Annexure –	6a
------------	----

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI -14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)

(Re –accredited (3^{rd} cycle) with Grade A⁺ and CGPA 3.51 by NAAC)

TANSCHE - CBCS with OBE

GENERIC ELECTIVE CHEMISTRY

For I B.Sc., Zoology

(w.e.f. 2023–2024 Batch onwards)

COURSE STRUCTURE

Som	Dort	Course Code	Course Title	ng hrs. week)	on of hrs)	Μ	dits		
Sem	1 art	Course Coue		Teachi (Per 1	Durati exam (CIA	SE	Total	Cre
I	ш	23OUZOGECH1	GEC 1: Chemistry for Biological Sciences -I	4	3	25	75	100	3
	m	23OUZOGECH1P	GEC 2: Chemistry Practical for Biological Sciences -I	2	3	40	60	100	2
II	ш	23OUZOGECH2	GEC 3: Chemistry for Biological Sciences -II	4	3	25	75	100	3
	111	23OUZOGECH2P	GEC 4: Chemistry Practical for Biological Sciences -II	2	3	40	60	100	2

	Department of Zoology					lass: II	B.Sc	
Sem	Category	Course Code	e Code Course Title Credits		Contact		SE	Total
					Week	Α		
Ι	Generic	23OUZOGECH1	Chemistry for	3	4	25	75	100
	Elective		Biological Sciences					
	Course 1		-I					

Nature of the Course							
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented					
V	~						

Course Objectives:

- To provide knowledge on basics of atomic orbitals, chemical bonds, hybridization and fundamentals of organic chemistry
- To provide knowledge about nuclear chemistry and industrial chemistry
- To know importance of speciality drugs and separation and purification techniques.

Course Content:

Unit - I : Chemical Bonding and Nuclear Chemistry

Chemical Bonding: Molecular Orbital Theory-bonding, antibonding and non-bonding orbitals. Molecular orbital diagrams for Hydrogen, Helium, Nitrogen; discussion of bond order and magnetic properties. Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones and Isomers-Differences between chemical reactions and nuclear reactions - group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences – Stellar energy. Applications of radioisotopes – carbon dating, rock dating and medicinal applications.

Unit - II : Industrial Chemistry

Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required). Silicones: Synthesis, properties and uses of silicones. Fertilizers: Urea, ammonium sulphate, potassium nitrate, NPK fertilizer, superphosphate, triple superphosphate.

Unit - III :Fundamental Concepts in Organic Chemistry

Hybridization: Orbital overlap, hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric- examples. Reaction mechanisms: Types of reactions–aromaticity (Huckel's rule) – aromatic electrophilic substitution; nitration, halogenation, Friedel- Craft's alkylation and acylation. Heterocyclic compounds: Preparation, properties of pyrrole and pyridine.

UNIT IV

Drugs and Speciality Chemicals

Definition, structure and uses: Antibiotics viz., Penicillin, Chloramphenicol and Streptomycin; Anaesthetics viz., Chloroform and ether; Antipyretics viz., aspirin, paracetamol and ibuprofen; Artificial Sweeteners viz., saccharin, Aspartame and cyclamate; Organic Halogen compounds viz., Freon, Teflon.

Unit – V : Analytical Chemistry

Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques – extraction, distillation and crystallization. Chromatography: principle and application of column, paper and thin layer chromatography.

Books for Study:

- 1. V.Veeraiyan, Text book of Ancillary Chemistry; High mountpublishing house, Chennai, first edition,2009.
- 2. S.Vaithyanathan, Text book of Ancillary Chemistry; PriyaPublications, Karur,2006.
- 3. S.ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand andCompany, NewDelhi, twenty third edition, 2012.
- 4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan

Chand & sons, New Delhi, twenty ninthedition, 2007.

Books for Reference:

- 1. P.L.Soni,Mohan Katyal,Textbook of Inorganic chemistry; SultanChan and Company, New Delhi, twentieth edition, 2007.
- 2. B.R.Puri,L.R.Sharma,M.S.Pathania,Textbook Physical Chemistry;V ishal Publishing Co., New Delhi, forty seventh edition, 2018.
- 3. B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.

