of σ as a permutation
of N.) Then we construct a new sequence (bn) where bn := aσ(n). Our question is
if
∑
an is convergent, is

∑
bn convergent, and if so, what is its sum? Based on

our experience with algebra of finite sums, we may be tempted to believe that
the answer is

∑
bn converges to

∑
an. But this is not the case. See Remark 5.3.2

below.

Definition 5.3.1. Let
∑
an and a bijection σ : N → N be given. Define bn :=

aσ(n). Then the new series
∑
bn is said to be a rearrangement of the series

∑
an.

Remark 5.3.2. Rearranged series
∑
bn may converge to a sum different from

that of
∑
an.

Consider the standard alternating series
∑

(−1)n+1n−1. We know that it is
convergent, say, to a sum s. From Theorem 5.2.7 we also know s ≥ t1− t2 = 1/2.
Hence s 6= 0. We rearrange the series to get a new series

∑
bn which converges

to s/2!
Rearrange the given series in such a way that two negative terms follow a

positive term:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·+ 1

2n− 1
− 1

4n− 2
− 1

4n
+ · · · .

(Can you write an explicit formula for bn?) Let sn be the n-th partial sum of the
original series and tn denote the n-th partial sum of this rearranged series. We
have

t3n =

(
1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+ · · ·+

(
1

2n− 1
− 1

4n− 2
− 1

4n

)
+ · · · .

In each block of three terms (in the brackets), subtract the second term from the
first to get

t3n =

(
1

2
− 1

4

)
+

(
1

6
− 1

8

)
+ · · ·+

(
1

4n− 2
− 1

4n

)
+ · · · = s2n

2
.

Thus t3n → s/2. Also, t3n+1 = t3n + 1
2n+1 → s/2 etc. Hence we conclude that

tn → s/2.
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Given a real series
∑
an, we let a+

n := max{an, 0} and a−n := −min{an, 0}.
We call the series

∑
a+
n (respectively,

∑
a−n ) as the positive part or the series

of positive terms (respectively, the negative part or the series of negative terms)
of the given series

∑
an. Note that both these series have non-negative terms.

Proposition 5.3.3. If
∑
an is conditionally convergent, then the series of its

positive terms and the series of negative terms are both divergent.

Proof. Let (sn), (σn), α+
n , and α−n denote the sequences of partial sums of the

series
∑
an,

∑
|an|,

∑
a+
n , and

∑
a−n , respectively. Note that α+

n is the sum of
the non-negative terms in sn and −α−n is the sum of the negative terms in sn.
Hence we have

σn :=

n∑
k=1

|ak| = α+
n + α−n , and sn = α+

n − α−n .

Let sn → s. Observe that (α+
n ) and (α−n ) are increasing. By hypothesis

∑
|an| is

not convergent, which implies that σn →∞. Note that

α+
n =

σn + sn
2

and α−n =
σn − sn

2
.

We shall show that α+
n → ∞. Let R ∈ R be given. Since sn → s, the sequence

(sn) is bounded. Let M > 0 be such that −M ≤ sn ≤ M for n ∈ N. Since (σn)
diverges to infinity, there exists N such that for n ≥ N , we have σn > 2R +M .
It follows that (2R+M)−M ≤ σn + sn for n ≥ N . In particular,

n ≥ N =⇒ α+
n =

σn + sn
2

≥ 2R

2
= R.

A similar argument shows that α−n →∞.
We can also argue as follows. Since (α+

n ) is increasing, it is enough to show that
it is not bounded. (Why?) If it is bounded, so is (2α+

n ). Since σn = 2α+
n − sn and

since (sn) is bounded (Why?), we conclude that (σn) is bounded. This contradicts
the fact that

∑
n |an| is divergent.

Remark 5.3.4. The proof above shows the following. If
∑
an is a series of real

numbers, then
∑
an converges iff

∑
a+
n and

∑
a−n converge, in which case we

have s = α+ − α−. (Here,
∑
a+
n = α+ and

∑
a−n = α−.)

Using the last result, we can find a rearrangement of the alternating series so
that it converges to any pre-assigned real number, say, 2012. We know that the
series

∑
a+
n and

∑
a−n of positive and negative terms of a conditionally convergent

series is divergent. So for n� 0 we have α+
n > 2012. Let N1 be the first such that∑N1

k=1
1

2k−1 > 2012. Hence
∑N1

k=1
1

2k−1 −
1
2 < 2012. (Can you justify this claim?)

Let N2 be the smallest odd integer so that(
N1∑
k=1

1

2k − 1

)
− 1

2
+

(
N2∑
k=N1

1

2k − 1

)
> 2012.
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Necessarily (
N1∑
k=1

1

2k − 1

)
− 1

2
+

(
N2∑
k=N1

1

2k − 1

)
− 1

4
< 2012.

How much does the sum on the left differ from 2012? What is the next step? Do
you see that you can continue this process forever and that at each step you will
be closer to 2012?

Riemann’s theorem 5.3.5 below says something very dramatic and startling.
It should convince us of the danger of manipulating an infinite series without any
attention to rigorous analysis.

Theorem 5.3.5 (Riemann’s Theorem). A conditionally convergent series can
be made to converge to any arbitrary real number or even made to diverge by a
suitable rearrangement of its terms.

Strategy: Let
∑
an be conditionally convergent. The crucial fact is that

∑
a+n and∑

a−n diverge to infinity. Let s ∈ R be given. Choose the first k1 such that the sum∑k1
r=1 a

+
r exceeds s. Then we subtract just enough terms from {a−n } so that it is

less than s. And, so on.

We exploit the fact that an → 0 to estimate at each step how much the sums differ

from s.

Proof. We omit the proof of the theorem, as a rigorous argument will be more
on book-keeping than on analysis. The interested reader may read Theorem 3.54
in [7] or Theorem 8.33 in [1].

The next theorem is in contrast with Riemann’s theorem and it also brings
out the reason why we would prefer (given a choice, of course!) to deal with
absolutely convergent series. This theorem is very useful and its proof is worth
learning well.

Theorem 5.3.6 (Rearrangement of Terms). If
∑
an is absolutely convergent

and
∑
bn is a rearrangement of

∑
an, then

∑
bn is convergent and we have∑

an =
∑
bn.

Strategy: If sn and tn denote the partial sums of the series
∑
an and

∑
bn, and

if sn → s, we need to show that |tn − s| → 0. We know how to estimate |sn − s|.
So we employ the curry-leaf trick. We look at an estimate of the form

|tn − s| ≤ |tn − sm|+ |sm − s| .

If we fix m � 0, then |sm − s| can be made very small. We now choose N large

enough so that all the terms ak, 1 ≤ k ≤ m appear in the sum tN . It follows that

tN − sm is the sum of ak’s where k > m. An obvious upper bound for this sum

(as well as any sum of the form tn − sm for n ≥ N) via the triangle inequality is∑
k≥m |ak|, which is a tail of the convergent series

∑∞
k=1 |ak|. This tail can be made

as small as we please.



5.3. REARRANGEMENTS OF AN INFINITE SERIES 169

Proof. Let tn denote the n-th partial sum of the series
∑
bn. Let

∑
an = s. We

claim that tn → s. Let ε > 0 be given. Choose n0 ∈ N such that

(n ≥ n0 =⇒ |sn − s| < ε) and

∞∑
n0+1

|an| < ε.

Choose N ∈ N such that {a1, . . . , an0
} ⊂ {b1, . . . , bN}. (That is, choose N so

that {1, . . . , n0} ⊆ {σ(1), . . . , σ(N)} where σ : N→ N is a permutation.) We then
have for n ≥ N ,

|tn − sn0
| ≤

∞∑
n0+1

|ak| < ε.

It follows that for n ≥ N , we have |tn − s| ≤ |tn − sn0
|+ |sn0

− s| < 2ε.

Exercise 5.3.7. An easy corollary is that any rearrangement of series of non-
negative terms does not affect the convergence and the sum.

See also Item 23 in Exercise 5.3.9.

Example 5.3.8. Theorem 5.3.6 is quite useful in finding the sum of a series
which is absolutely convergent, since it allows us to manipulate the terms of the
series whichever way we want so that it becomes tractable.

Consider the series
∑ (−1)n+1

n2 . It is absolutely convergent. Now see how we
find its sum!

∞∑
n=1

(−1)n+1

n2
=

∞∑
n=1

1

n2
− 2

∞∑
k=1

1

(2k)2

=
1

2

∞∑
n=1

1

n2
.

You might have learned from the theory of Fourier series that
∑∞
n=1

1
n2 = π2

6 .

Exercise Set 5.3.9. Miscellaneous exercises.

(1) Let
∑
bn be a convergent series of non-negative terms. Let (an) be sequence

such that |an| ≤Mbn for n ≥ N , for a fixed N and M > 0. Show that
∑
an

is convergent.

(2) If (an) and (bn) are sequences of positive terms such that an/bn → ` > 0.
Prove that

∑
an and

∑
bn either both converge or both diverge.

(3) As an application of the last item, discuss the convergence of
(a)

∑
1/2n, (b)

∑
1/(2n− 1) and (c)

∑
2/(n2 + 3).

(4) Assume that
∑
an is absolutely convergent and (bn) is bounded. Show that∑

anbn is convergent.
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(5) Show that the sum of two absolutely convergent series and a scalar multiple
of an absolutely convergent series are again absolutely convergent. Hence
conclude that the set `1 of all absolutely convergent series is a real vector
space.

(6) Let
∑
an be a convergent series of positive terms. Show that

∑
a2
n is conver-

gent. More generally, show that
∑
apn is convergent for p > 1.

(7) Let p > 0. Show that the series
∑
n
np

en is convergent. Can we take p = 0?

(8) Find the values of x ∈ [0, 2π] such that the series
∑

sinn(x) is convergent.

(9) Let
∑
an and

∑
bn be convergent series of positive terms. Show that∑√

anbn is convergent.

(10) Give an example of a convergent series
∑
an such that the series

∑
a2
n is

divergent.

(11) Give an example of a divergent series
∑
an such that the series

∑
a2
n is

convergent.

(12) Let (an) be a real sequence. Show that
∑

(an − an+1) is convergent iff (an)
is convergent. If the series converges, what is its sum?

(13) When does a series of the form a+ (a+ b) + (a+ 2b) + · · · converge?

(14) Assume that
∣∣∣an+1

an

∣∣∣ ≤ n2

(n+1)2 for n ∈ N. Show that the series
∑
an is abso-

lutely convergent.

(15) Prove that if
∑
|an| is convergent, then |

∑
an| ≤

∑
|an|.

(16) Prove that if |x| < 1,

1 + x2 + x+ x4 + x6 + x3 + x8 + x10 + x5 + · · · = 1

1− x
.

(17) Prove that if a convergent series in which only a finite number of terms are
negative is absolutely convergent.

(18) If (n2an) is convergent, then
∑
an is absolutely convergent.

(19) Assume that (an) is a sequence such that
∑
n a

2
n is convergent. Show that∑

a3
n is absolutely convergent.

(20) If
∑
an is absolutely convergent, show that

∑
a2
n is convergent. Is the result

still true if we assume that only
∑
an is convergent?

(21) Let
∑
an be conditionally convergent. Let p > 1. Show that

∑
n n

pan is
divergent.
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(22) True or false? If
∑
an is absolutely convergent, then

∑ an
np is absolutely con-

vergent for all p ≥ 0.

(23) Let
∑
an be a convergent series of non-negative terms. Let its sum be s. Let

S be the set of all finite sums of (an), that is,

S :=

∑
j∈F

aj : F is a finite subset of N

 .

Show that s = lub S.

What can you conclude if
∑
an is divergent?

Can you use this information to come up with a definition of “sum” of an
arbitrary collection {ai : i ∈ I} of non-negative real numbers.

(24) Is the series
∑ (k!)2

(2k)! convergent?

(25) Let x > 0. For what values of x is the series
∑
nxn convergent?

(26) For what values of x is the series
∑ (n+1)nxn

n! convergent?

(27) Show that the series
∑

log(1 + 1
n ) is divergent.

(28) Assume that the ratio test when applied to
∑
an establishes the convergence

of the series. Show that one can prove that the series converges using the
root test. (Loosely speaking, this says that the root test is stronger than the
ratio test. Of course, the ratio test is simpler to use.)

(29) Show that the series
∑
an is absolutely convergent iff

∑
εnan is convergent

for any choice of εn ∈ {±1}.

(30) Show that if
∑
a2
n and

∑
b2n are convergent, then

∑
anbn is convergent.

(31) Compute
∑

1
n2(2n−1) , assuming that

∑
1
n2 = π2

6 .

(32) Compute
∑ (−1)n−1

n4 , assuming that
∑

1
n4 = π4

90 .

(33) Let
∑
an be a convergent series of positive terms. What can you say about

the series
∑

1
an

?

(34) Show that the sequence (a
n

n! ) is convergent. What is its limit?

(35) Let a > 0. Show that the series
∑

an

(n!)1/n
is convergent if a < 1.
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5.4 Cauchy Product of Two Infinite Series

Given two convergent sequences (an) and (bn), we defined their product as the
sequence (anbn) and the product converges to the product (lim an) · (lim bn) of
the limits.

Given two series
∑∞
n=1 an and

∑∞
n=1 bn, a naive way of defining their product

would be
∑
cn where cn := anbn. Why is this not a good definition? If we are

given two sums A := a1 + · · ·+ an and B := b1 + · · ·+ bn, how do we define their
product? Certainly not as the sum a1b1 + · · ·+ anbn. Can we define it using the
distributive law for an infinite sum?

Note that we would like the product of two convergent infinite series
∑
an

and
∑
bn to be another infinite series

∑
cn. We may also would like that

∑
cn

to be convergent to (
∑
an) · (

∑
bn).

If we look at two polynomials P (X) := a0+a1X+· · ·+anXn andQ(X) := b0+
b1X+· · ·+bmXm, then their product is a polynomials c0+c1X+· · ·+cn+mX

m+n

where c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0 and more generally,

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 =

k∑
r=0

arbk−r.

This suggests the following definition.

Definition 5.4.1. Given two series
∑∞
n=0 an and

∑∞
n=0 bn, their Cauchy product

is the series
∑∞
n=0 cn where cn :=

∑n
k=0 akbn−k.

Remark 5.4.2. In spite of our wishful thinking, in general, the Cauchy product
of two convergent series may not be convergent. Consider the series

∑
an and∑

bn where an = (−1)n√
n+1

. Then the cn, the n-th term of their Cauchy product, is

cn = (−1)n
n∑
k=0

1√
(n− k + 1)(k + 1)

.

For k ≤ n, we have

(n− k + 1)(k + 1) =
(n

2
+ 1
)2

−
(n

2
− k
)2

≤
(n

2
+ 1
)2

.

Hence |cn| ≥ 2(n+1)
n+2 → 2. It follows that the Cauchy product is not convergent.

Theorem 5.4.3 (Mertens’ Theorem). Let
∑∞
n=0 an be absolutely convergent and∑∞

n=0 bn be convergent. Define cn :=
∑n
k=0 akbn−k. If A :=

∑
n an and B :=∑

n bn, then
∑
n cn is convergent and we have

∑
n cn = AB.
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Strategy: Let An, Bn, and Cn denote the partial sums of the three series. We wish

to show that Cn → AB. Obviously we need to find an expression which involves

An, Bn, A, B, and C. Writing out Cn explicitly and regrouping the terms of the

finite sum, we arrive at Cn = a0Bn+ · · ·+anB0. Since Bn−B → 0, we can rewrite

this as Cn = a0(Bn−B)+ · · ·+an(B0−B)+AnB = Rn+AnB, say. As AnB → A,

we need to show that Rn → 0. In the expression for Rn, if n� 0, then Bn−B can

be made small whereas when we deal with Bk −B for k small, the term an−k can

be made small. So we employ the divide and conquer method. We need to exercise

a little more care here.

Proof. Using an obvious notation, we let An, Bn, and Cn denote the partial sums
of the three series. Let Dn := B −Bn.

Cn = c0 + c1 + · · ·+ cn

= (a0b0) + (a0b1 + a1b0) + · · ·+ (a0bn + · · ·+ anb0)

= a0(b0 + b1 + · · ·+ bn) + a1(b0 + b1 + · · ·+ bn−1) + · · ·+ anb0.

Hence, we have

Cn = a0Bn + a1Bn−1 + · · ·+ anB0 (5.8)

= a0(−B +Bn) + a1(−B +Bn−1) + · · ·+ an(−B +B0) +B

(
n∑
k=0

ak

)
= AnB −Rn, (5.9)

where Rn := a0Dn + a1Dn−1 + · · ·+ anD0 and Dn = Bn −B. Let α :=
∑
n |an|.

Since Dn → 0, (Dn) is bounded, say by D: |Dn| ≤ D for all n. Given ε > 0, there
exists N ∈ N such that

∑
n≥N |an| < ε and |Dn| ≤ ε. For all n ≥ 2N , we have

|Rn| ≤ (|a0|+ · · ·+ |an−N |)ε+ (|an−N+1|+ · · ·+ |an|)D
≤ (α+D)ε.

Hence Rn → 0. Since AnB → AB, the result follows from (5.9).

Remark 5.4.4. What happens if we summed up the expression for Cn as

Cn = b0(a0 + · · ·+ an) + · · ·+ bna0?

Do you see the need to change the hypothesis appropriately?

Example 5.4.5. We know that
∑∞
n=0 z

n = 1/(1 − z) for |z| < 1. If we take
an = zn = bn in the theorem, we get

∑∞
n=1 nz

n−1 = 1/(1− z)2 for |z| < 1.

Theorem 5.4.6 (Abel). Let
∑
an and

∑
bn be convergent, say, with sums A

and B, respectively. Assume that their Cauchy product
∑
cn is also convergent

to C. Then C = AB.
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Proof. Recall the expression (5.8) for Cn:

Cn = a0Bn + a1Bn−1 + · · ·+ anB0.

Adding them for 0 ≤ k ≤ n, we obtain

C0 + C1 + · · ·+ Cn = A0Bn +A1Bn−1 + · · ·+AnB0.

Since Cn → C, from Corollary 2.5.5 on page 51, we get C0+···+Cn

n → C. Since

An → A and Bn → B, by the last example, AnB0+···+A0Bn

n → AB. The result
follows.

Existence of Decimal Expansion. We motivate the study of infinite series by
means of the example of decimal expansions of a real number. Let a ∈ R. Let
a0 := [a], the greatest integer less than or equal to a. Write a = a0 + x1. Then
0 ≤ x1 < 1. Observe that a = a0 + 10x1

10 . Let a1 = [10x1]. Then 0 ≤ a1 ≤ 9. Also,

10x1 = a1 + x2 = a1 + 10x2

10 with 0 ≤ x2 < 1. Hence

a = a0 +
a1

10
+

10x2

102
with 0 ≤ 10x2 < 10.

We let a2 := [10x2] and so on. Inductively, we obtain

0 ≤ a−
(
a0 +

a1

10
+

a2

102
+ + · · ·+ an

10n

)
=

10xn+1

10n+1
<

1

10n
.

Hence a =
∑∞
n=0

an
10n , which is usually denoted by a = a0.a1a2 · · · an · · · .

To understand the decimal expansion above, try to find the decimal expan-
sions of a = 10/9, a = 7/4, and a = 4/7 following the algorithm above. We are
sure you will get what you already know!
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The notion of integration was developed much earlier than differentiation. The
main idea of integration is to assign a real number A, called the “area”, to the
region R (Figure 6.1) bounded by the curves x = a, x = b, y = 0, and y = f(x),
where we assume that f is non-negative. The number, A, the area of the region

R, is called the integral of f over [a, b] and denoted by the symbol
∫ b
a
f(x) dx.

a b

y = f(x)

Figure 6.1: Area under the curve.
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The most basic geometric region for which the area is known is a rectangle.
The area of a rectangle whose sides have lengths ` and b is ` · b. This suggests
that our definition of an integral should be such that if f(x) = c, a constant, then∫ b
a
f(x) dx = c(b− a).
We use this basic notion of area as the building block to assign an area to

the regions under the graphs of bounded functions. To understand the concepts
and results of this section, it is suggested that the reader may assume that f is
non-negative and draw pictures whenever possible.

Unless specified otherwise, we let J = [a, b] denote a closed and bounded
interval and f, g : [a, b]→ R bounded functions.

If f : J → R is given, and Ji = [ti, ti+1] is a subinterval of J , we let

mi(f) = glb {f(t) : ti ≤ t ≤ ti+1} and Mi(f) = lub {f(t) : ti ≤ t ≤ ti+1}.

If f is understood or clear from the context, we simply denote these by mi and
Mi. See Figure 6.2. We also let m = glb {f(x) : x ∈ [a, b]} and M = lub {f(x) :
x ∈ [a, b]}.

ti ti+1

mi(f)

Mi(f)

y = f(x)

a b

y = m

y = M

Figure 6.2: mi(f) and Mi(f).

6.1 Darboux Integrability

Definition 6.1.1. A partition or subdivision P of an interval [a, b] is a finite set
{x0, x1, . . . , xn} such that a = x0 < x1 < · · · < xn−1 < xn = b. The points xi are
called the nodes of P .

Example 6.1.2. (i) P = {a = x0, x1 = b} is the trivial partition of [a, b].
(ii) For any n ∈ N, let xi = a + i

n (b − a) for 0 ≤ i ≤ n. Then {x0, . . . , xn} is
a partition, say, Pn. Note that Pn divides [a, b] in subintervals of equal length.
(One often says that Pn divides [a, b] into equal parts.)
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Given two partitions P and Q of [a, b], we say that Q is a refinement of P if
P ⊂ Q. In the example (ii) above, the partition P2k+1 is a refinement of P2k .

Definition 6.1.3. Given f : [a, b]→ R and a partition P = {x0, . . . , xn} of [a, b],
we let

L(f, P ) :=

n−1∑
i=0

mi(f)(xi+1 − xi),

U(f, P ) :=

n−1∑
i=0

Mi(f)(xi+1 − xi).

Observe that, if f ≥ 0, L(f, P ) (respectively, U(f, P )) is the sum of areas of
rectangles inscribed inside (respectively, circumscribing) the region bounded by
the graph. The numbers L(f, P ) and U(f, P ) are called the lower and the upper
Darboux sums of f with respect to the partition P . They approximate the area
under the graph from below and from above. See Figure 6.3.

a x1 x2 x3 x4 x5 b

y = f(x)

Lower Sum

a x1 x2 x3 x4 x5 b

Upper Sum

Figure 6.3: Upper and lower Darboux sums.

It is easy to see that m(b − a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b − a) for any
partition P of [a, b].

Exercise 6.1.4. Let f : [a, b] → R be bounded. Let c ∈ (a, b). Let P1 (re-
spectively, Show that P := P1 ∪ P2 is a partition of [a, b]. Show also that
L(f, P ) = L(f, P1) + L(f, P2) and U(f, P ) = U(f, P1) + U(f, P2).

A very pedantic formulation is as follows. Let f1 (respectively, f2) be the
restriction of f to [a, c] (respectively, to [c, b]). Prove that L(f, P ) = L(f1, P1) +
L(f2, P2) and so on.

Definition 6.1.5. Given a partition P = {x0, . . . , xn}, we insert a new node,
say, t such that xi < t < xi+1 for some i and get a new partition Q.

Then drawing pictures of a non-negative function, it is clear that L(f,Q) ≥
L(f, P ). Similarly, U(f,Q) ≤ U(f, P ). Look at Figures 6.4–6.5. (We shall prove
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this later.) Thus, Q produces a better approximation to the area bound by the
graph. This suggests that to get the “real” area we should look at

L(f) ≡
∫ b

a

f(x) dx := lub {L(f, P ) : P is a partition of [a, b]}

U(f) ≡
∫ b

a

f(x) dx := glb {U(f, P ) : P is a partition of [a, b]}.

x0 = a x1 x2 x3 b = x4

y = f(x)

L(f, P )
a x1 t x2 x3 b

y = f(x)

L(f,Q)

Extra Area

Figure 6.4: L(f, P ) ≤ L(f,Q).

x0 x1 x2 x3 x4

U(f, P )

x0 x1 t x2 x3 x4

U(f,Q)

Removed Area

Figure 6.5: U(f, P ) ≥ U(f,Q).

These numbers exist (why?) and are called the lower and upper integral of f
on [a, b]. The upper integral of f on [a, b] may be understood as the best possible
approximation to the area of the region under the graph as approximated from
above. How do we understand the lower integral?

Exercise 6.1.6. Show that L(f) ≤ U(f) for any bounded function f : [a, b]→ R.

Definition 6.1.7. We say that f is Darboux integrable (or simply integrable)
on [a, b] if the upper and lower integrals coincide. (This intuitively says that we
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require that the area should be approximable both from below and from above.)
If f is integrable, the common value of the upper and lower integrals is denoted

by the symbol
∫ b
a
f(x) dx. This is just a notation; we can as well use Iba(f) or

∫ b
a
f

etc.

Example 6.1.8. Let f : [a, b] → R be a constant function with f(x) = c for all
x. Let P be any partition of [a, b]. Then mi = Mi = c, for all i and L(f, P ) =
U(f, P ) = c(b−a). Thus L(f) = c(b−a) = U(f). That is, f is integrable with its
integral c(b− a). This substantiates our idea that the integral of a non-negative
function generalizes the area of a rectangle.

Example 6.1.9. Let f : [0, 1] → R be defined by f(x) = 1 if 0 ≤ x < 1 and

f(1) = 109. We claim that f is integrable on [0, 1] and
∫ 1

0
f = 1.

Let P = {x0, . . . , xn} be a partition of [0, 1]. Note that mi(f) = Mi(f) = 1
for 0 ≤ i < n− 2 and Mn−1(f) = 109 and mn−1(f) = 1. Hence, we have

L(f, P ) = 1 and U(f, P ) = xn−1 + 109(1− xn−1).

It follows that lub {L(f, P ) : P} = 1 and glb {U(f, P ) : P} = 1. (Why?) This

proves that f is integrable with
∫ b
a
f(x) dx = 1.

Example 6.1.10. Let us consider the function f : [0, 1]→ R defined by f(x) = 1
if x ∈ Q and 0 otherwise. This is called Dirichlet’s function. Let P = {0 = x1 <
x1 · · · < xn = 1} be any partition of [0, 1]. By the density of rationals and
irrationals, there exist si, ti ∈ (xi, xi+1) where si ∈ Q and ti /∈ Q. Hence we
conclude that mi = 0 and Mi = 1. Also, L(f, P ) =

∑
mi(xi+1 − xi) = 0 and

U(f, P ) = 1. It follows that L(f) = 0 whereas U(f) = 1. We therefore conclude
that f is not integrable on [0, 1].

Example 6.1.11. Let f(x) = x on [0, 1]. Let P = {xi = i
4 , i = 0, . . . 4} and

Q = {xj = j
8 , j = 0, . . . , 8}. Find L(f, P ), L(f, P ) and U(f,Q), U(f, P ).

In the subinterval [xi, xi+1], mi(P, f) = xi and Mi(f, P ) = xi+1.

L(f, P ) =

3∑
i=0

(
i

4
× 1

4

)
=

6

16

U(f, P ) =

4∑
i=1

(
i

4
× 1

4

)
=

10

16
.

Similarly, L(f,Q) = 28/64 and U(f,Q) = 36/64.

In the above example, notice that Q is a refinement of P . What is the relation
between (i) L(f, P ) and L(f,Q) and (ii) U(f, P ) and U(f,Q)? Look at Figures 6.4
and 6.5. They lead us to the next theorem.

Theorem 6.1.12. Let f : [a, b] → R be a bounded function. Let P and Q be
partitions of [a, b]. Then we have the following:
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(i) If Q is a refinement of P , then L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).
(ii) L(f, P ) ≤ U(f,Q) for any two partitions P and Q.
(iii) The lower integral of f is less than or equal to the upper integral, that is,
L(f) ≤ U(f).

Proof. (i) It is enough to prove it when Q = P ∪ {c}, that is, Q contains exactly
one extra node. (Draw pictures; you will understand (i) immediately. See also
Figures 6.4–6.5.) Let xi < c < xi+1. For j 6= i, all the j-th terms, in L(f, P )
and U(f, P ) will be present in L(f,Q) and U(f,Q). Corresponding to the term
mi(f)(xi+1 − xi), we have two terms in L(f,Q):

glb {f(x) : x ∈ [xi, c]}(c− xi) + glb {f(x) : x ∈ [c, xi+1}(xi+1 − c).

Using Exercise 3 on page 18, we note that

mi(f) := glb {f(x) : x ∈ [xi, xi+1]} ≤ glb {f(x) : x ∈ [xi, c]}(c− xi)
mi(f) := glb {f(x) : x ∈ [xi, xi+1]} ≤ glb {f(x) : x ∈ [c, xi+1]}(c− xi).

Hence

glb {f(x) : x ∈ [xi, c]}(c− xi) + glb {f(x) : x ∈ [c, xi+1]}(xi+1 − c)
≥ mi(f)(c− xi) +mi(f)(xi+1 − c)
= mi(f)(xi+1 − xi).

It follows that

L(f, P ) =

∑
j 6=i

mj(xj+1 − xj)

+mi(xi+1 − xi) ≤ L(f,Q).

Similarly, we obtain

lub {f(x) : x ∈ [xi, c]}(c− xi) + lub {f(x) : x ∈ [c, xi+1]}(xi+1 − c)
≤Mi(f)(xi+1 − xi)

and conclude that U(f,Q) ≤ U(f, P ).
(ii) is easy. Let P ′ = P ∪ Q. Note that P ′ is a refinement of P as well as of

Q. Hence, by (i),

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f,Q).

(iii) It follows from (ii) that each U(f,Q) is an upper bound for the set
{L(f, P ) : P a partition of [a, b]}. Hence its lub, namely, the lower integral, will
be at most U(f,Q). Thus, the lower integral is a lower bound for the set {U(f,Q) :
Q a partition of [a, b]}. Hence its glb, namely, the upper integral is greater than
or equal to the lower integral.
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To check integrability of a function directly from the definition can be cum-
bersome at times. The next result provides a necessary and sufficient condition
for integrability of a function.

Theorem 6.1.13 (Criterion for Integrability). A bounded function f : [a, b]→ R
is integrable if and only if for each ε > 0 there exists a partition P such that
U(f, P )− L(f, P ) < ε.

Proof. Let the condition be satisfied. We are required to prove that f is integrable.
Let I1 and I2 be the lower and upper integrals. We need to show I1 = I2. It is
enough to show that for any ε > 0, |I1 − I2| < ε.

Since I1 ≤ I2 (by Exercise 6.1.6), it is enough to show that I2 < I1 + ε for
any ε > 0. Given ε > 0, let P be as in the hypothesis. Observe that

I1 ≥ L(f, P ) and I2 ≤ U(f, P ).

Hence
I2 − I1 ≤ U(f, P )− L(f, P ) < ε.

Thus we have proved that f is integrable.
To prove the converse, let ε > 0 be given. Let I1 and I2 be the lower and

upper integrals, then we have I1 = I2. Since I1 is the LUB of L(f, P )’s, there
exists a partition P1 of [a, b] such that I1 − ε/2 < L(f, P1). That is,

I1 − L(f, P1) < ε/2. (6.1)

Similarly, there exists a partition P2 of [a, b] such that

U(f, P2) < I2 + ε/2 so that U(f, P2)− I2 < ε/2. (6.2)

Let P = P1 ∪ P2. Since P is a refinement of P1 and P2, we have

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2). (6.3)

Now,

U(f, P )− L(f, P )

= U(f, P )− I2 + I2 − L(f, P ), adding and subtracting I2

= U(f, P )− I2 + I1 − L(f, P ), since I1 = I2

≤ U(f, P2)− I2 + I1 − L(f, P1), by (6.3)

< ε/2 + ε/2, by (6.1) and (6.2)

= ε.

Thus, the condition is necessary.

Example 6.1.14. Let us look at some examples as applications of the above
theorem and check integrability of a given function.
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(1) Let f(x) = x2 on [0, 1]. Let ε > 0 be given. Choose a partition P such that
max{xi+1 − xi : 1 ≤ i ≤ n− 1} < ε/2. Since f is increasing, we obtain

mi(f) = f(xi) = x2
i , and Mi(f) = f(xi+1) = x2

i+1.

It follows that

U(f, P )− L(f, P ) =

n∑
i=1

x2
i (xi − xi−1)−

n∑
i=1

x2
i−1(xi − xi−1)

=

n∑
i=1

[(xi − xi−1)(xi + xi−1)](xi − xi−1)

<

n∑
i=1

[(ε
2

)
× 2
]

(xi − xi−1), since 0 ≤ xi, xi+1 ≤ 1

= ε
∑
i

(xi − xi−1) = ε.

Hence, f is integrable by Theorem 6.1.13.

You may try to prove this directly without using Theorem 6.1.13. This may
convince you of the significance of the result.

