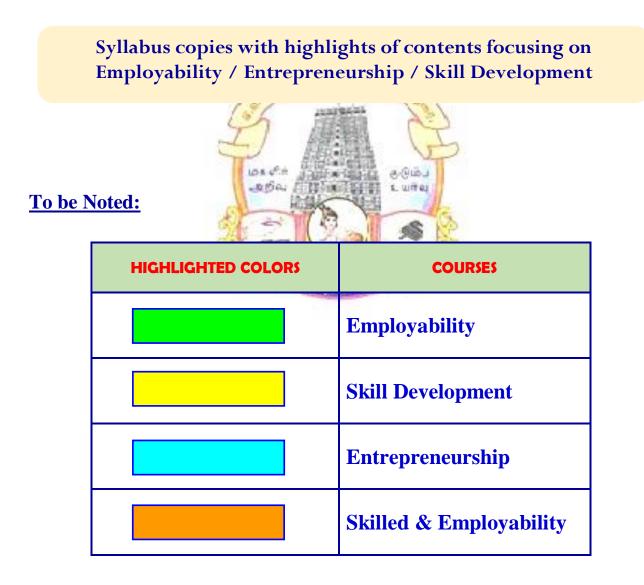
E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3rd Cycle) with Grade A⁺ & CGPA 3.51 by NAAC

DEPARTMENT OF MATHEMATICS

TANSCHE-CBCS with OBE MASTER OF SCIENCE PROGRAMME CODE - PM

COURSE STRUCTURE


(w.e.f. 2023-2024 Batch onwards)

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014. (An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3rd Cycle) with Grade A⁺ & CGPA 3.51 by NAAC

CRITERION - I

1.1.3 Details of courses offered by the institution that focus on employability / entrepreneurship / skill development during the year.

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)

Re-accredited (3rd Cycle) with Grade A⁺ and CGPA 3.51 by NAAC

DEPARTMENT OF MATHEMATICS-PG

TANSCHE – CBCS WITH OBE

(w.e.f. 2023 – 2024 onwards)

VISION

To mold the students to have strong Mathematical and Analytical skills to meet the challenges open to them.

MISSION

To provide the students with a strong Mathematical Foundation through courses which cater to the needs of Industry, Research and Higher Education

PEO	On completion of the Programme the student will be able to
PEO1	Apply their knowledge in modern industry or teaching, or secure acceptance in high quality graduate programs in mathematics.
PEO2	Keep on discovering new avenues in the chosen field and exploring areas that remain conducive for research and development.
PEO3	Promote the culture of interdisciplinary research among all disciplines and Applied Mathematics.
PEO4	Handle the problems faced by industry through Mathematical knowledge and scientific computational techniques
PEO5	To develop teaching skills, subject knowledge in the course of their study which will help them to shine in various field including Education ,IT etc.,

Programme Educational Objectives (PEOs)

Programme Outcomes (POs) with Graduate Attributes

PO	Graduate Attributes	On completion of the Programme the student will be able to
PO1	Problem Solving Skill	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context
PO2	Decision Making Skill	Foster analytical and critical thinking abilities for data-based decision-making
PO3	Ethical Value	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
PO4	Communication Skill	Ability to develop communication, managerial and interpersonal skills
PO5	Employability Skill	Inculcate contemporary business practices to enhance employability skills in the competitive environment
PO6	Individual and Team Leadership Skill	Capability to lead themselves and the team to achieve organizational goals.

Programme Specific Outcomes (PSOs) with Graduate Attributes

PSO	Graduate Attributes	On completion of the Programme the student will be able to
PSO1	Placement	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions
PSO 2	Entrepreneur	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
PSO 3	Research and Development	Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
PSO 4	Contribution to Business World	To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
PSO 5	Contribution to the Society	To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Eligibility for Admission: Pass in B.Sc., Mathematics

Duration of the Course:

The students shall undergo prescribed courses of study for the period of two academic years under CBCS semester pattern with Outcome Based Education.

Medium of Instruction: English

System: TANSCHE - Choice Based Credit System with Outcome Based Education.

Nature of the Course

Courses are classified according to the following nature

- 1. Knowledge & Skill
- 2. Employability Oriented
- 3. Entrepreneurship Oriented

Outcome Based Education (OBE) & Assessment

Students understanding must be built on and assessed for wide range of learning activities, which includes different approaches and are classified along several bases, such as

1. Based on purpose:

- Formative (Internal tests, Assignment, Seminar, Quiz, Documentation, Case lets, ICT based Assignment, Mini Projects administered during the learning process)
- Summative (Evaluation of students learning at the end of instructional unit)

2. Based on Domain knowledge: (Post Graduate Up to K5 Levels)

• Assessment through K1, K2,K3, K4 & K5

Evaluation

Continuous Internal Assessment Test (CIA)	: 25 Marks
Summative Examination	: 75 Marks
Total	: 100 Marks

CIA-Continuous Internal Assessment: 25 Marks

Components	Marks
Test (Average of two tests)	
(Conduct for 120 marks and converted into 12 marks)	12
Application-oriented/Innovation/Creativity	3
Assignment	
Assignment	5
Seminar	5
Total	25

- Centralized system of Internal Assessment Tests
- There will be a two Internal Assessment Tests
- Duration of Internal Assessment Test I and II will be 2 1/2 hours.
- Students shall write retest on the genuine grounds if they are absent in either Test I & Test II with the approval of Head of the Department.

Question Paper Pattern for Continuous Internal Assessment Test I and Test II

Section	Marks
A – Multiple Choice Questions (8x1Mark)	8
B – Short Answer (6 x 2 Marks)	12
C – Either Or type (4/8 x 5 Marks)	20
D – Open Choice type (2/4 x 10 Marks)	20
Total	60

Conducted for 120 marks and converted into 12 marks

Question Paper Pattern for Summative Examination

Section	Marks
A – Multiple Choice Questions without choice	10
(10x 1Mark)	
B – Short Answer Questions without choice (5 x 2 Marks)	10
C – Either Or type (5/10 X 5Marks)	25
D – Open Choice type(3out of 5 X 10Marks)	30
Total	75

• In respect of external examinations passing minimum is **45%** for Post Graduate Courses and in total, aggregate of **50%**.

Latest amendments and revisions as per UGC and TANSCHE Norms are taken into consideration in curriculum preparation.

Blooms Taxonomy	oms Taxonomy Internal Assessment		External Assessment
	Ι	II	
Knowledge (K1	8 %	8 %	5 %
Understanding (K2)	8 %	8 %	14 %
Apply (K3)	24 %	24 %	27%
Analyze (K4)	30 %	30 %	27%
Evaluate (K5)	30%	30%	27%

Distribution of Marks in % with K levels CIAI, II & Externa Assessment

BLUEPRINTFOR INTERNALASSESSMENT–I Articulation Mapping –K Levels with Course Learning Outcomes(CLOs)

			Secti	on A	Sectio	on B	Section C	Section D	
Sl.No	CLOs	K-Level	MCQs (No Choice)		Short Answ (No Choice)			(Open Choice)	Total
			No. of Questions	K-Level	No. of Questions	K-Level			
1	CLO1	Upto K5	1 2	K1 K2	1	K1 K3	1(K3) 1(K5)	1(K4)	
2	CLO2	Upto K5	2 1	K1 K2	1	K1 K2	1(K3) (Each set of questions must be in the same level)	1(K4) 1(K5)	
3.	CLO3	Upto K5	1 1	K1 K2	1 1	K2 K3	1(K4)	1(K5)	
	. of Quest	ions to	8		6		8	4	26
No	.of Quest		8		6		4	2	20
	rks for ead	ch	1		2		5	10	
	tal Marks tion	for each	8		12		40	40	100

BLUEPRINT FORINTERNALASSESSMENT- II Articulation Mapping –K Levels with Course Learning Outcomes (CLOs)

			Secti	on A	Sectio	on B	Section C	Section D	
SI.No	CLOs	K-Level		CQs Thoice)	Short Answ (No Choi		(Either or Type)	(Open Choice)	Total
			No. of Questions	K-Level	No. of Questions	K-Level	•		
1	CLO3	Upto K5	1 2	K1 K2	1	K1 K3	1(K1) 1(K2)	1(K3)	
2	CLO4	Upto K5	2 1	K1 K2	1	K1 K2	1(K3) (Each set of questions must be in The same level)	1(K4) 1(K5)	
3.	CLO5	Upto K5	1 1	K1 K2	1 1	K2 K3	1(K4)	1(K5)	
	. of Quest asked	ions to	8		6		8	4	26
	. of Quest answered		8		6		4	2	20
	rks for ea estion	ch	1		2		5	10	
	tal Marks tion	for each	8		12		40	40	100