Web Resources / E.Books:

- 1. https://gascnagercoil.in/wp-content/uploads/2020/12/allied-chemistry-book.pdf
- 2. <u>https://www.bookswagon.com/book/textbook-biochemistry-medical-students-kannan/9789389034981</u>
- 3. https://www.gettextbooks.com/isbn/9788121926140/
- 4. <u>http://www.khake.com/page75.html</u>

Pedagogy

Chalk and Talk, Power Point presentations, Seminar, Group Discussion, Quiz through ICT-Mode

Rationale for nature of Course:

Knowledge and Skill:

Students can gain knowledge about Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Activities to be given:

Lab activity given to students to identify and compare the Colour and Properties of the various substances, Extraction process involved in metallurgical process using chart work method. Assign them case study about agriculture in current era.

Course learning Outcomes (CLOs):

CLO	Course Outcomes Statement	Knowledge according to Bloom's Taxonomy (Upto K level)
CLO1	Gain in-depth knowledge about the theories of	K1 to K3
	chemical bonding, nuclear reactionsand its	
	applications.	
CLO2	Evaluate the efficiencies and uses of various fuels	K1 to K3
	and fertilizers	
CLO3	Explain the type of hybridization, electronic effect	K1 to K4
	and mechanism involved in theorganic reactions	
CLO4	Demonstrate the structure and uses of antibiotics,	K1 to K3
	anaesthetics, antipyretics and artificial sugars.	
CLO5	Explain various methods to identify an appropriate	K1 to K4
	method for the separation of chemical components.	

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems, Justifying the statement and deriving inferences
- K4- Examining, analyzing, presentation and make inferences with evidences

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	1	2	3	2
CLO2	3	1	1	1	3	2
CLO3	3	1	1	1	3	2
CLO4	3	1	2	3	3	2
CLO5	3	1	1	2	3	2

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

1-Basic Level 2- Intermediate Level 3- Advanced Level

LESSON PLAN: TOTAL HOURS (60 Hrs)

UNIT	DESCRIPTION	Hrs	MODE
I	Chemical Bonding: Molecular Orbital Theory-bonding, antibonding and non-bonding orbitals. Molecular orbital diagrams for Hydrogen, Helium, Nitrogen; discussion of bond order and magnetic properties. Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones and Isomers-Differences between chemical reactions and nuclear reactions - group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences – Stellar energy. Applications of radioisotopes – carbon dating, rock dating and medicinal applications.	12	Chalk and Talk, PPT, group discussion , quiz,on the spot test and Virtual Labs.
Π	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required). Silicones: Synthesis, properties and uses of silicones. Fertilizers: Urea, ammonium sulphate, potassium nitrate, NPK fertilizer, superphosphate, triple superphosphate.	12	Chalk and Talk, PPT, group discussion, quiz,on the spot test and Virtual Labs.
III	Hybridization: Orbital overlap, hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric- examples. Reaction mechanisms: Types of reactions–aromaticity (Huckel's rule) – aromatic electrophilic substitution; nitration, halogenation, Friedel- Craft's alkylation and acylation. Heterocyclic compounds: Preparation, properties of pyrrole and pyridine.	12	Chalk and Talk, PPT, group discussion, quiz,on the spot test and Virtual Labs

E.M.G Yadava Women's College, Madurai-14.

		A	nnexure – 6a	
IV	Definition, structure and uses: Antibiotics viz., Penicillin, Chloramphenicol and Streptomycin; Anaesthetics viz., Chloroform and ether; Antipyretics viz., aspirin, paracetamol and ibuprofen; Artificial Sweeteners viz., saccharin, Aspartame and cyclamate; Organic Halogen compounds viz., Freon, Teflon.	13	Chalk and Talk, PPT, group discussion, quiz,on the spot test and Virtual Labs	1
V	Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques – extraction, distillation and crystallization. Chromatography: principle and application of column, paper and thin layer chromatography.	12	Chalk and Talk, PPT, group discussion, quiz,on the spot test and Virtual Labs.	