(2) Consider f : [−1, 1]→ R defined by

f(x) =


a, −1 ≤ x < 0

0, x = 0

b, 0 < x ≤ 1.

Look at Figure 6.6.

y = b

y = a

-1 10− 1
N

1
N

a× 2
N

b× 2
N

Figure 6.6: Lower and upper sum in the interval [−1
N , 1

N ].

The trouble is at x = 0. We use our divide and conquer trick. We choose a
partition in such a way that x = 0 is enclosed in a very small subinterval of
the partition. Go through the proof with this idea.
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Assume that 0 < a < b. We claim that f is integrable. Given ε > 0, choose

N ∈ N such that 2(b−a)
N < ε. Consider the partition P = {−1, −1

N , 1
N , 1}.

Then

L(f, P ) = a×
(

1− 1

N

)
+ a× 2

N
+ b×

(
1− 1

N

)
.

Similarly, we have

U(f, P ) = a×
(

1− 1

N

)
+ b× 2

N
+ b×

(
1− 1

N

)
.

Hence, we get

U(f, P )− L(f, P ) =
2(b− a)

N
< ε.

(3) The last item can be generalized. Let P = {a = x0, x1, . . . , xn} be a partition
of [a, b]. Let σ : [a, b]→ R be defined as

σ(x) =


c1, x ∈ [a, x1);

ci, x ∈ [xi−1, xi), 2 ≤ i ≤ n− 1;

cn, x ∈ [xn−1, xn].

Then σ is integrable and we have∫ b

a

σ(t) dt =

n∑
i=1

ci(xi − xi−1).

Functions such as σ are called step functions. Observe that next to constant
functions, the areas of step functions are easy to write down by looking at
their graphs or knowing their definitions!

(4) Recall Thomae’s function f on page 76. We claim that f is integrable.

Strategy: Given ε > 0, we must find a partition P such that U(f, P )−L(f, P ) < ε.
By the density of irrationals, in any subinterval [xi, xi+1] of a partition P of [0, 1],
irrationals exist and hence mi’s are zero and hence L(f, P ) = 0. Hence we need only
show U(f, P ) < ε. Let n ∈ N be such that 1/n < ε. As we argued in Example 3.2.3.9
on page 76, the set An := {r ∈ Q ∩ [0, 1] : f(x) > 1/n} is finite. We employ the
divide and conquer method. We choose a partition such that each point of An is
enclosed in a small subinterval the sums of whose lengths is as small as we please.
The contribution of the remaining terms in U(f, P ) is at most 1/n.

Let ε > 0 be given. Choose k ∈ N such that 1
k < ε/2. There exists a finite

number, say, N of rational numbers p/q with q ≤ k. Denote them by {rj :
1 ≤ j ≤ N}. Let δ < ε/(4N). Choose a partition P = {x0, . . . , xn} of [0, 1]
such that

max{|xi+1 − xi| : 0 ≤ i ≤ n− 1} < δ.
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Let A := {i : rj ∈ [xi, xi+1], for some j}, and B := {0, . . . , n} \A. Note that
the number of elements in A will be at most 2N . (Why 2N? Some rj could
be the left and the right endpoint of adjacent subintervals!) For i ∈ A, we
have Mi ≤ 1. For j ∈ B, we have Mj < 1/k. Hence

U(f, P ) =

n−1∑
i=0

Mi(xi+1 − xi)

=
∑
i∈A

Mi(xi+1 − xi) +
∑
j∈B

Mj(xj+1 − xj)

≤ (2N)δ +
∑
j∈B

1

k
(xj+1 − xj)

≤ (2N)δ +
1

k

<
ε

2
+
ε

2
= ε.

In the above, we used the fact that
∑
j∈B(xi+1−xi) is the sum of the lengths

of the disjoint subintervals that lie in B, and hence it is at most 1.

Thus, for any ε > 0, we have found a partition Pε such that U(f, P ) < ε.

It follows that glb {U(f, P ) : P is a partition of [0, 1]} = 0. Hence
∫ 1

0
f = 0.

Of course, we could use a simpler argument. Since f is integrable, and since

each lower sum is zero, it follows that the lower integral is 0. Hence
∫ 1

0
f = 0.

We now give two important classes of integrable functions.

Theorem 6.1.15. Let f : [a, b] → R be bounded and monotone. Then f is inte-
grable.

Strategy. We prove the result for an increasing function. If P = {a =
x0, x1, . . . , xN = b} is any partition of [a, b], then mi = f(xi) and Mi = f(xi+1).
This means

U(f, P )− L(f, P ) =

N−1∑
i=0

f(xi+1)(xi+1 − xi)−
N−1∑
i=0

f(xi)(xi+1 − xi)

=

N−1∑
i=0

[f(xi+1 − f(xi)](xi+1 − xi).

We can choose a partition which divides the interval in N equal parts. In this
case, xi+1 − xi = b−a

N
for each i. This implies

U(f, P )− L(f, P ) =
b− a
N

(f(b)− f(a)) .

Thus we need to choose N such that b−a
N

(f(b)− f(a)) < ε.

Proof. We prove the result for an increasing and bounded function f . Given

ε > 0, choose N so that (b−a)(f(b)−f(a))
N < ε and divide the interval [a, b] in N
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equal parts. It is easy to see that in this case, xi := a + i b−aN , 0 ≤ i ≤ N . Note
that mi = f(xi) and Mi = f(xi+1).

Hence,

U(f, P )− L(f, P )

=

N−1∑
i=0

f(xi+1)(xi+1 − xi)−
N−1∑
i=0

f(xi)(xi+1 − xi)

=

N−1∑
i=0

[f(xi+1)− f(xi)](xi+1 − xi)

=
b− a
N

([f(x1)− f(x0)] + [f(x2)− f(x1)] + · · ·+ [f(xN )− f(xN−1)])

=
b− a
N

(f(b)− f(a)) < ε.

This implies that f is integrable by Theorem 6.1.13.

Theorem 6.1.16. Let f : [a, b]→ R be continuous. Then f is integrable.

This is the first time where we are seriously using the concept of uniform
continuity.

Strategy. For any partition P = {a = x0, x1, . . . , xN = b} of [a, b], we have

U(f, P )− L(f, P ) =

N−1∑
i=0

(Mi −mi)(xi+1 − xi).

Since f is continuous on [a, b], it is continuous on each subinterval [xi, xi+1];
hence it attains its bounds. In particular, there exist points ti, si ∈ [xi, xi+1]
such that mi = f(ti) and Mi = f(si). On the other hand, f is also uniform
continuous on [a, b], therefore, for a given ε > 0, there exists δ > 0 such
that |f(y)− f(x)| < ε for |x− y| < δ. This implies

U(f, P )− L(f, P ) <

N−1∑
i=0

ε(xi+1 − xi) = ε(b− a).

Now we can make an appropriate choice of δ to complete the proof.

Proof. Let ε > 0 be given. Since f is continuous on [a, b], it is uniformly contin-
uous on [a, b] by Theorem 3.7. Hence there exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε

(b− a)
.

Let N ∈ N be such that 1
N < δ. Let xi := a + i b−aN , 0 ≤ i ≤ N . Let P := {xi :

0 ≤ i ≤ N}. Since f is continuous on [a, b], it attains its maximum and minimum
on [xi, xi+1] for each i. Let f attain its maximum and minimum in [xi, xi+1] at ti
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and si, respectively. Since |ti − si| < 1/N < δ, it follows that Mi−mi < ε/(b−a)
for 0 ≤ i ≤ N − 1.

Therefore,

U(f, P )− L(f, P ) =

N−1∑
i=0

(Mi −mi)(xi+1 − xi)

<

N−1∑
i=0

ε

b− a
b− a
N

= ε.

This implies that f is integrable on [a, b].

Exercise 6.1.17. If f : [a, b]→ R is bounded and continuous on [a, b] except at
c ∈ [a, b], show that f is integrable. Can you generalize this result?

Example 6.1.18. Consider f : [0, 1]→ R defined by f(x) = x2. We have already
seen that it is integrable in Item 1 in Example 6.1.14. We now compute its integral.

Let P = {0 = x0, x1, . . . , xn = 1} be any partition. Consider g(x) = x3/3.
(This is an inspired guess!) Then g′(x) = f(x). By MVT, g(xi) − g(xi−1) =
f(ti)(xi − xi−1) for some ti ∈ [xi−1, xi]. Hence∑

i

f(ti)(xi − xi−1) =
∑
i

(g(xi)− g(xi−1)) = g(1)− g(0) = 1/3. (6.4)

Since mi ≤ f(ti) ≤Mi, we see that

L(f, P ) ≤
∑
i

f(ti)(xi − xi−1) ≤ U(f, P ). (6.5)

It follows from (6.4)–(6.5) that L(f, P ) ≤ 1
3 ≤ U(f, P ) for all partitions. That is,

lub {L(f, P ) : P} ≤ 1/3 ≤ glb {U(f, P ) : P}.

Since f is integrable, the first and the third terms are equal. Hence
∫ 1

0
f(x) dx =

1/3.

Exercise 6.1.19. Show that f : [0, 1] → R defined by f(x) = xn is integrable

and that
∫ 1

0
f = 1

n+1 .

6.2 Properties of the Integral

Theorem 6.2.1. Let f, g : [a, b]→ R be integrable functions and c ∈ R. Then:

(1) cf is integrable and
∫ b
a

(cf)(x) dx = c
∫ b
a
f(x) dx.

(2) f + g is integrable and we have
∫ b
a

(f + g)(x) dx =
∫ b
a
f(x) dx+

∫ b
a
g(x) dx.

(3) Let R([a, b]) denote the set of integrable functions on [a, b]. Then R([a, b])

is a vector space and the map f 7→
∫ b
a
f(x) dx is a linear map.
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Proof. First note that if ∅ 6= A ⊂ R is a bounded set and c ∈ R

lub cA =

{
c× lub A, if c ≥ 0

c× glb A, if c < 0.
(6.6)

Let P be any partition of [a, b]; then it is easy to see that (why?)

U(cf, P ) =

{
c× U(f, P ), if c ≥ 0

c× L(f, P ), if c < 0.
(6.7)

and

L(cf, P ) =

{
c× L(f, P ), if c ≥ 0

c× U(f, P ), if c < 0.
(6.8)

Consequently, from (6.6), we have the following

U(cf) =

{
c× U(f), if c ≥ 0

c× L(f), if c < 0.
and L(cf) =

{
c× L(f), if c ≥ 0

c× U(f), if c < 0.
(6.9)

Since f is integrable, we have U(f) = L(f). It follows from (6.9) that U(cf) =
L(cf) = cU(f) = cL(f). Thus (i) is proved.

Proof of (ii) We shall find the relations between U(f + g), U(f), and U(g) and,
similarly, between L(f + g, P ), L(f, P ), and L(g, P ), respectively. We make use
of the following inequalities:

For any nonempty subset S ⊂ [a, b], we have

lub {f(x) + g(x) : x ∈ S} ≤ lub {f(x) : x ∈ S}+ lub {g(x) : x ∈ S}
glb {f(x) + g(x) : x ∈ S} ≥ glb {f(x) : x ∈ S}+ glb {g(x) : x ∈ S}.

(Reason: Let F and G denote the GLBs of f and g on S. Then f(x) + g(x) ≥ F + G

for all x ∈ S so that F +G is a lower bound for the set {f(x) + g(x) : x ∈ S}.)
In particular, mi(f+g) ≥ mi(f)+mi(g). Similarly, Mi(f+g) ≤Mi(f)+Mi(g)

for each i. It follows that

L(f+g, P ) ≥ L(f, P )+L(g, P ) and U(f+g, P ) ≤ U(f, P )+U(g, P ). (6.10)

We recall Example 1.2.12 which says that if ai ≤ bi for each i ∈ I, then

glb {ai : i ∈ I} ≤ glb {bi : i ∈ I} and lub {bi : i ∈ I} ≥ lub {ai : i ∈ I}.

In view of this, we deduce from (6.10) that

U(f + g) = glb {U(f + g, P ) : P} ≤ glb {U(f, P ) : P}+ glb {U(g, P ) : P}
= U(f) + U(g).
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Similarly, L(f + g) ≥ L(f) + L(g). Thus we have arrived at

L(f) + L(g) ≤ L(f + g) ≤ U(f + g) ≤ U(f) + U(g).

Since f and g are integrable, L(f) = U(f) and L(g) = U(g). Hence we deduce (1)
L(f + g) = U(f + g), that is, f + g is integrable, and (2) U(f + g) = U(f) +U(g)

and L(f + g) = L(f) + L(g), that is,
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g.

It follows from (i) and (ii) that R([a, b]) is a vector space over R and the map

f 7→
∫ b
a
f(x) dx is a linear map.

Proposition 6.2.2 (Monotonicity of the Integral). Let f, g : [a, b] → R be inte-

grable. Assume that f(x) ≤ g(x) for x ∈ [a, b]. Then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx.

Proof. We make use of Example 1.2.12.
Let P be a partition of [a, b]. Let [ti, ti+1] be a subinterval of the partition.

We now apply the first part of Example 1.2.12 to the sets A := {f(x) : x ∈
[ti, ti+1]} and B := {g(x) : x ∈ [ti, ti+1]}. We conclude that Mi(f) ≤ Mi(g).
Hence U(f, P ) ≤ U(g, P ). We now apply the second part of the same example to
the sets {U(f, P ) : P} and {U(g, P ) : P} where P varies over the set of partitions
of [a, b]. We deduce that

U(f) := glb {U(f, P ) : P} ≤ glb {U(g, P ) : P} = U(g).

Since f and g are integrable, we have U(f) =
∫ b
a
f(x) dx and U(g) =∫ b

a
g(x) dx. Hence the result follows.

Theorem 6.2.3. Let f be integrable on [a, b]. Assume that m ≤ f(t) ≤ M for
t ∈ [a, b]. Let g : [m,M ]→ R be continuous. Then g ◦ f is integrable on [a, b].

Strategy: To prove integrability of g ◦f , we need to find a partition P of [a, b] and
estimate

U(g ◦ f, P )− L(g ◦ f, P ) =
∑

(Mi(g ◦ f)−mi(g ◦ f))(ti+1 − ti).

Note that by the uniform continuity of g, we can estimate the i-th terms for which

Mi(f)−mi(f) is small. Let A denote the set of such i’s and B its complement. We

resort to the divide and conquer method. We split the sum as a sum over A and

another over B. The sum over A is easy to estimate by uniform continuity and can

be made less than ε(b − a) for any preassigned ε > 0. To estimate the j-th term

for j ∈ B, we use the crude estimate Mi(g ◦ f) − mi(g ◦ f) < 2C, where C is a

bound for g. So we need to control the sum of the lengths of the j-th subintervals

for j ∈ B. This is done in (6.11). To achieve this, we carefully choose the partition

P by invoking the integrability of f on [a, b].

Proof. We shall use s, t for elements of [a, b] and x, y for elements of [m,M ].
Let ε > 0 be given. Since g is continuous on [m,M ], it is uniformly continuous.

Hence there exists δ > 0 such that

x, y ∈ [m,M ] and |x− y| < δ =⇒ |g(x)− g(y)| < ε.
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Let δ1 := min{δ, ε}.
Since f is integrable, by the integrability criterion (Theorem 6.1.13), there

exists a partition P of [a, b] such that U(f, P ) − L(f, P ) < η, where η is to be
specified later.

Let A := {i : Mi(f)−mi(f) < δ1} and B its complement.
We claim that if i ∈ A, then |f(s)− f(t)| < δ1, for s, t ∈ [ti, ti+1]. We have

f(s) ≤Mi(f) and f(t) ≥ mi(f). It follows that f(s)− f(t) ≤Mi(f)−mi(f). In-
terchanging s and t we see that f(t)−f(s) ≤Mi(f)−mi(f). Thus, |f(s)− f(t)| <
Mi(f) − mi(f), Since for i ∈ A, Mi(f) − mi(f) < δ1, we conclude that
|f(s)− f(t)| < δ1.

We claim that Mi(g ◦ f)−mi(g ◦ f) ≤ ε for i ∈ A. If s, t ∈ [ti, ti+1], it follows
that |g(f(s))− g(f(t))| < ε by the definition of δ1 and uniform continuity of g.
In particular, g(f(s))− g(f(t)) < ε, for s, t ∈ [ti, ti+1]. For any fixed t ∈ [ti, ti+1]
and for all s ∈ [ti, ti+1], we have,

g(f(s)) < g(f(t)) + ε =⇒ lub s∈[ti,ti+1]g(f(s)) < g(f(t)) + ε.

We arrive at Mi(g ◦ f) < g(f(t)) + ε for any t ∈ [ti, ti+1]. This leads us to the
inequality Mi(g ◦ f) ≤ mi(g ◦ f) + ε. The claim follows now.

If j ∈ B, Mj(g ◦ f) −mj(g ◦ f) ≤ 2C where C is an upper bound for |g| on
[m,M ]. We have

η > U(f, P )− L(f, P )

=

n−1∑
i=0

(Mi −mi)(ti+1 − ti)

=
∑
j∈B

(Mj(f)−mj(f))(tj+1 − tj) +
∑
j /∈B

(Mj(f)−mj(f))(tj+1 − tj)

≥
∑
j∈B

(Mj(f)−mj(f))(tj+1 − tj)

≥ δ1
∑
j∈B

(tj+1 − tj). (6.11)

Hence
∑
j∈B(tj+1 − tj) ≤ η/δ1. We therefore obtain

U(g ◦ f, P )− L(g ◦ f, P ) =
∑
i∈A

(Mi(g ◦ f)−mi(g ◦ f))(ti+1 − ti)

+
∑
j∈B

(Mj(g ◦ f)−mj(g ◦ f))(tj+1 − tj)

≤ δ1(b− a) + (2C)(η/δ1)

≤ ε(b− a) + (2C)(η/δ1), since δ1 ≤ ε.

If we choose η = δ2
1 , since δ1 ≤ ε, it follows that,

U(g ◦ f, P )− L(g ◦ f, P ) < ε(b− a+ 2C).

That is, g ◦ f is integrable on [a, b].
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Have you understood the proof? It is worthwhile for you go through the
strategy and the proof once again.

Remark 6.2.4. If we drop the condition that g is continuous, then g ◦ f may
not be integrable. Consider Thomae’s function f . Let g : [0, 1]→ R be defined by
g(x) = 1 if x ∈ (0, 1] and g(0) = 0. Then g is integrable, but g ◦ f is Dirichlet’s
function in Example 6.1.10 and it is not integrable.

Remark 6.2.5. If g in Theorem 6.2.3 is assumed to be Lipschitz, then the proof
is much simpler. Can you see why? Work out the details.

Exercise 6.2.6 (Applications of Theorem 6.2.3). Assume that f, g : [a, b] → R
is integrable. Show that the following are integrable:
(i) |f |, (ii) f2, (iii) fg, (iv) max{f, g} and (v) min{f, g}.

Theorem 6.2.7 (Basic Estimate for Integrals). Let f : [a, b] → R be integrable.
Then |f | is integrable and we have∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx. (6.12)

Proof. We know that |f | is integrable from Theorem 6.2.6. Choose ε = ±1 so

that ε
∫ b
a
f(t) dt =

∣∣∣∫ ba f(t) dt
∣∣∣. Then

∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ = ε

∫ b

a

f(t) dt

=

∫ b

a

εf(t) dt, (by linearity of the integral)

≤
∫ b

a

|f(t)| dt, (by monotonicity, since ±f ≤ |f |).

Exercise 6.2.8. (a) Show that
∫ 1

0
x4

√
1+4x90

≥ 1
10
√

2
. (b) Prove that∫ 3

0
x3(x−4)
1+x10 sin(2013x) dx ≤ 81.

Theorem 6.2.9 (Additivity of the Integral as an Interval Function). If f is inte-
grable on [a, b], then f is integrable on any subinterval [c, d] of [a, b]. Furthermore,∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx, (6.13)

for any c ∈ (a, b).
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Proof. We show that f is integrable on [a, c] for c ∈ (a, b). The general case is
proved in a similar vein. Let ε > 0 be given. Let P be a partition of [a, b] such
that U(f, P )− L(f, P ) < ε.

Let Q = P ∪ {c} and P1 := Q ∩ [a, c]. Note that P1 is a partition of [a, c].
If we let P2 := Q ∩ [c, b], then Q = P1 ∪ P2. We have U(f,Q) − L(f,Q) ≤
U(f, p)− L(f, P ) < ε. We observe that

U(f,Q)− L(f,Q) = [U(f, P1)− L(f, P1)] + [U(f, P2)− L(f, P2)]

≥ U(f, P1)− L(f, P1).

It follows from the displayed inequalities that

U(f, P1)− L(f, P1) ≤ U(f,Q)− L(f,Q)

≤ U(f, P )− L(f, P ) < ε.

Hence f is integrable on [a, c].
Let P be any partition of [a.b]. Let Q0 = P ∪ {c}, Q1 = Q ∩ [a, c] and

Q2 = Q ∩ [c, b]. We have

U(f, P ) ≥ U(f,Q) = U(f,Q1) + U(f,Q2)

≥
∫ c

a

f(x) dx+

∫ b

c

f(x) dx

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Thus for any partition P , we have proved∫ c

a

f(x) dx+

∫ b

c

f(x) dx ≤ U(f, P ).

This shows that
∫ c
a
f(x) dx+

∫ b
c
f(x) dx is a lower bound of

{L(f, P );P is a partition of [a, b]}.

Hence ∫ c

a

f(x) dx+

∫ b

c

f(x) dx ≤ U(f, P )

≤
∫ b

a

f(x)dx

= glb {U(f, P )}. (6.14)

Similarly, we can show that

L(f, P ) ≤ L(f,Q) = L(f,Q1) + L(f,Q2)

≤
∫ c

a

f(x) dx+

∫ b

c

f(x) dx

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Hence
∫ c
a
f(x) dx+

∫ b
c
f(x) dx is an upper bound of

{L(f, P );P is a partition of [a, b]}.

Hence ∫ b

a

f(x)dx = lub {L(f, P );P is a partition of [a, b]}

≤
∫ c

a

f(x) dx+

∫ b

c

f(x) dx. (6.15)

Hence by (6.14) and (6.15), we get∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

The rest of the cases can either be reduced to this or proved in a similar way.

Definition 6.2.10. Let f : [a, b]→ R be integrable. We define∫ a

b

f(x) dx := −
∫ b

a

f(x) dx and

∫ s

s

f(x) dx = 0.

Using this convention, the following corollary is an easy consequence of The-
orem 6.2.9.

Corollary 6.2.11. For any a, b, c such that f is integrable on the smallest inter-
val containing a, b, c, we have∫ b

a

f(x) dx :=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Proof. If a < c < b, the result follows from the last theorem. So let us assume
that c lies outside the interval defined by a and b. For definiteness sake, assume
a < b < c. Then, by the last result,∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Hence ∫ b

a

f(x) dx =

∫ c

a

f(x) dx−
∫ c

b

f(x) dx

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx,

by the convention.
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Exercise Set 6.2.12. Let R(I) denote the set of integrable functions on the
interval I.

(1) Show that f ∈ R(I) implies that f2 ∈ R(I).

(2) Let f2 ∈ R(I). Does it imply that f ∈ R(I)?

(3) If f, g ∈ R(I), then show that fg ∈ R(I).

(4) Let f ∈ C[a, b]. If
∫ b
a
f(x)dx = 0, then f(c) = 0 for at least one c ∈ [a, b].

(5) Let f ∈ R(I), f ≥ 0, and
∫
I
f = 0. Then f = 0 at each point of continuity

of f .

(6) If f ∈ C[a, b],
∫ b
a
f(x)g(x) = 0, for all g ∈ C[a, b], then f ≡ 0.

(7) Let f > 0 be continuous on [a, b]. Let M = max{f(x) : x ∈ [a, b]}. Then

lim
n→∞

(∫ b

a

[f(x)]n

) 1
n

= M.

Compare this with item 4 of Exercise 2.4.3.

(8) Let f : I := [a, b]→ R be a bounded function. Show that f ∈ R(I) iff for all
ε > 0, there exist step functions s1, s2 on I such that s1(x) ≤ f(x) ≤ s2(x)
and

∫
I
(s2 − s1) < ε. (We defined step functions on page 183.)

(9) Let f : [a, b]→ R be continuous. Show that there exists c ∈ [a, b] such that

1

b− a

∫ b

a

f(x) dx = f(c).

(10) Suppose f, g : [a, b] → R are positive and continuous functions. Show that
there exists c ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

(11) Let 0 < a < b. Let f > 0 be continuous and strictly increasing on [a, b]. Prove
that ∫ b

a

f +

∫ f(b)

f(a)

f−1 = bf(b)− af(a). (6.16)

Use this result to evaluate the following: (i)
∫ b
a
x

1
3 dx, 0 < a < b, (ii)∫ 1

0
sin−1 xdx.
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(12) Prove the following version of Young’s inequality. Let f be a continuous and
strictly increasing function for x ≥ 0 with f(0) = 0. Let g be the inverse of
f . Then for any a, b > 0 we have

ab ≤
∫ a

0

f(x) dx+

∫ b

0

g(y) dy. (6.17)

Equality holds if and only if b = f(a).

(13) Take f(x) := xα in Young’s inequality (6.17) to deduce the original Young’s
inequality: Let p > 0, q > 0 be such that 1

p + 1
q = 1. Deduce the inequality:

(xp/p) + (yq/q) ≥ xy for all x > 0 and y > 0. (6.18)

The equality holds if and only if xp−1 = y iff x1/q = y1/p.

(14) For x, y ∈ Rn and for 1 ≤ p <∞, let ‖x‖p := (
∑
i |xi|

p
)
1/p

and for p =∞, let
‖x‖∞ := max{|xi| : 1 ≤ i ≤ n}. For p > 1, let q be such that (1/p) + (1/q) =
1. For p = 1 take q =∞. Prove Hölder’s inequality:∑

i

|ai| |bi| ≤ ‖a‖p ‖b‖q , for all a, b ∈ Rn. (6.19)

When does equality occur?

6.3 Fundamental Theorems of Calculus

We now look at one of the most important results in the theory of integration,
namely, the fundamental theorems of calculus. These theorems establish the va-
lidity of the computation of integrals via Newtonian calculus, as learned in high
school. In some sense, they justify the high-school way of defining integration as
finding an anti-derivative.

Theorem 6.3.1 (First Fundamental Theorem of Calculus). Let f : [a, b]→ R be
differentiable. Assume that f ′ is integrable on [a, b]. Then∫ b

a

f ′(x) dx = f(b)− f(a).

Proof. We adapt the proof of Example 6.1.18. Let P = {x0, x1 . . . , xn} be any
partition of [a, b]. By MVT, we obtain

f(xi)− f(xi−1) = f ′(ti)(xi − xi−1), for some ti ∈ (xi−1, xi). (6.20)

It follows that∑
i

f ′(ti)(xi − xi−1) =

n−1∑
i=0

(f(xi+1 − f(xi)) = f(b)− f(a). (6.21)

Arguing as in Example 6.1.18, we arrive at the result. (Do you see where we used
the integrability of f ′?)
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Remark 6.3.2. Note that this justifies what you learned in school about the

integral being anti-derivative. That is, to find
∫ b
a
f(x) dx, we find a function g

such that g′ = f and then in this case we have
∫ b
a
f(x) dx = g(b)− g(a).

Exercise Set 6.3.3.

(1) Let f : [0, a]→ R be given by f(x) = x2. Find
∫ a

0
f(x)dx.

(2) Show that
∫ a

0
f(x)dx = a4

4 for f(x) = x3.

(3) Let 0 < a ≤ 1. Show that
∫ a

0
sinx = 1− cos a.

Let f : [a, b] → R be integrable. Then for any x ∈ [a, b], we know that f is
integrable on [a, x]. Hence we have a function F : x 7→

∫ x
a
f(t) dt, x ∈ [a, b]. The

new function F is called the indefinite integral of f . This is the area under the
curve y = f(x) between the x-axis, x = a, and x. Look at Figure 6.7.

a b

y = f(x)

x

F (x)

Figure 6.7: Indefinite integral.

Theorem 6.3.4 (Second Fundamental Theorem of Calculus). Let f : [a, b]→ R
be integrable. The indefinite integral F of f is continuous (in fact, Lipschitz) on
[a, b] and is differentiable at x if f is continuous at x ∈ [a, b]. In fact, F ′(x) =
f(x), if f is continuous at x.

Why is this result plausible? Look at Figure 6.8. It seems that
∫ x+h

x
f(t) dt

is approximately the area of the rectangle whose base is h and height is f(x).

Hence 1
h

∫ x+h

x
f(t) dt ≈ f(x). Observe that

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

)
=

1

h

∫ x+h

x

f(t) dt ≈ f(x).
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x x+ h

(x, f(x))

Figure 6.8:
∫ x+h

x
f(t)dt ≈ [(x+ h)− x]f(x) = hf(x).

Proof. Since F is bounded, there exists M such that |f(x)| ≤ M for x ∈ [a, b].
Then we have

|F (x)− F (y)| =
∣∣∣∣∫ x

a

f(t) dt−
∫ y

a

f(t) dt

∣∣∣∣
=

∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣
≤M

∣∣∣∣∫ y

x

1 dt

∣∣∣∣
= M |x− y| .

Thus F is Lipschitz and hence continuous on [a, b].
Let f be continuous at c ∈ [a, b]. We shall show that F is differentiable at c

and F ′(c) = f(c). Observe that, for x > c,

F (x)− F (c)

x− c
=

1

x− c

∫ x

c

f(t) dt and f(c) =
1

x− c

∫ x

c

f(c).

Hence, we obtain∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ =

∣∣∣∣ 1

x− c

∫ x

c

f(t) dt− 1

x− c

∫ x

c

f(c) dt

∣∣∣∣
=

∣∣∣∣ 1

x− c

∫ x

c

f(t)− f(c)] dt

∣∣∣∣
≤ 1

x− c

∫ x

c

|f(t)− f(c)| dt. (6.22)

Given ε > 0, by the continuity of f at c, we can find a δ > 0 such that
|f(t)− f(c)| < ε for |t− c| < δ. Hence for x ∈ [a, b] such that |x− c| < δ,
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we see that the RHS of (6.22) is estimated above by ε. Similar argument applies
when x < c.

This shows that F is differentiable at c and F ′(c) = f(c).

Remark 6.3.5. Look at the inequality (6.22). One of the terms in RHS is an
integral while the other is a number f(c). We re-wrote this as a sum of two
integrals by observing that f(c) is the average 1

x−c
∫ x
c
f(c) and then applied the

linearity, continuity, and the standard estimate for the integral. Learn this well
as this trick is often used.

Remark 6.3.6. We can deduce a weaker version of the first fundamental Theo-
rem 6.3.1 from the second fundamental theorem of calculus.

Let f : [a, b]→ R be differentiable with f ′ continuous on [a, b]. Then∫ b

a

f ′(x) dx = f(b)− f(a).

Proof. Since f ′ is continuous, it is integrable and its indefinite integral, say,
G(x) =

∫ x
a
f ′(t) dt, exists. By the last item, G is differentiable with derivative

G′ = f ′. Hence the derivative of f − G is zero on [a, b] and hence the function
f − G is a constant on [a, b]. In particular, f(a) − G(a) = f(b) − G(b), that is,

f(a) = f(b)−
∫ b
a
f ′(x) dx.

Exercise Set 6.3.7. Assume that the domain of functions below are [−R,R],
R > 0.

(1) Let f(x) = −1 if x < 0 and f(x) = 1 if x ≥ 0. What is
∫ x

0
f(t) dt? What does

the second mean value theorem for integrals say in this case?

(2) Let f(x) = |x|. What is the indefinite integral of f? Call it f1. Show that f1

is C1, that is, once continuously differentiable. Can you generate functions
that are Cn but not Cn+1?

(3) Let f(x) =

{
1, x 6= 1

0, x = 1.
Let g be the indefinite integral of f . Show that g is

differentiable at x = 1. Note that f is not continuous at x = 1.

Theorem 6.3.8 (Integration by Parts). Let u, v : [a, b] → R be differentiable.
Assume that u′, v′ are integrable on [a, b]. Then∫ b

a

u(x)v′(x) dx = u(x)v(x) |ba −
∫ b

a

u′(x)v(x) dx. (6.23)

Strategy: Let g := uv. Then g is integrable, and g′ = u′v+uv′ is integrable. (Why?

If we assume that u and v are continuously differentiable, then the integrability of

g′ etc. are clear.) Apply the first fundamental theorem of calculus to
∫ b
a
g′(x) dx to

arrive at the result.