CIA	K Levels	Section- AMCQ (No choice)	Section –B (Short Answer(No choice)	Section- C(Either or Type)	Section-D (Open Choice)	Total Marks	% of Marks
	K1	4	4			8	8
Ι	K2	4	4			8	8
	K3		4	20		24	24
	K4			10	20	30	30
	K5			10	20	30	30
	Marks	8	12	40	40	100	100
	K1	4	4			8	8
	K2	4	4			8	8
II	K3		4	20		24	24
	K4			10	20	30	30
	K5			10		30	30
					20		
	Marks	8	12	40	40	100	100

Distribution of Marks with choice K Levels CIA I – CIA and II-CIA

Articulation Mapping –K Levels with Course Learning Outcomes (CLOs) for Internal Assessment (SEC)

Sl.No	0s	K-Level	Sectio		Section		Section C	Section D	Total
	CLOs	K-]	MCQs (No choice)		Short Answers (No choice)		(Either/ or Type)	(open choice)	
			No. of Questions	K- Level	No. of Questions	K- Level	Type)		
1	CLO1	Upto K4	2	K1			2(K3&K3)	1(K3)	
2	CLO2	Upto K4	2	K1			2(K3&K3	1(K4)	
3	CLO3	Upto K4			2	K2	2(K4&K4)	1(K4)	
4	CLO4	Upto K5			2	K2	2(K5&K5)	1(K5)	
5	CLO5	Upto K5			2	K2		1(K5)	
No ask	. of Questi ted	ions to be	4		3		8	5	20
	. of Questi wered	ions to be	4		3		4	2	13
Marks for each question		1		2		5	10		
Total Marks for each		4		6		20	20	50	
sec	tion								(Marks)

Distribution of Section-wise Marks with K Levels for Internal Assessment (SEC)

K Levels	Section A (MCQ'S) (No choice)	Section B(Short Answer) (No choice)	Section C(Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	4				4	4
K2		6			6	6
K3			20	10	30	30
K4			10	20	30	30
K5			10	20	30	30
Total	4	6	40	50	100	
Marks						

K1-Remembering and recalling facts with specificans wers.

K2- Basic understanding off acts and stating main ideas with general answers.

K3-Application oriented Solving Problems, Justifying the statement and deriving inferences

K4- Examining, analyzing, presentation and make inferences with evidences.

K5-Evaluating, making Judgments based on criteria

Articulation Mapping -K Levels with Course Learning Outcomes(CLOs) for External Assessment

0	S	evel	Sectio	on A	Section B Short Answers (No choice)		Section C	Section D	Total
SI.No	CLOs	K-Level	MC (No ch	-			(Either/or Type)	(open choice)	
			No. of	K-	No. of	K-	Type)	choice)	
			Questions	Level	Questions	Level			
1	CLO1	Upto K4	2	K1&K2	1	K1	2(K2&K2)	1(K3)	
2	CLO2	Upto K4	2	K1&K2	1	K2	2(K3&K3)	1(K4)	
3	CLO3	Upto K4	2	K1&K2	1	K3	2(K3&K3)	1(K4)	
4	CLO4	Upto K5	2	K1&K2	1	K4	2(K4 &K4)	1(K5)	
5	CLO5	Upto K5	2	K1&K2	1	K5	2(K5 &K5)	1(K5)	
No. ask	of Questic ed	ons to be	10		5		10	5	30
	of Questic wered	ons to be	10		5		5	3	23
Ma	rks for eacl	h question	1		2		5	10	
Tot	al Marks fo	or each	10		10		25	30	75
sect	tion								(Marks)

E.M.G.Yadava Women's College, Madurai-14.

K Levels	SectionA (MCQ'S) (No choice)	Section B(Short Answer) (No choice)	Section C(Either or Type)	Section D(Open Choice)	Total Marks	% of Marks
K1	5	2	-	-	7	5
K2	5	2	10	-	17	14
K3	-	2	20	10	32	27
K4	-	2	10	20	32	27
K5	-	2	10	20	32	27
Total Marks	10	10	50	50	120	100

Distribution of Section-wise Marks with K Levels for External Assessment

K1-Remembering and recalling facts with specific answers.

K2- Basic understanding of facts and stating main ideas with general answers.

K3-Application oriented Solving Problems, Justifying the statement and deriving inferences

K4- Examining, analyzing, presentation and make inferences with evidences.

K5-Evaluating, making Judgments based on criteria

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3rd Cycle) with Grade A⁺ and CGPA 3.51 by NAAC DEPARTMENT OF MATHEMATICS- PG

(w.e.f. 2023 – 2024 Batch onwards) COURSE STRUCTURE –SEMESTER WISE TANSCHE-CBCS with OBE

Sem	Part	Course Code	Course Title	Teaching Hours	Duration of Exam		Mar	ks Allotte	d
bem	1 41 0	Course Coue	course rule	(per	hrs.				
				Week)		CIA	SE	Total	Credits
Ι		230PMA11	Core I: Algebraic Structures	7	3	25	75	100	5
	III	230PMA12	PMA12 Core II: Real Analysis I		3	25	75	100	5
		230PMA13	Core III: Ordinary Differential Equations		3	25	75	100	4
			DSEC I :	5	3	25	75	100	3
	DSEC II:		5	3	25	75	100	3	
		То	tal	30					20
		230PMA21	Core IV : Advanced Algebra	6	3	25	75	100	5
II	III	230PMA22	Core V: Real Analysis II	6	3	25	75	100	5
		230PMA23	Core VI: Partial Differential Equations	6	3	25	75	100	4
			DSEC III:	5	3	25	75	100	3
			DSEC IV:	5	3	25	75	100	3
	IV	230PMASEC2	SEC : Office Automation and ICT Tools	2	3	25	75	100	2
]	Fotal	30					22

DSEC – Discipline Specific Elective Course **SEC** - Skill Enhancement Course

DSEC (Discipline Specific Elective Course)

Semester – I (Choose any one) DSEC - I

1. Number Theory and Cryptography – 230PMADSE1A

2. Graph theory and its Applications -230PMADSE1B

DSEC - II (Choose any one)

1. Mathematical Programming – 230PMADSE1C

2. Fuzzy Sets and their Applications -230PMADSE1D

Semester – II DSEC – III (Choose any one)

- 1. Modelling and Simulation with Excel 230PMADSE2A
- 2. Fluid Dynamics 230PMADSE2B

DSEC - IV (Choose any one)

- 1. Mathematical Statistics 230PMADSE2C
- 2. Stochastic Process 230PMADSE2D

	Department of Mathematics						I M.Sc.,	
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	Core	230PMA11	Algebraic Structures	5	7	25	75	100

Nature of the Course							
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented					

Course Objectives

To introduce the concepts and to develop working knowledge on class equation, solvability of groups, finite abelian groups, linear transformations, real quadratic forms.

Course Content

Unit	Course Content	105 Hours	K Level	CLO
Ι	Another Counting Principle - Sylow's theorems	21	Up to K4	CLO 1
Π	Solvable groups - Direct products - Finite abelian groups- Modules.	21	Up to K4	CLO 2
III	Linear Transformations: Canonical forms – Triangular form - Nilpotent transformations	21	Up to K4	CLO 3
IV	Canonical forms – A Decomposition of V - Jordan form - Rational canonical form.	21	Up to K5	CLO 4
V	Trace and transpose - Hermitian, unitary, normal transformations - Real quadratic form.	21	Up to K5	CLO 5

Book for study:

I.N. Herstein, Topics in Algebra, 2nd Edition, John Wiley and Sons, NewYork 1975.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	2	2.11 and 2.12 (Omit Lemma 2.12.5)
П	2,4,5	2.13 and 2.14 (Theorem 2.14.1 only), 5.7 (Lemma 5.7.1, Lemma 5.7.2, Theorem 5.7.1), 4.5
III	6	6.4 and 6.5
IV	6	6.6 and 6.7
V	6	6.8, 6.10 and 6.11 (Omit 6.9)

Books for Reference:

- 1. M.Artin, Algebra, Prentice Hall of India, 1991.
- 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (IIEdition) Cambridge University Press, 1997. (Indian Edition)
- 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, Narosa Publishing House, New Delhi, 1999
- 4. D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of AbstractAlgebra, McGraw Hill (International Edition), New York. 1997.
- 5. N.Jacobson, Basic Algebra, Vol. I & II W.H.Freeman (1980); also published by Hindustan Publishing Company, New Delhi.

Web Resources:

- 1. <u>http://mathforum.org</u>,
- 2. http://ocw.mit.edu/ocwweb/Mathematics,
- 3. <u>http://www.opensource.org</u>,
- 4. <u>www.algebra.com</u>

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

E.M.G.Yadava Women's College, Madurai-14.

Rationale for nature of Course:

Knowledge and Skill:

- Acquaintance with the fundamental algebraic structures, namely group, rings and fields, essential for further study of algebra.
- Skill to apply in modern mathematics and other fields.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CO	Course Outcome	K-level
CO1	Recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the theorem to find number of Sylow subgroups.	Up to K4
CO2	Define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules.	Up to K4
CO3	Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nilpotence to decompose a space into invariant subspaces, to find invariants of linear transformation, to explore the properties of nilpotent transformation relating nilpotence with invariants.	Up to K4
CO4	Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation.	Up to K5
CO5	Define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian, unitary, normal transformations and to verify whether the transformation in Hermitian, unitary and normal.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems
- K4- Analyzing, examining and making presentations with evidence
- K5- Evaluating, making Judgments based on criteria

E.M.G.Yadava Women's College, Madurai-14.