Course Designer: Dr.M.Sangeetha

г

Department of Zoology			Class: I B.Sc					
Semester	Category	Course Code	Course Title	Credits	Hours	CIA	SE	Total
I	Generic Elective Course 2	23OUZOGECH1P	Chemistry Practical for Biological Sciences -I	2	2	40	60	100

Nature of the Course							
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented					
√	\checkmark						

Course Objectives:

- To provide knowledge on the basics of preparation of solutions.
- To obtain knowledge on principles and practical experience of volumetric analysis

Course Content:

VOLUMETRIC ANALYSIS

- 1. Estimation of sodium hydroxide using standard sodiumcarbonate.
- 2. Estimation of hydrochloric acid using standard oxalic acid.
- 3. Estimation of ferrous sulphate using standard Mohr's salt.
- 4. Estimation of oxalic acid using standard ferrous sulphate.
- 5. Estimation of potassium permanganate using standardsodium hydroxide.
- 6. Estimation of magnesium using EDTA. Estimation of ferrous ion using diphenyl amine as indicator.

Books for References:

1. V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic PrinciplesofPractical Chemistry; Sultan Chand & sons, Second edition, 1997.

Web resources/E-books:

- 1. <u>http://allcomputerprograms.blogspot.com/2011/09/estimation-of-ferrous-</u> <u>iron-redox.html</u>
- 2. https://byjus.com/chemistry/titration-of-oxalic-acid-with-kmno4/

Pedagogy: Chalk and Talk, Group Discussion, Data interpretation and Demonstration

S.no	Description	Hours	Mode
1.	Instruction	2	Demonstration,
			Chalk and Talk,
			Discussion
2.	Estimation of Na ₂ CO3 (2)	4	Demonstration,
			Chalk and Talk,
			Discussion
3.	Estimation of Mohr's salt (2)	4	Demonstration,
			Chalk and Talk,
			Discussion
4.	Estimation of KMnO ₄ (2)	4	Demonstration,
			Chalk and Talk,
			Discussion
5.	Estimation of NaOH (2)	4	Demonstration,
			Chalk and Talk,
			Discussion
6.	Estimation of FeSO ₄ (2)	4	Demonstration,
			Chalk and Talk,
			Discussion
7.	Estimation of $C_2H_2O_4(2)$	4	Demonstration,
			Chalk and Talk,
			Discussion
8.	Revision	2	
9.	Model test (2)	2	
	Total	30	

LESSON PLAN FOR PRACTICAL (Total hours : 30)

Course Designer: Dr.(Mrs).M.Sangeetha

					An	nexure -	- 6a	
Department of Zoology						IB.Sc		
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
Ι	Generic Elective Course 3	23OUZOGECH2	Chemistry for Biological Sciences-II	3	4	25	75	100

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		
√				

Course Objectives:

1.To study the nomenclature of coordination compounds.

2.To acquire the knowledge about carbohydrates.

3.To gain the knowledge about Amino Acids and Essential elements of biosystem.

4.To understand the concepts of kinetics and catalysis.

5.To provide fundamentals of electrochemistry and photochemistry

Course Content :

Unit-1 Co-ordination Chemistry and Water Technology: Co-ordination Chemistry: Definition of terms - IUPAC Nomenclature- Werner'stheory - EAN rule - Pauling's theory – Postulates - Applications to [Ni(CO)4], [Ni(CN)4]²⁻,[Co(CN)6]³⁻ Chelation - Biological role of Hemoglobin and Chlorophyll (elementary idea) - Applications in qualitative and quantitative analysis.Water Technology: Hardness of water, determination of hardness of water using EDTA method, zeolite method-Purification techniques –BOD and COD

Unit-II Carbohydrates: Classification, preparation and properties of glucose and fructose. Discussion of open chain ring structures of glucose and fructose. Glucose-fructose interconversion. Preparation and properties of sucrose, starch and cellulose.