198 CHAPTER 6. RIEMANN INTEGRATION

Proof. We assume that u and v are continuously differentiable functions. Then
g = uv is continuous and hence integrable. Also g′ = u′v + uv′. Furthermore, g′

is continuous and hence integrable. Applying the first fundamental theorem of
calculus, we obtain

g(b)− g(a) = u(b)v(b)− u(a)v(a)

=

∫ b

a

u(x)v′(x) dx+

∫ b

a

u′(x)v(x) dx

The term u(b)v(b)− u(a)v(a), we write as u(x)v(x) |ba. Hence we have∫ b

a

u(x)v′(x) dx = u(x)v(x) |ba −
∫ b

a

u′(x)v(x) dx.

One of the most basic tools for computing integration in high school is inte-
gration by substitution or the change of variables. The following result justifies
this process.

Theorem 6.3.9 (Change of Variables). Let I, J be closed and bounded intervals.
Let u : J → R be continuously differentiable. Let u(J) ⊂ I and f : I → R be
continuous. Then f ◦ u is continuous on J and we have∫ b

a

f(u(x))u′(x) dx =

∫ u(b)

u(a)

f(y) dy, a, b ∈ J. (6.24)

Proof. Fix c ∈ I. Let F (y) :=
∫ y
c
f(t) dt. Then by the second fundamental the-

orem of calculus (Theorem 6.3.4), F is differentiable and F ′(x) = f(x). Let
g(x) := (F ◦ u)(x). Then g is differentiable, and by the chain rule we have

g′(x) = F ′(u(x))u′(x) = f(u(x))u′(x).

We apply the first fundamental theorem of calculus to g′:∫ b

a

f(u(x))u′(x) dx =

∫ b

a

g′(x) dx

= g(b)− g(a)

= F (u(b))− F (u(a))

=

∫ u(b)

c

f(t) dt−
∫ u(a)

c

f(t) dt

=

∫ u(b)

u(a)

f(t) dt.
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Exercise Set 6.3.10.

(1) Let f : [a, b]→ R be continuous. Assume that there exist constants α and β
such that

∀c ∈ [a, b], we have α

∫ c

a

f(x) dx+ β

∫ b

c

f(x) dx = 0.

Show that f = 0.

(2) Let g : R → R be differentiable. Let F (x) =
∫ g(x)

0
t2dt. Prove that F ′(x) =

g2(x)g′(x) for all x ∈ R. If G(x) =
∫ g(x)

h(x)
t2dt, then what is G′(x)?

(3) Let f : [a, b]→ R be continuous and g : [c, d]→ [a, b] be differentiable. Define

ϕ(x) :=
∫ g(x)

a
f(t) dt. Prove that h is differentiable and compute its derivative.

(4) If f ′′ is continuous on [a, b], show that
∫ b
a
xf ′′(x)dx = [bf ′(b)−f(b)]−[af ′(a)−

f(a)].

(5) Let f > 0 be continuous on [1,∞). Let g(x) :=
∫ x

1
f(t)dt ≤ [f(x)]2. Prove

that f(x) ≥ 1
2 (x− 1).

(6) Let f : [a, b]→ R be continuously differentiable. Assume that f ′ > 0 . Prove∫ b

a

f +

∫ f(b)

f(a)

f−1 = bf(b)− af(a).

(7) Let f(x) =
∫ cos x

sin x

√
1− t2 dt, for x ∈ [0, π/2]. Show that f(x) = π/4− x.

6.4 Mean Value Theorems for Integrals

Given an integrable function f : [a, b] → R, the number 1
b−a

∫ b
a
f is called the

mean or the average of the function on the interval [a, b]. Observe that this is
based on our intuitive way of thinking that the integral is a “continuous sum” of
f(x) as x varies over [a, b], and the average of a finite set of numbers is their sum
divided by the number of elements in the set. The next result says that the mean
of a continuous function on an interval is taken by the function in the interval.

Theorem 6.4.1 (Mean Value Theorem for Integrals). Let f be continuous on

[a, b]. Then there exists c ∈ [a, b] such that 1
b−a

∫ b
a
f(x)dx = f(c).

Observe that the result has a geometric interpretation as shown in Figure 6.9.
If we interpret the integral as the area of (a continuous non-negative) f , the
region bounded by x = a, x = b and y = 0 and y = f(x), then it is the area of a
rectangle whose length is b− a and breadth is f(c) for some c ∈ [a, b].
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a b

y = f(x)

y = f(c)

f(c)(b− a) =
∫ b
a
f

cc′

Figure 6.9: Mean value theorem for integrals.

Proof. Let m = inf f , M = sup f on [a, b]. By the extreme values theorem, there
exist x1, x2 such that f(x1) = m and f(x2) = M . Then m ≤ f(x) ≤M implies∫ b

a

m ≤
∫ b

a

f(x)dx ≤
∫ b

a

M.

This implies

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Hence

f(x1) = m ≤ 1

b− a

∫ b

a

f(x)dx ≤M = f(x2).

Hence, by the intermediate value theorem, there exists c between x1 and x2

such that 1
b−a

∫ b
a
f(x)dx = f(c). Since x1, x2 ∈ [a, b], an interval, it follows that

c ∈ [a, b].

Theorem 6.4.2 (Weighted/First Mean Value Theorem for Integrals). Let f, g
be continuous on [a, b]. Assume that g does not change sign on [a, b]. Then for

some c ∈ [a, b] we have
∫ b
a
f(x)g(x)dx = f(c)

∫ b
a
g(x)dx.

Proof. Without loss of generality, assume that g ≥ 0. Let m = inf f , M = sup f
on [a, b]. Then m ≤ f(x) ≤M . Since g > 0, this implies

mg(x) ≤ f(x)g(x) ≤Mg(x).

Hence by the monotonicity of the integral,

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤M
∫ b

a

g(x)dx.

If
∫ b
a
g(x) = 0, there is nothing to prove. Otherwise,

∫ b
a
g(x)dx > 0. Dividing by∫ b

a
g(x) dx throughout, we get

m ≤
∫ b
a
f(x)g(x) dx∫ b
a
g(x) dx

≤M.
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Arguing as in the last result, by the intermediate value theorem, there exists
c ∈ [a, b] such that ∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x) dx.

If g ≤ 0, we apply the above argument to −g.

Exercise 6.4.3. Derive Theorem 6.4.1 from Theorem 6.4.2.

Theorem 6.4.4 (Second Mean Value Theorem I). Let g be continuous on [a, b]
and f be continuously differentiable on [a, b]. Further assume that f ′ does not
change sign on [a, b]. Then there exists c ∈ [a, b] such that∫ b

a

f(x)g(x)dx = f(a)

∫ c

a

g(x)dx+ f(b)

∫ b

c

g(x)dx.

Proof. Let G(x) =
∫ x
a
g(t)dt. Since g continuous, by Theorem 6.3.4, G is differ-

entiable and G′(x) = g(x). Hence integration by parts gives us:∫ b

a

f(x)g(x)dx =

∫ b

a

f(x)G′(x)dx = f(b)G(b)−
∫ b

a

f ′(x)G(x)dx, (6.25)

since G(a) = 0. By the weighted/first mean value theorem (Theorem 6.4.2),∫ b

a

f ′(x)G(x)dx = G(c)

∫ b

a

f ′(x)dx = G(c)[f(b)− f(a)]. (6.26)

Thus, using Equations (6.25) and (6.26), we get

∫ b

a

f(x)g(x)dx = f(b)G(b)−G(c)(f(b)− f(a))

= f(a)G(c) + f(b)[G(b)−G(c)].

The desired result follows from this.

We give another version which is very useful in numerical approximation of
definite integrals.

Theorem 6.4.5 (Second Mean Value Theorem II). Let f : [a, b] → R be mono-
tone. Then there exists c ∈ [a, b] such that∫ b

a

f(x) dx = f(a)(c− a) + f(b)(b− c).

Proof. Assume that f is increasing. We know that f ∈ R([a, b]) by Theorem 6.2.2.
We observe that f(a) ≤ f(x) ≤ f(b) for x ∈ [a, b]. Thus we get,

f(a)(b− a) ≤
∫ b

a

f(x) dx ≤ f(b)(b− a).
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Define h(x) := f(a)(x− a) + f(b)(b−x). Then h is continuous. Note that h(a) =

f(b)(b− a) and h(b) = f(a)(b− a). Thus,
∫ b
a
f(x) dx is a value lying between the

values h(b) and h(a). By the intermediate value theorem applied to h, we conclude

that there exists c ∈ (a, b) such that h(c) =
∫ b
a
f(x) dx. This is as required.

Exercise Set 6.4.6.

(1) Use the first mean value theorem to prove that for −1 < a < 0 and n ∈ N,

sn :=
∫ 0

a
xn

1+xdx→ 0 as n→∞.

(2) Prove that for 0 < a ≤ 1 and n ∈ N, sn :=
∫ a

0
xn

1+xdx→ 0 as n→∞.

Remark 6.4.7. The various mean value theorems for integrals are quite useful
while estimating integrals. It is a commonly held belief among analysts that it is
easier to estimate integrals than an infinite series.

Theorem 6.4.8 (Cauchy-Maclaurin Integral Test). Let f : [1,∞)→ R be positive
and non-increasing. Let In :=

∫ n
1
f(x) dx and sn :=

∑n
k=1 f(k). Then:

(i) the sequences (In) and (sn) both converge or diverge.
(ii)

∑n
k=1 f(k)−

∫ n
1
f(x) dx→ ` where 0 ≤ ` ≤ f(1).

Proof. Since f is monotone, f is integrable on [1, n] for any n ∈ N. Observe
that f(k) ≤ f(x) ≤ f(k − 1) for x ∈ [k − 1, k]. (See Figure 6.10.) Hence by the
monotonicity of the integral, we obtain

f(k − 1) ≥
∫ k

k−1

f(x) dx ≥ f(k). (6.27)

Adding these inequalities and using the additivity of the integral, we get

n−1∑
k=1

f(k) ≥
∫ n

1

f(x) dx ≥
n∑
k=2

f(k). (6.28)

From (6.28), (i) follows from comparison test.

k − 1 k

f(k − 1)

f(k)

Figure 6.10: f(k − 1)(k − (k − 1)) ≥
∫ k
k−1

f(t)dt ≥ f(k)(k − (k − 1)).
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To prove (ii), we define ϕ(n) :=
∑n
k=1 f(k) −

∫ n
1
f(x) dx. Then ϕ is non-

increasing using (6.27). Using (6.28), ϕ satisfies 0 ≤ ϕ(n) ≤ f(1). That is, (ϕ(n))
is a bounded monotone sequence and therefore is convergent, (by Theorem 2.3.2,
on page 43).

Example 6.4.9 (Euler’s Constant γ). Consider a sequence

γn := 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n.

Applying Theorem 6.4.8 with f(x) = 1
x , we conclude that γn is convergent. We

denote the limit by γ. Then 0 < γ < 1.

It is not known whether Euler’s constant is rational or irrational at the time
of this writing.

Exercise Set 6.4.10. Prove that

(1)
∑∞

1
1

1+n2 <
1
2 + 1

4π .

(2) If −1 < k ≤ 0, 1k + 2k + · · ·+ nk − nk+1

k+1 is convergent.

(3) If −1 < k ≤ 0, 1k+2k+···+nk

nk+1 → 1
k+1 .

(4) p
∑∞

1
1

n1+p → 1, as p→ 0+.

6.5 Integral Form of the Remainder in Taylor’s
Theorem

We now state and prove a version of Taylor’s theorem in which the remainder
term is given as an integral. As said earlier in Remark 6.4.7, integrals are easier
to estimate. See Section 7.7 for a demonstration of this dictum.

Theorem 6.5.1 (Taylor’s Theorem with Integral Form of the Remainder). Let
f be a function on an interval J with f (n) continuous on J . Let a, b ∈ J . Then

f(b) = f(a) +
f ′(a)

1!
(b− a) + · · ·+ f (n−1(a)

(n− 1)!
(b− a)n−1 +Rn (6.29)

where

Rn =

∫ b

a

(b− t)n−1

(n− 1)!
f (n)(t) dt. (6.30)
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Proof. We begin with

f(b) = f(a) +

∫ b

a

f ′(t) dt.

We apply the integration by parts formula
∫ b
a
udv = uv|ba−

∫
u′dv to the integral

where u(t) = f ′(t) and v = −(b− t). (Note the non-obvious choice of v!) We get∫ b

a

f ′(t)dt = −f ′(t)(b− t)
∣∣b
a +

∫ b

a

f ′′(t)(b− t) dt.

Hence we get

f(b) = f(a) + f ′(a)(b− a) +

∫ b

a

f ′′(t)(b− t) dt.

We again apply integration by parts to the integral where u(t) = f ′′(t) and
v(t) = −(b− t)2/2. We obtain∫ b

a

f ′′(t)(b− t) dt = f ′′(t)
(b− t)2

2

∣∣b
a +

∫ b

a

f (3)(t)((b− t)2/2) dt.

Hence

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
(b− a)2

2
+

∫ b

a

f (3)(t)
(b− t)2

2
dt.

Assume that the formula for Rk is true:

Rk =

∫ b

a

(b− t)k−1

(k − 1)!
f (k)(t) dt.

We let
u(t) = f (k)(t) and v(t) = −(b− t)k−1

and apply integration by parts. We get∫ b

a

f (k)(t)
(b− t)k−1

(k − 1)!
dt = f (k)(t)

(b− a)k

k!
+

∫ b

a

(b− t)k

k!
f (k+1)(t) dt.

By induction, the formula for Rn is obtained.

Example 6.5.2. We use the mean value theorem for the Riemann integral,
Theorem 6.4.1, to deduce Cauchy’s form (4.38) of the remainder in the Taylor’s
theorem.

Applying the mean value theorem for integrals to (6.30), we conclude that
there exists c ∈ (a, b) such that

Rn = (b− a)
(b− c)n−1

(n− 1)!
f (n)(c),

which is Cauchy’s form (4.38) of the remainder.
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6.6 Riemann’s Original Definition

In this section, we look at Riemann’s original definition of integrability of func-
tions. Apart from historical reasons, this definition is quite intuitively appealing
to scientists. For a budding mathematician, it offers insights into the development
of the subject. The proof that f is integrable iff it is integrable in the sense of
Riemann and that both the integrals are the same is quite instructive.

Definition 6.6.1. Let P = {x0, . . . , xn} be a partition of [a, b]. Let ti ∈ [xi, xi+1],
0 ≤ i ≤ n− 1. Then ti’s are called tags. Let t = {ti : 0 ≤ i ≤ n− 1} be the set of
tags. The pair (P, t) is called a tagged partition of [a, b]. See Figure 6.11.

a = x0 x1 x2 xi xi+1 xn−1 b = xn

t0 t1 ti tn−1

Figure 6.11: Tagged partition.

Definition 6.6.2. Let f : [a, b]→ R. The sum defined by

S(f, P, t) :=

n−1∑
i=0

f(ti)(xi+1 − xi)

is called the Riemann sum of f for the tagged partition (P, t). See Figure 6.12.

a b

y = f(x)

x1 x2 x3 x4t0 t1 t2 t3 t4

Figure 6.12: Riemann sum for tagged partition.

We say that f is Riemann integrable on [a, b] if there exists A ∈ R such that
for every ε > 0, there exists a partition P such that for any refinement Q of P
and for any tag t of Q, we have

|S(f,Q, t)−A| < ε.
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We call A the Riemann integral of f on [a, b]. It is easy to see that A is unique.
(See Exercise 6.6.3 below.)

Exercise 6.6.3. Show that A, the Riemann integral of f on [a, b] defined above,
is unique.

Remark 6.6.4. The condition “for every partition Q ⊃ P” should remind us of
a similar condition “for every n ≥ N” in the definition of convergent sequences.
Thus the definition of Riemann integrability may be considered as a limiting
process or a question of convergence of the Riemann sums to A. Let us write
Q ≥ P to mean Q ⊃ P .

Consider an extremely large subset S := {S(f, P, t)} ⊂ R where P varies over
all partitions of [a, b] and t all tags of P . Then we may rewrite the condition as
follows:

There exists A ∈ R such that for any ε > 0 there exists a partition
P such that for any Q ≥ P and for any set t of tags in Q, we have
|S(f,Q, t)−A| < ε.

Note that, unlike N, the law of trichotomy does not hold among the set of
partitions! We do not offer any further explanation and leave it to you to think
over.

Note that in the above definition of Riemann integrability, we do not demand
that f is bounded on [a, b]. In fact, if f is Riemann integrable on [a, b], then f is
bounded on [a, b]. See the next proposition.

Proposition 6.6.5. If f : [a, b] → R is Riemann integrable, then it is bounded
on [a, b].

Strategy: The idea is to show that f is bounded on any subinterval of a tagged

partition. Since the number of subintervals in a partition is finite, it follows that f

is bounded on [a, b].

Proof. Let A be the Riemann integral of f on [a, b]. Given ε = 1, let P = {a =
x0, x1, . . . , xn = b} be a partition of [a, b] such that, |S(f, P, t)−A| < 1, for any
set of tags in P . Fix a set t of tags {ti} in P . For any set {si} of tags, we have

|S(f, P, {ti})− S(f, P, {si})| < 2.

Let x ∈ [x0, x1] be an arbitrary point. Let si = ti for i ≥ 1 and s0 = x. We have

|S(f, P, {ti})− S(f, P, {si})| =

∣∣∣∣∣
n−1∑
i=0

f(ti)(xi+1 − xi)−
n−1∑
i=0

f(si)(xi+1 − xi)

∣∣∣∣∣
= |f(t0)− f(x)| (x1 − x0) < 2.

This implies

|f(t0)− f(x)| < 2

x1 − x0
.
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Hence we have |f(x)| ≤ 2
(x1−x0) + |f(t0)|. That is, f is bounded on [x0, x1].

Similarly, it is bounded on each of the subintervals of the partition and hence is
bounded on [a, b].

Proposition 6.6.6. Let f : [0, 1] → R be continuous. Let ci ∈ [ i−1
n , in ], n ∈ N.

Then

lim
n→∞

1

n

n∑
i=1

f(ci) =

∫ 1

0

f(x)dx. (6.31)

Strategy: Let xi = i
n

. Observe that

1

n

n∑
i=1

f(ci) =

n∑
i=1

∫ xi

xi−1

[(f(ci)− f(x)) + f(x)] dx

=

∫ 1

0

f(x) dx+

n∑
i=1

∫ xi

xi−1

(f(ci)− f(x)) dx. (6.32)

(Did you notice that we used the trick mentioned in Remark 6.3.5?)

If n � 1 (n is sufficiently large), the terms |f(x)− f(ci)| can be estimated using

uniform continuity.

Proof. Given ε > 0, we need to find N such that for n ≥ N , we have∣∣∣∣∣ 1n
n∑
i=1

f(ci)−
∫ 1

0

f(x)dx

∣∣∣∣∣ < ε.

Since f is continuous on [0, 1], it is uniformly continuous on [0, 1]. Hence there
exists δ > 0 such that |f(x)− f(y)| < ε for x, y ∈ [0, 1] with |x− y| < δ. By
Archimedean property, there exists N ∈ N such that 1

N < δ. Let n ≥ N . We
subdivide [0, 1] into n parts as in the statement. Note that for any x, y ∈ [xi, xi+1],
we have |x− y| ≤ 1/N < δ so that |f(x)− f(y)| < ε.

Let ci ∈ [xi, xi+1], 0 ≤ i ≤ n− 1. From (6.32), we deduce∣∣∣∣∣ 1n
n∑
i=1

f(ci)−
∫ 1

0

f(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

∫ xi

xi−1

(f(ci)− f(x)) dx

∣∣∣∣∣
≤

n∑
i=1

∫ xi

xi−1

|f(ci)− f(x)| dx, by (6.12)

<

n∑
i=1

(
1

n
× ε
)

= ε.

This completes the proof.

Remark 6.6.7. Integrals are used to compute areas and the mass of an object
once we know its density, etc. Most often, physicists and engineers take sample
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densities at various points of an object and from these data, they try to estimate
or approximate the mass. Now, (6.31) gives some kind of justification to their
method.

The next result generalizes the last one.

Theorem 6.6.8. Let f : [a, b] → R be a bounded function. Then f is integrable

iff it is Riemann integrable, in which case we have
∫ b
a
f(x) dx as the Riemann

integral.

Strategy: Let f be integrable and ε > 0. To prove Riemann integrability we need
a partition P such that for any Q ⊃ P and any set t of tags, we must show that
the Riemann sum lies in (I − ε, I + ε).
Using the integrability of f and ε, we get P . The key observation here is that for
any choice of ti ∈ [xi, xi+1], we have

mi(f) ≤ f(ti) ≤Mi(f).

It is easy to show that the Riemann sum lies between I ± ε.
Now for the converse part. Let f be Riemann integrable. For a given ε we need
to find a partition P such that U(f, P ) − L(f, P ) < ε. For this ε > 0, Riemann
integrability comes up with a partition. To estimate U(f, P ) − L(f, P ), we need
to estimate Mi −mi. Using the LUB and GLB nature of Mi and mi, we can find
points si and ti such that f(si) and f(ti) are close to mi and Mi by a fraction of
ε. This will lead us to the integrability of f .
To show that I = A, we need to estimate |A− I|. Given ε > 0, we find partitions P1

and P2 that correspond to the integrability. We let Q = P1 ∪P2. Then we estimate

|A− I| ≤ |A− S(f,Q, t)|+ |S(f,Q, t)− L(f,Q)|+ |L(f,Q)− I| .

Proof. Assume that f is integrable on [a, b]. Let I =
∫ b
a
f(x) dx. Let ε > 0 be

given. Since f is integrable, there exists a partition P of [a, b] (by Theorem 6.1.13)
such that

L(f, P ) > I − ε and U(f, P ) < I + ε. (6.33)

Let Q = {x0, . . . , xn} be any refinement of P . Then (6.33) holds true when P is
replaced by Q. We claim that for any set of tags in Q, we have∣∣∣∣∣

n−1∑
i=0

f(ti)(xi+1 − xi)− I

∣∣∣∣∣ < ε. (6.34)

This will prove that f is Riemann integrable.

The key observation to prove (6.34) is that for any choice of ti ∈ [xi, xi+1],
we have

mi(f) ≤ f(ti) ≤Mi(f).



6.6. RIEMANN’S ORIGINAL DEFINITION 209

It follows that

I − ε
< L(f,Q), using (6.33) and the fact L(f, P ) ≤ L(f,Q)

(6.35)

≤
n−1∑
i=0

f(ti)(xi+1 − xi) (6.36)

≤ U(f,Q) (6.37)

< I + ε, using (6.33) and the fact U(f,Q) ≤ U(f, P ).
(6.38)

That is, for any tagged partition (Q, t) with Q ⊃ P , we have

I − ε <
n−1∑
i=0

f(ti)(xi+1 − xi) < I + ε.

We have thus established (6.34) and hence f is Riemann integrable on [a, b] with
Riemann integral I.

Let f be Riemann integrable with Riemann integral A. Given ε > 0, there
exists a partition P = {xi : 0 ≤ i ≤ n} such that∣∣∣∣∣

n−1∑
i=0

f(ti)(xi+1 − xi)−A

∣∣∣∣∣ < ε/3,

for any set of tags t = {ti : 0 ≤ i < n}. There exist si, ui ∈ [xi−1, xi] such that

f(si) < mi(f) +
ε

6(b− a)
and f(ui) > Mi(f)− ε

6(b− a)

so that
Mi(f)−mi(f) ≤ [f(ui)− f(si)] +

ε

3(b− a)
.

We now obtain

U(f, P )− L(f, P )

=

n−1∑
i=0

[Mi(f)−mi(f)](xi+1 − xi)

<

n−1∑
i=0

(f(ui)− f(si))(xi+1 − xi) +
ε

3(b− a)

n−1∑
i=0

(xi+1 − xi)

≤

∣∣∣∣∣
n−1∑
i=0

f(ui)(xi+1 − xi)−A

∣∣∣∣∣+

∣∣∣∣∣A−
n−1∑
i=0

f(si)(xi+1 − xi)

∣∣∣∣∣+
ε

3

<
ε

3
+
ε

3
+
ε

3
= ε.
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Hence f is integrable.

Let I =
∫ b
a
f(x) dx and A be the Riemann integral of f on [a, b]. We need to

show that A = I. Let ε > 0 be given. Since f is Riemann integrable, there exists
a partition P1 such that for any refinement Q of P1 we have

|S(f, P, t)−A| < ε/3, for any set of tags t. (6.39)

Since f is integrable, there exists a partition P2 such that

U(f, P2)− L(f, P2) < ε/3 so that U(f, P2) < L(f, P2) + ε/3. (6.40)

Let Q = P1 ∪ P2.
We observe that (using (6.40)),

L(f,Q) ≤ S(f,Q, t) ≤ U(f,Q) ≤ L(f,Q) +
ε

3
. (6.41)

Again, using (6.40), we have

L(f,Q) ≤ I ≤ U(f,Q) ≤ L(f,Q) +
ε

3
. (6.42)

Using (6.39)–(6.42), we obtain

|A− I| ≤ |A− S(f,Q, t)|+ |S(f,Q, t)− L(f,Q)|+ |L(f,Q)− I|

<
ε

3
+
ε

3
+
ε

3
.

Since ε > 0 is arbitrary, this shows that A = I.

6.7 Sum of an Infinite Series as a Riemann Inte-
gral

The Riemann definition of integration is useful in finding the sum of an infi-
nite series. The main tool here is Proposition 6.6.6. Keep the notation of the
proposition. Take any ci ∈ [ i−1

n , in ]. Then

lim
n→∞

1

n

n∑
i=1

f(ci) =

∫ 1

0

f(x) dx. (6.43)

We may take ci = i
n in above the integral. In particular,

lim
n→∞

1

n

n∑
i=1

f

(
i

n

)
=

∫ 1

0

f(x) dx. (6.44)
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Example 6.7.1. Find limn→∞
∑n
k=1

n
k2+n2 .

lim
n→∞

n∑
k=1

n

k2 + n2
= lim
n→∞

1

n

n∑
k=1

n2

k2 + n2

= lim
n→infty

1

n

n∑
k=1

1

( kn )2 + 1

= lim
n→∞

1

n

n∑
k=1

f

(
k

n

)

where f(x) = 1
x2+1 . By (6.44), we have

lim
n→∞

n∑
k=1

n

k2 + n2
=

∫ 1

0

1

x2 + 1
dx

= tan−1 x |10=
π

4
.

Exercise Set 6.7.2. Applications to sum of an infinite series. Show that

(1) sn =
∑n
r=1

r
r2+n2 → log

√
2 as n→∞.

(2) for a > −1, sn = 1a+2a+···+na

n1+a → 1
1+a .

(3) sn = 1
2n+1 + 1

2n+2 + · · ·+ 1
3n → log(3/2).

(4) lim
n→∞

√
1 +
√

2 + · · ·+
√
n√

n3
= 2/3.

(5)
∑n
k=1

1

(n2+k2)
1
2
→ log(1 +

√
2).

Exercise Set 6.7.3. Obtain the limits of the sequences whose n-th term is

(1) 1
n+1 + 1

n+2 + · · ·+ 1
2n .

(2) 1
n+1 −

1
n+2 + · · ·+ (−1)n−1

2n .

Exercise Set 6.7.4. Miscellaneous Exercises on Integration.

(1) Let
∫ b
a
f(x) dx exist and be positive. Show that there exists an interval J ⊂

[a, b] and a positive constant m such that for x ∈ J , we have f(x) ≥ m.

(2) Let f, g be integrable on [a, b]. Show that max{f, g}, min{f, g} are integrable
on [a, b].

(3) Can you think of a sandwich lemma for integrable functions?
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(4) Assume that f : [a, b]→ R is integrable and that f(x) ≥ m > 0 for x ∈ [a, b].
Show that g := 1/f is integrable on [a, b].

(5) Let f : [0, 1] → R be bounded. Assume that f is integrable on [δ, 1] for each
0 < δ < 1. True or false: f is integrable on [0, 1].

(6) Let f : [a, b] → R be continuous and non-negative. If
∫ b
a
f(x) dx = 0, then

f = 0.

Is this true if f is not assumed to be continuous?

(7) Let f : [0, 1]→ R be continuous. Assume that
∫ c

0
f(t) dt = 0 for each c ∈ [0, 1].

Show that f = 0. Note that we have not assumed that f ≥ 0.

(8) Let S := {1/n : n ∈ N}. Let f : [0, 1] → R be defined by f(x) = 1 if x ∈ S
and 0 otherwise. Show that f is integrable.

Is f still integrable if we assume f(x) = x for x ∈ S and 0 otherwise?

(9) Assume that f is integrable on [a, b]. Fix c ∈ [a, b]. Assume that g : [a, b]→ R
is such that g(x) = f(x) and g(c) 6= f(c). Show that g is integrable on [a, b].

What is
∫ b
a
g(x) dx?

(10) Let f : [a, b] → R be bounded. Assume that there exists a sequence (Pn)
of partitions of [a, b] such that U(f, Pn) − L(f, Pn) → 0. Show that f is

integrable on [a, b]. What is
∫ b
a
f(t) dt?

(11) Let f : R → R be continuous. Let g(x) :=
∫ x+1

x−1
f(t) dt for x ∈ R. Is g

differentiable? If so, what is g′(x)?

(12) Let In :=
∫ 1

0
xn

1+x . Show that In → 0. Compare this with Exercise 6.4.6.

(13) Let f : [0, 1]→ R be continuous. Show that
∫ 1

0
xnf(x)→ 0.

(14) Let f : [a, b] → R be continuously differentiable. Let an :=
∫ b
a
f(t) sin(nt) dt.

Show that an → 0.

(15) Let f : [0, 1]→ R be non-negative. Let an := n
∫ 1

0
(f(t))n dt.

(a) Assume that f(t) < 1 for t ∈ [0, 1]. Show that an → 0.
(b) Assume that f(t) > 1 for t ∈ [0, 1]. Show that an →∞.

6.8 Logarithmic and Exponential Functions

We develop the logarithmic and exponential functions using many of the results
proved so far. This will serve two purposes: (1) to put these two functions on a
rigorous footing and (2) to put to use many of the results proved in the course.
We shall do this as a series of graded exercises, each being either an observation
or requiring an easy and short proof.
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Exercise Set 6.8.1 (Logarithmic Function).

(1) Define L(x) :=
∫ x

1
1
t dt for x > 0. Then L is differentiable with L′(x) = 1

x .

(2) L(1) = 0.

(3) L is a (strictly) increasing function and hence is one-one.

(4) L(xy) = L(x) + L(y) for any x > 0 and y > 0. Hint:
∫ xy

1
=
∫ x

1
+
∫ xy
x

. In the
second integral, use a suitable change of variable.

(5) L(1/x) = −L(x) for x > 0.

(6) The sequence (L(n)) diverges to ∞, that is, L(n) → ∞. Hint: The proof of
the integral test may give you some idea.

(7) L maps (0,∞) bijectively onto R. Hint: L is continuous. Use the last item
and the intermediate value theorem.

We call L, the logarithmic function and write log x for L(x).

Exercise Set 6.8.2 (Exponential Function).

(1) We know that L : (0,∞)→ R is a bijection. We define E = L−1, the inverse
of the function L. Then E is a continuous bijection of R onto (0,∞). Hint:
Review the section on monotone functions!

(2) Note that E(0) = 1 and E is strictly increasing and takes only positive values.

(3) E is differentiable and we have E′(x) = E(x). Hint: Inverse function theorem.

We claim E(1) = e, the Euler number. We sketch a proof. Observe that

lim
h→0

L(x+ h)− L(x)

h
=

1

x
.

That is,

lim
h→0

1

h
L

(
x+ h

h

)
= lim
h→0

1

h
L
(

1 +
x

h

)
=

1

x
.

Since E is a continuous function, we obtain

lim
h→0

E

(
1

h
L
(

1 +
x

h

))
= E(1/x).

What result did you use here? Substitute x = 1 in the last displayed equation to
obtain limh→0(1 + h)1/h = E(1). Let h vary through the sequence 1/n to arrive
at the claim. Which definition of the Euler number was used here?

Let x > 0 and α ∈ R. We define xα := E(αL(x)). In particular, ex =
E(xL(e)) = E(x × 1) = E(x). We have thus arrived at the exponential func-
tion, as we know!



214 CHAPTER 6. RIEMANN INTEGRATION

6.9 Improper Riemann Integrals

We extend the concept of Riemann integral to functions defined on unbounded
intervals or to unbounded functions. First of all, let us look at the following
observation.

Proposition 6.9.1. Let f : [a, b]→ R be integrable. Then∫ b

a

f(t) dt = lim
c→a+

(
lim
d→b−

∫ d

c

f(t) dt

)
.

Proof. Let g(x) :=
∫ x
a
f(t) dt. Then g is continuous on [a, b]. Therefore,∫ b

a

f(t) dt = g(b)− g(a) = lim
c→a+

(
lim
d→b−

[g(d)− g(c)]

)
= lim
d→b−

(
lim
c→a+

[g(d)− g(c)]

)
.