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	2	1	3
CLO2	3	2	2	2	1	3
CLO3	3	2	2	2	2	3
CLO4	3	2	2	2	2	3
CLO5	3	3	1	2	2	3

Mapping of Course Learning Outcomes (CLOs) with **Programme Outcomes (POs)**

1-Basic Level 2- Intermediate Level 3.AdvancedLevel

Lesson Plan

Unit	Description	Hours	Total Hours	Mode
	Another Counting Principle	10	liouis	Chalk & Talk
Ι	Sylow's theorems	11	21	Chalk & Talk
II	Solvable groups - Direct products	10	21	Chalk & Talk
	Finite abelian groups- Modules	11	-	Chalk & Talk
III	Linear Transformations: Canonical forms	10	21	PPT, Chalk & Talk
	Triangular form - Nilpotent transformations	11		Seminar
IV	Jordan form	10	21	Chalk & Talk Seminar
	Rational canonical form	11		Chalk & Talk Seminar
v	Trace and transpose - Hermitian, unitary	10	21	Chalk & Talk Seminar
	Normal transformations, real quadratic form	11	4	Lecture, Quiz
	Total		105	

	Department of Mathematics						I M.Sc.,	1
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	Core	230PMA12	Real	5	7	25	75	100
			Analysis I					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives

- 1. To learn about advanced topics in Riemann's Stieltjes Integrals.
- 2. To understand the concepts of infinite series and products.

Course Content

Unit	Course Content	105 Hours	K Level	CLO
Ι	 Functions of bounded variation - Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation. Infinite Series: Absolute and conditional convergence - Dirichlet's testand Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series. 	21	Up toK3	CLO1
Π	The Riemann - Stieltjes Integral - Introduction - Notation - The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral – Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems.	21	Up toK4	CLO2
III	The Riemann-Stieltjes Integral - Sufficient conditions for the existence of Riemann-Stieltjes integrals- Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval – Second fundamental theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral	21	Up toK4	CLO3
IV	Sequences of Functions – Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions – Definition of Uniform Convergence- Uniform convergence and continuity - Cauchy condition for uniform convergence - Uniform convergence of infinite	21	Up toK5	CLO5

			Annexure-1]
	series of functions - Riemann - Stieltjes integration – Sufficient condition for uniform convergence of a series - Mean convergence.			
V	Power series- Multiplication of power series-The Substitution Theorem-Reciprocal of a Power series-The Bernstein's Theorem-Abels Limit Theorem-Tauber's Theorem	21	Up toK5	CLO5

Book for study:

Tom M. Apostol : *Mathematical Analysis*, 2nd Edition, Addison-Wesley Publishing Company Inc. New York, 1974.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	6,8	6.1 to 6.8 8.8, 8.15, 8.17, 8.18
II	7	7.1 to 7.7 & 7.10 to 7.14
III	7	7.16 to 7.22
IV	9	9.1 to 9.6,9.8,9.11,9.13
V	9	9.14 to 9.17,9.20,9.22,9.23

Books for Reference:

- 1. Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
- 2. Rudin, W. Principles of Mathematical Analysis, 3rd Edition. McGraw Hill Company, New York, 1976.
- 3. Malik, S.C. and Savita Arora. *Mathematical Anslysis*, WileyEastern Limited. New Delhi, 1991.
- 4. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, SatyaPrakashan, New Delhi, 1991.
- 5. Gelbaum, B.R. and J. Olmsted, Counter Examples in Analysis, Holden day, San Francisco, 1964.

Web Resources:

- 1. <u>http://mathforum.org</u>,
- 2 <u>http://ocw.mit.edu/ocwweb/Mathematics</u>,
- 3. <u>http://www.opensource.org</u>

E.M.G.Yadava Women's College, Madurai-14.

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

Demonstrate capacity for mathematical reasoning through analyzing , proving and explaining concepts from

Real Analysis and skill to apply for other field in mathematics.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Know how continuity of derivatives are generalized from real line	Up to K3
CLO2	Determine the Riemann-stieltjes integrability of a function ,prove a selection of theorems and concerning integration.	Up to K4
CLO3	Illustrate the effect of uniform convergence in the limit function with respect to continuity, differentiability and integrability.	Up to K4
CLO4	To be able to understand the concept of integration of differential forms.	Up to K5
CLO5	To be able to differentiate and integrate power series to obtain new ways to represent functions.	Up to K5

K1- Remembering facts with specific answers

- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Description	105 H	Hours	Mode
I	Introduction - Properties of monotonic functionsFunctions of bounded variation - Totalvariation - Additive property oftotal variation - Total variation on [a, x] as afunction of x - Functionsof bounded variation expressed as the difference of twoincreasingfunctions - Continuousfunctions of bounded variation	11	21	Chalk & Talk
	Absolute and conditional convergence Dirichlet's test and Abel's test -Rearrangement of series Riemann's theorem on conditionallyconvergent series	10		Chalk & Talk
Π	Linear Properties - Integration by parts-Change of variable in a Riemann - Stieltjes integral -Reduction to a Riemann Integral – Euler's summation formula - Monotonically increasing integrators,Upper and lower integrals	11		Chalk & Talk
	Monotonically increasing integrators, Upper and lower integrals -Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparisontheorems.	10	21	Chalk & Talk
III	Change of variable -Second Mean ValueTheorem for Riemann integral - Lebesgue criteria on for existence of Riemann integrals	10		PPT, Chalk & Talk
	Sufficient conditions for the existence of Riemann-Stieltjes integrals- Necessary conditions for the existence of RS Integrals - Mean value theorems -integrals as afunction of the interval – Second fundamental theorem of integral calculus	11	21	Seminar
IV	Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions Uniform convergence and continuity -Cauchy condition for uniform convergence – Uniform convergence of infinite series of functions	10	21	Chalk & Talk Seminar
	Riemann - Stieltjes integration – Non- uniform Convergence and Term-by-term Integration Uniform convergence and differentiation Sufficient condition for uniform convergence of a series - Mean convergence.	11		Chalk & Talk Seminar
V	Multiplication of series – Cesarosummability Infinite products. Multiplication of power series TheTaylor's series generated by a function Bernstein's theorem -	11	21	Chalk & Talk Seminar
	Abel's limit theorem -Tauber's theorem	10		Lecture, Quiz
	Total		105	

	Department of Mathematics						I M.Sc.,	
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	Core	230PMA13	Ordinary Differential	4	6	25	75	100
			Equations					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives:

- Develop strong background on finding solutions to linear differential equations with constant and variable coefficients and also with singular points.
- Study the existence and uniqueness of the solutions of first orderdifferential equations.
- To solve the second order and *n*-th order Initial value problems.
- Introduce the students to the technique of solving various problems of engineering and science.
- Study the concepts relating to the order and linearity of ODEs, analytic and computational solution methods for ODEs

Course Content:

Unit	Course Content	90 Hours	K Level	CLO
Ι	Linear equations with constant coefficients: Introduction - The Second order homogeneous equation -Initial value problems for second order equations -Linear dependence and independence- A formula for the Wronskian - The Non-homogeneous equation of order two.	18	Up toK4	CLO1
п	Linear equations with constant coefficients: The Homogeneous equation of order n - Initial value problems for n^{th} order equations – Equations with real constants – The non-homogeneous equation of order n – A special method for solving the non- homogeneous equation - Algebra of constant coefficient operators.	18	Up toK4	CLO2
ш	Linear equation with variable coefficients: Introduction - Initial value problems for the homogeneous equation Solutions of the homogeneous equation The Wronskian and linear independence- Reduction of the order of a homogeneous equation - The non-homogeneous equation Homogeneous equations with analytic coefficients-The Legendre equation.	18	Up toK4	CLO3
IV	Linear equation with regular singular points: Introduction – The Euler equation – Second order equations with regular singular points – an example – Second order equations with regular singular points – the general case – The Bessel Equation – The Bessel Equation (continued) .	18	Up toK5	CLO4

			Annexure-1	
V	Existence and uniqueness of solutions to first order equations: Introduction - Equation with variables separated – Exact equations – method of successive approximations – The Lipschitz condition – convergence of the successive approximations.	18	Up toK5	CLO5

Book for study:

E.A.Coddington, A introduction to ordinary differential equations (3rdPrinting) Prentice-Hall of India Ltd., New Delhi, 1987.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	2	1 to 6
II	2	7 to 12.
III	3	1 to 8
IV	4	1 to 4, 7 & 8
V	5	1 to 6

Books for Reference:

- 1. Williams E. Boyce and Richard C. DI Prima, *Elementary differential equations and boundary value problems*, John Wiley and sons, New York, 1967.
- 2. George F Simmons, *Differential equations with applications and historical notes*, Tata McGraw Hill, New Delhi, 1974.
- 3. N.N. Lebedev, Special functions and their applications, Prentice Hallof India, New Delhi, 1965.
- 4. W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
- 5. M.D.Raisinghania, Advanced Differential Equations, S.Chand & Company Ltd. New Delhi 2001
- 6. B.Rai, D.P.Choudary and H.I. Freedman, *A Course in OrdinaryDifferential Equations*, Narosa Publishing House, New Delhi, 2002.