Unit-1II Amino Acids and Essential elements of biosystem: Classification - preparation and properties of alanine, preparation of dipeptides using Bergmann method - Proteins-classification – structure - Colour reactions – Biological functions – nucleosides - nucleotides – RNA and DNA – structure. Essentials of trace metals in biological system-Na, Cu, K, Zn, Fe, Mg.

Unit-1V Electrochemistry: Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chromeplating – Types of cells -fuel cells-corrosion and its prevention.

Unit-V Photochemistry: Grothus - Drapper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).

Books for study :

- 1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mountpublishing house, Chennai, first edition, 2009.
- S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006.
- 3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition, 2012.
- P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; SultanChand & sons, New Delhi, twenty ninth edition, 2007.

Books for Reference:

- 1.Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chandand Company, New Delhi, twenty third edition, 2012.
- 2. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
- 3.P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, twentieth edition,2007.
- 4.B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, forty seventhedition, 2018.
- 5.B.K, Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.

Web resources/E-books:

- 1. https://www.slideshare.net/ssuserede232/cordination-compound
- 2. <u>https://alevelchemistry.co.uk/notes/electrochemical-cells/</u>
- **3.** http://www.bspublications.net/downloads/0523ff2e4a5331_chemistry_ch_01_JNTUK. pdf

E.M.G Yadava Women's College, Madurai-14.

4. https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/222%20Chapter%204 . pdf

Pedagogy: Chalk and Talk method, Power point Presentations, Seminar, Group Discussion,

Quiz.

Rationale for nature of Course:

Knowledge and Skill: Students can learn about water technology, the chemistry of carbohydrates, nature of corrosion and corrosion preventing methods, learn and handle some chromatographic techniques.

Activities to be given:

Assign students to submit case study on corrosion disasters and preparing ppt on chromatographic techniques.

CLOs	Course Outcomes Statement	Knowledge According to Bloom's Taxonomy (Upto K level)
CLO1	Write the IUPAC name for complex, different theories to explain the bonding incoordination compounds and water technology.	K1 to K3
CLO2	Explain the preparation and property of carbohydrate	K1 to K3
CLO3	Enlighten the biological role of transition metals, amino acids and nucleic acids.	K1 to K4
CLO4	Apply/demonstrate the electrochemistry principles in corrosion, electroplating andfuel cells.	K1 to K3
CLO5	Outline the various type of photochemical process	K1 to K4

COURSE LEARNING OUTCOMES(CLOs):

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3- Application oriented- Solving Problems, Justifying the statement and deriving inferences
- K4- Examining, analyzing, presentation and make inferences with evidences

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	1	2	3	2
CLO2	3	1	1	1	3	2
CLO3	3	1	1	1	3	2
CLO4	3	1	2	3	3	2
CLO5	2	2	3	2	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level LESSON PLAN: TOTAL HOURS (60 Hrs)

UNIT	Γ Details		Mode of
		Hours	Teaching
I	Co-ordination Chemistry and Water Technology Co-ordination Chemistry: Definition of terms - IUPAC Nomenclature- Werner'stheory - EAN rule - Pauling's theory – Postulates - Applications to [Ni(CO)4], [Ni(CN)4] ²⁻ ,[Co(CN)6] ³⁻ Chelation - Biological role of Hemoglobin and Chlorophyll (elementary idea) - Applications in qualitative and quantitative analysis.Water Technology: Hardness of water, determination of hardness of water using EDTA method, zeolite method- Purification techniques –BOD and COD.	12	Chalk and Talk, PPT, group discussion, quiz, on the spot test andVirtual Labs.
п	Carbohydrates Classification, preparation and properties of glucose and fructose. Discussion of open chain ring structures of glucose and fructose. Glucose-fructose interconversion. Preparation and properties of sucrose, starch and cellulose.	11	Chalk and Talk, PPT, group discussion, quiz, on the spot test andVirtual Labs.
ш	Amino Acids and Essential elements of biosystem Classification - preparation and properties of alanine, preparation of dipeptides using Bergmann method - Proteins- classification – structure - Colour reactions – Biological functions – nucleosides -nucleotides – RNA and DNA – structure. Essentials of trace metals in biological system-Na, Cu, K, Zn, Fe, Mg.	12	Chalk and Talk, PPT, group discussion, quiz, on the spot test andVirtual Labs.
IV	Electrochemistry Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chrome plating – Types of cells -fuel cells-corrosion and its prevention.	13	Chalk and Talk, PPT, group discussion, quiz, on the spot test andVirtual Labs.
v	Photochemistry Grothus - Drapper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis(definition with examples).	12	Chalk and Talk, PPT, group discussion, quiz, on the spot test andVirtual Labs.