Proposition 6.9.1 motivates the following definition.

Definition 6.9.2. Let (a, b) be a nonempty, open, possibly unbounded interval
and f : (a, b)→ R.

(i) We say that f is locally integrable on (a, b) if f is integrable on each closed
subinterval [c, d] of (a, b).

(ii) We say that the improper Riemann integral of f exists or is convergent
on (a, b) if

lim
c→a+

(
lim
d→b−

∫ d

c

f(t) dt

)
exists. The limit is denoted by

∫ b
a
f(t) dt.

Proposition 6.9.3. The order in which limits are taken in the last definition
does not matter.

Proof. Let t0 ∈ (a, b) be fixed. We observe

lim
c→a+

(
lim
d→b−

∫ d

c

f(t) dt

)
= lim
c→a+

(∫ t0

c

f(t) dt+ lim
d→b−

∫ d

t0

f(t) dt

)

= lim
c→a+

∫ t0

c

f(t) dt+ lim
d→b−

∫ d

t0

f(t) dt

= lim
d→b−

(
lim
c→a+

∫ d

c

f(t) dt

)
.
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Remark 6.9.4. In view of Proposition 6.9.3, we use the notation

lim
c→a+
d→b−

∫ d

c

f(t) dt to stand for lim
c→a+

(
lim
d→b−

∫ d

c

f(t) dt

)
.

If we deal with intervals of the form (a, b], we may simplify the notation∫ b

a

f(t) dt = lim
c→a+

∫ b

c

f(t) dt.

The integral of f on an interval of the form [a, b) can be defined analogously.

Example 6.9.5. Following are some examples of improper integrals:

(1) The function f(x) := x−1/2 has an improper integral on (0, 1].

(2) The function f(x) := e−x
2

has an improper integral on [0,∞).

(3) The function f(x) := 1
x(x−1)) has an improper integral on (0, 1).

(4) The function f(x) := 1
1+x2 has an improper integral on (−∞,∞).

Example 6.9.6. Let us evaluate

∫ ∞
0

e−x dx if it exists. Let a > 0. Then

∫ a

0

e−x dx = −e−x |a0= −e−a + 1.

We have

lim
a→∞

∫ a

0

e−x dx = lim
a→∞

[1− e−a] = 1.

Hence
∫∞

0
e−x dx exists and is 1.

Example 6.9.7. Discuss the convergence of the integral
∫∞

1
1
xp dx for various

values of p.
Let t > 1. Then ∫ t

1

1

xp
dx =

x1−p

1− p
if p 6= 1.

We shall discuss the integral when p = 1 separately. If p > 1, then 1 − p < 0,
hence x1−p → 0 as x→∞. Thus for p > 1,∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞

x1−p

1− p
=

1

p− 1
.

If p < 1, then x1−p → ∞ as x → ∞. That is, the improper integral
∫∞

1
1
xp dx

does not exists if p < 1.
When p = 1, then

∫∞
1

1
x dx = limt→∞

∫ t
1

1
x = limt→∞[log t], which does not

exist. (Why?)
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Now that we have defined improper integrals, we can now reformulate the
integral test as follows.

Theorem 6.9.8 (Integral Test). Assume that f : [1,∞] → [0,∞) is continuous
and decreasing. Let an := f(n) and bn :=

∫ n
1
f(t) dt. Then:

(i)
∑
an converges if the improper integral

∫∞
1
f(t) dt exists.

(ii)
∑
an diverges if he improper integral

∫∞
1
f(t) dt does not exist.

Proof. We leave the proof as an exercise to the reader.

Theorem 6.9.9. If the improper integrals of f, g exist on (a, b) and α, β ∈ R,
then the improper integral of αf + βg exists on (a, b) and we have∫ b

a

(αf(t) + βg(t)) dt = α

∫ b

a

f(t) dt+ β

∫ b

a

g(t) dt.

Proof of this theorem is easy and follows from the fact∫ d

c

αf + βg = α

∫ d

c

f + β

∫ d

c

for any [c, d] ⊂ (a, b).

Theorem 6.9.10 (Comparison theorem). Let f, g be locally integrable on (a, b).
Assume that 0 ≤ f(t) ≤ g(t) for t ∈ (a, b) and that the improper integral of g
exists on (a, b). Then the improper integral of f exists on (a, b) and we have∫ b

a

f(t) dt ≤
∫ b

a

g(t) dt.

Proof. Fix c ∈ (a, b). Let F (d) :=
∫ d
c
f(t) dt and G(d) :=

∫ d
c
g(t) dt for d ∈ [c, b).

We have F (d) ≤ G(d). Since f ≥ 0, the function F is increasing on [c, b]. Hence
F (b−) exists. Thus, the improper integral of f exists on (c, b) and we get∫ d

c

f(t) dt = F (b−) ≤ G(b−) =

∫ b

c

g(t) dt.

A similar argument works for the case c→ a+

Example 6.9.11. We now look at some typical examples of improper integrals.

(1) The function f(x) :=
∣∣x−3/2 sinx

∣∣ has an improper R-integral on (0, 1]. Hint:

Observe that 0 ≤ f(x) ≤ x−3/2 |x| = x−1/2 on (0,1]. Note that
∫ 1

0
x−1/2 dx

exists. Hence
∫ 1

0
x−3/2 sinx dx also exists.

(2) The function f(x) := x−5/2 log x has an improper R-integral on [1,∞). Hint:
Note that 0 ≤ f(x) ≤ x−5/2x1/2 for all x > M for some M > 0.

(3) The function f(x) := e−x
2

has an improper integral on [1,∞). Hint: Note

that 0 ≤ e−x
2 ≤ e−x for all x ≥ 1. Since

∫∞
1
e−x dx exists,

∫∞
1
e−x

2

dx also
exists.
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Exercise 6.9.12. If f is bounded and locally integrable on (a, b), and g has an
improper R-integral on (a, b), then |fg| has an improper R-integral on (a, b).

Definition 6.9.13. Let f : (a, b) → R. We say that f is absolutely integrable
on (a, b) if |f | has an improper integral on (a, b). The function f is said to be
conditionally integrable on (a, b) if it is integrable on (a, b), but not absolutely
integrable.

Theorem 6.9.14. If f is absolutely integrable on (a, b), then the improper inte-
gral of f on (a, b) exists and we have∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)| dt.

Proof. Note that f(x) ≤ |f(x)| for all x. This implies that f is locally integrable
on (a, b). Note that 0 ≤ |f(x)|+ f(x) ≤ 2 |f(x)|. Hence the improper integral of
|f |+f exists on (a, b) (by comparison theorem). By Theorem 6.9.9, the improper
integral of f = (|f |+ f)− |f | also exists on (a, b). Also,∣∣∣∣∣

∫ d

c

f(t) dt

∣∣∣∣∣ ≤
∫ d

c

|f(t)| dt for all a < c < d < b.

Now finish the proof by taking limits as c→ a+ and d→ b−.

Theorem 6.9.15. Let f be bounded and locally integrable on (a, b). Assume that
g is absolutely integrable on (a, b). Then fg is absolutely integrable on (a, b).

Example 6.9.16 (An important example). We show that f(x) =
sinx

x
is con-

ditionally integrable on [1,∞).
Let R > 1. Then integration by parts yields

∫ R

1

sinx

x
dx = −cosx

x

]R
1
−
∫ R

1

cosx

x2
dx

= cos 1− cosR

R
−
∫ R

1

cosx

x2
dx. (6.45)

Since x−2 is absolutely integrable on [1,∞) and since |cosx| ≤ 1, it follows that
cos x
x2 is absolutely integrable on [1,∞) by the last item. We obtain from (6.45)∫ ∞

1

sinx

x
dx = cos 1−

∫ ∞
1

cosx

x2
dx.

We now show that
sinx

x
is not absolutely integrable on [1,∞). We observe
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that ∫ nπ

1

|sinx|
x

dx ≥
n∑
k=2

∫ kπ

(k−1)π

|sinx|
x

dx

≥
n∑
k=2

1

kπ

∫ kπ

(k−1)π

|sinx| dx

=

n∑
k=2

1

kπ

∫ π

0

sinx dx

=

n∑
k=2

2

kπ
→∞.

Remark 6.9.17. Go through the solution of Exercise 14 on page 212 and the
last example. You may notice that we used the integration by parts to gain better
control of the integral. This is a standard technique in analysis. To use integration
by parts to estimate an integral, analysts often impose a further condition of con-
tinuous differentiability on the integrand and then resort to some limiting/density
arguments to derive the general case.

Now we deal with another example (gamma function), as an improper integral.
It is ubiquitous in the sense that it appears not only in mathematics but also in
physics and engineering.

Example 6.9.18 (Gamma Function). We shall show that the improper integral
of the function f(t) := tx−1e−t exists on (0,∞).

Observe that tx−1e−t ≤ tx−1 for t > 0. Hence the improper integral of f exists
on (0, 1) for x > 0 (why?).

Also, since tx+1e−t → 0 as t→∞, it follows that

tx−1e−t ≤ Ct−2 for t ≥ 1 for some C > 0.

Hence the improper integral of f exists on [1,∞).
The gamma function is defined on (0,∞) by the formula

Γ(x) :=

∫ ∞
0

tx−1e−t dt.

It may be considered as a generalization of the factorial n! for x ∈ R. See Item 3
below.

Exercise Set 6.9.19. Prove the following:

(1) Γ(1) = 1.

(2) Γ(α+ 1) = αΓ(α).

(3) If m is a positive integer, then Γ(m+ 1) = m!
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(4) We know that
∫∞
−∞ e−u

2

du =
√
π. Using this, it follows that Γ

(
1
2

)
=
√
π.

Exercise Set 6.9.20.

(1) For each of the following, find the values of p ∈ R for which the improper
integral exists on the specified interval I.

(a) f(x) = x−p, I = (1,∞).

(b) f(x) = x−p, I = (0, 1).

(c) f(x) = 1/(1 + xp), I = (0,∞).

(d) f(x) = 1/(x logp x), I = (e,∞).

(2) Decide whether the improper integral of f(x) := (2+x8)−1/4 exists on (1,∞).

(3) Decide whether the improper integral of f(x) := (π+x3)−1/4 exists on (0,∞).

(4) Decide whether the improper integral of f(x) := ex

1+e2x exists on R.

(5) Show that the improper integral of f(x) := |x|−1/2
exists on [−1, 1] and its

improper integral is 4.

(6) Decide which of the following functions have an improper integral on I:

(a) f(x) = sinx, I = (0,∞).

(b) f(x) = x−2, I = [−1, 1].

(c) f(x) = x−1 sin(x−1), I = (1,∞).

(d) f(x) = log x, I = (0, 1).

(7) Assume that the improper integral of f exists on [1,∞) and that
limx→∞ f(x) = L exists. Prove that L = 0.

(8) True or false:
∫ π

0
sec2 x dx = 0?
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In this chapter, we shall deal with convergence of sequence of functions. Let X
be a nonempty set, not necessarily a subset of R. Let fn : X → R be a function,
n ∈ N. We then say (fn) is a sequence of functions on X.

Example 7.0.1. Let X = [0, 1]. Define fn(x) := x/n, x ∈ [0, 1]. Then (fn) is a
sequence of functions on [0, 1].

Example 7.0.2. Let X = {1, 2, 3}. Let fn(k) := n(mod k), k = 1, 2, 3 where
n(mod k) is the remainder when n is divided by k. For instance, f2(2) = 0,
f3(2) = 1, f12(2) = 0 and so on.

7.1 Pointwise Convergence of Sequence of Func-
tions

Convention: In the sequel X will denote a nonempty set.
Let fn, f : X → R be functions on X, n ∈ N. What do we mean by saying

that the sequence (fn) converges to f? So far, we know what is meant by a

221
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sequence of real numbers (an) converging to a real number a. The standard trick
in mathematics is to reduce the new problem to an old problem which we know
how to deal with. Fix a ∈ X. We then have a real number fn(a) for n ∈ N. Thus
we obtain a sequence (fn(a)).

For example, in Example 7.0.1, if we fix a = 1/2, the sequence (fn(a)) is
(1/2n). What is the sequence if a = 0?

Let f(x) = x for x ∈ [0.1]. Then we may ask whether fn(a) → f(a). If
a = 1/2, then f(a) = 1/2 whereas fn(a) = 1/2n → 0. Thus fn(a) does not
converge to f(a). But if we let a = 0, then (fn(a)) is the constant sequence (0)
and it converges to f(0) = 0.

Consider Example 7.0.2. Let a = 1. Then fn(1) = 0 for n ∈ N and hence
fn(1) → 0. On the other hand, (fn(2)) = (1, 0, 1, 0, . . .) and hence the sequence
is not convergent.

These examples lead us the following definition.

Definition 7.1.1. Let fn : X → R be a sequence of functions from a set X to
R. We say that fn converges to f pointwise on X if for each x ∈ X, the sequence
(fn(x)) of real numbers converges to the real number f(x) in R.

Like we say a sequence (xn) is convergent, we may also define a sequence
of functions (fn) is pointwise convergent on X. This means that there exists a
function f : X → R such that (fn) is pointwise convergent to f . There is an extra
problem for us in this situation. We need to find the limit function f and then
show that fn → f pointwise. Note that this means that we fix a ∈ X first and
form the sequence (fn(a)) of real numbers. For any given ε > 0, we have to find
an n0 ∈ N such that for n ≥ n0 we have |fn(a)− f(a)| < ε. Thus n0 may depend
not only on ε but also on a.

Example 7.1.2. We now look at a few examples and examine their pointwise
convergence. Pay attention to the graphs of these functions to get an idea of what
is going on. As far as possible, we shall investigate whether the given sequence is
pointwise convergent and if so, we shall determine the limit function.

(1) Let fn(x) = x
n , x ∈ R. See Figure 7.1.

Figure 7.1: Graph of fn(x) = x
n .
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Let us play with a few points. Let a = 0. Then the sequence (fn(a)) is the
constant sequence (0). Hence fn(a) → 0. If a = 2012, then fn(a) = 2012/n.
Clearly, fn(a) → 0. More generally, if a ∈ R, we get (a/n) as the pointwise
sequence. It is convergent to 0. Thus we may take the limit function to be
f = 0 to conclude that fn → f pointwise on R.

Fix a ∈ R. Let ε > 0 be given. Then we need to make sure |a/n| < ε for
n ≥ Na. As the sequence depends on a, we decided to use Na rather than N .
Now |a| /n < ε is assured if n > |a| /ε. Hence we may take Na > |a| /ε. See
Figure 7.2.

Figure 7.2: Graph of fn(x) = x
n .

We draw an ε-band around the (graph of the) limit function. When does the
point (a, fn(a)) lie in ε-band? You may observe that the larger the value of
|a|, the larger the n such that (a, fn(a)) lies in the band.

(2) Let us look at the sequence in Example 7.0.2. For a = 1, the sequence (fn(1))
is the constant sequence 0 and hence is convergent. If a = 2, the (fn(a)) is
(1, 0, 1, 0 . . .) and is not convergent. Hence the sequence (fn) is not pointwise
convergent on X.

(3) Let fn(x) =


0, −∞ < x ≤ 0

nx, 0 ≤ x ≤ 1
n

1, x ≥ 1
n .

Draw the graphs of these functions. See Figure 7.3. Let a ≤ 0. Then, for
n ∈ N, fn(a) = 0. Hence the sequence fn(a)→ 0 for a ≤ 0.
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Figure 7.3: Graph of fn(x) in item 3 of Example 7.1.2.

Let a ≥ 1. Then a ≥ 1/n so that fn(a) = 1 for n ∈ N. Hence for a ≥ 1,
fn(a)→ 1.

What happens when 0 < a < 1? Let us take a = 1/k for some k ∈ N.
What is fn(a)? The first few terms of the sequence are 1/k, 2/k, 3/k, . . .. But
the moment n ≥ k, we start getting fn(1/k) = 1 as x = 1/k ≥ 1/n for
n ≥ k. Hence the sequence fn(1/k) is eventually a constant sequence and
hence fn(1/k)→ 1.

If 0 < a < 1, by the Archimedean property, we can find a positive integer
Na such that 1/Na < a. Hence for n ≥ Na, we have fn(a) = 1. Thus we
conclude for 0 < a < 1, we have fn(a) → 1. If we define f(x) = 0 for x ≤ 0
and f(x) = 1 for x > 0, we then conclude that fn → f pointwise.

(4) Consider for n ≥ 2.

fn(x) =


nx, if 0 ≤ x ≤ 1

n

n( 2
n − x), if 1

n ≤ x ≤
2
n

0, if x ≥ 2
n and x < 0.

Clearly, if a ≤ 0 or if a ≥ 1, fn(a) = 0 and hence fn(a)→ 0 for such a.

Let 0 < a < 1. Look at Figure 7.4. The picture shows that if n is such that
2/n < a, then fn(x) = 0. By the Archimedean property, there exists Na ∈ N
such that Na > 2/a. For any n ≥ Na, we have 2/n < a so that fn(a) = 0.
Hence the sequence (fn(a)) is eventually zero sequence and hence fn(a)→ 0.
Therefore if we define f = 0, then fn → f pointwise on R.
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Figure 7.4: Graph of fn(x) item 4 of Example 7.1.2.

(5) fn(x) =

{
1, −n ≤ x ≤ n
0, |x| > n.

Draw the graph of fn(x). Almost similar reasoning as in the last example
shows that fn(a) is 1 if n > |a|. Hence we may take the limit function f = 1.

(6) See Figure 7.5. It is the graph of a function fn : R→ R. Can you write down
the expression for the function explicitly?

Define

fn(x) =


0, if |x| > 1/n

n(1 + nx), if −1/n ≤ x ≤ 0

n(1− nx), if 0 ≤ x ≤ 1/n.

By looking at the graph, can you guess the limits of (fn(a))?

If |x| ≥ 1, clearly, fn(a) = 0 for n ∈ N. Hence we may define f(a) = 0 for
such a’s.

If 0 < |a| < 1, by the Archimedean property, we can find Na > 1/ |a| so that
for n ≥ Na, fn(a) = 0. Again, we may define f(a) = 0 for 0 < |a| < 1.

If a = 0, we find that fn(0) = n and hence the sequence (fn(0)) is not
bounded and hence not convergent. Thus we conclude that the sequence (fn)
does not converge pointwise on R.

Let R∗ = R \ {0}. Let gn be the restriction of fn to R∗. The sequence (gn)
converges pointwise to g = 0 on R \ {0}.
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Figure 7.5: Graph of fn(x) in item 6 of Example 7.1.2.

(7) See Figure 7.6. It is the graph of a function fn : R→ R. Can you write down
the function explicitly? Does it converge pointwise to any function?

Figure 7.6: Graph of fn(x) in item 7 of Example 7.1.2.

The function fn is defined as follows.

fn(x) =


0, x < n− 1

n or x > n+ 1
n

n
(
x− (n− 1

n )
)
, n− 1

n ≤ x ≤ n
1
n

(
n+ 1

n − x
)
, n ≤ x ≤ n+ 1

n .

(8) Let fn : R→ R be defined by fn(x) = xn. Since (an) is not bounded if |a| > 1,
it follows that the sequence (fn) is not convergent on R. See Figure 7.7.

For a = 1, the sequence is the constant sequence 1 and hence is convergent
whereas for a = −1, it is (−1, 1,−1, 1, . . .).
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We have seen (on page 48) that if |a| < 1, an → 0. Thus, for any a with
|a| < 1, the sequence (fn(a)) → 0. Thus the sequence (fn) converges on
(−1, 1] to the function f defined by f(x) = 0 for x ∈ (−1, 1) and f(1) = 1.

Figure 7.7: Graph of fn(x) in item 8 of Example 7.1.2.

What can you say if we modify fn as fn(x) := nxn for x ∈ (−1, 1] or for
x ∈ (−1, 1)?

(9) Consider fn : (0,∞) → (0,∞) defined as fn(x) = x1/n. For a > 0 we know
that a1/n → 1 (see page 48). Hence the sequence fn converges pointwise on
(0,∞) to the constant function 1.

(10) Let fn : R→ R be defined by fn(x) = sinnx
n . Since |sin t| ≤ 1 for any t ∈ R, we

have the obvious estimate for |fn(a)| ≤ 1
n for any a ∈ R. Hence fn(a) → 0.

We conclude that fn converges pointwise on R to the zero function. See
Figure 7.8.

In each of the cases, we identified the limit function as the limit of the sequence
(fn(a)), if the sequence is convergent. When we wanted to prove the pointwise
convergence, for a given ε > 0, we wanted to find an Na such that for n ≥ Na,
|fn(a)− f(a)| < ε. This shows that in general Na depends on a, as the sequence
itself depends on a. The definition of pointwise convergence when cast in terms
of quantifiers exhibits this.

We say that fn → f pointwise on X if

∀a ∈ X (∀ε > 0 (∃N ∈ N (∀n ≥ N (|fn(a)− f(a)| < ε)))) . (7.1)
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Figure 7.8: Graph of fn(x) in item 10 of Example 7.1.2.

7.2 Uniform Convergence of Sequence of Func-
tions

The question arises whether we can choose N which will work for all a ∈ X.
(Compare this with the notion of uniform continuity of a function.) Note that
just because the way we got Na does not yield a common N , we cannot conclude
that there exists no such common N . For instance, in the first example, we noticed
that our Na depended upon a. But if the domain of fn’s is restricted to [−R,R],
we have a uniform estimate for |fn(a)|, which is independent of a:

|fn(a)− 0| ≤ |a| /n ≤ R/n.

Hence if we take N > R/ε, then for any n ≥ N , |fn(a)| < ε.
These considerations lead us to the following definition.

Definition 7.2.1. A sequence fn : X → R is said to converge uniformly on X to
f if given ε > 0 there exists an n0 ∈ N such that for all x ∈ X and n ≥ n0, we
have |fn(x)− f(x)| < ε. If fn → f uniformly on X we denote it by fn ⇒ f on
X.

In terms of quantifiers, fn → f uniformly on X iff

∀ε > 0 (∃n0 = n0(ε) (∀n ≥ n0 (∀x ∈ X (|fn(x)− f(x)| < ε)))) . (7.2)

Compare (7.1) and (7.2) and observe the position of ∀x ∈ X in this formulation.
It is clear that (i) uniform convergence implies pointwise convergence and (ii)

uniform convergence on X implies the uniform convergence on Y where Y ⊆ X.
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We interpret the uniform convergence in a geometric way. Let X ⊂ R, say, an
interval. Draw the graphs of fn and f . Put a band of width ε around the graph
of f . The uniform convergence fn ⇒ f is equivalent to asserting the existence of
N such that the graphs of fn over X will lie inside this band, for n ≥ N . See
Figure 7.9.

Figure 7.9: Geometric interpretation of uniform convergence.

Example 7.2.2. Let X be a finite set, say {a1, . . . , ak}. Let (fn) be a sequence
of real-valued functions on X converging pointwise on X to f : X → R. Then the
convergence is uniform.

For a given ε > 0, by the convergence of fn(aj) → f(aj), we pick an Nj ,
1 ≤ j ≤ k such that

k ≥ Nj =⇒ |fk(aj)− f(aj)| < ε.

Then, N = max{Nj} does the job:

k ≥ N and 1 ≤ j ≤ k =⇒ |fk(aj)− f(aj)| < ε.

Hence fn ⇒ f on X.

Example 7.2.3. We claim that the sequence (fn) in item 10 of Example 7.1.2
is uniformly convergent to the constant function 0 on R. This means that we
need to find an estimate |fn(x)− f(x)| which may depend on n but must be
independent of x. Here it is easy.∣∣∣∣ sinnxn

− 0

∣∣∣∣ =

∣∣∣∣ sinnxn

∣∣∣∣ ≤ 1

n
,

where we used the fact that |sin t| ≤ 1 for any t ∈ R.
Let ε > 0 be given. Choose N ∈ N such that 1

N < ε. Then for any k ≥ N , we
have for any x ∈ R, ∣∣∣∣ sinnxk

∣∣∣∣ ≤ 1

k
≤ 1

N
< ε.
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Example 7.2.4. We prove that none of the sequences in Example 7.1.2 (except
the last one) are uniformly convergent.

Let us consider the sequence in item 1 of Example 7.1.2. From Figure 7.1, it
is clear that the convergence is not uniform. Assume that fn → 0 uniformly on
R. Fix ε > 0, say, ε = 1. Let N ∈ N be such that

∀n ≥ N and ∀x ∈ R =⇒
∣∣∣x
n

∣∣∣ < 1.

The picture suggests that for a � 0 (or a � 0), the graph of fn does not lie in
the ε-band around the x-axis, the graph of the limit function f . So we look for
a� 0. For example, if we take a = 2N and n = N , we end up with |fN (a)| = 2.
This contradiction shows that fn → 0 on R but the convergence is not uniform.

Item 2 of Example 7.1.2: The sequence does not converge pointwise on X. Hence
the question of its uniform convergence does not arise.

Item 3 of Example 7.1.2: Look at Figure 7.3. It is clear that if a > 0 is very
near to zero, we need n� 0 so that fn(a) comes closer to y = 1. We exploit this
observation to show that the convergence is not uniform. Assume the contrary. Let
ε = 1/2. Let N ∈ N correspond to ε as in the definition of uniform convergence.
Hence for n ≥ N and for all a > 0 we should expect |1− fn(a)| < 1/2. Let
a = 1

2N . Then 0 < a < 1/N and hence fN (a) = Na = 1/2 so that 1−fN (a) = 1/2.
This contradiction shows that the convergence is not uniform.

Item 4 of Example 7.1.2: Look at Figure 7.4. For points a > 0 near zero, we
need a large n so that fn(a) comes closer the x-axis. Assume that fn is uniformly
convergent on R. Let ε = 1/2 and N ∈ N correspond to ε. If we take a = 1/N ,
then fN (a) = 1 so that |fN (a)− f(a)| = 1, not less than 1/2, as stated.

Item 5 of Example 7.1.2: As can be deduced from the graphs of fn’s, if |a| � 0,
it requires n � 0 so that fn(a) is close to 1. Let it be uniformly convergent on
R. For ε = 1/2 and a corresponding N , take a = 2N .

Item 6 of Example 7.1.2: The sequence is not convergent on R and hence the
question of its uniform convergence is meaningless.

What can we say about the convergence of (fn) if we take the domain of fn’s
to be R∗? Figure 7.5 shows that if |a| is near to zero, it takes a large n to bring
fn(a) close to zero. So we expect the convergence to be non-uniform. Can you
write down a textbook proof now?

Item 7 of Example 7.1.2: Figure 7.6 clearly shows that the “ripples” in the form
of “tents” persist forever in the positive side of the x-axis. We expect it to be
non-uniformly convergent. We shall prove this by contradiction. Let ε = 1 and let
N correspond to ε. Let a = 2N . Then f2N (2N) = 1 and |f2N (2N)− f(2N)| =
f2N (2N) = 1 6< 1.

Item 8 of Example 7.1.2: Let fn(x) = xn, x ∈ [0, 1] and

f(x) =

{
0, if 0 ≤ x < 1

1, if x = 1.
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Then fn converges to f pointwise but not uniformly on (0,1) and hence not on
[0,1].

Again, Figure 7.7 shows that the convergence is not uniform. The trouble is
located at 1.

If N does the job for ε = 1
2 , we then have

|fN (x)− f(x)| = xN <
1

2
for 0 ≤ x < 1.

Let x → 1−. Since fN is continuous, we see that limx→1− fN (x) = 1 and hence
for x near to 1, the stated inequality cannot be true. We conclude that (fn) does
not converge uniformly on (0, 1) and hence certainly not on [0, 1].

In case, you did not like the argument above, let us choose a such that 1 >
a > 1/21/N , then aN > 1/2, a contradiction. (How do we know such an a exists?
If 1/21/N < 1, certainly such an a exists, for example, a could be their midpoint.
If 1/21/N ≥ 1, raising both sides to their N -th power, we get 1/2 ≥ 1.)

Item 9 of Example 7.1.2 Let us work this out without recourse to pictures! As
we are taking n-th roots and in spite of how large a � 0, we know a1/n → 1.
This should suggest that we take a very large and an n-th power, say, a = 2n.
Now we can visualize the graphs of fn. Though they pointwise approach the line
y = 1, their graphs can be faraway from it when the x � 0. Hence we should
expect the convergence to be non-uniform. Let us prove this.

Let ε = 1 and let N correspond to ε. Then |fN (a)− f(a)| < 1 for all a > 0.
If we take a = 2N , then |fN (a)− f(a)| = 2− 1 = 1 6< 1.

Even near 0, the problem arises. Assume that the series is uniformly conver-
gent, on, say, (0,1). Let N correspond to ε = 1/2. If 0 < a < 2−N , then we should
have

|1− fN (a)| = 1− fN (a) < 1/2 ⇐⇒ 1/2 < a1/N ⇐⇒ 1

2N
< a,

a contradiction.

7.3 Consequences of Uniform Convergence

The next theorem is easy and an often used tool to establish the non-uniform con-
vergence of a sequence of (necessarily continuous) functions. See Example 7.3.2.

Theorem 7.3.1. Let fn : J ⊆ R → R converge uniformly on J to f . Assume
that fn are continuous at a ∈ X. Then f is continuous at a.
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Strategy. Fix a ∈ X. To establish continuity of f at a, we need to estimate
|f(x)− f(a)|. We know how to estimate |fn(x)− f(x)| and |fn(a)− f(a)|. This
suggests that we consider

|f(x)− f(a)| = |f(x)− fn(x) + fn(x)− fn(a) + fn(a)− f(a)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| .

We now use the curry-leaf trick. We fix n and use the continuity of fn at a to

estimate the middle term. To estimate the first and the third term, we use the

uniform convergence of fn.

Proof. To prove continuity of f at a, let ε > 0 be given. For this ε, using the
uniform convergence of fn to f , there exists N such that

∀n ≥ N and x ∈ X =⇒ |fn(x)− f(x)| < ε/3. (7.3)

For N as above using the continuity of fN at a, we can choose a δ > 0 such that

x ∈ J and |x− a| < δ =⇒ |fN (x)− fN (a)| < ε/3. (7.4)

Observe that for x ∈ (a− δ, a+ δ) ∩ J , we have

|f(x)− f(a)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (a)|+ |fN (a)− f(a)|
< ε/3 + ε/3 + ε/3,

where we used (7.3) to estimate the first and the third term and (7.4) to estimate
the middle term.

Example 7.3.2. Theorem 7.3.1 gives an alternate proof of the fact that the
convergence of (fn) of item 8 of Example 7.1.2 is not uniform on [0,1]. However,
it cannot be used to prove that the convergence of (fn) to f is not uniform on
(0,1). Why?

Remark 7.3.3. If fn → f pointwise and if fn’s and f are continuous, we cannot
conclude that the convergence is uniform. Can you find examples to illustrate
this in Example 7.1.2?

Exercise 7.3.4. If fn’s are assumed to be uniformly continuous in Theorem 7.3.1,
and if fn ⇒ f on J , can we conclude that f is uniformly continuous?

Example 7.3.5.

(1) Considerfn : R → R given by fn(x) = 0 if |x| ≤ n and fn(x) = n if |x| > n.
Then fn → 0 pointwise but not uniformly. Let a ∈ R. By the Archimedean
property, we can choose N ∈ N such that N > |a|. Hence for k ≥ N , fk(a) =
0. Thus, the sequence (fk(a)) is eventually the constant sequence 0. Hence
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fn(a) → 0. We may therefore take f(a) = 0. This proves the pointwise
convergence of fn to the constant function 0.

Is the convergence uniform? Look at Figure 7.10. The picture shows that it
is not.

Figure 7.10: Graph of fn(x) in item 1 of Example 7.3.5.

Let us prove this rigorously. Let us assume that the convergence is uniform.
Let ε = 1/2. Then there exists N ∈ N such that for all x ∈ R, we have
|fk(x)| < 1 if k ≥ N . In particular, if we take k = N and x = N + 1, then
fN (N+1) = N > 1/2, a contradiction. Hence the convergence is not uniform.

(2) Consider fn(x) = nx
1+n2x2 and f(x) = 0 for x ∈ R. For x 6= 0, we can rewrite

this fn(x) = 1
(nx)+ 1

nx

. This reminds us of t+ 1
t ≥ 2 for t > 0 and equality iff

t = 1. Hence we chose xn = 1/n so that fn(1/n) = 1/2.

What do these observations lead us to? If we enclose the graph of f = 0 in
an ε > 0 band, and if we take 0 < ε ≤ 1/2, then each n ∈ N, the graph of
fn does not lie within this band. So we expect that the convergence is not
uniform. Can you write down a textbook proof now?

(3) Consider fn(x) = xn

n+xn , x ≥ 0. See Figure 7.11. Let us discuss the conver-
gence of this sequence of functions. If x ∈ [0, 1], we have |fn(x)| ≤ 1/n and
hence we conclude that fn converges to f uniformly on [0, 1].