Web Resources:

- 1. http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
- 2. http://www.opensource.org, www.mathpages.com

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Obtain the solutions of second order homogenous and non-homogenous linear differential equation with constant coefficients and understand the utility of Wronskian, linear independence and linear independence solutions.	Up to K4
CLO2	Understand the concepts regular singular points and solve the Bessel equation.	Up to K4
CLO3	Understand the concept of successive approximation, the Lipchitz condition and prove local and Non-local existence theorems	Up to K4
CLO4	Classify first order partial differential equations and their solutions and solve those using different methods.	Up to K5
CLO5	Solve the first order linear and nonlinear PDE's by using charpits and Jacobi's method respectively.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Units	Description	90	Hours	Mode	
	Introduction	2		Lecture	
	Second order homogeneous equations	2		Lecture	
	Initial value problem for second order equations	2		Lecture & PPT	
	Linear dependence and independence	2	10	Lecture	
	Problems on Linear dependence and independence	2	18	Lecture	
Ι	A formula for Wronskian	4		Lecture& Group	
				Discussion	
	The Non-Homogeneous equations of order two	4		Lecture	
	The Homogeneous equation of order n.	5		Lecture& Seminar	
	Initial valueproblems for n th order equations .	2		Lecture	
	Equations with real constants .	2	18	Lecture & PPT	
II	The non-homogeneous equation of order n.	5		Lecture	
	A special methods for solving the non homogeneous	2		Lecture& Seminar	
	equation				
	Algebra of constant coefficient operators.	2		Lecture& Seminar	
	Initial value problems for the homogeneous equation.	3		Lecture	
	Solutions of the homogeneous equation.	3		Lecture & PPT	
	The Wronskian and linear independence	3		Lecture	
	Reduction of the order of a homogeneous equation	3	18	Lecture	
III	The non-homogeneous equation.	3		Lecture & Seminar	
	Homogeneous equations with analytic coefficients	3		Lecture & Group	
				Discussion	
	The Legendre equations.	2			
	The Euler equations	6		Lecture	
	Second order equations with Regular singular points	2		Lecture	
** /	Exceptional cases	3	10	Lecture & Seminar	
IV	The Bessel equation	3	18	Lecture	
	The Bessel equation continued.	2		Lecture & PPT	
	Equations with variable separated	2		Lecture	
V	Exact equations	3		Lecture & Seminar	
¥	The method of successive approximation	3	1	Lecture	
	The Lipschitz condition	3	1	Lecture & PPT	
	Convergence of successive approximation	3	18	Assignment	
	Non-local existence of solutions.	3	1	Lecture & Group Discussion	
	Approximations to and uniqueness of solutions.	3	1	Lecture	
	Total		90		

	Department of Mathematics						I M.Sc.,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total
1	DSEC	230PMADSE1A	Number Theory And Cryptography	3	5	25	75	100

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

To provide an introduction to analytic number theory and recent topics or Cryptography with applications

Course Content:

Unit	Course Content	75 Hours	K Level	CLO
I	Introduction –Conjectures - Well Ordering and Induction – Sigma notation and product notation - Binomial Coefficients – Greatest Integer functions – Divisibility – Greatest Common Divisor (GCD) – Euclid Algorithm.	15	Up toK4	CL01
II	Introduction – primes counting function – prime number theorem –canonical factorization – fundamental theorem of arithmetic – Seive of Eratosthenes – Determining factorization	15	Up toK4	CLO2
III	Congruence – equivalence relations- linear congruences – linear Diophantine equations and Chinese remainder theorem – Polynomial Congruences – modular arithmetic and Fermat's theorem – Wilson's theorem and Fermat number	15	Up toK4	CLO3
IV	Arithmetic functions – Sigma function - tau functions – Dirichlet product – quadratic reisdues and Legendre symbols.	15	Up toK5	CLO4
v	Cryptography: Introduction – Character Ciphers – Block Ciphers – One time Pods – Public – Key Cryptography	15	Up toK5	CLO5

Books for study:

Neville Robbins; Beginning Number Theory, Second Edition, Narosa, 2006

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	1,2	1.1 - 1.6 & 2.2
II	3	3.1- 3.3
III	4	4.2- 4.7
IV	5, 7	5.1-5.2 & 7.2
V	12	12.1 - 12.5

Books for Reference:

- 1. Tom Apostol, Introduction to Analytic Number theory, Narosa Publications, New Delhi
- 2. Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, New York, 1987.
- 3. David M.Burton, Elementary Number Theory, Wm.C.Brown Publishers, Dubuque, Iowa, 1989.

Web Resources:

- 1. http://mathforum.org,
- 2. <u>http://ocw.mit.edu/ocwweb/Mathematics</u>,
- 3. http://www.opensource.org,
- 4. https://onlinecourses.nptel.ac.in/noc20_ma42/preview

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understand the properties of divisibility and congruence.	Up to K4
CLO2	Use arithmetic functions in area of mathematics	Up to K4
CLO3	Understand and use the theorems ,Chinese reminder theorem and Lagrange's theorem	Up to K4
CLO4	Know the applications of reciprocity law and Diophantine equation	Up to K5
CLO5	Apply elementary number theory concepts in cryptography.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan:

UNIT	DESCRIPTION	75 I	Hours	PEDAGOGY
	Divisibility - Division algorithm	2		Chalk and Talk,
	GCD, Euclidean algorithm	2		Problem Solving,
	LCM and Properties	2		Tutorial
Ι	Congruence's - Euler's Theorem	2	15	
	Fermat's theorem – Wilson's theorem	3		
	Solutions of congruence's – The Chinese Remainder Theorem	4		
	Quadratic residues – Lemma of Gauss	8		Chalk and Talk,
II	Gaussian reciprocity law – Jacobi symbol.	7	15	Problem Solving,
				Tutorial
	Greatest integer function	5		Chalk and Talk,
III	Arithmetic functions	5	15	Problem Solving,quiz
	The Moebius Inversion formula	5		
	Diophantine Equation – The linear equation –			
IV	Pythagorean Triangle	8		Chalk and Talk,
	The equation $x^2 y^2 z^2$	7	15	Problem Solving
	Discrete logarithm– Principles of public key	5	1	
v	Cryptosystem – RSA algorithm	5		Chalk and Talk,
·	Elliptic curve cryptography.	5	15	Problem Solving
	Total		75	

	I M.Sc.,							
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	DSEC	230PMADSE1C	Mathematical	3	5	25	75	100
			Programming					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

- To introduce the Revised simplex method and to make them performparametric analysis.
- To make them understand the limitations of simplex method in derivinginteger solution to linear programming problems.
- To illustrate various dynamic programming models and their applications in solving a decision-problem.
- To introduce the concept of classical optimization techniques.
- To appreciate the use of some of the non-linear programming techniques such as quadratic and separable programming.

Unit	Course Content	75 Hours	K Level	CLO
Ι	Network Models: Network Definitions – Minimal Spanning tree Algorithm – Shortest Route Problem – Examples of the Shortest Route Applications – Shortest Route Algorithms – Maximal flow Model – Maximum flow algorithm - CPM – PERT – CPM Computations – Construction of the Time Schedule.	15	Up toK3	CL01
п	Deterministic Inventory Models: General Inventory Model - Role of demand in the development of Inventory models - Static Economic order Quantity EOQ Models – Classic EOQ Model – EOQ Problems with Price Breaks – Multiitem EOQ with storage limitation- Dynamic EOQ models – No- Setup model – Set up model	15	Up toK4	CLO2
ш	Queuing Systems: Elements of Queuing model - Role of Exponential Distribution – Pure Birth and Death Models – Pure Birth models _ Pure Death Model – Generalized poisson Queuing model – Specialized poisson Queues – Steady State Measures of Performance – Single Server Models – Multiple server models – Machine Servicing Model (M/M/R) (GD/K/K); R <k< td=""><td>15</td><td>Up toK4</td><td>CLO3</td></k<>	15	Up toK4	CLO3

Course Content:

		Annex	ure-1	
IV	Classical Optimization Theory: Unconstrained Problems: Necessaryand Sufficient Conditions – The Newton-Raphson Method – Constrained Problems: Equality Constraints – Inequality Constraints (Karush-Kuhn- Tucker Conditions)	15	Up toK5	CL O4
v	Nonlinear Programming Algorithms: Unconstrained Algorithms: Direct search method – Gradient method – Constrained Algorithms: Separable Programming – Quadratic Programming.	15	Up toK5	CL O5