Course Designer: Dr.(Mrs).M.Sangeetha

Department of Zoology		Class: I B.Sc						
Semester	Category	Course Code	Course Title	Credits	Hours	CIA	SE	Total
I	Generic Elective Course 4	23OUZOGECH2P	Chemistry Practical for Biological Sciences -II	2	2	40	60	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
\checkmark					

Course Objectives:

- To provide knowledge on identification of organic functional groups
- To identify different types of organic compounds with respect to their properties.
- To provide knowledge for determination of elements in organic compounds.

Course Content :

Systematic Analysis of Organic Compounds

- (a) Functional group tests [phenol, acids (mono & di) aromatic primary amine, amides (mono & di), aldehydeand glucose].
- (b) Detection of elements (N, S, Halogens).
- (c) To distinguish between aliphatic and aromatic compounds.
- (d) To distinguish Saturated and unsaturated compounds.

Books for References:

 V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic PrinciplesofPractical Chemistry; Sultan Chand & sons, Second edition, 1997.

Web resources/E-books:

1.<u>https://byjus.com/chemistry/titration-of-hydrochloric-acid-against-standard-</u> sodium-carbonate/

2.https://byjus.com/jee/hardness-of-water-types-and-removal/

Pedagogy: Chalk and Talk, Group Discussion, Data interpretation and Demonstration

S.No	Description	Hrs	Mode
1	Instructions	4	Chalk and Talk
2	Detection of special elements, Aromatic and aliphatic nature, Test for saturation and unsaturation	2	Demonstration
3	Identification of functional groups	2	Demonstration
4	Derivative preparation	2	Demonstration
5	Analysis of organic substance -I	2	Chalk and Talk, Discussion, Procedure with illustration
6	Analysis of organic substance -II	2	Chalk and Talk, Discussion, Procedure with illustration
7	Analysis of organic substance -III	2	Chalk and Talk, Discussion, Procedure with illustration
8	Analysis of organic substance –IV	2	Chalk and Talk, Discussion, Procedure with illustration
9	Analysis of organic substance -V	2	Chalk and Talk, Discussion, Procedure with illustration
10	Analysis of organic substance -VI	2	Chalk and Talk, Discussion, Procedure with illustration
11	Revision	4	
12	Model	4	
	Total	30	

LESSON PLAN: TOTAL HOURS (30 Hrs)

EVALUATION (PRACTICAL)

Internal (Formative): 40 marks

External (Summative) : 60 marks Total :100 marks

Question Paper Pattern for Internal Practical Examination:40 Marks

Components	Marks
Procedure	10
Experiment	30
Total	40

Question Paper Pattern for External Practical Examination (Major):60Marks

S.No	Components	Marks
1.	Procedure	10
2.	Experiment	40
3.	Record book	10
	Total	60

In respect of external examinations passing minimum is **35% for Under Graduate** Courses and in total, **aggregate of 40%**.

Latest amendments and revisions as per UGC and TANSCHE norm is taken into consideration to suit the changing trends in the curriculum. Allotment of Marks for Volumetric Analysis