If x > 1, we recast fn(x) = xn

xn
1

1+ n
xn

. From Exercise 2.5.2, we know that
n
xn → 0. Hence fn(x) → 1 for any x > 1. Thus the sequence (fn) converges
pointwise on [0,∞) to the function

f(x) =

{
0, if 0 ≤ x ≤ 1

1, if x > 1.

Since the limit function is not continuous, we conclude that the convergence
is not uniform on [0,∞).

How about on (1,∞)? Our discussion so far indicates the source of the prob-
lem is at a = 1. Thus, even after excluding 1 from the domain, points near
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Figure 7.11: Graph of fn(x) = xn

n+xn .

to 1 may exhibit bad behavior. Furthermore, since fn is continuous and since
fn(1)→ 0, we expect that for each n, there will be points an near to 1 such
that fn(an) = 1/2. This will lead us to conclude that for each n, the graph
of fn may not lie within the 1/2-band around y = 1.

Note that
xn

n+ xn
=

1
n
xn + 1

=
1

2
if xn = n.

Hence at points an = n1/n, we have fn(an) = 1/2 so that |fn(an)− 1| = 1/2
for any n ∈ N. So, if ε < 1/2, we shall not be able to find any N ∈ N satisfying
the definition of uniform convergence.

Did you observe that an → 1? Hence our intuition about the bad behavior
of fn at points near to 1 is vindicated.

Recall that given a real sequence (xn), we have seen that xn → x iff |xn − x| →
0. Now, if (fn) is a sequence of functions on a set X, then fn → f pointwise iff
for every x ∈ X, we must have |fn(x)− f(x)| → 0. What should be an analogue
if we want to characterize uniform convergence of fn to f?

Proposition 7.3.6. Let fn, f : X → R be functions. Let

Mn := lub {|fn(x)− f(x)| : x ∈ X},

if it exists. Then fn ⇒ f iff Mn → 0.
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Proof. Let Mn exist and converge to 0. We need to prove that fn ⇒ f . We need
to find a uniform estimate for |fn(x)− f(x)| for x ∈ X. The definition of Mn’s
suggest a way.

Let ε > 0 be given. Then there exists N ∈ N such that for k ≥ N , we have
|Mk| < ε, that is, Mk < ε. We therefore have

k ≥ N =⇒ Mk = lub {|fk(x)− f(x)| : x ∈ X} < ε.

It follows that for each x ∈ X and k ≥ N , we obtain |fk(x)− f(x)| < ε. Thus
fn ⇒ f on X.

Conversely, let fn ⇒ f on X. Assume that Mn exists for n ∈ N. We need to
prove that Mn → 0. Let ε > 0 be given. Since fn ⇒ f on X, for ε/2, there exists
N ∈ N such that for x ∈ X and k ≥ N , we have |fk(x)− f(x)| < ε/2. It follows
that for k ≥ N , lub {|fk(x)− f(x)| : x ∈ X} ≤ ε/2. Hence for k ≥ N , we obtain
Mk ≤ ε/2 < ε. That is, Mk → 0.

Note that the second part of the proof shows that Mk’s exist for k � 0. The
result gives a quite useful algorithm whenever applicable.

Example 7.3.7. Consider fn(x) = x2e−nx on [0,∞). Note that fn(x) > 0 for
x > 0, fn(0) = 0 and fn(x)→ 0 as x→∞. Hence 0 must be the global minimum
for f . We expect f to attain a positive maximum in (0,∞). We find the maximum
value of fn using calculus. We have

f ′n(x) = xe−nx(2− nx).

Hence the critical points are at 0 and x = 2/n. Our analysis shows that x =
2/n must be a point of maximum. Let us verify this by computing the second
derivative.

f ′′n (x) = 2e−nx − 2nxe−nx − 2nxe−nx + n2x2e−nx

= e−nx
(
2− 4nx+ n2x2

)
= (nx− 2)2 − 2.

Hence f ′′n (2/n) = −2 < 0. It follows that Mn := fn(2/n) =
(

2
e

)2 1
n2 . As Mn → 0,

it follows the convergence fn ⇒ 0 on [0,∞), by Proposition 7.3.6.

Example 7.3.8. In this example we look at three sequences together, as they
offer us some useful insights into analysis. Consider fn, gn, hn : [0, 1]→ R defined
by

fn(x) := xn(1− x), gn(x) = xn(1− xn) and hn(x) := xne−nx.

The first observation is that the first two are modifications of the functions xn by
multiplying functions which vanish at x = 1. The factors (1−x) and (1−xn) are
chosen to “kill” the bad behavior xn at x = 1, while e−nx may do so at infinity.
Study Figures 7.12–7.14.

Since 1 − x → 0 as fast as x → 1 and for x near to 1, the rate at which xn

goes to 0 is slower, we may hope to show that fn ⇒ 0 on [0, 1].



236 CHAPTER 7. SEQUENCES AND SERIES OF FUNCTIONS

Figure 7.12: Killing the bad behavior at 1 of xn by (1− x).

Figure 7.13: Killing the bad behavior at 1 of xn by (1− xn).



7.3. CONSEQUENCES OF UNIFORM CONVERGENCE 237

Figure 7.14: Killing the bad behavior at 1 of xn by e−nx.

In the case of the second factor 1 − xn, observe that 1 − xn → 0 at a slower
rate than that of 1 − x. For example, if we take x1 = .9, x2 = .99 and so on
x2

1 = .81, x2
2 = .729. Hence 1− xnn → 0 much slower than 1− x→ 0. So we may

not be able to conclude the uniform convergence of gn.

In the third case, our previous exposure to indeterminate forms which deal
with comparing the rates of decay to 0 of functions will lead us to believe that
e−nx → 0 much faster than xn− 1→ 0. In this case, we may be able to conclude
the uniform convergence hn ⇒ 0.

After these speculations, we need rigorous proofs. Fortunately, all the func-
tions are non-negative, (infinitely) differentiable, and tend to vanish at the end
points 0 and 1. Their minimum is already attained at 0. Hence we may expect to
find their global maximum as a local maximum. Proposition 7.3.6 will help us
resolve the issues.

We find Mn(fn) = n
n+1

1
n+1 <

1
n+1 , Mn(gn) = 1/4 and Mn(hn) = e−n. This

proves our guesses are correct.

By the way, could you have guessed that Mn(gn) = 1/4 without a serious
computation? What is the maximum of t(1− t) on [0, 1]?

Exercise 7.3.9. What can you say about the convergence of the sequence of
functions fn(x) := xn(1−x)2 on [0, 1]? If you have understood our line of thinking,
the answer should come in a flash! How about xn(1− x)n?

Exercise Set 7.3.10. If nothing is specified in the following exercise, you are
required to check for uniform convergence:
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(1) Let fn(x) := nxn, x ∈ [0, 1). Show that the sequence (fn) converges pointwise
but not uniformly on [0, 1).

(2) Let fn(x) := nxn(1 − x), x ∈ [0, 1]. Show that fn → 0 pointwise but not
uniformly on [0, 1].

(3) fn(x) := (x/n)n for x ∈ [0,∞).

(4) fn(x) = x
1+nx and f(x) = 0 for x ≥ 0.

(5) fn(x) = nx
1+n2x2 and f(x) = 0 for x ∈ R.

(6) fn(x) = x
1+nx2 and f(x) = 0 for x ∈ R.

(7) fn(x) = xn

n+xn and f(x) = 0 if 0 ≤ x ≤ 1, and f(x) = 1 if x > 1 for x ∈ [0,∞).
Show that fn converges to f uniformly on [0, 1] but not on [0,∞).

(8) fn(x) := nx
n+x for x ≥ 0.

(9) fn(x) = n2xn(1− x) and f(x) = 0 for x ∈ [0, 1].

(10) Let fn(x) = 1
1+xn , x ∈ [0,∞). Show that fn → f pointwise but not uniformly

on the domain where f(x) =


1, 0 ≤ x < 1

1/2, x = 1

0, x > 0.

(11) Discuss the pointwise and uniform convergence of the sequence (fn) where
fn(x) = xn

1+xn , x ∈ [0,∞).

(12) Complete the sentence: The sequence of functions hn on [0, A] defined by

hn(x) = nx3

1+nx converges to . . .. Is the convergence uniform?

(13) fn(x) := nx
2n+x for x ∈ [0,∞). Show that fn converge uniformly on [0, R] for

any R > 0 but not on [0,∞).

(14) Let fn(x) := xn

1+x2n for x ∈ [0, 1). Show that fn is pointwise convergent on
[0, 1) but is not uniformly convergent on [0, 1).

(15) Show that fn : R→ R defined by fn(x) = xn

1+x2n converges uniformly on [a, b]
iff [a, b] does not contain either of ±1.

(16) Let fn : [0, 1]→ R be defined by fn(x) = nx
1+n2xp , for p > 0. Find the values

of p for which the sequence fn converges uniformly to the limit.

(17) fn(x) =


nx, 0 ≤ x ≤ 1

n

2− nx, 1
n ≤ x ≤

2
n

0, 2
n < x,

for all x ≥ 0.

(18) fn(x) = xe−nx on [0,∞).
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(19) On [0, 1], define gn(x) = nxe−nx
2

. Discuss its convergence on [0,1].

(20) Show that fn(x) = sin x
n is convergent to 0 on [0, 1]. Is the convergence

uniform?

(21) Let gn(x) = sinnx
nx on (0, 1). Is the sequence convergent? If so, what is the

limit? Is the sequence uniformly convergent?

(22) Let fn(x) := 1+2 cos2 nx√
n

, x ∈ R. Show that fn converges uniformly on R.

(23) fn(x) =


n2, 0 ≤ x ≤ 1/n

n2 − n3(x− 1/n), 1/n ≤ x ≤ 2/n

0, otherwise.

(24) Consider fn(x) = x and gn(x) = 1/n for x ∈ R. Show that fn and gn are
uniformly convergent on R but their product is not.

(25) Let fn(x) = x
(
1− 1

n

)
and gn(x) = 1/x2 for x ∈ (0, 1). Show that (fn) and

(gn) are uniformly convergent on (0, 1) but their product is not.

(26) Let {rn} be a sequence consisting of all rational numbers. Define

fn(x) =

{
1, if x = rn

0, otherwise.

Show that fn converges pointwise to f = 0, but not uniformly on any interval
of R.

(27) Let fn(x) =
∫ x

0
cosnt dt for x ∈ R. The sequence fn ⇒ 0 on R. What can

you say if cosine is replaced by sine?

We know that any sequence of real numbers is convergent iff it is Cauchy. Is
there an analogue in the context of the sequence of functions? What does it mean
to say that (fn) is pointwise Cauchy and uniformly Cauchy on X?

Definition 7.3.11. Let (fn) be a sequence of real-valued functions on a set
X. We say that (fn) is Cauchy if for each x ∈ X, the sequence (fn(x)) of real
numbers is Cauchy in R. This can be written in terms of quantifiers as follows.

∀x ∈ X (∀ε > 0 (∃Nx ∈ N (∀m,n ≥ Nx (|fn(x)− fm(x)| < ε)))) . (7.5)

Thus the integers Nx depend on x (and of course on ε too). If we can choose
N independent of x (so that it depends only on ε and not on x), we say that (fn)
is uniformly Cauchy on X. We formulate it as follows.

A sequence (fn) of functions on a set X is said to be uniformly Cauchy on X
if for a given ε > 0 there exists N = Nε ∈ N such that for all m,n ≥ N and for
all x ∈ X we have |fn(x)− fm(x)| < ε.
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In terms of quantifiers we have:

∀ε > 0 (∃Nε ∈ N (∀m,n ≥ Nε (∀x ∈ X (|fn(x)− fm(x)| < ε)))) . (7.6)

Compare the two formulations in (7.5) and (7.6) and pay attention to the
placement of ∀x ∈ X.

Theorem 7.3.12 (Cauchy Criterion for Uniform Convergence). Let fn : X → R
be a sequence of functions from a set X to R. Then fn is uniformly convergent
iff the sequence (fn) is uniformly Cauchy on X.

Strategy: Observe that for x ∈ X, (fn(x)) is Cauchy in R and hence converges to
a real number f(x). To estimate |fn(x)− f(x)| we use the curry-leaves trick. Fix
x ∈ X.

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| , for any m ∈ N.

where m is the curry leaf. The first term can be made small if m,n � 0 and the

second one if m� 0 is chosen using the pointwise convergence of fn(x)→ f(x). So

m should satisfy both the requirements.

Proof. Let fn ⇒ f on X. Let ε > 0 be given. Choose N such that

n ≥ N & ∀x ∈ X =⇒ |fn(x)− f(x)| < ε/2.

Then for n,m ≥ N , and for all x ∈ X, we get

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < 2× ε/2 = ε.

Let (fn) be uniformly Cauchy on X. We need to prove that (fn) is uni-
formly convergent on X. This uses our curry-leaves trick. It is clear that for each
x ∈ X, the sequence (fn(x)) of real numbers is Cauchy and hence by Cauchy
completeness (of R) there exists a unique rx ∈ R such that fn(x) → rx. We
define f : X → R by setting f(x) = rx. (Note that we need the uniqueness of the
limit of the sequence (fn(x)) to show that f is a well-defined function!) We claim
that fn ⇒ f on X.

Let ε > 0 be given. Since fn → f pointwise on X, for a given x ∈ X, there
exists Nx = Nx(ε) such that

n ≥ Nx =⇒ |fn(x)− f(x)| < ε/2.

Also, since (fn) is uniformly Cauchy on X, we can find N such that

m,n ≥ N & ∀x ∈ X =⇒ |fn(x)− fm(x)| < ε/2.

Fix x ∈ X. We observe, for n ≥ N

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| for any m

≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| for m > max{N,Nx}
< ε/2 + ε/2 = ε.

Thus for any x ∈ X and n ≥ N , we have shown |fn(x)− f(x)| < ε, that is, f is
uniformly convergent to f on X.
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The following is an application of the Cauchy criterion for uniform convergence
(Theorem 7.3.12).

Theorem 7.3.13. Let fn : J := (a, b)→ R be differentiable. Assume that f ′n ⇒ g
uniformly. Further assume that there exists c ∈ J such that the real sequence
(fn(c)) converges. Then the sequence (fn) converges uniformly to a continuous
function f : J → R.

Strategy: How do we arrive at f? If we could show that (fn) is uniformly Cauchy,

then the (uniform) limit function will be our choice of f . Since fn’s are differentiable

and hence continuous, f will be continuous. To show that (fn) is uniformly Cauchy,

we need to find a uniform estimate for |fn(x)− fm(x)|. If we wish to estimate f in

terms of its derivatives, the mean value theorem is our tool. Since f ′n ⇒ g, we know

how to estimate |f ′n − g| and hence |f ′n − f ′m|. This suggests the use of the mean

value theorem to estimate |fn(x)− fm(x)− (fn(c)− fm(c))|.

Proof. Fix x ∈ J . We claim that (fn) is uniformly Cauchy. Applying the mean
value theorem to the function fn − fm at the points x and c, we have

(fn − fm)(x)− (fn − fm)(c) = (fn − fm)′(t)(x− c).

That is,

fn(x)− fm(x)− (fn(c)− fm(c)) = [f ′n(t)− f ′m(t)] (x− c), (7.7)

for some t between x and c. Note that the point t depends on m,n, x, c.
Given ε > 0, there exists n1 ∈ N such that

m,n ≥ n1 =⇒ |fn(c)− fm(c)| < ε/2. (7.8)

Also, since f ′n ⇒ g, the sequence (f ′n) is uniformly Cauchy and hence there exists
n2 ∈ N such that

n ≥ n2, s ∈ J =⇒ |f ′n(s)− f ′m(s)| < ε

2(b− a)
. (7.9)

If N := max{n1, n2}, we use (7.9) in (7.7) to obtain

|(fn(x)− fm(x))− (fn(c)− fm(c))| < ε

2(b− a)
|x− c| ≤ ε

2(b− a)
|b− a| = ε

2
,

for all n ≥ N and x ∈ J . Now we use the triangle inequality and (7.8) to arrive
at

n ≥ N =⇒ |fn(x)− fm(x)| < ε, for all x ∈ J.
That is, (fn) is uniformly Cauchy on J and hence is uniformly convergent to a
function f : J → R. Since fn are continuous, so is f by Theorem 7.3.1.

Remark 7.3.14. Note that if we simply assumed that f ′n ⇒ g, we cannot
conclude that (fn) is uniformly Cauchy. For example, consider fn(x) = n on
J = [a, b]. Then f ′n = 0 and obviously f ′n ⇒ 0. But (fn) is not Cauchy, let alone
uniformly Cauchy. So the second condition that there exists c such that (fn(c))
is convergent is essential.
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Let fn : J → R be differentiable. Assume that fn ⇒ f on J . Since fn’s are
continuous, f is continuous. However, f need not be differentiable. For example,
we can exhibit x 7→ |x| as the uniform limit of a sequences of differentiable
functions fn on [−1, 1]. Note that f(x) = |x| is uniformly continuous on [−1, 1]
(in fact, on R). We rewrite f(x) = (x2)1/2. Consider

fn(x) := f

(
x+

1

n

)
=

[(
x+

1

n

)2
]1/2

.

Then fn are differentiable and fn ⇒ f on [−1, 1]. (See Item 6 in Exercise 7.3.21.)
The next result gives us a sufficient condition under which we can conclude the
differentiability of the uniform limit f of differentiable fn’s.

Theorem 7.3.15. Let fn : (a, b) → R be differentiable. Assume that there exist
f, g : (a, b)→ R such that fn ⇒ f and f ′n ⇒ g on (a, b). Then f is differentiable
and f ′ = g on (a, b).

Strategy: Fix c ∈ (a, b). We show that the auxiliary functions fn1 of Theorem 4.1.3

on page 112 characterizing the differentiability at c are uniformly Cauchy. (How?

Of course, by the mean value theorem!) We introduce an auxiliary function ϕ for

f with ϕ(c) = g(c). It is then more or less clear that fn1 converge uniformly to ϕ.

This will establish the differentiability of f at c and that f ′(c) = g(c).

Proof. Fix c ∈ (a, b). Consider gn := fn1 in the notation of Theorem 4.1.3, that
is,

gn(x) =

{
fn(x)−fn(c)

x−c , for x 6= c

f ′n(c), for x = c.

Then gn are continuous and they converge pointwise to ϕ(x) = f(x)−f(c)
x−c for x 6= c

and ϕ(c) = g(c).
We claim that gn are uniformly Cauchy on (a, b) and hence uniformly conver-

gent to a continuous function ψ : (a, b)→ R. For, by the mean value theorem, we
have, for some ξ between x 6= c and c,

gn(x)− gm(x) =
(fn − fm)′(ξ)(x− c)

x− c
= f ′n(ξ)− f ′m(ξ).

Since (f ′n) converge uniformly on J = (a, b), it is uniformly Cauchy and hence
(gn) is uniformly Cauchy on J . It follows from Theorem 7.3.12 that gn converge
uniformly to a function, say, ψ. The function ψ is continuous by Theorem 7.3.1. By
the uniqueness of the pointwise limits, we see that ϕ(x) = ψ(x) for x ∈ J . Hence
ϕ is continuous or it is the “f1” (in the notation of Theorem 4.1.3 on page 112)
for the function f at c. Thus, f is differentiable at c with f ′(c) = ϕ(c) = g(c).

Corollary 7.3.16. Let fn : [a, b]→ R. Assume that there is some x0 ∈ [a, b] such
that (fn(x0)) converges and that f ′n exists and converges uniformly to g on [a, b].
Then fn converges uniformly to some f on [a, b] such that f ′ = g on [a, b].
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Proof. This is an immediate consequence of the last two theorems.

The last couple of results can be summarized as follows: Under suitable con-
ditions, we have

f ′ ≡ (lim fn)′ = lim f ′n OR
d

dx
(lim fn) = lim

(
d

dx
fn

)
.

That is, we are able to interchange the limit process and the differentiation.
The next three results deal with uniform convergence of a sequence (fn) of

integrable functions and the process of integration. In essence, under suitable
conditions, we want to say

lim

∫ b

a

fn =

∫ b

a

lim fn.

Proposition 7.3.17. Let (fn) be a sequence of continuous functions on [a, b].
Assume that fn → f uniformly on [a, b]. Then f is continuous and hence inte-

grable on [a, b]. Furthermore
∫ b
a
f(x) dx = lim

∫ b
a
fn(x) dx. That is,

lim
n

∫ b

a

fn(t) dt =

∫ b

a

lim
n
fn(t) dt.

Proof. We use the linearity of the integral (Theorem 6.2.1) and the basic estimate
(6.12) for the integrals. Observe that∣∣∣∣∣

∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣∣ (7.10)

=

∣∣∣∣∣
∫ b

a

(f(x)− fn(x)) dx

∣∣∣∣∣
≤
∫ b

a

|f(x)− fn(x)| dx

≤ (b− a)× lub {|f(x)− fn(x)| : x ∈ [a, b]}. (7.11)

Since fn ⇒ f on [a, b], given ε > 0, there exists N ∈ N such that for
n ≥ N and x ∈ [a, , b], we have |fn(x)− f(x)| < ε

b−a . Hence we conclude that
lub {|f(x)− fn(x)| : x ∈ [a, b]} ≤ ε

b−a . Plugging this in (7.11) yields the desired
result.

Exercise 7.3.18. Let fn : [a, b]→ R be a sequence of continuously differentiable
functions converging uniformly to f on [a, b]. Assume that f ′n converge uniformly
on [a, b] to g. Show that f is differentiable and g = f ′ on [a, b].

Compare this with Corollary 7.3.16. Note that the hypothesis is more stringent
than that in Corollary 7.3.16. This is a very useful result in higher aspects of
analysis.
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Theorem 7.3.19. Let (fn) be a sequence of integrable functions on [a, b]. Assume

that fn → f uniformly on [a, b]. Then f is integrable on [a, b] and
∫ b
a
f(x) dx =

lim
∫ b
a
fn(x) dx. That is, lim

∫ b
a
fn(x) dx =

∫ b
a

lim fn(x) dx.

Strategy: The crucial step is to establish the integrability of f . We invoke the

criterion for integrability. Given ε > 0, we need to find a partition P such that

U(f, P ) − L(f, P ) < ε. Our hope is if N � 0, by the criterion applied to the

integrability of fN will give rise a partition P , so that U(fN , P ) − L(fN , P ) < ε.

Since fN is uniformly close to f , we hope to have control over U(f, P )− L(f, P ).

Proof. Given ε > 0 there is N ∈ N such that

lub {|fn(x)− f(x)| : x ∈ [a, b]} < ε

4(b− a)
for n ≥ N.

Since fN is integrable, there is a partition P := {x0, x1, . . . , xn} of [a, b] such
that U(fN , P ) − L(fN , P ) < ε

2 . Note that Mj(f) ≤ Mj(fN ) + ε/4(b − a),
where Mj(f) := sup {f(x) : x ∈ [xj−1, xj ]}. Hence U(f, P ) ≤ U(fN , P )+ε/4 and
L(f, P ) + ε/4 ≥ L(fN , P ). Hence U(f, P )−L(f, P ) < ε. Hence f is integrable in
[a, b]. The rest of the proof follows that of Proposition 7.3.17.

Exercise Set 7.3.20.

(1) Let {rn} be an enumeration of all the rationals in [0, 1]. Define fn : [0, 1]→ R
as follows:

fn(x) :=

{
1, if x = r1, . . . , rn,

0, otherwise.

Show that fn is integrable for n ∈ N and that fn → f pointwise, where f is
Dirichlet’s function. Conclude that the pointwise limit of a sequences (fn) of
integrable functions need not be integrable.

(2) Let fn, f be as in Item 4 of Example 7.1.2. Compute limn

∫ 1

0
fn(t) dt and∫ 1

0
lim fn(t) dt. Here the convergence is not uniform but still the limit of the

integrals is the same as the integral of the limit.

(3) Let fn : [0, 1]→ R be given by fn(x) = nxe−nx
2

. Show that fn → 0 pointwise.

Compute limn

∫ 1

0
fn(t) dt and

∫ 1

0
lim fn(t) dt.

(4) Let fn(x) = nx(1 − x2)n, x ∈ [0, 1]. Find the pointwise limit f of fn. Does∫ 1

0
fn(x) dx→

∫ 1

0
f(x) dx?

(5) Let fn(x) = n2x2

1+n3x3 on [0, 1]. Show that fn does not satisfy the conditions of
Corollary 7.3.16, but that the derivative of the limit function exists on [0, 1]
and is equal to the limit of the derivatives.
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(6) If fn(x) = x
1+n2x2 on [−1, 1], show that fn is uniformly convergent, and that

the limit function is differentiable, but f ′ 6= lim f ′n on [−1, 1].

(7) If fn(x) = (1+xn)
1
n on [0, 2], then show that fn is differentiable on [0, 2] and

converges uniformly to a function which is not differentiable at 1.

(8) Let f(x) = |x| on R. We replace part of the graph of f on the interval
[−1/n, 1/n] by a part of the parabola that has correct values and the correct
derivatives (so that the tangents match) at the end point ±(1/n). Let

fn(x) :=

{
nx2

2 + 1
2n , −1/n ≤ x ≤ 1/n

|x| , |x| > 1/n.

Show that fn → f pointwise. Is the convergence uniform? Note that fn are
differentiable, but f is not.

(9) Let fn(x) := xn(x − 2), x ∈ [0, 1]. Show that fn → g, where g(x) = 0 for
0 ≤ x < 1 and g(1) = −1. Can g be the derivative of any function?

Exercise Set 7.3.21. Theoretical Exercises.

(1) Let fn : J ⊆ R → R converge uniformly on J to f . Assume that fn are
uniformly continuous at a ∈ X. Then show that f is uniformly continuous at
a.

(2) (Dini) Let fn : [a, b]→ R be continuous for each n. Assume that the sequence
(fn) converges pointwise to a continuous function f : [a, b]→ R. Assume that
the sequence is monotone, that is, for each x ∈ [a, b], we have (fn(x)) is a
monotone sequence of real numbers. Then fn → f uniformly on [a, b].

(3) Let f(x) =
√
x on [0, 1]. Let f0 = 0 and fn+1(x) := fn(x) +

[
x− (fn(x))2

]
/2

for n ≥ 0. Show that i) fn is a polynomial, ii) 0 ≤ fn ≤ f , iii) fn → f
pointwise, and iv) fn → f uniformly on [0, 1].

(4) Let fn : R→ R be defined by

fn(x) =


0, x ≤ n
x− n, n ≤ x ≤ n+ 1

1, x ≥ n+ 1.

Show that fn ≥ fn+1, fn → 0 pointwise but not uniformly. Compare this
with Dini’s theorem (Item 2 above).

(5) Let f : [0, 1] → R be continuous. Consider the partition {0, 1/n, . . . , n−1
n , 1}

of [0, 1]. Define

fn(t) :=

{
f(k/n), (k − 1)/n ≤ t ≤ k/n
f(1/n), t = 0

for 1 ≤ k ≤ n. Then fn is a step function taking the value f(k/n) on (k −
1/n, k/n]. Show that fn → f uniformly.
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(6) Let f : R → R be uniformly continuous. Let fn(x) = f(x + 1
n ). Show that

fn → f uniformly on R.

(7) Let (fn) be a sequence of real-valued functions converging uniformly on X.
Let |fn(x)| ≤ M for all n ∈ N and x ∈ X. Assume that g : [−M,M ] → R is
continuous. Show that (g ◦ fn) is uniformly convergent on X.

(8) Let φ : [0, 1] → R be continuous. Let fn : [0, 1] → R be defined by fn(x) =
xnφ(x). Prove that fn converges uniformly on [0, 1] iff φ(1) = 0.

(9) Let fn : X → R. We say that the sequence (fn) is uniformly bounded on X
if there exists M > 0 such that

|fn(x)| ≤M for all x ∈ X and n ∈ N.

Assume that fn’s are bounded and that fn ⇒ f on X. Show that the sequence
(fn) is uniformly bounded and that f is bounded.

(10) Let g be a continuously differentiable function on R. Let

fn(x) := n

(
g(x+

1

n
)− g(x)

)
.

Then fn → g′ uniformly on [−R,R] for each R > 0.

(11) Let fn ⇒ f and gn ⇒ g on X. Let M be such that |gn(x)| ≤ M and
|f(x)| ≤M . Show that fngn ⇒ fg on X.

(12) Let fn : [a, b] → R be a sequence of continuous functions converging to f
uniformly on [a, b]. Let (xn) be a sequence in [a, b] such that xn → x. Show
that fn(xn)→ f(x).

7.4 Series of Functions

Given a sequence (an) of real numbers we associated an infinite series, denoted
by
∑
n an. Recall that it stands for the limit of the sequence (sn) of partial sums

where sn :=
∑n
k=1 ak. Now, given a sequence (fn) of functions on a set X, how

do we define an infinite series
∑
n fn?

Definition 7.4.1. Let fn : X → R be a sequence of functions from a set X to
R. Then the associated series, denoted by

∑
n fn, is the sequence (sn) of partial

sums where sn :=
∑n
k=1 fk. We say the series

∑
fn is uniformly convergent

(respectively, pointwise convergent) on X if the sequence (sn) of partial sums
sn :=

∑n
k=1 fk is uniformly convergent (respectively, pointwise convergent) on

X. If f is the uniform limit of (sn) we write
∑
fn = f uniformly on X.

We say the series
∑
fn is absolutely convergent on X if the sequence (σn(x))

of partial sums σn(x) :=
∑n
k=1 |fk(x)| is convergent for each x ∈ X.
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Question. If
∑
n fn is pointwise (respectively, uniformly) convergent on X and if

Y ⊂ X, what can you say about the convergence of
∑
n fn on Y ?

Example 7.4.2. Let X = [0, 1] and fn(x) := xn on X, n ∈ Z+. Then the partial
sums are

sn(x) =

{
1−xn+1

1−x , 0 ≤ x < 1

n+ 1, x = 1.

We conclude that the infinite series of functions
∑∞
n=0 x

n is pointwise convergent
to 1/(1− x) for x ∈ [0, 1) and not convergent when x = 1.

The infinite series is not uniformly convergent on [0, 1). Assume the contrary.
Then given ε > 0, there exists N ∈ N such that

k ≥ N =⇒ ∀x ∈ [0, 1),

∣∣∣∣ 1

1− x
− 1− xk+1

1− x

∣∣∣∣ < ε.

This implies that
∣∣∣xk+1

1−x

∣∣∣ < ε for k ≥ N and x ∈ [0, 1). Since
∣∣xk+1

∣∣ ≤ ∣∣∣xk+1

1−x

∣∣∣,
this leads us to conclude that the sequence (xn) is uniformly convergent to 0 on
[0, 1). We know that this is false.

Example 7.4.3. Let p > 0 be fixed. Let fn(x) = sinnx
np , x ∈ R. We want to

discuss the convergence properties of the series
∑
fn on R. Let a ∈ R be fixed.

We look at
∑
n

sinna
np . As stated earlier, our first impulse would be to check

for absolute convergence. Note that |fn(a)| =
∣∣ sinna
np

∣∣ ≤ 1
np . We now use the

comparison test. If p > 1, we know that the series
∑
n−p is convergent. Hence we

conclude that the series
∑
fn(a) is absolutely convergent and hence convergent.

Since a is arbitrary, we conclude that the series
∑
fn of functions is (absolutely)

convergent on R.
Now we investigate uniform convergence of the series. For this, it is enough

if we show that the sequence (sn) of partial sums of the series
∑
fn is uniformly

Cauchy. Thus we need to find a uniform estimate for |sn − sm|. Observe that, for
n > m,

|sn(x)− sm(x)| = |fm+1(x) + · · ·+ fn(x)|
≤ |fm+1(x)|+ · · ·+ |fn(x)| (7.12)

≤
n∑

k=m+1

1

kp
. (7.13)

Since the harmonic p-series is convergent for p > 1, given ε > 0, we can find
N ∈ N such that

∑n
m+1

1
kp < ε. (Note that this finite sum is the difference

between the n-th and m-th partial sums of
∑
n−p.) Hence we deduce from (7.13)

for x ∈ R we obtain

n > m ≥ N and x ∈ R =⇒ |sn(x)− sm(x)| < ε.

Hence the sequence (sn) is uniformly Cauchy on R and hence the series
∑
fn is

uniformly convergent on R.
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Note that it follows from (7.12) that
∑
|fn| is also convergent on R. Let σn

denote the n-th partial sum of the infinite series
∑
|fk|. Then the right-hand side

of (7.12) is σn−σm for n > m. Now (7.13) shows that (σn) is uniformly Cauchy.
Therefore, the series

∑
fn is absolutely and uniformly convergent on R.

Remark 7.4.4. Go through the last example. Can you identify the key ideas of
the proof? What is the heart of the proof? It is just that there exists Mn such
that (1) |fn(x)| ≤Mn for all x ∈ R and (2)

∑
Mn is convergent. We shall return

to this later.