Book for study:

Hamdy A. Taha, *Operations Research*, (Seventh edition) Pearson Prentice Hall of India Private Limited, New Delhi, 1997.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
T	6	6.1,6.2,
-	Ŭ	6.3 – 6.3.1, 6.3.2,
		6.4 - 6.4.2,
		6.5 - 6.5.1, 6.5.2, 6.5.3
П	11	11.1, 11.2, 11.3 – 11.3.1, 11.3.2,
		11.3.3
		11.4 - 11.4.1, 11.4.2
Ш	15	15.2, 15.3, 15.4- 15.4.1, 15.4.2
	10	15.5, 15.6 - 15.6.1, 15.6.2, 15.6.3,
		15.6.4
IV	18	18.1-18.1.1, 18.1.2
		18.2-18.2.1, 18.2.2
V	19	19.1 – 19.1.1, 19.1.2
•	17	19.2 – 19.2.1, 19.2.2

Books for Reference:

- 1. J.K.Sharma, *Operations Research Theory and Applications* (Fourth Edition), Macmillan India Ltd, New Delhi, 2009.
- 2. F.S. Hillier & J.Lieberman *Introduction to Operation Research* (7th Edition)Tata McGraw Hill Company, New Delhi, 2001.
- 3. Beightler. C, D.Phillips, B. Wilde, Foundations of Optimization (2nd Edition)Prentice Hall Pvt Ltd., New York, 1979
- 4. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd. New Delhi. 1990

Web Resources:

- 1. https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf
- 2. http://www.dl.behinehyab.com/Ebooks/LP/LP015_800845_www.behinehyab.com.pdf
- 3. https://coral.ise.lehigh.edu/~ted/teaching/ie406/

Pedagogy:

Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Semina •

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Know how Feasibility conditions Parametric changes in <i>c</i> , Parametric changes in b	Up to K3
CLO2	Determine the Then Constraints – Integer Programming Algorithms Traveling Salesperson Problem	Up to K4
CLO3	Illustrate the effect of Dynamic Programming Applications Inventory Model	Up to K4
CLO4	To be able to Unconstrained Problems: Necessary and Sufficient Conditions – The Newton-Raphson Method	Up to K5
CLO5	To be able to understand the concept of Separable Programming – Quadratic Programming	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3
1-Basic Level 2- Intermediate Level 3- Advanced Level						

1-Basic Level

- 2- Intermediate Level
- **3- Advanced Level**

Unit	Description	75 H	Hours	Mode
	Network Definitions - Minimal Spanning tree Algorithm – Shortest Route Problem	2		
	Examples of the Shortest Route Applications	5		Lecture,
Ι	Shortest Route Algorithms – Maximal flow Model – Maximum flow algorithm	4	15	Discussion,
1	CPM – PERT – CPM Computations – Construction of the Time Schedule.	4		Tutorial, Quiz
	General Inventory Model - Role of demand in the development of Inventory models	4		
	Static Economic order Quantity EOQ Models	4		Lecture, Quiz
II	Classic EOQ Model – EOQ Problems with Price Breaks – Multi item EOQ with storage limitation	4	15	Group Discussion,
	Dynamic EOQ models – No- Setup model – Set up model	3		Tutorial
III	Elements of Queuing model - Role of Exponential Distribution	2		PPT,
	Pure Birth and Death Models – Pure Birth models _ Pure Death Model	3		Lecture,Quiz,
	Generalized poisson Queuing model – Specialized poisson Queues	2	15	Tutorial
	Steady State Measures of Performance – Single Server Models – Multiple server models	5		
	Machine Servicing Model (M/M/R) (GD/K/K); R <k< td=""><td>3</td><td></td><td></td></k<>	3		
IV	Unconstrained Problems: Necessary and Sufficient Conditions Equality Constraints –	5	15	PPT, Lecture
	The Newton-Raphson Method – Constrained Problems:	2	-	
	Inequality Constraints (Karush-Kuhn-Tucker Conditions)	8		
	Unconstrained Algorithms: Direct search method –Constrained Algorithms:–	5		
	Gradient method	3	15	Assignment, Seminar
V	Separable Programming	5	1	
	Quadratic Programming.	2		
	Total		75	

	Department of Mathematics]	I M.Sc.,		
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total	
1	DSEC	230PMADSE1B	Graph Theory and its Applications	3	5	25	75	100	

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives:

- To enable the students to apply Graph Theritical Techniques in Applications.
- To demonstrate knowledge of Connectivity.
- To study relationship between Euler Tours and Hamilton Cycles.
- To make familiarity with Directed Graphs.
- To assist the students to explore social network analysis software.

Course Content:

Unit	Course Content	75 Hours	K Level	CLO
	Graphs and Subgraphs	15		
Ι	Definition and Examples of a Graph – Simple Graphs - Graphs Isomorphism- The Incidence and Adjacency Matrices - Subgraphs – Vertex Degrees – Paths		Up to K4	CLO1
	and Connection– Cycles - Trees - Cut Edges and Bonds – Cut Vertices – Cayley's Formula(Applications) - The Connector Problem.			
	Connectivity	15		
II	Connectivity – Blocks (Applications) - Construction of Reliable		Up to K4	CLO2
	Communication Networks			
	Euler Tours and Hamilton Cycles	15		
III	Euler Tours - Hamilton Cycles (Applications) - The Chinese Postman		Up to K4	CLO3
	Problem – The Travelling Salesman Problem.			
	Directed Graphs	15		
IV	Directed Graphs - Directed Paths - Directed Cycles (Applications) - A Job		Up to K5	CLO4
	sequencing Problem - Designing an Efficient Computer Drum - Making a		optono	CLOI
	Road System One-way - Ranking the Participants in Tournament.			
	Networks	15		
V	Flows-Cuts-The Max-Flow Min-Cut Theorem (Applications)-Menger's		Up to K5	CLO5
	Theorems - Feasible Flows			

Book for study:

J.A. Bondy and U.S.R. Murty.(1982), Graph Theory with Applications. 5th print, North Holland .

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	1and 2	1.1 to 1.7 &2.1 to 2.5
II	3	3.1 to 3.3
III	4	4.1 to 4.4
IV	10	10.1 to 10.7
V	11	11.1 to 11.5

Books for Reference:

- 1. John Clark. Derek Allan Holton. Graph Theory. University of Otago (1995).
- 2. Frank Harary, (1969), *Graph theory*, Addition-Wesley Publishing Company, First Edition.
- 3.Murugan.M.,(2003), *Topics in Graph theory and Algorithms*, Muthal Publishing House,
- 4. S.A. Choudum. *A First Course in Graph Theory*.Macmillan Publishers India Limited (2011).
- 5. Narasing Deo (2007), Graph Theory with Applications to Engineering and Computer science, Pretice .

Web Resources:

- 1. https://www.shahucollegelatur.org.in/Department/Studymaterial/sci/it/BCS/FY/book.pdf
- 2. https://www.flowsurfv3.net/c.php?cu=https%253A%252F%252Fwww.shahucollegelatur.org.in%252FDepartment%252FStudymaterial%252Fsci%252Fit%252FBCS%252FFY%252Fbook.pdf&sh=www.shahucollegelatur.org.in%2F...%2Fit%2FBCS%2FFY%2Fbook.pdf&l=IN&po=2&u=mbeh-20210420-ccmnet-flga33&a=3100&tr=1712umd71g10&keyword=Graph%2Btheory%2Bwith%2Bapplication%2Bpdf&aid=61a88bda894f1&t=8&bc=0&rt=1638435802.1301&n=3&loc=normal

E – **Books**:

- 1. http://www.freebookcentre.net/maths-books-download/Descriptive-Complexity,-Canonisation and-Definable-Graph-Structure-Theory.html
- 2. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

Pedagogy:

Chalk and Talk, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course: Knowledge and Skill:

Provides a helpful tool to quantity & simplify the many moving parts of dynamic systems

Activities to be given:

Tocreate social graphs for their own social networks. Group Discussion, Seminar & Project

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CL01	Examine the Graphs and Subgraphs .	Up to K4
CLO2	Understand the Connectivity	Up to K4
CLO3	Investigating the relationship between Euler Tours and Hamilton Cycles.	Up to K4
CLO4	Explain the Directed Graphs.	Up to K5
CLO5	Compute the Analysis of Networks.	Up to K5

K1- Remembering facts with specific answers

K2- Basic understanding of facts.