Can you formulate the analogue of the Cauchy criterion for the uniform con-
vergence of an infinite series of real-valued functions?

Proposition 7.4.5 (Cauchy Criterion for the Uniform Convergence of a Series).
Let

∑
n fn be an infinite series of functions on a set X. Then it is uniformly

convergent on X iff for any given ε > 0 there exists N ∈ N such that

∀m,n ≥ N, (m ≤ n), and ∀x ∈ X =⇒

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ < ε.

Proof. Apply Theorem 7.3.12 to the sequence (sn) of partial sums. It is an easy
exercise for the reader.

If you have answered the questions in Remark 7.4.4, you would have arrived
at the following result.

Theorem 7.4.6 (Weierstrass M-test). Let fn be a sequence of real-valued func-
tions on a set X. Assume that there exist Mn ≥ 0 such that |fn(x)| ≤ Mn for
all n ∈ N and x ∈ X and that

∑
nMn is convergent. Then the series

∑
n fn is

absolutely and uniformly convergent on X.

Proof. We show that the series
∑
n |fn| satisfies the Cauchy criterion. Let ε > 0

be given. Since
∑
Mn is convergent, we can find N ∈ N such that for n ≥ m ≥ N ,

we have
∑n
k=m+1Mk < ε. Then for all m,n we have

n∑
k=m+1

|fk(x)| ≤
n∑

k=m+1

Mk < ε.

Hence the series
∑
n |fn| is uniformly convergent on X.

Example 7.4.7. Let us look at some typical applications.

(1) Fix 0 < r < 1. The series
∑∞
n=1 r

n cosnt and
∑∞
n=1 r

n sinnt are uniformly
convergent on R.

For, |rn cosnt| ≤ rn. So, we take Mn = rn. Then
∑
nMn is convergent and

the result follows from the M -test.
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(2) The series
∑∞
n=1

x
n(1+nx2) is uniformly convergent on any interval [a, b].

To start with, we shall assume a > 0. The key observation is the presence of
n2-term in the denominator. We work toward exploiting this. Observe that
for x ∈ [a, b],

n2x2 ≥ n2a2 =⇒ x

n+ n2x2
≤ b

n+ n2a2
≤ b

a2

1

n2
.

So we may take Mn := b
a2

1
n2 , appeal to the M -test, and arrive at the uniform

convergence (on [a, b]) of the given series.

What happens if x ≤ 0?

Exercise Set 7.4.8.

(1) Show that if wn(x) = (−1)nxn(1 − x) on (0,1), then
∑
wn is uniformly

convergent.

(2) Let un(x) = xn(1 − x) on [0, 1]. Does the series
∑
un converge? Is the con-

vergence uniform?

(3) If vn(x) = xn(1 − x)2 on [0, 1], does
∑
vn converge? Is the convergence

uniform?

(4) Show that
∑
xn(1 − xn) converges pointwise but not uniformly on [0, 1].

What is the sum?

(5) Prove that
∑∞
n=1

sinnx
n2 is continuous on R.

(6) Prove that
∑∞
n=1

1
1+xn is continuous for x > 1.

(7) Prove that
∑∞
n=1 e

−nx sinnx is continuous for x > 0.

The next two exercises are analogues of Theorem 7.3.15 and Theorem 7.3.19
for series.

(8) Let fn : (a, b) → R be differentiable. Let x0 ∈ (a, b) be such that
∑
fn(x0)

converges. Assume further that there is g : (a, b) → R such that
∑
f ′n = g

uniformly on (a, b). Then

(a) There is an f : (a, b)→ R such that
∑
fn = f uniformly on (a, b).

(b) f ′(x) exists for all x ∈ (a, b) and we have
∑
f ′n = f ′ uniformly on (a, b).

(9) Let fn, f : [a, b]→ R be such that
∑
fn = f uniformly on [a, b]. Assume that

each fn is integrable. Then

(a) f is integrable.

(b)
∫ b
a
f(t) dt =

∑∫ b
a
fn(t) dt.
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(10) Justify:

d

dx

∞∑
n=1

sinnx

n3
=

∞∑
n=1

cosnx

n2
.

We have analogues of Dirichlet’s (Theorem 5.2.3) and Abel’s tests (Theo-
rem 5.2.6) for uniform convergence too. The proofs follow along the same lines
as earlier and from the observation that the estimates obtained earlier are uni-
form. We encourage the reader to review the above quoted results and prove the
following results on their own.

Theorem 7.4.9 (Dirichlet’s Test). Let (fn) and (gn) be two sequences of real-
valued functions on a set X. Let Fn(x) :=

∑n
k=1 fk(x). Assume that

(i) (Fn) is uniformly bounded on X, that is, there exists M > 0 such that
|Fn(x)| ≤M for all x ∈ X and n ∈ N.

(ii) (gn) is monotone decreasing to 0 uniformly on X, that is, for each x ∈ X,
the sequence (gn(x)) is decreasing to 0 and that the convergence is uniform.
Then the series

∑∞
n=1 fngn is uniformly convergent on X.

Strategy: Let sn(x) :=
∑n
k=1 fk(x)gk(x) be the partial sums of the series. We

show that the sequence (sn) is uniformly Cauchy using Abel’s partial summation

formula.

Proof. Let sn(x) :=
∑n
k=1 fk(x)gk(x). By the partial summation formula (5.5)

on page 163, we obtain

sn(x) =

n∑
k=1

Fk(x) (gk(x)− gk+1(x)) + gn+1(x)Fn(x).

For n > m, we get

sn(x)− sm(x)

=

n∑
k=m+1

Fk(x) (gk(x)− gk+1(x)) + gn+1(x)Fn(x)− gm+1(x)Fm(x).

We now show that (sn) is uniformly Cauchy:

|sn(x)− sm(x)| ≤M
n∑

k=m+1

(gk(x)− gk+1(x)) +Mgn+1(x) +Mgm+1(x)

= M (gm+1(x)− gn+1(x)) +Mgn+1(x) +Mgm+1(x)

= 2Mgm+1(x).

We have used the fact that (gn(x)) decreases to replace |gk(x)− gk+1(x)| by
gk(x) − gk+1(x). Since g ↘ 0 uniformly, given ε > 0, there exists N ∈ N such
that for m ≥ N and x ∈ X, we have |Mgm+1(x)| < ε. This proves that (sn)
is uniformly Cauchy and hence the series

∑
n fngn is uniformly convergent on

X.
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Theorem 7.4.10 (Abel’s Test). Let (fn) and (gn) be two sequences of real-valued
functions on a set X. Assume that:

(i)
∑
n fn is uniformly convergent on X.

(ii) There exists M > 0 such that |gn(x)| ≤M for all x ∈ X and n ∈ N.
(iii) (gn(x)) is monotone for each x ∈ X.

Then the series
∑∞
n=1 fngn is uniformly convergent on X.

Proof. Proof is similar to the last theorem and is left to the reader.

Consider the series
∑∞
n=1

sinnx
np and

∑∞
n=1

cosnx
np . If p > 1, we can apply the

M -test to conclude that they are uniformly convergent on R.

When 0 < p ≤ 1, we can use Dirichlet’s test to show that both series converge
uniformly on [δ, 2π − δ] for 0 < δ < 2π. See Example 6.1.10.

Example 7.4.11. A Dirichlet series is a series of the form
∑
n
an
nx where x ∈ R.

If the series is convergent at x = α, then the series
∑
n
an
nx is convergent for any

x > α.

7.5 Power Series

We shall now define a class of functions which are very important in the study
of analysis. A discerning reader would have found that so far the only functions
which we have introduced rigorously are polynomials, rational functions of the
form P (x)/Q(x) where P and Q are polynomials, n-th root functions, and the
modulus/absolute value function. The so-called transcendental functions, such as
the trigonometric functions and hyperbolic functions, were not defined rigorously
and we depended on your encounters with them during your calculus courses.
We did make an attempt to define the logarithmic and exponential functions
rigorously in Section 6.8.

Assume that we want to find a function f whose derivative is itself. Our
forefathers would have started looking for a function of form a0 + a1x + a2x

2 +
· · ·+anxn+ · · · . Computing the derivative formally, we would have arrived at the
relations nan = an−1 and hence finally an = a0

n! . We thus arrive at an expression

of the kind a0

(
1 + +

∑∞
n=0

xn

n!

)
. If we further impose that f(0) = 1, we see that

a0 = 1. As you may know, this is the exponential function.

Exercise 7.5.1. Proceeding as above, try to solve formally the differential equa-
tions

f ′′ = −f, with initial conditions f(0) = 0 and f ′(0) = 1

f ′′ = −f, with initial conditions f(0) = 1 and f ′(0) = 0
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and obtain the following expansions for the sine and cosine functions:

sinx =

∞∑
n=0

(−1)k

(2k + 1)!
x2k+1

cosx =

∞∑
n=0

(−1)k

(2k)!
x2k.

We take up another example. Assume that f : R → R is a C∞ function. Let
a ∈ R be fixed. We then have the Taylor expansion for any n ∈ N:

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k +Rn(x).

Since f is infinitely differentiable, it behooves us to consider the series of the type∑∞
n=0

f(n)(a)
n! (x− a)n. This is a series of functions whose n-th term is a power of

(x− a).
These considerations lead us to the following.

Definition 7.5.2. A power series is an expression of the form
∑∞
k=0 ak(x− a)k

where ak, a, x ∈ R. Note that no assumption is made on the convergence of the
series.

Note that this is a very special case of the infinite series of functions∑∞
n=0 fn(x). In the case of a power series, fn’s are of a special form, namely,

fn(x) = an(x− a)n.

We are interested in finding x ∈ R for which the series
∑∞
n=0 an(x − a)n is

convergent.
Consider the three power series:

(1)
∑∞
n=1 n

nxn,
(2)

∑∞
n=0 x

n, and
(3)

∑∞
n=0(xn/n!).

We claim that if x 6= 0, then the first series does not converge. For, if x 6= 0,
choose N ∈ N so that 1/N < |x|. Then for all n ≥ N , we have |(nx)n| > 1 and
hence the series is not convergent. We have already seen that the second series
converges absolutely for all x with |x| < 1, whereas the third series converges
absolutely for all x ∈ R.

The interesting fact about a power series
∑∞
n=0 an(x−a)n is that if it converges

at all at x1, then it will converge at all points x with |x− a| < |x1 − a|. In
particular, the set of points x at which

∑∞
n=0 an(x − a)n is convergent is an

interval centered at a (Theorem 7.5.3). This is not true for an arbitrary series∑
fn of functions. See Example 6.1.10.
When we say that something is true for all x such that |x| < R for 0 ≤ R ≤ ∞,

what we mean is this: If R > 0, the meaning is clear. If R =∞, this is just a way
of saying that something is true for all x ∈ R. Recall that the meaning of (a,∞),
it is the set of all x ∈ R with x > a. Think of ∞ as a symbol or a placeholder,
and not as a number.
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Theorem 7.5.3. Let
∑∞
n=0 an(x − a)n be a power series. There is a unique

extended real number R, 0 ≤ R ≤ ∞, such that the following hold:

(i) For all x with |x− a| < R, the series
∑∞
n=0 an(x − a)n converges absolutely

and uniformly, say, to a function f , on (−r, r) for any 0 < r < R.

(ii) If 0 < R ≤ ∞, then f is continuous, differentiable on (−R,R) with derivative
f ′(x) =

∑
n nanx

n−1.

(iii) Term-wise integration is also valid:
∫ y
x
f(t) dt =

∑
n an

∫ y
x

(t − a)n dt for
−R < x < y < R.

(iv) For all x with |x− a| > R, the series
∑∞
n=0 an(x− a)n diverges.

Strategy: Assume that a = 0 for the simplicity of the notation. R is defined to

be the least upper bound of |x| for which
∑
N an(x− a)n is convergent. If |x| < R,

there exists r such that |x| < r < R. Hence there exists x0 such that |x0| > r and

that the power series is convergent at x0. We now write xn as (xn/xn0 )xn0 and do a

comparison argument.

Proof. Assume a = 0. Let E := {|z| :
∑∞
n=0 anz

n is convergent.}. Note that
E is nonempty, as 0 ∈ E. The set E may or may not be bounded above. Let
R := lub E, if E is bounded above, otherwise R = ∞. Then

∑∞
n=0 anz

n is
divergent if |z| > R, by very definition. Hence (iv) is proved.

If R > 0, choose r such that 0 < r < R. Since R is the least upper bound for
E and r < R, there exists z0 ∈ E such that |z0| > r and

∑
anz

n
0 is convergent.

Hence {anzn0 } is bounded, say, by M :

|anzn0 | ≤M for all n.

Now, if |z| ≤ r, then

|anzn| ≤ |an| rn = |anzn0 | (r/ |z0|)n ≤M(r/ |z0|)n.

But the (“essentially geometric”) series M
∑

(r/ |z0|)n is convergent. By Weier-
strass M -test, the series

∑∞
n=0 anz

n is uniformly and absolutely convergent to a
function f on |z| ≤ r.

We claim that f is continuous at any x with |x| < R. For if r is chosen so
that |x| < r < R, then the series

∑
n anx

n is uniformly convergent on (−r, r).
This means that the sequence sn(x) :=

∑n
k=0 akz

k is uniformly convergent to f on
(−r, r). Since sn’s are polynomials, they are continuous. Hence their uniform limit
f is continuous on (−r, r). In particular, f is continuous at x. Since x ∈ (−R,R)
is arbitrary, we conclude that f is continuous on (−R,R).

We claim that f is differentiable. First of all note that the term-wise differ-
entiated series

∑
n nanx

n−1 is uniformly convergent on any (−r, r), 0 < r < R.
For, arguing as in the case of uniform convergence, we have an estimate of the
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form

∞∑
k=0

∣∣kckxk−1
∣∣ ≤ ∞∑

k=0

k |ck| rk−1

=

∞∑
k=0

k
∣∣ckxk0∣∣ rk−1

|x0|k−1
|x0|−1

≤ (M/r)

∞∑
k=0

ktk−1, where t = (r/ |x0|).

The series
∑
ktk−1 is convergent by ratio test. By Weierstrass M -test, the term-

wise differentiated series is uniformly convergent, say, to g on (−r, r). The rest
of the proof is almost similar to that of the continuity. The partial sums sn →
f uniformly on (−r, r) and so do s′n to g on (−r, r). Now we can appeal to
Theorem 7.3.15 to conclude that f is differentiable and its derivative is g.

The proof of (iii) uses Item 9 in the set Exercise 7.4.8. and is left to the
reader.

Definition 7.5.4. The extended real number R of Theorem 7.5.3 is called the
radius of convergence of the power series

∑∞
n=0 an(x − a)n. The open interval

(−R,R) is called the interval of convergence of the power series.

There are explicit formulas for the radius of convergence R, in terms of the
coefficients. See Proposition 7.5.11 and Appendix B.12.

Remark 7.5.5. It is important to note that if R is the radius of convergence
of a power series

∑∞
n=0 cnx

n, it is uniformly convergent only on the subintervals
(−r, r) for 0 < r < R. The theorem does not claim that it is uniformly con-
vergent on (−R,R). For example, consider the power series

∑∞
n=0 x

n. Its radius
of convergence is R = 1. (Why?) We have seen in Example 7.4.2 that it is not
uniformly convergent on [0, 1).

Theorem 7.5.6. If a power series
∑∞
n=0 an(x − a)n has a positive radius of

convergence 0 < R ≤ ∞, then its sum defines a function, say f , on the interval
(a − R, a + R). The function f is infinitely differentiable on this interval. Also,
the Taylor series of f in powers of (x− a) is the original power series. We also

have cn := f(n)(a)
n! .

Proof. This is an easy corollary of the earlier results and given as a theorem for
ready reference.

By Theorem 7.5.3, the function f is infinitely differentiable on the interval
(a − R, a + R). Also, since the term-wise differentiation is valid by the same
theorem, we see that f (n)(a) = n!cn.

Remark 7.5.7. Note that the last theorem says the power series which were
obtained by formal manipulations to solve the initial value problems of ordinary
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differential equations
(i) f ′ = f with f(0) = 1,
(ii) f ′′ + f = 0 with f(0) = 0 and f ′(0) = 1,
(iii) f ′′ + f = 0 with f(0) = 1 and f ′(0) = 0

are indeed solutions of the initial value problems. We may therefore consider
the functions defined by the power series as the exponential, sine, and cosine
functions!

It is also important to realize that we can turn the table now. We can define the

exponential function by exp(x) :=
∑∞
k=0

xk

k! . Theorem 7.5.6 says that exp′(x) =
exp(x) with exp(0) = 1. That is, exp is the solution of the ordinary differential
equation f ′ = f with the initial condition f(0) = 1.

What needs to be established is to prove the periodicity of the sine function
with a period denoted by 2π, the identity sin2 x + cos2 = 1, and hence 1 as the
bound for sine. This is best done in the context of complex power series (where
x is replaced by z ∈ C). We refer the reader to other books.

Example 7.5.8. Let us exhibit a typical way of using the last result to bring
out its significance. Consider the geometric series

∑∞
n=0 x

n. We know that this
series is convergent for x ∈ (−1, 1) and the sum is 1

1−x . We also know that the

series
∑∞
n=1 nx

n−1, obtained by term-wise differentiation of the geometric series,
is convergent to a function g on (−1, 1). Can we identify g? Yes, we can. By the
last theorem we know that f ′ = g. Since we know f ′(x) = 1

(1−x)2 , we deduce

∞∑
n=1

nxn−1 = g(x) =
1

(1− x)2
.

Exercise 7.5.9. (a) Find an explicit formula for the function represented by the
power series

∑∞
k=1 kx

k in its interval of convergence.
(b) Find an explicit formula for the function represented by the power series∑∞
k=1 k

2xk in its interval of convergence. Use it to find the sum of
∑
k
k2

2k and∑
k
k2

3k .

Example 7.5.10. Let us start with the convergent geometric series

1

1− x
=

∞∑
n=0

xn, |x| < 1.

The radius of convergence of this series is 1 and hence we can do term-wise
integration on the interval [0, x], (allowed by (iii) of Theorem 7.5.3). We end up
with

log(1− x) = −
∞∑
n=1

xn

n
. (7.14)

If we can substitute x = −1 we shall obtain that the sum of the standard alter-
nating series is log 2. At this point in time, we cannot justify this. We shall return
to this in Exercise 7.5.15. See also Example 7.5.14.
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The following theorem is quite useful in practice, as it gives two simple for-
mulae to determine the radius of convergence of a power series.

Proposition 7.5.11. Let
∑∞
n=0 an(x − a)n be given. Assume that one of the

following limits exists as an extended real number.
(1) lim |an+1/an| = ρ.

(2) lim |an|1/n = ρ.
Then the radius of convergence of the power series is given by R = ρ−1.

Proof. (1) follows from the ratio test and (2) from the root test. For instance, if
(1) holds and if z is fixed, then∣∣∣∣an+1(z − a)n+1

an(z − a)n

∣∣∣∣ = |z − a|
∣∣∣∣an+1

an

∣∣∣∣→ |z − a| ρ.
By the ratio test, we know that the numerical series

∑
n an(z−a)n is convergent

if |z − a| ρ < 1. Thus the radius of convergence of the series is at least 1/ρ. By
the same ratio test, we know that if |z − a| ρ > 1, then the series is divergent.
Hence we conclude that the radius of convergence of the given series is 1/ρ.

The proof of (ii) is similar to that of (i) and is left to the reader.

Example 7.5.12. We now discuss the convergence of the series
∑∞
n=0(xn/n).

It is easy to see that the radius of convergence is 1. At x = 1, we obtain the
harmonic series which is divergent. At x = −1, we obtain the alternating series
which is convergent. Let us see whether we can apply Dirichlet’s test to the series
on the set X := [−1, 1− ε]. We may take fn(x) = xn and g = 1/n. We then get

|fn(x)| =
∣∣∣∣1− xn+1

1− x

∣∣∣∣ ≤ 2

ε
.

Hence the series is uniformly convergent on X.

Let
∑
anx

n be a power series whose radius of convergence is 0 < R < ∞.
Then we know that f(x) :=

∑
anx

n defines a C∞ function on (−R,R). Assume
that the series

∑
anR

n is convergent. We may then extend f to (−R,R] by
setting f(R) =

∑
anR

n. We may also ask whether the series
∑
anx

n is uniformly
convergent on (−R,R]. A typical example is the Maclaurin series for f(x) :=
log(1 + x). Its radius of convergence is 1 and the numerical series at x = 1 is

the standard alternating series
∑ (−1)n+1

n , which is convergent. If the Maclaurin
series for log(1+x) is uniformly convergent on (−1, 1], we can then conclude that
the sum of the alternating series is f(1) = log(2). The theorem below says that
we can do this. We prove this when R = 1. The general case can be reduced to
this case by considering the series

∑
anR

nxn whose radius of convergence is 1
if that of

∑
anx

n is R. (This is a hint; the reader is expected to work out the
details!)

Theorem 7.5.13 (Abel’s Limit Theorem). If the series
∑∞
n=0 an converges, then

the power series
∑∞
n=0 anx

n converges uniformly on [0,1].
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Proof. Given ε > 0, there exists N ∈ N such that

N ≤ m ≤ n =⇒

∣∣∣∣∣
n∑

m+1

ak

∣∣∣∣∣ < ε.

If 0 ≤ x ≤ 1, we apply (5.5) on page 163 to (ak)∞k=m+1 and (xk)∞k=m+1 to obtain

−εxm+1 < am+1x
m+1 + · · ·+ anx

n < εxm+1.

That is, ∣∣∣∣∣
n∑

k=m+1

akx
k

∣∣∣∣∣ < εxm+1 ≤ ε, for N ≤ m ≤ n and x ∈ [0, 1].

If we let fn(x) :=
∑n
k=0 akx

k, it follows from the last inequality that the sequence
(fn) is uniformly Cauchy on [0, 1]. The conclusion follows.

Example 7.5.14. The sum of the standard alternating series is log 2. Consider
f(x) = log(1 + x). Then the Taylor series of f at x = 0 is given by

f(x) = x− x2

2
+
x3

3
+ · · ·+ (−1)n+1xn

n
+ · · ·

Clearly the power series is convergent at x = 1 by the alternating series test.
Hence by Abel’s limit theorem, we see that the power series is uniformly conver-
gent on (−1, 1] and hence the sum of the series at x = 1 is f(1) = log 2.

Exercise 7.5.15. Go through Exercise 7.5.10. If we take x = −1, the infinite
series on the right side of (7.14) is the standard alternating series. If we are
allowed to put x = −1 on the left side, we get log(2). Can we justify these steps?

Another way of looking at Abel’s limit theorem is that it gives us a large
supply of power series that are uniformly convergent on (−R,R]. We need only
start with a convergent series of the form

∑
anR

n.

Example 7.5.16. Find an explicit expression for the function represented by

the power series
∑∞
k=0

xk

k+1 .
Clearly R = 1. Also, observe that at R = −1, the series is convergent by the

alternating series test. By term-wise differentiation, we get

(xf(x))′ =

∞∑
k=0

(
xk+1

k + 1

)′
=

∞∑
k=0

xk =
1

1− x
, x ∈ (−1, 1).

By the fundamental theorem of calculus (Theorem 6.3.1 on Page 194), we obtain

xf(x) =

∫ x

0

dt

1− t
= − log(1− x), x ∈ (−1, 1).
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Note that we can appeal to Abel’s theorem (Theorem 7.5.13) to conclude that

f(x) =

{
− log(1−x)

x , x ∈ [−1, 1), x 6= 0

1, x = 0.

As an application of Abel’s Limit Theorem, we give an easy proof of Abel’s
theorem (Theorem 5.4.6) on Cauchy products of two series.

Theorem 7.5.17 (Abel). Let
∑
an and

∑
bn be convergent, say, with sums A

and B, respectively. Assume that their Cauchy product
∑
cn is also convergent

to C. Then C = AB.

Proof. Consider the power series
∑∞
n=0 anx

n and
∑∞
n=0 bnx

n. From hypothesis,
their radii of convergence is at least 1. For |x| < 1, both the series are absolutely
convergent, and hence by Merten’s theorem, we have

∞∑
n=0

cnx
n =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
.

In this we let x→ 1− and apply Abel’s theorem to conclude the result.

Remark 7.5.18. Two standard applications of the M -test are:
(i) Construction of an everywhere continuous and nowhere differentiable function
on R.
(ii) Construction of a space filling curve, that is, a continuous map from the unit
interval [0, 1] onto the unit square [0, 1]× [0, 1].

We shall not deal with them in our course. You may consult Appendix E in
[2].

7.6 Taylor Series of a Smooth Function

In this section we investigate a power series associated with a C∞ function.
Let J ⊂ R be an interval. Assume that f : J → R is infinitely differentiable.

Let a ∈ J . Since f is Cn+1, we have the n-th Taylor polynomial Tn(f ; a) and the
corresponding Taylor expansion with a remainder term:

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(c)

(n+ 1)!
(x− a)n+1. (7.15)

= Tn(f ; a;x) +Rn(f ; a;x), say. (7.16)

Since f is Cn+1 for all n, this leads us to an infinite series of functions, in fact,

a power series
∑∞
k=0

f(k)(a)
k! (x − a)k. This series is called the Taylor series of f

around a and we denote this relation by

f(x) ∼
∞∑
k=0

f (k)(a)

k!
(x− a)k.

If a = 0, then the Taylor series of f at 0 is called the Maclaurin series of f .
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Example 7.6.1. We list some of the standard Taylor (or Maclaurin) series:

(i) exp(x) ∼
∑∞
n=0

xn

n! .

(ii) sin(x) ∼
∑∞
n=0(−1)n x2n−1

(2n−1)! .

(iii) cos(x) ∼
∑∞
n=0(−1)n x2n

(2n)! .

The series listed above are the Maclaurin series of exp, sin, and cos, respec-
tively.

Two natural questions arise now. One is whether the Taylor series converges at
points other than a. A better question could be: What is the radius of convergence
of the Taylor series? The second question is if the Taylor series converges at x, is
the sum equal to f(x)?

Let us look at f : (−1,∞) → R defined by f(x) = log(1 + x). Then f is C∞

and its Maclaurin series is

log(1 + x) ∼ x− x2

2
+
x3

3
− x4

4
+ · · ·

It is easy to see that the radius of convergence of the series is 1. Hence the interval
of convergence is (−1, 1). Note that f is C∞ on (−1,∞). However, the series is
not convergent at x = 2.

Let us now revisit the function in Example 4.5.3. The Maclaurin series of the
function

f(t) =

{
e−1/t, t > 0

0, t ≤ 0

is zero, as f (n)(0) = 0 for each n ≥ 0. Thus the series converges for all x ∈ R but
its sum is not the value f(x) for x > 0. Thus the Taylor series does not represent
the function on its interval of convergence.

If the Taylor series of f at x = a converges to f in an interval (a−R, a+R),

we then say that the power series
∑∞
n=0

f(n)(a)
n! (x− a)n represents f in (−R,R).

Note that the interval may be a proper subset of the domain of f . For instance,
this happens in the case of log(1 + x). A similar phenomenon is witnessed in the
case of f(x) = 1

1−x whose domain of definition is R \ {1}. Its Maclaurin series is

the geometric series
∑∞
n=0 x

n and it represents the function only in (−1, 1).
We claim that the Taylor series converges to f(x) iff Rn(f ; a;x) → 0. Let

us prove this. The Taylor series
∑∞
k=0

f(k)(a)
k! (x − a)k converges to f(x) iff the

sequence sn(x) :=
∑n
k=0

f(k)(a)
k! (x − a)k converges to f(x), that is, iff f(x) −

sn(x)→ 0. In view of (7.16), f(x)− sn(x) = Rn(f ; a : x). The claim follows from
this.

In general it may be difficult to verify this. So, we may ask whether there is
any easy sufficient condition that will ensure the convergence of Taylor series of

f to f in the interval of convergence. Look at the n-th term f (n)(a) (x−a)n

n . From

Ratio test, it follows that the series
∑∞
n=0

(x−a)n

n! is convergent for all x. If we are
assured that there exists M such that for x in some interval J around a, we have
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∣∣f (n)(a)
∣∣ ≤ M for all n ∈ Z+, then we conclude that the Taylor series converges

to f(x) for x ∈ J .

This is the case for the sine and cosine series. We know that their n-th deriva-
tives are either ± cosx or ± sinx, bounded (in absolute value) by 1 on J = R.
Hence we conclude that the Taylor series of the sine (respectively, cosine) function
converge to the sine (respectively, to cosine) function on R.

The case of the exponential series is a little more subtle. Let f(x) = ex. Let
x ∈ R be fixed. Choose R > 0 so that |x| < R. For any t ∈ (−R,R), we have
f (n)(t) ≤ eR. Hence the Taylor series of exp converges to ex for |x| < R. Since this
is true for any x, we conclude that the Taylor series of the exponential function
converges to ex on R.

Note that since the Taylor series of f is a power series, the points at which
it converges form an interval, namely the interval of convergence of the Taylor
series.

As an application of Taylor’s theorem with Lagrange form of the remainder,
we now establish the sum of the standard alternating series is log 2:

log 2 =

∞∑
k=1

(−1)k−1

k
.

Consider the function f : (−1,∞) → R defined by f(x) := log(1 + x). By a
simple induction argument, we see that

f (n)(x) = (−1)n−1(n− 1)!(1 + x)−n.

Hence the Taylor series of f around 0 is

∞∑
n=0

(−1)n−1

n
xn.

We now wish to show that the series is convergent at x = 1. This means that
we need to show that the sum of the series at x = 1 is convergent. We therefore
take a = 0, b = 1 in Taylor’s theorem and show that the remainder term (in
Lagrange’s form) Rn → 0. For each n ∈ N, there exists cn ∈ (0, 1) such that

Rn :=
f (n)(cn)

n!
=

(−1)n−1(n− 1)!

n!(1 + cn)n
.

We have an obvious estimate:

|Rn| =
∣∣∣∣ (−1)n−1(n− 1)!

n!(1 + cn)n

∣∣∣∣ ≤ ∣∣∣∣ 1

n(1 + cn)n

∣∣∣∣ ≤ 1

n
.

Hence, log 2 = f(1) =
∑∞
n=1

f(n)(0)
n! 1n =

∑∞
n=1

(−1)n−1

n .
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7.7 Binomial Series

This section is optional and may be omitted on first reading. However, if you
are serious about analysis, it is worth going through the proofs, as they teach us
good analysis.

We now show how both forms of the remainder are required to prove the
convergence of the binomial series.

Theorem 7.7.1 (Binomial Series). Let m ∈ R. Define(
m

0

)
= 1 and

(
m

k

)
:=

m(m− 1) · · · (m− k + 1)

k!
for k ∈ N.

Then

(1 + x)m =

∞∑
k=0

(
m

k

)
xk = 1 +mx+

m(m− 1)

2!
+ · · · , for |x| < 1.

Proof. If m ∈ N, this is the usual binomial theorem. In this case, the series is
finite and there is no restriction on x.

Let m /∈ N. Consider f : (−1,∞)→ R defined by f(x) = (1+x)m. For x > −1,
we have

f ′(x) = m(1 + x)m−1, . . . , f (n)(x) = m(m− 1) · · · (m− n+ 1)(1 + x)m−n.

If x = 0, the result is trivial as 1m = 1. Now for x 6= 0, by Taylor’s theorem

f(x) = f(0) + xf ′(0) + · · ·+Rn =

n−1∑
k=0

(
m

k

)
xk +Rn.

Therefore, to prove the theorem, we need to show that, for |x| < 1,∣∣∣∣∣f(x)−
n−1∑
k=0

(
m

k

)
xk

∣∣∣∣∣ = |Rn| → 0 as n→∞.

To prove Rn → 0, we use Lagrange’s form for the case 0 < x < 1.

|Rn| =
∣∣∣∣xnn!

f (n)(θx)

∣∣∣∣ =

∣∣∣∣(mn
)
xn(1 + θx)m−n

∣∣∣∣ < ∣∣∣∣(mn
)
xn
∣∣∣∣ ,

if n > m, since 0 < θ < 1. Letting an :=
∣∣(m
n

)
xn
∣∣, we see that an+1/an =

x
∣∣∣m−nn+1

∣∣∣ → x. Since 0 < x < 1, the ratio test says that the series
∑
n an is

convergent. In particular, the n-th term an → 0. Since |Rn| < an, it follows that
Rn → 0 when 0 < x < 1.
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Let us now attend to the case when −1 < x < 0. If we try to use the Lagrange
form of the remainder, we obtain the estimate

|Rn| =
∣∣∣∣(mn

)
xn(1 + θx)m−n

∣∣∣∣ < ∣∣∣∣(mn
)
xn(1− θ)m−n

∣∣∣∣
if n > m. This is not helpful as (1− θ)m−n shoots to infinity if θ goes near 1.