K3- Application oriented

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

		PO1	PO2	PO3	PO4	PO5	PO6
C	L01	3	2	3	3	2	3
C	LO2	3	3	3	2	3	3
C	LO3	3	2	2	3	3	3
Cl	LO4	3	3	2	2	3	3
C	L05	3	2	3	2	2	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

	Lesso	on Plan		
Unit	Course Content	75 Hours		Mode of Teaching
Ι	Definition and Examples of a Graph – Simple Graphs - Graphs Isomorphism- The Incidence and Adjacency Matrices – Subgraphs.	5	15	Chalk & Talk, Quiz, Exercise
	Vertex Degrees – Paths and Connection–Cycles	5		
	Trees - Cut Edges and Bonds – Cut Vertices – Cayley's Formula (Applications) -The Connector Problem.	5		
II	Connectivity.	5	15	Chalk & Talk, PPTs,
	Blocks (Applications).	5		Quiz, Exercise
	Construction of Reliable Communication Networks.	5		
III	Euler Tours and Hamilton Cycles.	5	15	Chalk & Talk, PPTs, Exercise, Quiz
	The Chinese Postman Problem.	5		2
	The Travelling Salesman Problem.	5		
IV	Directed Graphs - Directed Paths - Directed Cycles (Applications)	5	15	Chalk & Talk, Exercise PPTs, Quiz,
	A Job sequencing Problem-Designing an Efficient Computer Drum	5		seminar
	Making a Road System One–way Ranking the Participants in Tournament	5		
	Flows-Cuts-The Max-Flow Min-Cut Theorem (Applications).		15	Chalk & Talk, Exercise Quiz
	Menger's Theorems	5		Assignment PPTs,
	Feasible Flows.	5		seminar
	Total		75	

Lesson Plan

	Department of Mathematics]	[M.Sc.,		
Sem	Category	Course Code	Course Title	Credits	Conta	ict	CIA	SE	Total
					Hours/w	veek			
1	DSEC	23OPMADSE1D	Fuzzy Sets and their	3	5		25	75	100
			Applications						

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives:

- 1. To understand fundamental of fuzzy set.
- 2. To learn fuzzy set, Arithmetic operation on fuzzy set.
- 3. To understand fuzzy notation
- 4. To know about fuzzy relation.
- 5. To apply fuzzy logic in real world problem.

Course Content:

Unit	Course Content	75Hours	K-Level	CLO
I	Introduction ,Crisp Sets: An Overview, The Notation of Fuzzy Sets, Basic Concepts of Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic	15	Up to K4	CL01
п	General Discussion, Fuzzy Complement, Fuzzy Union, Fuzzy Intersection, Combinations of Operations, General Aggregation Operations.	15	Up to K4	CLO2
III	Crisp and Fuzzy Relations, Binary Relations, Binary Relations On a Single Set, Equivalence and Similarity Relations.	15	Up to K4	CLO3
IV	Compatibility or Tolerance Relations, Orderings	15	Up to K5	CLO4
V	Morphisms, Fuzzy Relation Equations	15	Up to K5	CLO5

Book for Study:

Fuzzy Sets, Uncertainty and Information, George J.Klir, Tina A. Folger.

E.M.G.Yadava Women's College, Madurai-14.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
I	1	1.1 to 1.6
II	2	2.1 to 2.6
III	3	3.1 to 3.4
IV	3	3.5 & 3.6
V	3	3.7 & 3.8

Books for Reference:

- 1) Bhargava A.K *Fuzzy Set Theory Fuzzy Logic and Their Applications*, S.Chand& Company Pvt. Ltd.2013.
- 2) Chennakesava, R. Alavala, *Fuzzy Logic and Neural Network Basic Concepts* & *Applications*, New Age International Publishers 2008.
- 3) George J.Klir and Boyuan, *Fuzzy sets Fuzzy Logic, Theory and Applications*, Prentice Hall of India , 2002.
- 4) George Bojadziev and Maria Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications, 1996.
- 5) Bhargava A.K.Fuzzy Set Theory Fuzzy Logic and their Applications, 2013.

Web Resources :

1.https://cours.etsmtl.ca/sys843/REFS/Books/ZimmermannFuzzySetTheory2001.pdf

- 2. https://link.springer.com/book/10.1007/978-3-642-35221-8
- 3. https://www.b-farhadinia.ir/bfarhadiadmin/file/stdfile/Klir.pdf

E-books :

- 1. https://bookauthority.org/books/beginner-fuzzy-logic-ebooks
- 2. https://www.phindia.com/Books/ShowBooks/NzI/Fuzzy-Sets-and-Fuzzy-Logic
- 3. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119193210

Pedagogy :

Chalk and Talk, Group Discussion, Student Seminar, Spot Test, Assignments, Quiz.

Rationale for Nature of the Course:

Knowledge and Skill

To understand the concept of fuzzy and its application in various field

E.M.G.Yadava Women's College, Madurai-14.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource

Course Learning Outcomes (CLO):

On successful Completion of the course Students will be able to

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)		
CLO1	Understand to Examine the Basic Concepts of Crisp sets and Fuzzy sets	Up to K4		
CLO2	Describe Fuzzy Operations	Up to K4		
CLO3	Understand the concept of Fuzzy Arithmetic	Up to K4		
CLO4	Determine the difference between Crisp and Fuzzy Relation	Up to K5		
CLO5	Use Fuzzy Relation as tools to Visualize and Simplify	Up to K5		

K1- Remembering and recalling facts with specific answers

- K2- Basic understanding of facts and stating main ideas with general answers
- K3– Application oriented Solving Problems
- K4 –Examining, analyzing, presentation and make inferences with evidences
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcome(CLOs) with Program Outcomes(Pos)

11 0		0		, 0		
CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	2	3	2	2	3
CLO2	1	2	3	2	2	3
CLO3	2	3	2	2	2	1
CLO4	2	2	3	2	2	2
CLO5	2	2	3	2	2	3

1 – Basic Level

2 – Intermediate Level

3- Advance Level

Lesson Plan:

Units	Course Contents	75 He	ours	Mode of Teaching
	Introduction, Crisp Sets	5		Chalk & Talk
Ι	An Overview: The Notation of Fuzzy Sets.	5	15	
	Basic Concepts: Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic.	5	15	
	General Discussion, Fuzzy Complement,	5		Chalk & Talk
	Fuzzy Union, Fuzzy Intersection		15	
Π	Fuzzy Intersection, Combinations of Operations	10		
	Combinations of Operations, General Aggregation Operations.			
	Crisp and Fuzzy Relations	5		Chalk & Talk, Spot Test
	Relations, Binary Relations On a Single Set	5		Group Discussion
III	Equivalence and Similarity Relations	5	15	
	Compatibility	5		Chalk & Talk
	Tolerance Relations	5		
IV	Orderings	5	15	
	Morphisms	10		Chalk & Talk
v	Fuzzy Relation and Equation	5	15	Students Seminar
	Total		75	

	Department of Mathematics						I M.So	2.,
Sem	Category	Course	Course Title	Credits	Contact	CIA	SE	Total
		Code			Hours/week			
2	Core	230PMA21	Advanced Algebra	5	6	25	75	100

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives:

• To study field extension, roots of polynomials, Galois Theory, finite fields, division rings, solvability by radicals and to develop computational skill inabstract algebra.

Course Content:

Unit	Course Content	90 Hours	K Level	CLO
Ι	Extension fields – Transcendence of e.	18	Up toK3	CLO1
II	Roots of Polynomials - More about roots	18	Up toK4	CLO2
III	Elements of Galois theory	18	Up toK4	CLO3
IV	Finite fields - Wedderburn's theorem on finite division rings.	18	Up toK5	CLO4
v	Solvability by radicals - A theorem of Frobenius - Integral Quaternions and the Four - Square theorem.	18	Up toK5	CLO5

Book for study:

I.N. Herstein. Topics in Algebra (II Edition) Wiley Eastern Limited, New Delhi, 1975.

UNIT	CHAPTER(S)	SECTIONS
Ι	5	5.1 and 5.2
II	5	5.3 and 5.5
III	5	5.6
IV	7	7.1 and 7.2
V	5, 7	5.7
		7.3 and 7.4

Books for Reference:

- 1. M.Artin, Algebra, Prentice Hall of India, 1991.
- 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (IIEdition) Cambridge University Press, 1997. (Indian Edition)
- I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, Narosa Publishing House, New Delhi, 1999
- 4. D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of AbstractAlgebra, McGraw Hill (International Edition), New York. 1997.
- 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing Company, New Delhi.

Web Resources:

- 1. <u>http://mathforum.org</u>,
- 2. http://ocw.mit.edu/ocwweb/Mathematics,
- 3. http://www.opensource.org, www.algebra.com

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

СО	Course Outcome	K-level
CO1	Use the concept of extension fields and prove theorems applying algebraic ways of thinking.	Up to K3
CO2	Examine splitting field in rational fields, extension fields, splitting fields and understand the idea of roots of polynomials.	Up to K4
CO3	Compose clear and accurate proofs using the concepts of Galois Theory.	Up to K4
CO4	Bring out insight into Abstract Algebra with focus on axiomatic theories.	Up to K5
CO5	Demonstrate knowledge and understanding of fundamental concepts includingextension fields, Algebraic extensions and Finite fields.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Description	90 H	lours	Mode
Ι	Extension fields	9	18	Lecture, Quiz
	Transcendence of e	9		Lecture, Tutorial
II	Roots of Polynomials	9	18	Lecture, Quiz
	More about roots	9		Lecture, Quiz
III	Elements of Galois theory.	9	18	PPT, Lecture
	Related Theorems	9		Lecture, Quiz
IV	Finite fields	10	18	Lecture, Tutorial
	Wedderburn's theorem on finite division rings.	8		Lecture, Tutorial
v	Solvability by radicals - A theorem of Frobenius	9	18	PPT, Lecture
	Integral Quaternions and the Four - Square theorem.	9		Lecture, Quiz
	Total		90	

Annexure-1 **Department of Mathematics** I M.Sc., Course Code Course Title SE Sem Category Credits Contact CIA Total Hours/week 2 230PMA22 5 25 75 100 Core Real Analysis II 6

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives:

- To learn about advanced topics in Fourier series and FourierIntegrals.
- To acquire idea to know functions of several variables.
- To obtain the knowledge of the Lebesgue measure & integral.