Let us now try Cauchy’s form.

|Rn| =

∣∣∣∣∣mxn
(
m− 1

n− 1

)(
1− θ

1 + θx

)n−1

(1 + θx)m−1

∣∣∣∣∣
≤
∣∣∣∣mxn(m− 1

n− 1

)
(1 + θx)m−1

∣∣∣∣ . (7.17)

Now, 0 < 1 + x < 1 + θx < 1. Hence
∣∣(1 + θx)m−1

∣∣ < C for some C > 0. Note
that C is independent of n but dependent on x.

It follows that
∣∣∣xn(m−1

n−1

)∣∣∣ → 0 so that Rn → 0. This completes the proof of

the theorem.

We now give a second proof of Theorem 7.7.1 on the binomial series. This
will use the integral form (as in Theorem 6.5.1) to estimate the remainder term
in the Taylor expansion.

Assume that m is not a non-negative integer. Then an :=
(
m
n

)
6= 0. Since

an+1

an
=
m− n
n+ 1

→ 1, (7.18)

the binomial series

(1 + x)m = 1 +

∞∑
n=1

(
m

n

)
xn

n!

has radius of convergence 1. Similarly, the series
∑
n n
(
m
n

)
xn is convergent for

|x| < 1. Hence

n

(
m

n

)
xn → 0 for |x| < 1. (7.19)

We now estimate the remainder term using (7.19). We have, for 0 < |x| < 1,

Rn =

∫ x

0

(x− t)n−1

(n− 1)!
n!

(
m

n

)
(1 + t)m−n dt

=

∫ x

0

n

(
m

n

)(
x− t
1 + t

)n−1

(1 + t)m−1 dt. (7.20)

We claim that∣∣∣∣x− t1 + t

∣∣∣∣ ≤ |x| for − 1 < x ≤ t ≤ 0 or 0 ≤ t ≤ x < 1.
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Write t = sx for some 0 ≤ s ≤ 1. Then∣∣∣∣x− t1 + t

∣∣∣∣ =

∣∣∣∣x− sx1 + st

∣∣∣∣ = |x|
∣∣∣∣1− s1 + t

∣∣∣∣ ≤ |x| .
Thus the integrand in (7.20) is bounded by∣∣∣∣∣n

(
m

n

)(
x− t
1 + t

)n−1

(1 + t)n−1

∣∣∣∣∣ ≤ n
∣∣∣∣(mn

)∣∣∣∣ |x|n−1
(1 + t)m−1.

Therefore, we obtain

|Rn(x)| ≤ n
∣∣∣∣(mn

)∣∣∣∣ |x|n−1
∫ |x|
−|x|

(1 + t)m−1 ≤ Cn
∣∣∣∣(mn

)∣∣∣∣ |x|n−1
,

which goes to 0 in view of (7.19).
This completes the proof of the fact that the binomial series converges to

(1 + x)m.

We now indicate a third way of establishing the convergence of the binomial
series of fm(x) := (1 + x)m to f on (−1, 1). This proof is instructive since it will
rely heavily on the results from the theory of the power series unlike the earlier
two. Keep the notation above. Let gm(x) =

∑∞
k=0

(
m
k

)
xk. The main steps are the

following:

(1) The radius of convergence of the power series gm is 1.
(2) Note that fm(x) = (1 + x)m satisfies (1 + x)f ′m(x) = mfm(x) with the

initial condition fm(0) = 1. We shall prove that gm satisfies the similar differential
equation

(1 + x)g′m(x) = mgm(x), with the initial condition gm(0) = 1. (7.21)

(3) Using (7.21), we show that gm/fm has zero derivative and hence is a con-
stant in (−1, 1). Evaluation at 0 yields the constant 1.

Step 1: Since we assume m /∈ Z+, we find that
(
m
n

)
6= 0 for n ∈ Z+. We apply

the ratio test to the power series g to find that the radius of convergence is 1, see
(7.18).

Step 2: The series can be differentiated term by term in (−1, 1). We find that

g′m(x) =

∞∑
n=1

n

(
m

n

)
xn−1 =

∞∑
n=0

(n+ 1)

(
m

n+ 1

)
xn.

We use the binomial identity (n + 1)
(
m
n+1

)
= m

(
m−1
n

)
in the above equation to

obtain

g′m(x) = m

∞∑
n=0

(
m− 1

n

)
xn = mgm−1(x). (7.22)
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To establish (7.21), we need to figure out (1 + x)gm−1(x). We use the binomial
identity

(
m−1
n−1

)
+
(
m−1
n

)
=
(
m
n

)
below. We have

(1 + x)gm−1(x) = (1 + x)

∞∑
n=0

(
m− 1

n

)
xn

= 1 +

∞∑
n=1

(
m− 1

n

)
xn +

∞∑
n=1

(
m− 1

n

)
xn+1

= 1 +

∞∑
n=1

(
m− 1

n

)
xn +

∞∑
n=1

(
m− 1

n+ 1

)
xn

= 1 +

∞∑
n=1

((
m− 1

n

)
+

(
m− 1

n− 1

))
xn

=

∞∑
n=0

(
m

n

)
xn = gm(x). (7.23)

From (7.22) and (7.23), it follows that gm satisfies (1 + x)g′m(x) = mgm(x) on
(−1, 1). Clearly, gm(0) = 1.

Step 3: We differentiate gm(x)/(1 + x)m and obtain

(1 + x)mg′m(x)−m(1 + x)m−1gm(x)

(1 + x)2m

= (1 + x)m−1 (1 + x)g′m(x)−mgm(x)

(1 + x)2m
= 0.

Thus gm(x)/(1+x)m is a constant on (−1, 1). Since gm(x)/(1+x)m is 1 at x = 0,
we conclude that gm(x) = (1 + x)m on (−1, 1).

7.8 Weierstrass Approximation Theorem

The theorem of the title is the following.

Theorem 7.8.1 (Weierstrass Approximation Theorem). Let f : [a, b] → R be
continuous. Given ε > 0, there exists a real polynomial function P = P (x) such
that

|f(x)− P (x)| < ε for all x ∈ [a, b].

In particular, there exists a sequence Pn of polynomial functions such that Pn ⇒ f
on [a, b].

What is the significance of this result? It says that the set of polynomials
in the set of continuous functions on [0, 1] plays the same role as the set of
rational numbers in R. Real numbers are too many and too abstract to deal
with. Theorem 1.3.13 on the density of rationals tells us that any real number
can be approximated by a rational number to any level of accuracy. For instance,
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if the ubiquitous π is given and ε = 10−100, the theorem asserts that we can
find a rational number r such that |π − r| < 10−100! Hence for all numerical
computations, we may replace π by a rational number.

Assume that we are given a highly complicated continuous function f on [0, 1]

and that we are interested in the numerical value of
∫ 1

0
f(t) dt. As earlier, if we

fix an error tolerance ε > 0, thanks to Weierstrass, there exists a polynomial P
such that |f(t)− P (t)| < ε for t ∈ [0, 1]. Hence we obtain

∣∣∣∣∫ 1

0

f(t) dt−
∫ 1

0

P (t) dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

(f(t)− P (t)) dt

∣∣∣∣ ≤ ∫ 1

0

|f(t)− P (t)| dt < ε.

Thus if we are interested in the numerical approximation of the integral
∫ 1

0
f(t) dt,

we may as well deal with the integral
∫ 1

0
P (t), dt, which is easier to compute! Of

course, there are far more serious applications of this result. Since our aim is to
make you appreciate the result, this will suffice.

The proof, due to Bernstein, uses the definition of Bernstein polynomials. We
now define Bernstein polynomial Bn (associated with a given f) by

Bn(x) :=

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k.

The reason for this definition is given later.

Just to get an idea of what kind of objects they are, let us now find the
Bernstein polynomial of the following continuous functions on [0, 1]: f0(x) = 1,
f1(x) = x and f2(x) = x2, x ∈ [0, 1]. Note that these functions are already
polynomials and hence their best approximations are themselves!

Bn(f0) :=

n∑
k=0

(
n

k

)
xk(1− x)n−kf0(k/n)

=

n∑
k=0

(
n

k

)
xk(1− x)n−k

= (x+ (1− x))n

= 1. (7.24)

We now compute the Bernstein polynomials of f1. Recall

Bn(f1) :=

n∑
k=0

(
n

k

)
xk(1− x)n−k(k/n).
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Now a simple computation shows that k
n

(
n
k

)
=
(
n−1
k−1

)
for k ≥ 1. Hence,

Bn(f1 ≡
n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k

= x

n∑
k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k

= x (x+ (1− x))
n−1

= x.

Hence Bn(f1) = f1.
We now find Bn(f2). Our earlier experience with Bn(f1) shows that we should

be ready to simplify the term
(
k
n

)2 (n
k

)
. We start with

k

n
=

(k − 1) + 1

n
=
k − 1

n
+

1

n
=
k − 1

n− 1

n− 1

n
+

1

n
, k ≥ 1.

Note that if k ≥ 2, we obtain(
k

n

)2(
n

k

)
=
k

n

k

n

(
n

k

)
=
k

n

(
n− 1

k − 1

)
, k ≥ 1

=

(
k − 1

n− 1

n− 1

n
+

1

n

)(
n− 1

k − 1

)
=

(
1− 1

n

)(
n− 2

k − 2

)
+

1

n

(
n− 1

k − 1

)
, k ≥ 2.

We are now ready to find Bn(f2).

n∑
k=0

(
k

n

)2(
n

k

)
xk(1− x)n−k =

(
1− 1

n

) n∑
k=2

(
n− 2

k − 2

)
xk(1− x)n−k

+
1

n

n∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k

=

(
1− 1

n

)
x2 +

1

n
x

=

(
1− 1

n

)
f2 +

1

n
f1. (7.25)

It is clear that Bn(f2) ⇒ f2 on any bounded subset of R.

Proof. (Weierstrass Theorem) We prove the result when a = 0 and b = 1. The
general case can be deduced from this. See Remark 7.8.2.
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We need the identity

x(1− x)

n
=

n∑
k=0

xk(1− x)n−k
(
x− k

n

)2

. (7.26)

Consider

1 = (x+ (1− x))n =

n∑
k=0

(
n

k

)
xk(1− x)n−k. (7.27)

Differentiate both sides of (7.27) and simplify to obtain

0 =

n∑
k=0

xk−1(1− x)n−k−1(k − nx). (7.28)

Multiply both sides of (7.28) by x(1− x), to obtain

0 =

n∑
k=0

xk(1− x)n−k(k − nx). (7.29)

Differentiate both sides of (7.29) and multiply through by x(1− x). On simplifi-
cation, we get

0 = −nx(1− x) +

n∑
k=0

(
n

k

)
xk(1− x)n−k(k − nx)2. (7.30)

Dividing both sides by n2, we obtain (7.26).
We now define Bernstein polynomial Bn (associated with a given f) by

Bn(x) =

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k.

Then by (7.27),

Bn(x)− f(x) =

n∑
k=0

(
n

k

)(
f

(
k

n

)
− f(x)

)
xk(1− x)n−k. (7.31)

Let ε > 0 be given. By uniform continuity of f on [0, 1], there exists δ > 0 such
that

x, y ∈ [0, 1] and |x− y| < δ =⇒ |f(x)− f(y)| < ε/4.

Let M > 0 be such that |f(x)| ≤ M for x ∈ [0, 1]. Choose N ∈ N such that
N > M

εδ2 .

To estimate the term on the right side of (7.31), we observe that f
(
k
n

)
−f(x)

is easy to estimate in view of uniform continuity of f provided that k/n is close
to x. So we break the sum into two parts and employ the divide and conquer
method.
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Let x ∈ [0, 1] and 0 ≤ k ≤ n. We can write {0, 1, 2, . . . , n} = A ∪B where

A :=

{
k :

∣∣∣∣x− k

n

∣∣∣∣ < δ

}
and B :=

{
k :

∣∣∣∣x− k

n

∣∣∣∣ ≥ δ} .
Case 1. k ∈ A. Then we have |f(x)− f(k/n)| < ε/4. Summing over those

k ∈ A, we have by (7.27), that∑(
n

k

) ∣∣∣∣f (kn
)
− f(x)

∣∣∣∣xk(1− x)n−k ≤ ε

4
. (7.32)

Case 2. k ∈ B. We have, summing over k ∈ B∑
k∈B

(
n

k

)
(|f(k/n)|+ |f(x)|)xk(1− x)n−k

≤ 2M
∑(

n

k

)(
x− k

n

)2(
x− k

n

)−2

xk(1− x)n−k

≤ 2Mδ−2
n∑
k=0

(
n

k

)
xk(1− x)n−k

(
x− k

n

)2

= 2Mδ−2x(1− x)

n
, by (7.26),

≤ 2εx(1− x), since n >
M

εδ2
,

≤ ε/2, since x(1− x) ≤ 1/4, (7.33)

for, 4x(1− x)− 1 = −(2x− 1)2 ≤ 0 (or by the second derivative test).
It follows from (7.31)–(7.33) that

|Bn(x)− f(x)| ≤ 3ε

4
< ε,

for x ∈ [0, 1] and n ≥ N .

Remark 7.8.2. The Weierstrass theorem remains true if [0, 1] is replaced by any
closed and bounded interval [a, b].

For, consider the map h : [0, 1] → [a, b] defined by h(t) := a + t(b − a). Then
h is a continuous bijection. Also, t := h−1(x) = (x − a)/(b − a) is continuous.
Given a continuous function g : [a, b] → R, the function f := g ◦ h : [0, 1] → R is
continuous. For ε > 0, let P be a polynomial such that |f(t)− P (t)| < ε for all
t ∈ [0, 1]. Then Q(x) := P ◦ h−1(t) = P (x−ab−a ) is a polynomial in x. Observe that,
for all x = h(t) ∈ [a, b],

|g(x)−Q(x)| =
∣∣f ◦ h−1(x)− P ◦ h−1(x)

∣∣ = |f(t)− P (t)| < ε.

Remark 7.8.3. The identity (7.26) can also be deduced from (7.24)–(7.25). We
shall leave this as an exercise to the reader.
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Probabilistic Reason Underlying the Bernstein Polynomial

The proof of the Weierstrass approximation theorem using Bernstein polynomials
has its origin in probability. Imagine a loaded or biased coin which turns heads
with probability t, 0 ≤ t ≤ 1. If a player tosses the coin n times, the probability
of getting the heads k times is given by

(
n
k

)
tk(1− t)n−k.

Now suppose that a continuous function f , considered as a payoff, assigns a
prize as follows: the player will get f

(
k
n

)
rupees if he gets exactly k heads out

of n tosses. Then the expected value En (also known as the mean), the player is
likely to get out of a game of n tosses is

En =

n∑
k=0

f

(
k

n

)(
n

k

)
tk(1− t)n−k.

Note that En is the n-th Bernstein polynomial of f . It is thus the average/mean
value of a game of n tosses.

It is reasonable to expect that if n is very large, the head will turn up approx-
imately nt times. This implies that the prize f

(
tn
n

)
= f(t) and En(t) are likely

to be very close to each other. That is, we expect that |f(t)− En(t)| → 0.

Exercise Set 7.8.4.

(1) (A standard application.) Let f : [0, 1] → R be continuous. Assume that∫ 1

0
f(x)xn dx = 0 for n ∈ Z+. Then f = 0.

(2) Show that there exists no sequence of polynomials (pn) such that pn ⇒ f on
R where (a) f(x) = sinx, (b) f(x) = ex.

(3) Let f : R → R be continuous. The last item says that we may not be able
to find a sequence (pn) of polynomials such that pn ⇒ f on R. Show that
we can still find a sequence (pn) of polynomials such that pn ⇒ f on any
bounded subset of R. (Compare this with Remark 7.5.5.)

(4) Let f : (0, 1)→ R be defined by f(x) := 1/x. Show that there does not exist
a sequence (pn) of polynomials such that pn ⇒ f on (0, 1).

(5) Keep the hypothesis of the Weierstrass approximation theorem. Can we find
a sequence (pn) of polynomials such that

∑
pn = f on [0, 1]?





Appendix A

Quantifiers

In this appendix, we shall give a brief and working knowledge of the basics of
commonsense logic, the use of quantifiers in mathematical statements, and the
kinds of proof.

We believe that readers are already acquainted with the notion of statements
and the truth table. In this section, we shall concentrate only on the statement
that involves the quantifiers ∀, ∃ and the connectives and/or and the negations of
sentences involving these. Most of the statements in mathematics involve these
either directly or indirectly. A very large percentage of the proofs are so-called
proofs by contradiction or establish the results in contrapositive form. We are
sure that after going through this section, you will be more comfortable with
these.

Look at the following everyday sentences:

• You can find a page in this book not containing any picture.

• There is a rotten apple in the basket of apples.

• There exists a student in the classroom who is at least 6 feet tall.

Each of these sentences directly or indirectly uses the existential quantifier ∃.
For example, the first one can be recast as “There exists a page in this book not
containing any picture.” Another significant observation is that the quantifier
depends on a set to make sense. In the first sentence, the set under consideration
is the set of pages in this book, in the second it is the set of apples in a basket,
and in the third, the set of students in a classroom. What each of the sentences
says can be abstracted as follows:

There exists an element in a set X which has some property P .
Now how do we negate each of the sentences above? What does it mean to

say that the first sentence is false? How do we prove that the first is false? If we
want to prove that the first sentence is false, we need to check each and every
page and show that each one of them contains a picture. Another way of saying
this is: Given any page of this book, I shall show it contains a picture.
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To show that the second sentence is false, given any apple from the basket,
we need to show that it is not rotten.

To show that the third is false, we need to show that each student of the
classroom is of height less than 6 feet.

You may observe that each of these negations falls in the following pattern:
For each element of the set, we prove the element does not have the property

P . In terms of quantifiers, we have the following: The negation of

“∃x ∈ X (x has property P )”

is
“∀x ∈ X (x does not have property P )”.

Now let us look at sentences which use the universal quantifier ∀:

• Every page in this book contains at least 500 words.

• Every apple in the basket is ripe.

• Every student in the classroom is at least 5 feet tall.

You would have observed that each of these sentences uses the universal quantifier
and involves a set. For the first, the set is the set of pages, for the second it is
the set of apples in the basket, and for the third it is the set of students in the
classroom.

How do we negate each of these? If the first sentence is false, it means that we
can find a page in this book which has less than 500 words in it. That is, we are
asserting that there exists a page in this book which has less than 500 words. As
for the second, its negation says that there exists at least one apple in the basket
which is not ripe. You may wish to say now what the negation of the third is.

You may have observed the following pattern: The negation of the sentence

∀x ∈ X (x has property P )

is ∃x ∈ X (x does not have property P ).
Let us consider some statements in mathematics.

(1) There exists a real number x such that x2 = 1.
∃x ∈ R(x2 = 1).

(2) There exists a rational number r such that r2 = 2.
∃r ∈ Q (r2 = 2).

(3) A real number α is an upper bound of a nonempty set A ⊂ R if α ≥ x for all
x ∈ A.
α ∈ R is an upper bound of ∅ 6= A ⊂ R if (∀x ∈ A (x ≤ α)).

(4) A nonempty subset A ⊂ R is bounded above in R if there exists α ∈ R such
that α is an upper bound of A.
A is bounded above in R if (∃α ∈ R (α is an upper bound of A)).
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(5) A ⊂ B is for each x ∈ A, we have x ∈ B.
A ⊂ B if (∀x ∈ A(x ∈ B)).

Let us look at the statement in Item 3. Note that whether or not α is an upper
bound of A depends on whether each element x ∈ A has a common property,
namely of being less than or equal to α. Hence if we want to claim that α is not
an upper bound of A, then we have to negate the sentence ∀x ∈ A(x ≤ α). That
is, we must show that there exists x ∈ A such that x ≤ α is false. In view of the
law of trichotomy, this means that

α ∈ R is not an upper bound of A if ∃x ∈ A (x > α).

Let us look at the statement in Item 4. This is interesting as it uses two
quantifiers to assert something. Let us first negate the sentence as given. The
negation is that given any real number α ∈ R, α is not an upper bound of A. We
may write this as

A is not bounded above in R if ∀α ∈ R (α is not an upper bound of A).

Why do we find the statement in Item 4 interesting? Because if we write it in
its full glory, it reads as

A is bounded above in R if (∃α ∈ R (∀x ∈ R (x ≤ α))).

Its negation reads as

A is not bounded above in R if (∀α ∈ R (∃x ∈ R (x > α))).

Thus, if we wish to negate a nested sentence, we do it layer by layer.
Another thing to notice is that if a sentence is like

∀x ∈ X (∃y ∈ Y (y has some property P )),
the element y may depend on the given x. For example, consider the sentence

∀x ∈ R \ {0} (∃y ∈ R (xy = 1))).

Now, if we take x = 4, then y = 1/4, whereas for x = −1, y = −1.
The order in which the quantifiers appear in the statement is important. If

we change the order, the truth value of the statement may change. Let us look
at an example.

We say that a subset A ⊂ R is bounded above (in R) if there exists α ∈ R
such that for every x ∈ A, we have x ≤ α, that is, if

∃α ∈ R(∀x ∈ A(x ≤ α)).

Let us interchange the quantifiers as follows and define A is bounded above
in R if for every x ∈ A, there exists α ∈ R such that x ≤ α, that is, if

∀x ∈ A(∃α ∈ R(x ≤ α)).
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(Believe us, this “definition” is given by a few every time this course is taught!)
What is wrong with this? If this were the definition, then any subset of R would
be bounded above! For, if x ∈ A is given, we let α = x (or α = x+ 1, if we wish
to have a strict inequality!). We urge you to think over this again.

As further examples, consider the following statement which assures the ex-
istence of an additive identity in R:

∃θ ∈ R (∀x ∈ R (x+ θ = θ + x = x))).
Consider the sentence which assures the additive inverse in R:

∀x ∈ R (∃y ∈ R (x+ y = θ = y + x)).

Note the order in which the quantifiers appear in these two sentences. The
first one says that we have the same θ for any x ∈ R satisfying the conditions
x + θ = x = θ + x. The second one says if we are given x ∈ R, there exists y,
which may depend on x (in this case, it does!) such that x + y = θ. Of course,
this does not mean that y must be different for different x. For example, consider
the statement: given x ∈ R, there exists y ∈ R such that y = x2. For x1 = 1 and
x2 = −1, we get the same y = 1.

Let us now deal with a slightly more complicated sentence. Suppose there is
an orchard, full of trees. We make the following statement.

In each tree in the orchard, we can find a branch on which all of the leaves are
green.

How do we turn this into a mathematical sentence? Let us fix the notation.
We let T denote the set of all trees in the orchard. Let t ∈ T be a tree. Let Bt
denote the set of all branches on the tree t. Let b ∈ Bt be a branch of the tree t.
We let Lb denote the set of all leaves on the branch b. Now we are ready to cast
this using quantifiers.

∀t ∈ T (∃b ∈ Bt ( ∀` ∈ Lb (` is green)))).

How do we negate it? As we said earlier, we look at the outermost layer and
negate it and move to the next inner layer. Thus, we get: There exists a tree
t ∈ T which does not have the property (∃b ∈ Bt ( ∀` ∈ Lb (` is green)))). We
negate this and so on. Finally we arrive at

∃t ∈ T (∀b ∈ Bt (∃` ∈ Lb (` is not green)))).

Compare these two displayed statements and pay attention to the quantifiers.
Do such complicated sentences occur naturally in mathematics? Yes, when

we define the convergence of a sequence of real numbers. Let (xn) be a sequence
of real numbers. We say that (xn) converges to a real number x ∈ R if

∀ε > 0 (∃N ∈ N (∀n ≥ N (|xn − x| < ε))).

A more complicated one is when we say that a sequence (xn) is convergent.
We say that (xn) is convergent if

∃x ∈ R (∀ε > 0 (∃N ∈ N (∀n ≥ N (|xn − x| < ε)))).
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You may try your hand in negating each of these!
We now consider sentences which are combined using the connectives and or

or.
Consider the sentence: A real number x ≥ 0. This is a combination of two

sentences:
The real number x > 0 or the real number x = 0.

How do we negate such a sentence? Common sense tells us that if the combined
sentence is false, then each of the statements is false. That is, the statement “the
real number x > 0” is false and the statement “x = 0” is false. In view of the law
of trichotomy, which says that for any real number t exactly one of the following
is true (i) t = 0, (ii) t > 0, (iii) t < 0, we conclude that the negation of the
combined statement is x < 0.

Let us look at one more example. Let A,B be subsets of a set X. When do
we say x ∈ X lies in A ∪B?

x ∈ A ∪B if x ∈ A or x ∈ B.

This is a combined statement: x ∈ A ∪ B if x ∈ A or x ∈ B. If this statement is
false, then it means that ∈ A is false and x ∈ B is false.

Thus we arrive at the following: If a statement is of the form P or Q, then its
negation is P is false and Q is false, that is, Not P and Not Q.

Suppose you want to buy a mobile phone which has a video camera and Wi-Fi
hotspot. If you reject a phone which the shopkeeper shows you, what could be the
reason? The handset shown to you either lacked a video camera or Wi-Fi hotspot.
Thus among all the handsets in his stock, if V denotes the set of handsets with
video facility and W denotes the set of all phones with Wi-Fi hotspot, what you
wanted lies in V ∩W . If the handset shown to you is not what you wanted, either
it does not lie in V or it does not lie in W .

Given two subsets A and B of a set X, we say that A = B if and only if
A ⊂ B and B ⊂ A. This says that for A to equal B, two statements must be
simultaneously true, namely, A ⊂ B and B ⊂ A. Thus

A = B iff ∀x ∈ A (x ∈ B) and ∀y ∈ B (y ∈ A).

What is the negation of A = B? If A = B is false, then it means that one of the
two statements is true: (i) there exists x ∈ A such that x /∈ B or (ii) there exists
y ∈ B such that y /∈ A. Thus we have

A 6= B iff (∃x ∈ A (x /∈ B)) or (∃y ∈ B (y /∈ A)).

The upshot of all these is that if we are given a statement like

“every street in the city has at least one house in which we can find a person who
is rich and beautiful or highly educated and kind.”

you should be able to negate it. We suggest that you write this using quantifiers
(with chosen notation) and negate it.





Appendix B

Limit Inferior and Limit
Superior

Definition B.1. Given a bounded sequence (an) of real numbers, let An := {xk :
k ≥ n}. Consider the numbers

sn := inf{ak : k ≥ n} ≡ inf An and tn := sup{ak : k ≥ n} ≡ supAn.

If |xk| ≤M for all n, then −M ≤ sn ≤ tn ≤M for all n. The sequence (sn) is an
increasing sequence of reals bounded above while (tn) is a decreasing sequence of
reals bounded below. Let

lim inf an := lim sn ≡ lub {sn} and lim sup an := lim tn ≡ glb {tn}.

They are called the limit inferior and limit superior of the bounded sequence
(an). In case, the sequence (an) is not bounded above, then its lim sup is defined
to be +∞. Similarly, the lim inf of a sequence not bounded below is defined to
be −∞.

Example B.2.

(1) Let (xn) be the sequence where xn = (−1)n+1. Then lim inf xn = −1 and
lim supxn = 1.

(2) Let (xn) be the sequence defined by xn = (−1)n+1 + (−1)n

n . If you write down
the first few terms of the sequence, you will see the pattern. You will find
lim supxn = 1 and lim inf xn = −1.

(3) Let (xn) be the sequence defined by xn = n
5 −

[
n
5

]
. The hint is the same as

in the last example. Show that lim supxn = 4/5 and lim inf xn = 0.
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Proposition B.3. For any bounded sequence (xn), we have lim inf xn ≤
lim supxn.

Note that from the very definition, we have sn ≤ tn. Now, tn − sn ≥ 0 and
hence tn − sn → t− s. Hence t ≥ s.

Observe that t is the GLB of tn’s. Based on our experience, the best way of
exploiting this is to consider t+ ε, ε > 0. Since t+ ε > t, it is not a lower bound
of {tn}. Hence there exists N such that tN < t+ ε. What does this mean?

Do you observe that s is the LUB of sn’s? Given ε > 0, what will you do with
it? These explorations lead us to the next result.

Theorem B.4. Let (an) be a bounded sequence of real numbers with t :=
lim sup an. Let ε > 0. Then:

(a) There exists N ∈ N such that an < t+ ε for n ≥ N .
(b) t− ε < an for infinitely many n.
(c) In particular, there exists infinitely many r ∈ N such that t−ε < ar < t+ε.

Proof. Let Ak := {xn : n ≥ k}.
(a) Note that lim sup an = inf tn in the notation used above. Since t + ε is

greater than the greatest lower bound of (tn), t+ ε is not a lower bound for tn’s.
Hence there exists N ∈ N such that t+ε > tN . Since tN is the least upper bound
for {xn : n ≥ N}, it follows that t+ ε > xn for all n ≥ N .

(b) t− ε is less than the greatest lower bound of tn’s and hence is certainly a
lower bound for tn’s. Hence, for any k ∈ N, t− ε is less than tk, the least upper
bound of {an : n ≥ k}. Therefore, t−ε is not an upper bound for Ak, k ∈ N. Thus,
there exists nk such that ank

> t− ε. For k = 1, let n1 be such that an1
> t− ε.

Since t − ε is not an upper bound of An1+1, there exists n2 ≥ n1 + 1 > n1 such
that t − ε < an2 . Proceeding this way, we get a subsequence (ank

) such that
t− ε < ank

for all k ∈ N.

We have the following analogous result for lim inf.

Theorem B.5. Let (an) be a bounded sequence of real numbers with s :=
lim inf an. Let ε > 0. Then:

(a) There exists N ∈ N such that an > s− ε for n ≥ N .
(b) s+ ε > an for infinitely many n.
(c) In particular, there exists infinitely many r ∈ N such that s−ε < ar < s+ε.

Proof. We leave this proof as an instructive exercise to the reader.

Example B.6. We shall illustrate the last two results by considering the se-
quence with xn = (−1)n+1. We know lim supxn = 1 and lim inf xn = −1. Let
ε > 0. Then if we take N = 1, then for all k ≥ 1 we have xn < 1+ε. On the other
hand, there exist infinitely many n (namely odd n’s) such that xn > 1− ε = 1/2.

If we look at −1 − ε and if we take N = 1, then for each k ≥ 1, we have
xk > −3/2, whereas there exist infinitely many k (namely even k’s) such that
xk < −1 + ε = −1/2.
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Theorem B.7. A sequence (xn) in R is convergent iff (i) its bounded and (ii)
lim supxn = lim inf xn, in which case limxn = lim supxn = lim inf xn.

Strategy: Let xn → a. Let tn, t, sn, s be as earlier. To prove t = s, we shall
prove t − s = 0. Hence we need to estimate |t− s|. Since sn ≤ s ≤ t ≤ tn,
it is enough to estimate tn− sn. Since xn → x, given ε > 0 we end up with

x− ε < xn ≤ x+ ε, for n ≥ N.

This leads us to conclude xε ≤ sn ≤ tn ≤ x+ ε for n� 0.

The opposite direction is a simple application of Theorems B.4–B.5.

Proof. Assume that xn → x. Then (xn) is bounded. Then s = lim inf xn and
t = lim supxn exist. We need to show that s = t. Note that s ≤ t. Let ε > 0 be
given. Then there exists N ∈ N such that

n ≥ N =⇒ x− ε < xn < x+ ε.

In particular, x−ε < sN := inf{xn : n ≥ N} and tN := sup{xn : n ≥ N} < x+ε.
But we have

sN ≤ lim inf xn ≤ lim supxn ≤ tN .

Hence it follows that

x− ε < sN ≤ s ≤ t ≤ tN < x+ ε.

Thus, |s− t| ≤ 2ε. This being true for all ε > 0, we deduce that s = t. Also,
x, s ∈ (x− ε, x+ ε) for each ε > 0. Hence x = s = t.

Let s = t and ε > 0 be given. Using Theorems B.5 and B.4, we see that there
exists N ∈ N such that

n ≥ N =⇒ s− ε < xn and xn < s+ ε.

We give a traditional proof of Cauchy completeness of R.

Theorem B.8. Every Cauchy sequence in R is convergent.

Strategy: Adapt the proof of Theorem B.7. Since we do not have x in this

context, we replace x by xN where N is such that |xn − xN | < ε for n ≥ N .

Proof. Let (xn) be a Cauchy sequence of real numbers. Then it is bounded and
hence s = lim inf xn and t = lim supxn exist as real numbers. It suffices to show
that s = t. It is enough to show |t− s| < ε for any ε > 0. Since (xn) is Cauchy,
there exists N ∈ N such that

m,n ≥ N =⇒ |xn − xm| < ε/2, in particular, |xn − xN | < ε/2.
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It follows that for n ≥ N ,

xN − ε/2 ≤ glb {xk : k ≥ n} ≤ lub {xk : k ≥ n} ≤ xN + ε/2.