Course Content:

Unit	Course Content	90 Hours	K Level	CLO	
Ι	Measure on the Real line - Lebesgue Outer Measure - Measurable sets	18	Up toK3	CLO1	
	- Measurable Functions	10			
	Integration of Functions of a Real variable - Integration of Non-	18			
II	negative functions - The General Integral - Integration of series-		Up toK4	CLO2	
	Riemann and Lebesgue Integrals				
	Fourier Series and Fourier Integrals - Introduction - Orthogonal	18			
	system of functions - The theorem on best approximation - The Fourier				
	series of a function relative to an orthonormal system - Properties of	Up toK4 CLO3			
ш	Fourier Coefficients - The Riesz-Fischer Theorem - The Riemann -				
111	Lebesgue Lemma - The Dirichlet Integrals - An integral representation				
	for the partial sums of Fourier series - Riemann'slocalization theore -				
	Cesaro summability of Fourier series- Consequences of Fejer's theorem				
	- The Weierstrassapproximation theorem				
	Multivariable Differential Calculus - Introduction - The Directional	18			
	derivative - Directional derivative and continuity - The totalderivative -				
	The total derivative expressed in terms of partial derivatives – An				
	Application of complexed valued functions-The matrix of linear				
117	function - The Jacobian matrix - The chain rule - Matrix form of chain			CT O 4	
IV	rule - The mean - value theorem for differentiable functions - A		Up toK5	CLO4	
	sufficient condition for differentiability - A sufficient condition for				
	equality of mixed partial derivatives - Taylor's theorem for functions of				
	R^n to R^1				

			Annexure-1	
V	Implicit Functions and Extremum Problems: Functions with non- zero Jacobian determinants – The inverse function theorem- The Implicit function theorem-Extrema of real valued functions of one variable and severable variables-Extremum problems with side conditions.	18	Up toK5	CLO5

Book for study:

- 1. G. de Barra, Measure Theory and Integration, Wiley Eastern Ltd., New Delhi, 1981. (for Units I and II)
- Tom M.Apostol : *Mathematical Analysis*, 2nd Edition, Addison-Wesley Publishing Company Inc. New York, 1974. (for Units III, IV and V)

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	2	2.1,2.2,2.4
II	3	3.1 to 3.4
III	11	11.1 to 11.6,11.8 to 11.11, 11.3 to 11.5
IV	12	12.1 to 12.14
V	13	13.1 to 13.7

Books for Reference:

- 1. Burkill, J.C. The Lebesgue Integral, Cambridge University Press, 1951.
- 2. Munroe, M.E. *Measure and Integration*. Addison-Wesley, Mass. 1971.
- 3. Roydon, H.L. Real Analysis, Macmillan Pub. Company, New York, 1988.
- 4. Rudin, W. Principles of Mathematical Analysis, McGraw HillCompany, New York, 1979.
- 5. Malik, S.C. and Savita Arora. *Mathematical Analysis*, Wiley EasternLimited. New Delhi, 1991.

6. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya Prakashan, New Delhi, 1991

Web Resources:

- <u>http://mathforum.org</u>,
- <u>http://ocw.mit.edu/ocwweb/Mathematics</u>,
- <u>http://www.opensource.org</u>

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CO	Course learning outcome	K-level		
CO1	Identifying the concept of Lebesgue measure			
CO2	Analyzing the concept of Lebesgue integral			
CO3	Understand and describe the basic concepts of Fourier series and Fourier integrals with respect to orthogonal system. Analyze the representation and Convergence problems of Fourier series.	Upto K4		
CO4	Understand the concept of Multivariable Differential Calculus.	Upto K5		
CO5	Understand the concept of Implicit functions and Extremum problems.	Upto K5		

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level	2- Intermediate Level	3- Advanced Level
---------------	-----------------------	-------------------

Lesson	Plan
--------	------

Unit		90 H	ours	Mode
	Topics			
	Measure on the Real line - Lebesgue Outer Measure	6		
Ι	Measurable sets	6	18	Lecture Quiz.
	Measurable Functions	6		
	Integration of Functions of a Real variable - Integration of Non- negative functions	6		Lecture
	The General Integral	6	18	Quiz.
	Riemann and Lebesgue Integrals	6		
	Fourier Series and Fourier Integrals - Introduction - Orthogonal system of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system.	6		PPT, Lecture
	Properties of Fourier Coefficients - The Riesz-Fischer Thorem – The Riemann - Lebesgue Lemma - The Dirichlet Integrals - An integral representation for the partial sums of Fourier series.	6		Quiz, GD
	Riemann's localization theorem - Sufficient conditions for convergence of aFourier series at a particular point –Cesaro summability of Fourier series-Consequences of Fejer's theorem - The Weierstrass approximation theorem.	6	18	
IV	Multivariable Differential Calculus - Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function.	6		PPT, Lecture ,Quiz.
	The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean -value theorem for differentiable functions - A sufficient condition for differentiability.	6	18	
	A sufficient condition for equality of mixed partial derivatives - Taylor's theorem for functions of \mathbb{R}^n to \mathbb{R}^1	6		
V	Implicit Functions and Extremum Problems: Functions with non- zero Jacobian determinants.	6		Assign ments
	The inverse function theorem-The Implicit function theorem.	6	18	and Somino
	Extrema of real valued functions of severable variables-Extremum problems with side conditions.	6		Semina ,GD
	Total		90	

E.M.G.Yadava Women's College, Madurai-14.

	Department of Mathematics						I M.Sc.,		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total	
					Hours/week				
2	Core	230PMA23	Partial Differential	4	6	25	75	100	
			Equations						
Nature of the Course									
Knowledge and Skill Oriented		Employability Orie	nted	Entrepreneurship oriented					

Course Objectives:

- Develop strong background on finding various solutions to firstorder linear and nonlinear Partial Differential Equations (PDE's).
- To solve the nonlinear PDE's by Charpit's method and Jacobi'smethod.
- To focus the formulation of first and second orders PDE's.
- To classify and solving for three basic types namely Hyperbolic, Parabolic and Elliptic PDE's.
- Solving of PDEs which include heat, wave and Laplace's equation that arise in various physical systems.

Course Content:

Unit	Course Content	90 Hours	K Level	CLO
I	Mathematical Models and Classification of Second-Order Linear Equations: Classical Equations- The Vibrating String – The Vibrating Membrane –Waves in an Elastic Medium – Conduction of Heat in Solids – The Gravitational Potential – Second-Order Equations in Two Independent Variables – Canonical Forms – Equations with Constant Coefficients – General Solutions	18	Up to K3	CLO1
Ш	The Cauchy Problem and Wave Equations:The CauchyProblem – T h e Cauchy-Kowalewskaya Theorem – HomogeneousWave Equations – Initial Boundary-Value Problems- E q u a t i o n sw i t h Non-Homogeneous Boundary Conditions – V i b r a t i o no f Finite String with Fixed Ends – Non-Homogeneous WaveEquations – The Riemann Method –Solution of the Goursat Problem– Spherical Wave Equation – Cylindrical Wave Equation	18	Up to K4	CLO2
ш	Method of separation of variables: Separation of Variable- The Vibrating String Problem – Existence and Uniqueness of Solution of the Vibrating String Problem – The Heat Conduction Problem – Existence and Uniqueness of Solution of the Heat Conduction Problem – The Laplace And Beam Equations	18	Up toK4	CLO3

		An	nexure-1	
IV	Boundary Value Problems and Applications: Boundary Value Problems – Maximum and Minimum Principles – Uniqueness and Continuity Theorems– Dirichlet Problem for a Circle, A Circular Annulus, a Rectangle – DirichletProblem Involving the Poisson Equation – Neumann Problem for a Rectangle, a Circle.	18	Up toK5	CLO4
v	Green's Functions and Boundary- Value Problems: Introduction - The Dirac Delta function – Properties of Green's function – Method of Green's function – Dirichlet's Problem for the Laplace and Helmholtz operators – Method of images and eigen functions – Higher dimensional problem – Neumann Problem.	18	Up toK5	CLO5

Book for study:

TynMyint-U and Lokenath Debnath, *Linear Partial Differential Equations for Scientists and Engineers* (Fourth Edition), Birkhauser Bosten 2007

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	3,4	3.1 to 3.6, 4.1 to 4.4
Π	5	5.1 to 5.11
III	7	7.1 to 7.7
IV	9	9.1 to 9.9
V	11	11.1 to 11.10

Books for Reference:

- 1. M.M.Smirnov, Second Order partial Differential Equations, Leningrad, 1964.
- 2. I.N.Sneddon, Elements of Partial Differential Equations, McGrawHill, New Delhi, 1983.
- 3. R. Dennemeyer, *Introduction to Partial Differential Equations andBoundary Value Problems*, McGraw Hill, New York, 1968.
- 4. M.D.Raisinghania, Advanced Differential Equations, S.Chand & Company Ltd., New Delhi, 2001.