The rest of the proof runs along the lines of the proof of Theorem B.7.
The inequalities displayed above allow us to conclude that

xN −
ε

2
< sn ≤ s ≤ t ≤ tn ≤ xN +

ε

2
, for n ≥ N.

Therefore, |t− s| < ε.

We now characterize lim supxn of a bounded sequence (xn) as the LUB of the
set of limits of convergent subsequences. Let us have a closer look at the players
in this game. Given a sequence (xn), the set S of all subsequences is a huge set.
If you recall our definition of a subsequence, you will see that there is a bijection
from the set all infinite subsets of N onto S. (This says that S is uncountable.
Forget this, if you do not understand.) The set C of all convergent subsequences
is a subset of S. We now collect the limits of elements of C to form the set S:

S := {x ∈ R : ∃(xnk
) ∈ C such that xnk

→ x}.

What we want to show is that lim supxn = lub S and lim inf xn = glb S and
that lim supxn, lim inf xn ∈ S. Is it clear why S is nonempty? Is it bounded?

Theorem B.9. Let (xn) be a bounded sequence of real numbers. Let

S := {x ∈ R : x is the limit of a convergent subsequence of (xn)}.

Then

lim supxn, lim inf xn ∈ S ⊆ [lim inf xn, lim supxn].

Proof. We prove that S is nonempty. Since (xn) is bounded, by the Bolzano-
Weierstrass theorem there exists a convergent subsequence, (xnk

). If xnk
→ x,

then x ∈ S.
We claim that S is bounded. Let x ∈ S. Let M > 0 be such that −M ≤ xn ≤

M for n ∈ N. Let xnk
→ x. Since −M ≤ xnk

≤M , it follows that −M ≤ x ≤M .
Hence S is bounded.

We now show that s = lim inf xn ∈ S. By Item B.5 there exists infinitely many
n such that s− ε < xn < s + ε. Hence for each ε = 1/k, we can find nk > nk−1

such that s − 1
k < xnk

< s + 1
k . It follows that xnk

→ s and hence s ∈ S. One
shows similarly that t ∈ S.

Let x ∈ S. Let xnk
→ x. We shall show x ≤ t+ ε for any ε > 0. By Item B.4,

there exists N such that n ≥ N implies xn < t + ε. Hence there exists k0 such
that if k ≥ k0, then xnk

< t+ ε. It follows that the limit x of the sequence (xnk
)

is at most t+ε. It follows that for any x ∈ S we have x ≤ t. Once similarly proves
that s ≤ x for x ∈ S. Hence S ⊂ [s, t].
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Note that the last item gives another proof of Cauchy completeness of R. For,
lim supxn is the limit of a convergent subsequence; see Item 2.7.6! We leave this
as an exercise to the reader.

Remark B.10. Note that Item B.9 implies the following.

lim supxn = lub S = maxS and lim inf xn = glb S = minS.

In fact, in some treatments, lim supxn (respectively, lim inf xn) is defined as lub S
(respectively, glb S). Our experience shows that beginners find our definition
(Definition B.1) easy to understand. It allows them to deal with these concepts
with more confidence. When one deals with lim sup or lim inf, Theorems B.4–B.5
are most useful, especially the first properties stated as (a).

Exercise B.11 (Exercises on limit superior and inferior).

(1) Consider (xn) := ( 1
2 ,

2
3 ,

1
3 ,

3
4 ,

1
4 ,

4
5 , . . . ,

1
n ,

n
n+1 , . . .). Then lim sup = 1 and

lim inf xn = 0.

(2) Find the lim sup and lim inf of the sequences whose n-th term is given by:

(a) xn = (−1)n + 1/n

(b) xn = 1/n+ (−1)n/n2

(c) xn = (1 + 1/n)n

(d) xn = sin(nπ/2)

The next result gives a formula for the radius of convergence of a power series∑∞
n=0 cn(x− a)n in terms of the coefficients an.

Theorem B.12 (Hadamard Formula for the Radius of Convergence). The radius
of convergence ρ of

∑∞
n=0 cn(z − a)n is given by

1

ρ
= lim sup |cn|1/n and ρ = lim inf |cn|−1/n

.

Proof. Let 1
β := lim sup |cn|1/n. We wish to show that ρ = β.

If z is given such that |z − a| < β, choose µ such that |z − a| < µ < β. Then
1
µ >

1
β and hence there exists N (by the last lemma) such that |cn|1/n < 1

µ for

all n ≥ N . It follows that |cn|µn < 1 for n ≥ N . Hence (|cn|µn) is bounded, say,
by M . Hence, |cn| ≤Mµ−n for all n. Consequently,

|cn(z − a)n| ≤Mµ−n |z − a|n = M

(
|z − a|
µ

)n
.

Since |z−a|µ < 1, the convergence of
∑
cn(z − a)n follows.

Let |z − a| > β so that 1
|z−a| <

1
β . Then 1

|z−a| < |cn|
1/n

for infinitely many

n. Hence |cn| |z − a|n ≥ 1 for infinitely many n so that the series
∑
cn(z− a)n is

divergent. We therefore conclude that ρ = β.
The other formula for the radius of convergence is proved similarly.
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Exercise B.13. Find the radius of convergence of the power series
∑
n anz

n,
whose n-th coefficient an is given below:

(1) 1/(n2 + 1)

(2) 2n − 1

(3) nk, k fixed

(4) nn

(5) nk

n!

(6)
(
1 + 2

n2

)n2

(7) (log nn)/n!

(8) 2nn!
(2n)!

(9) ( n
logn )n

(10)
√
n+1−

√
n√

n2+n

(11) n2 1
22n

(12) 1
5n

4(n3 + 1)

(13) (2n)!
n!

(14) n!
(2n)!

(15) n!
nn

(16) n2n

(n!)2

(17) [1 + (−1)n3]n

(18) (an + bn), a > b > 0

(19) 1
np , p > 0

(20) 4n(−1)n

There are two sharper versions of the ratio and root tests.

Theorem B.14. (1) (Ratio Test) Let
∑
n cn be a series of nonzero reals. Let

lim inf

∣∣∣∣cn+1

cn

∣∣∣∣ = r and lim sup

∣∣∣∣cn+1

cn

∣∣∣∣ = R.

Then the series
∑
n cn is

(i) absolutely convergent if 0 ≤ R < 1,
(ii) divergent if r > 1.
(iii) The test is inconclusive if r ≤ 1 ≤ R.

(2) (Root Test) Let
∑
n an be a series of reals. Let lim sup |an|1/n = R. Then

the series
∑
n an is absolutely convergent if 0 ≤ R < 1, divergent if R > 1, and

the test is inconclusive a = 1.

Proof. Go through the proofs of Theorem 5.1.22 (on the ratio test) and those of
Theorem B.12 and Theorem 5.1.22. You should be able to write down the proofs
on your own.



Appendix C

Topics for Student Seminars

The topics listed here are selected with the aim of training students to be comfort-
able with so-called hard analysis and to reinforce their understanding by offering
different proofs or perspectives.

1. The field Q of rational numbers does not enjoy the LUB property. See
Theorem 1.3.18 and Remark 1.3.20.

2. Euler’s Constant. See Ex. 2.8.4.

3. Euler’s number e. See Section 2.3 on page 44.

4. Abel’s summation by parts. See Section 5.2.

5. Abel’s, Dirichlet’s, and Dedekind’s tests. See Section 5.2.

6. Convex Functions. See Section 4.6. See also the article (g) in the list of
expository articles by S. Kumaresan [8].

7. Classical Inequalities: Arithmetic-Geometric, Holder’s, Minkowski, Cauchy-
Schwarz, and Bernoulli’s inequality. Same reference as in the last item.

8. Mean value theorems for integrals. See Section 6.4.

9. Cauchy’s form of the remainder in Taylor expansion. See Section 4.7.

10. Integral form of the remainder in Taylor expansion. See Section 6.5.

11. Binomial series with non-integral index. See Section 7.7.

12. Results that use the curry-leaves trick.

13. Results that use the divide and conquer trick.

14. Logarithmic and exponential functions. See Section 6.8.
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15. Nested interval theorem and its applications. See the article (b) in the list
of expository articles by S. Kumaresan [8].

16. The role of LUB property in real analysis. See the article (a) in the list of
expository articles by S. Kumaresan [8].

17. Abel’s theorem on Cauchy product of series. See Theorem 5.4.6.

18. Decimal expansion and other expansion to the base of a positive integer
a ≥ 2. See the article (f) in the list of expository articles by S. Kumaresan
[8].

19. Extension theorem for uniformly continuous functions; application to the
definition of xa. See Section 3.8.

20. Monotone functions; inverse function theorem; its application to x 7→ x1/n.
See Section 3.5.

21. Cauchy’s generalized mean value theorem and its applications to
L’Hospital’s rules. See Section 4.3.

22. Existence of C∞ functions with compact support. See Example 4.5.3 and
Exercise 4.5.4.

23. Riemann’s theorem on rearrangement of series. Refer to [1] Theorem 8.33
in [1] or Theorem 3.54 in [7].

24. Weierstrass approximation theorem: Bernstein’s proof. See Section 7.8. For
a proof using the so-called Landau kernels, refer to the article (h) on “Ap-
proximate Identities” in the list of expository articles by S. Kumaresan
[8].

25. Thomae’s function; discussion on points of continuity and integrability on
[0, 1]. See page 76 and page 183.

26. Sharp forms of ratio and root tests in terms of lim sup and lim inf. See
Theorem B.14.

27. Hadamard’s formula for the radius of convergence of a power series. See
Theorem B.12.

28. Cantor’s construction of real numbers using Cauchy sequences. See an ar-
ticle to be found in the list of expository articles by S. Kumaresan [8].

29. Dedekind’s construction of real numbers via cuts. See [7].

30. Functions of bounded variation and rectifiability. See [1].

31. Peano curves; main purpose here is to make the students see applications
of p-adic (binary, ternary) expansions. Refer to [2].
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32. Sets of measure zero and Lebesgue’s characterization of Riemann integra-
bility. Refer to Theorem 7.3.12 in [2].

33. Oscillation of a function at a point, points of discontinuity, Fσ sets. Refer
to Section 5.6 in [4].

34. Construction of a function which is continuous everywhere but differentiable
nowhere. Refer to Appendix E in [2].
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Hints for Selected Exercises
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D.7 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

D.1 Chapter 1

Exercise Set 1.1.3:

Ex. 3: Observe that yn+1 − xn+1 = y(yn − xn) + (y − x)xn and use induction.

Ex. 1.2.10: If a lower bound α of A, belongs to A, then α = glb A.

Exercise Set 1.3.8:

Ex. 4: Jn :=
(
− 1
n , 1 + 1

n

)
.

Exercise Set 1.3.15:

Ex. 1: Yes! Show that if a 6= b, then Ca 6= Cb.

Ex. 3: Choose r ∈ Q such that a
t < r < b

t .

Exercise Set 1.3.26:

Ex. 3: Note that t1m+ · · ·+ tnm ≤ t1x1 + . . .+ tnxn ≤ t1M + . . .+ tnM .

Exercise Set 1.3.27:

Ex. 1: A is a singleton.
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Ex. 3: Show that glb B is a lower bound of A and lub B is an upper bound of A.

Ex. 6: max{lub A, lub B} = lub (A ∪B).

Ex. 8: GLB property of R: Let B be a nonempty subset of R and bounded below,
then there exist β ∈ R such that β = glb B.

Ex. 10: (b) N \ {1}, (c) Z, (e) R.

Ex. 11: b+ α.

Ex. 13: glb (bA) = bα.

Ex. 15: lub (B) = 1
glb (A) .

Ex. 19: Note that x2 − 5x+ 6 = (x− 2)(x− 3). Hence x ∈ A iff x ∈ (2, 3).

Ex. 20: glb
(
{x ∈ R : x+ 1

x : x > 0}
)

= 2 and the set is not bounded above.

Ex. 22: The set can be written as { 1
n + 1

m : m,n ∈ N}.
Ex. 25: (1) shows that the hypothesis of intervals being closed is necessary. (2)
shows that the hypothesis of the intervals being bounded is necessary.

Exercise Set 1.4.8:

Ex. 1: (2/7, 6).

Ex. 3: (−3,∞).

Ex. 5: (−2,−1) ∪ (1, 2).

Ex. 7: (−∞, 0) ∪ (1,∞).

Ex. 9: |x| < 2.

Ex. 11: (−3/2, 1/2).

Ex. 13: (−3, 0).

D.2 Chapter 2

Ex. 2.1.6: ∀x ∈ R (∃ε > 0 (∀k ∈ N (∃nk ≥ k (|x− xnk
| ≥ ε)))).

Exercise Set 2.1.28:

Ex. 1: (a) 0, (b) 7 and (c) 5.

Ex. 5: Use the formula in Item 9 of Theorem 1.4.2, Proposition 2.1.18, and The-
orem 2.1.26 on algebra of convergent sequences.

Ex. 7: False.

Ex. 9: True.

Ex. 11: If an → 0, then ann → 0.

Ex. 12: zn =

{
xk if n = 2k − 1

yk if n = 2k.

Ex. 15: Find x1, x2, . . . xn, explicitly and observe their pattern.

Ex. 16: For each n ∈ N, choose xn ∈
(
a− 1

n , a+ 1
n

)
∩ Q. Similarly choose yn ∈(

a− 1
n , a+ 1

n

)
∩ R \Q.
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Exercise Set 2.2.5:

Ex. 3: (xn) is eventually constant.

Ex. 5: Show that |xm − xn| ≤ cn−1 1
1−c |x2 − x1| .

Exercise Set 2.3.4:

Ex. 3: Show that (an+1/an) converges to a limit less than 1.

Ex. 4: Consider bn := an − 21−n. Is it monotone?

Exercise Set 2.4.3:

Ex. 4: Observe that (bn)1/n ≤ (an + bn)1/n ≤ (2bn)1/n. Use Item 4 of Theo-
rem 2.5.1.

Ex. 2.5.2: Write a = 1 + h for some h > 0 and use an ≥ h2

2 × n(n− 1).

Exercise Set 2.6.5:

Ex. 2: Show that x2n ≥ n/2.

Ex. 3: Note that for any k, xk + 1
xk
≥ 2.

Ex. 5: For c > 0, there exists N ∈ N such that c+ d/n < 3c
2 for all n ≥ N . This

implies an2+d
cn+d > an+d/n

2/(3c) .

Ex. 7: Define an := nn

(n!)1/n
.

Ex. 8: The limit is 1, 0, or −1 depending on whether a > b, a = b, or a < b.

Exercise Set 2.7.10:

Ex. 2: True! It is bounded above.

Ex. 4: Just negate the definition of a bounded sequence.

Ex. 7: Suppose (rn) converges to r ∈ [0, 1]. Choose ε so that (r − ε, r + ε) does
not contain one of the endpoints. Does this contradict density of rationals?

Exercise Set 2.8.3:

Ex. 1: The limit exists and is a root of (x2 − 2)2 − x = 0.

Ex. 2: The limit is ` = 2.

Ex. 3: The limit is
√
a.

Ex. 4: Show that |xn − xn−1| ≤ b
a+b |xn−2 − xn−1|.

Ex. 6: The limit is 2.

Exercise Set 2.8.4:

Ex. 1: γn − γn+1 =
∫ n+1

n
t−1 − 1

n+1 > 0.

Ex. 2: γn ≤ γ1 for all n. Also, γn >
∑n
k=1

[
1
k −

∫ k+1

k
t−1dt

]
> 0.

Exercise Set 2.8.5:

Ex. 5: The limit of γ2n and γ2n+1 satisfies the equation `2 − `− 1 = 0.

Ex. 6: Show that |γn − `| ≤ 1
` |γn−1 − `|.
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Exercise Set 2.8.7:

Ex. 2: The limit of the given sequence is 0.

Ex. 4: Draw pictures.

Ex. 5: Note that xn+1 =
√

2 + xn for n ≥ 1. Show that limxn = 2.

Ex. 6: If (sinn) converges, sin(n+2)−sinn→ 0. Use the trigonometric identities:

sinA− sinB = 2 sin
A−B

2
cos

A+B

2

cosA− cosB = 2 sin
A+B

2
sin

B −A
2

.

D.3 Chapter 3

Exercise Set 3.1.4:

Ex. 2: f is continuous only at x = 4.

Ex. 6: Show (i) f(n) = nf(1) for n ∈ N, (ii) f(−x) = f(x) for any x ∈ R, (iii)
f(n) = nf(1) for n ∈ Z, (iv) f(1/q) = 1

q f(1) for q ∈ N, and (v) f(x) = xf(1) for

x ∈ Q. Now define g(x) := f(1)x.

Ex. 8: Draw a picture. The function is continuous at all x /∈ Z.
Ex. 9: f is continuous on R.

Ex. 3.2.4: For ε > 0, choose δ := ε/L.

Ex. 3.2.6: For f(c) > 0, define ε := f(c)/2 and apply the definition of continuity
of f at c.

For the general setup, observe that

x ∈ J & |x− c| < δ =⇒ |f(c)| ≤ |f(c)− f(x)|+ |f(x)| .

Exercise Set 3.3.4:

Ex. 3: Let f(x) 6= f(y). Then [f(x), f(y)] ⊂ f([a, b]) or [f(y), f(x)] ⊂ f([a, b]).

Exercise Set 3.3.10:

Ex. 1: Apply IVT to x− cosx on [0, π/2].

Ex. 3: If such an f exists, it is not a constant. Its image will be countable. Use
Ex. 3 on page 81.

Ex. 5: Consider g : [0, π]→ R given by g(x) = f(x)− f(x+ π).

Ex. 6: Given c ∈ R, consider the polynomial q(X) := p(X)− c.
Ex. 8: What are its values, say, at ±R where R� 0 and at 0?

Exercise Set 3.4.7:

Ex. 1: c = min f and d = max f .

Ex. 2: No, otherwise it contradicts the Weierstrass theorem.

Ex. 3: No, otherwise it contradicts the extreme value theorem.
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Ex. 5: What is the equation of the line joining the points (a, c) and (b, d) in R2?

Ex. 6: Split the interval: (0, 1) = (0, 1/3) ∪ [1/3, 2/3] ∪ (2/3, 1) and construct an
onto map from [1/3, 2/3] to [0, 1].

Ex. 8: Similar to Ex. 4 on page 84.

Exercise Set 3.7.8:

Ex. 2: Consider f(x) = x2 on R. Recall that any Cauchy sequence is bounded.

Exercise Set 3.7.12:

Ex. 1: For p > 0, we have that R = ∪k∈Z[kp, (k + 1)p) is a disjoint union. Use
uniform continuity of f on [0, p].

Ex. 2: Is the derivative bounded on [0,∞)?

Ex. 4: Note that f is uniformly continuous on [0, R].

Ex. 6: Use limx→0
sin x
x = 1 and define f(x) = − sin x

x on [−1, 0) and f(0) = −1.
Then f is uniformly continuous on [−1, 0) and hence on (−1, 0). Similarly, the
given function is uniformly continuous on (0, 1).

Ex. 8: If false, there exist xn such that |f(xn)| ≥ n for each n ∈ N. Let (xnk
)

be a convergent subsequence by Bolzano-Weierstrass. Note that |f(xnr
)| ≤ 1 +

|f(xnN
)| , since (xnk

) is Cauchy.

Ex. 10: Can there exist an L > 0 such that |f(x)| ≤ L |x| for all x ∈ [0, 1]?

Ex. 11: (a) Not uniformly continuous. (b) Uniformly continuous.

Ex. 3.8.8: Let xn, yn ∈ Q with xn → x and yn → y. Then axn+yn → ax+y.

Ex. 3.8.9: Observe that f(1) = f( 1
2 + 1

2 ) ≥ 0 and f(n) = [f(1)]n for n ∈ N.

Ex. 3.8.10: Formally manipulate exp(x) exp(y). Then justify the steps. This
exercise is best done at the end of Section 7.5.

D.4 Chapter 4

Ex. 4.1.5: Define f1(x) :=

{
xn−1 x ≥ 0

xm−1 x < 0.

When is f1 continuous at x = 0?

Exercise Set 4.1.10:

Ex. 3: If it were, then f1(x) = x−2/3 for x 6= 0. Can one define f1(0) suitably so
that f1 is continuous at 0?

Ex. 5: anf ′(a)− f(a)nan−1.
Ex. 6: Let f, g : R → R be differentiable functions. Find the limit of

limx→a
g(a)f(x)−f(a)g(x)

x−a . What is the answer?

Ex. 8: Differentiate the identity, multiply the result by x, and add 1 to it.

Answer: (n+ 1) xn

x−1 − x
xn+1−1
(x−1)2 + 1.
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Exercise Set 4.1.14:

Ex. 2: r > 1. You may use the auxiliary function f1 to arrive at this:

f(x) = xr sin(1/x) = f(0) + xr−1 sin(1/x)(x− 0), (x 6= 0).

Exercise Set 4.2.11:

(2) Consider f(t) := log(1 + t) on [0, x].
(4) Show that sinx− x is decreasing. Could you have used x− sinx?
(6) You may need to compute the derivative of sinx/x and again the derivative
of its numerator.

Exercise Set 4.2.16:

Ex. 1: Between any two roots of P we have a root of P ′.

Ex. 3: Use mean value theorem to conclude that f is Lipschitz. For the second
part, argue by contradiction.

Ex. 6: (a) Consider f(x) = x1/n − (x − a)1/n. It is decreasing; evaluate f at 1
and b/a.

Ex. 7: Apply the mean value theorem to the numerator of the difference quotient
f(c+h)−f(c)

h and use the hypothesis.

Ex. 9: If it has two distinct zeros, then f ′(c) = 0 for some c ∈ (0, 1).

Ex. 11: limx→
f(x)−f(0)

x = limx→0 (1 + 2x sin(1/x)) = 1. In any interval around
0, the points of the form x = 2/(nπ) lie on both sides of 0.

Ex. 12: Consider h(x) := f(x)eg(x).

Ex. 16: False. Observe that 3 = f(5)− f(2) = f ′(c)3 = 3(f(x)2 + π) > 3.

Ex. 19: Mean value theorem applied to f(1/n)−f(1/m) shows that the sequence
(an) is Cauchy.

Ex. 20: Consider e−λxf(x).

Ex. 23: Answer: 7. Can you justify this?

Ex. 28: The derivative is positive at all nonzero reals.

Ex. 29: If it has at least three zeros, its derivative must vanish at two distinct
points. You may need the last exercise.

Ex. 31: If false, there exists a sequence (tn) of distinct points in [a, b] such that
f(tn) = 0. Apply Bolzano-Weierstrass theorem to find a c such that f(c) = 0 =
f ′(c).

Ex. 32: If f has two distinct fixed points, say, x 6= y, what is f(x)− f(y)? Apply
the mean value theorem to this.

Exercise Set 4.3.7:

Ex. 1: By Darboux theorem, we conclude that f ′ is a (rational) constant, that is,
f ′(x) = r ∈ Q. Hence f(x) = rx+ s where r ∈ Q and s ∈ R.
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Exercise Set 4.6.11:

Ex. 1: The precise formulation is as follows: f convex iff

c, x, y ∈ (a, b) with x < c < y =⇒ f(x)− f(c)

x− c
≤ f(d)− f(x)

d− x
.

Draw pictures.

Ex. 3: Remember that ex is also convex!

Ex. 6: max{f, g} is convex and min{f, g} may not be convex.

Ex. 8: Fix c ∈ R. Assume f ′(c) > 0. From the last exercise, we obtain f(x) ≥
f(c) + f ′(c)(x− c), for x ∈ R.
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Ex. 5.1.14: Let tn denote the n-th partial sum of
∑
cn. If n ≥ N , observe that

tn = sn − sN + b.

Exercise Set 5.1.24:

Ex. 2: Observe that the n-th term is 7( 7
9 )n.

Ex. 4: Apply the ratio test to the series
∑

n!
nn .

Ex. 7: Observe that 2n − n ≥ 2n − 2n−1 = 2n−1.

Ex. 9: Observe that 1 + an ≥ 1/2 if n� 0. Hence
∣∣∣ an
an+1

∣∣∣ ≤ 2 |an|.

Ex. 5.1.26: Consider (1) f(x) = 1
xp , (2) f(x) = 1

x log x , and (3) f(x) = log x
xp ,

respectively.

Exercise Set 5.3.9:

Ex. 2: Observe that `
2 ≤

an
bn
≤ 3`

2 for n� 0.

Ex. 6: Note that an < 1 for n � 0. Hence a2
n ≤ an for n � 0. We may use the

comparison test.

Ex. 8: Convergent except at π
2 and x = 3π

2 .

Ex. 10:
∑ (−1)n√

n
.

Ex. 13: If and only if a = 0 = b.

Ex. 18: The hypothesis allows us to obtain an estimate of the form |an| ≤ Cn−2.

Ex. 19: Observe that |an| < 1 for n� 0. For such n, we have
∣∣a3
n

∣∣ ≤ a2
n.

Ex. 22: True.

Ex. 25: Apply the root test. Recall n1/n → 1.

Ex. 28: Keep the notation in the proof of the root test. From ak ≤ aNR
−Nrk,

deduce an estimate for a
1/k
k for k ≥ N .

Ex. 32: Go through Example 5.3.8.

Ex. 35: Observe that (n!)1/n ≥ 1. Use this to estimate the n-th term.
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Ex. 6.1.17: Divide and conquer strategy; see Item 2 in Example 6.1.14.

Ex. 6.2.6: (iii) Note that fg = 4−1
(
(f + g)2 − (f − g)2

)
.

Ex. 6.2.8: (a) Since 1 + 4x90 ≤ 4(1 + x90), it follows that
∫ 1

0
x4

√
1+4x90

≥
1

2
√

2

∫ 1

0
x4 dx.

(b) Observe that the minimum of x4(x− 4) is attained at x = 3.

Exercise Set 6.2.12:

Ex. 4: If false, then using the extreme value theorem, either f(x) ≤ M < 0 or
f(x) > m > 0 for x ∈ [a, b]. Use the monotonicity of the integral.

Ex. 6: Take g = f .

Ex. 7: The upper bound for the limit is M . We need to show that the limit is at
least M − ε for any ε > 0. Let c ∈ [a, b] be such that f(c) = M . Let δ > 0 be
such that for x ∈ [c− δ, c+ δ], we have f(x) > M − ε. Observe that(∫ b

a

fn(x) dx

)1/n

≥

(∫ c+δ

c−δ
fn(x) dx

)1/n

≥ (2δ)1/n(M − ε).

Ex. 9: Let m and M be the minimum and maximum of f on [a, b]. Use mono-

tonicity of the integral to m ≤ f(x) ≤ M to conclude that 1
b−a

∫ b
a
f(x) dx lies

between m and M . Use the intermediate value theorem.

Ex. 14: Take x = |ai|
‖a‖p

and y = |bi|
‖b‖q

in Young’s inequality (6.18) and sum over

i.

Exercise Set 6.3.10:

Ex. 1: Apply the first fundamental theorem of calculus to the equation.

Ex. 2: Ans: g(x)2g′(x).

Ex. 5: Observe that g′(x) ≥ g(x)1/2 so that g′(x)g(x)−1/2 ≥ 1. Integrate both
sides of this inequality and use integration by parts.

Exercise Set 6.4.6: Ex. 1: Observe that
∣∣∣ cnn

1+cn

∣∣∣ ≤ |a|n1+a .

Exercise Set 6.4.10: All the problems are easy applications of the integral test,
Theorem 6.4.8. For example, the obvious choice in (1) is f(x) = 1

1+x2 .

Exercise Set 6.7.2: We shall do only one in this set, the rest are similar.

Ex. 1: lim
r

r2 + n2
= lim

1

n

n∑
r=1

r
n

1 + ( rn )2
=

∫ 1

0

x

1 + x2
dx.

Exercise Set 6.7.3:
Ex. 2: If you know the sum

∑n
r=1 r = n(n+1)

2 , how will you find the sum

−1 + 2− 3 + 4− · · ·+ (−1)nn?
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Or, how do you find the sum of
∑n
k=1 2k + 1? Ans: 0.

A smarter solution is based on the observation that the given sequence looks
like the difference sn − sm of partial sums of the standard alternating series.
Hence the limit is 0.

Exercise Set 6.7.4:
Ex. 1: Let M =

∫ b
a
f , then there exists a partition P such that L(f, P ) > M/2(b−

a). If {Jk : 1 ≤ k ≤ n} are the partitioning subintervals, can f(x) < M/2(b− a)
for all x ∈ Jk and for all k?

Ex. 4: If 0 < a < b, what is the relation between 1/a and 1/b? What is the
relation between mi(f), mi(g), Mi(f), and Mi(g)?

Ex. 6: If f is not zero, then there exists c ∈ [a, b] such that m := f(c) > 0. There
exists δ > 0 such that f(x) > m/2 for (c− δ, c+ δ) ∩ [a, b].

Ex. 8: Divide and conquer method. Go through the integrability of Thomae’s
function on page 183.

Ex. 12: Our intuition should say that we should exploit the fact that xn → 0 for
0 ≤ x < 1. We may employ the divide and conquer method near x = 1.

Ex. 13: Same as the last one.

Ex. 14: Use integration by parts to show that∣∣∣∣∣
∫ b

a

f(t) sin(nt) dt

∣∣∣∣∣ ≤ 3M

n
,

where |f(t)| ≤M and |f ′(t)| ≤M for t ∈ [a, b].

Exercise Set 6.9.20:
Ex. 1: Answers (a) p > 1, (b) p < 1, (c) p > 1, (d) p > 1.

Ex. 4: Yes, it is π
2 .

Ex. 6: Answers: (a) diverges, (b) diverges, (c) converges, (d) converges.

Ex. 7: If L 6= 0, there exists R > 0 such that for x > R, we have f(x) > L/2. For
x > R, we obtain

∫ x
R
ft) dt > L(x−R)/2.
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Ex. 7.3.9: Uniformly convergent, of course!

Exercise Set 7.3.10:
Ex. 2: fn takes a maximum value at n/(n+ 1).

Ex. 5: Observe that fn( 1
n ) = 1/2. Use Proposition 7.3.6.

Ex. 7: For x ∈ [0, 1], observe that fn(x) ≤ 1/n. For x > 1, observe that fn(x)→ 1
pointwise.

Ex. 9: fn attains the maximum at n/(n+ 1).

Ex. 12: The sequence converges pointwise to f(x) = x2. It is not uniform.
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Ex. 14: Note that limx→1− fn(x) = 1/2. Hence fn(xn) > 1/4 at some xn.

Ex. 16: The sequence converges pointwise to 0. It is uniform iff p > 2.

Ex. 19: Show that gn has a maximum
√

n
2e at

√
1

2n .

Ex. 23: The sequence converges pointwise at x 6= 0.

Ex. 27: The result remains valid if we take sinnt in place of cosnt.

Exercise Set 7.3.20:
Ex. 3: 1/2 and 0.

Ex. 4: The pointwise limit 0.

Ex. 7: The pointwise limit is f(x) = 1 for x ∈ [0, 1] and f(x) = x for x ∈ [1, 2].

Ex. 9: Darboux theorem 4.3.3.

Exercise Set 7.3.21:
Ex. 1: Modify the proof of Theorem 7.3.1.

Ex. 4: The domain is not bounded.

Ex. 6: Use the uniform continuity of f : Given ε, choose δ > 0, and then N , so
that 1/N < δ.
Ex. 7: Given ε > 0, let δ > 0 correspond to the uniform continuity of g on
[−M,M ]. Let N ∈ N correspond to the uniform convergence of (fn). Now, for
n ≥ N and x ∈ X, we have the estimate:

|g(fn(x))− g(f(x))| < ε.

Ex. 9: Note that (fn) is uniformly Cauchy on X. Adapt the proof of any Cauchy
sequence of real numbers is bounded.

Ex. 10: We need to find a uniform estimate of
∣∣∣ g(x+ 1

n )−g(x)
1
n

− g′(x)
∣∣∣.

Ex. 12: Use the estimate |fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)|.

Exercise Set. 7.4.8:
Ex. 1-5: All are amenable to M -test. One may use calculus to find Mn, if required.

Ex. 6: Note that 1
1+xn ≤ 1

xn−1 ≤
2
xn , for n� 0.

Ex. 10: Use Ex. 8b.

Exercise Set 7.8.4:

Ex. 1: Figure this out: 0 =
∫ 1

0
f(x)Pn(x) dx→

∫ 1

0
f2(x) dx!

Ex. 2: (a) How does pn(x) behave if x � 0? (b) If N > deg pn, then observe

ex > xN

N ! . Go through the strategy of Theorem 3.3.7 and the estimate (3.4).

Ex. 4: Observe that pn are uniformly continuous on (0, 1). You may find Ex. 7.3.4
to be of use.

Ex. 5: If qn ⇒ f , use telescopic sum trick to get pn’s.
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