5. Sankar Rao, Partial Differential Equations, 2nd Edition, PrenticeHall of India, New Delhi. 2004

Web Resources:

- <u>http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics</u>,
- <u>http://www.opensource.org</u>, <u>www.mathpages.com</u>

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning outcome	Knowledge level
CLO1	To understand and classify second order equations and find general solutions.	K3
CLO2	To analyse and solve wave equations in different polar coordinates	K4
CLO3	To solve Vibrating string problem, Heat conduction problem, to identify and solve Laplace and beam equations	K4
CLO4	To apply maximum and minimum principle's and solve Dirichlet, Neumann problems for various boundary conditions.	К5
CLO5	To apply Green's function and solve Dirichlet, Laplace problems, to apply Helmholtz operation and to solve Higher dimensional problem.	K5

K1- Remembering facts with specific answers

K2- Basic understanding of facts.

K3- Application oriented

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level

3- Advanced Level

²⁻ Intermediate Level

Lecture & Group

Discussion

90

Lesson Plan

Units	Description	Hours	Total Hours	Pedagogy
	Classical equations – Introduction, Vibrating String	5		Lecture
	and Vibrating Stringmembrane			
	Waves in an elastic medium	2		Lecture
	Conduction of heat in solids, The Gravitational potential	3		Lecture
Ι	Second order equations in two independent variables Canonical forms and equations with constant coefficients, General solution of equation with constant coefficients	8	18	Lecture & Group Discussion
	The Cauchy problem. Cauchy -Kowalewskaya theorem	4		Lecture
	Homogeneous wave equation initial boundary value problems	2		Lecture
Π	Non homogeneous boundary conditions, Vibration of finite string with fixed ends	2	18	Lecture & PPT
	Non homogeneous wave equation. Riemann method and Goursat problem	4		Lecture
	Spherical wave equations, Cyclindrical wave Equatin	6		Lecture
	Separation of variables and vibrating stringproblem	4		Lecture
	Existence and uniqueness of solution of vibrating string problem	4		Lecture & PPT
III	Heat conduction problem	4		Lecture
	Existence and uniqueness of solution ofheat conduction problem,	3	18	Lecture
	Laplace and beam equations	3		Lecture & Seminar
	Boundary value problems	3		Lecture
	Maximum and minimum principles	3	1	Lecture
	Uniqueness and continuity theorems	2	1	Lecture & PPT
IV	Dirichlet problem for a circle and a circularannulus and a rectangle	4	18	Lecture
	· · · · · · · · · · · · · · · · · · ·			Γ
	Dirichlet problem involving the poisson equation. Neumann problem for a circle and arectante	6		Lecture
	The Dirac Delta function and Properties of Green's function, Method of Green's function	8		Lecture
V	Dirichlet Problem for the Laplace and Helmholtz operators	4		Lecture & PPT
	Method of images and eigen functions	3	18	Assignment

3

Higher dimensional problem and Neumannproblem

Total

	Department of Mathematics						I M.Sc	•,
Sem	Category	Course Code	Course Title	Credits	Contact	CI	SE	Total
					Hours/week	А		
2	DSEC	230PMADSE2A	Modelling And	3	5	25	75	100
			Simulation With					
			Excel					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

• To introduce the concepts and to develop working knowledge on Excel, Calculation in Excel, Formatting the Spread sheet, working with tables andCharts.

Course Content:

Unit	Course Content	75 Hours	K Level	CLO
Ι	First look at Excel : The screen and its Elements – Navigating the spreadsheet – Writing the cells – Adaptation of cell size – Selecting Cells.	15	Up toK3	CLO1
II	Calculations : Formulas – Formulas with references – Functions –Copying cells: Simple copying – Series – Copying Formulas.	15	Up toK4	CLO2
III	Formatting : Text and colours – Number Formats – Date and Time – Formatting Tables – Conditional Formatting – Themes and Styles.	15	Up toK4	CLO3
IV	Working with Tables: Create a Table – Filtering – Auto filter – Advanced Filter – Advanced Filter with Formulas – Sorting – Pivot tables – Preserving Results.	15	Up toK5	CLO4
v	Charts: Bar Charts – Line Charts – Charts with both Columns andLines – Circle Charts – Scatter Charts – Chart Sheet – Viewing and Printing – Viewing – Adjust Print Range	15	Up toK5	CLO5

Book for study:

Pc Software for Windows 98 made simple, R.K.Taxali, McGraw HillEducation, 2001

Books for Reference:

1. Microsoft Office Excel 2007, Torben Lage Frandsen, Torben LageFrandsen & Ventus Publishing Aps, 2.Guerrero, H. Excel Data Analysis Modelling and Simulation, Springer,London (2010)

Web Resources:

- http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
- <u>http://www.opensource.org</u>, <u>www.mathpages.com</u>

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's
020		Taxonomy)
CLO1	Illustrate the concepts of excel screen, navigating spreadsheet, Selecting cells	Up to K2
CLO2	Analyze the formulas, functions in excel, copying the cells, series and formulas	Up to K3
CLO3	Determine the text and colours, date and time, formatting tables and themes andstyles	Up to K3
CLO4	Apply to create a table, Filtering, sorting pivot tables and preserving results	Up to K4
CLO5	Enhance the knowledge in creating bar charts, line charts, circle charts, scattercharts and adjust print range	Up to K4

K1- Remembering facts with specific answers

K2- Basic understanding of facts.

- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Description	75 Hours		Pedagogy
I	The screen and its Elements – Navigating the spreadsheet	10	15	Lecture, Chalk and talk
I	Writing the cells – Adaptation of cell size – Selecting Cells.	5		Lecture, Assignment
П	Calculations: Formulas – Formulas with references – Functions	10	15	Lecture, Group Discussion
	Copying cells: Simple copying – Series – Copying Formulas.	5		Lecture, Assignment
III	Formatting: Text and colours – Number Formats – Date and Time	5	15	Lecture, Seminar
	Formatting Tables – Conditional Formatting – Themes and Styles.	10		Lecture, Quiz
IV	Working with Tables: Create a Table – Filtering – Auto filter – Advanced Filter	10	15	Lecture, Chalk and talk, Seminar
	Advanced Filter with Formulas – Sorting – Pivot tables – Preserving Results.	5		Lecture, Assignment
V	Charts: Bar Charts – Line Charts – Charts with both Columns and Lines	5	15	Lecture, PPT, Seminar
Ţ	Circle Charts – Scatter Charts – Chart Sheet – Viewing and Printing – Viewing – Adjust Print Range.	10		Lecture, Chalk andTalk
	Total		75	

E.M.G.Yadava Women's College, Madurai-14.

	I M.Sc.,								
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total	
					Hours/week				
2	DSEC	230PMADSE2B	Fluid	3	5	25	75	100	
			Dynamics						

Nature of the Course						
Knowledge and Skill	Employability Oriented	Entrepreneurship oriented				
Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives

- 1. To develop an application for properties of Newtonian Fluid.
- 2. To Study analytical solution to variety of simplified problems.
- 3. To understand the dynamics of fluid flows and governing the non-dimensional parameters.
- 4. To give fundamental knowledge of fluid, its properties and behavior under

various conditions of internal and external flows.

Course Content:

Unit	Course Content	75 Hours	K Level	CLO
Ι	Real fluids and Ideal fluids- Velocity of a fluid at a point – streamlines path lines- velocity potential –Vorticity Vector – Equation of continuity – acceleration of a fluid	15	Up to K4	CLO1
II	Equation of motion of a fluid: Pressure at a point in a fluid at rest – pressure at a point in a moving fluid-Euler's equations of motion – Bernoulli's Equation, Bernoulli's theorem.		Up to K4	CLO2
ш	Some two-dimensional flows: meaning of two- dimensional flow –stream function – two dimensional image systems- Milne – Thomson circle theorem –Theorem of Blasius.	15	Up to K4	CLO3
IV	Elements of Thermodynamics: The equation of state of a substance – the first law of thermodynamics- internal energy of a gas – specific heats of a gas- function of state; Entropy- Maxwell's thermodynamics relation		Up to K5	CLO4
v	Shock waves: formation of shock waves – elementary analysis of normal shock waves –elementary analysis of oblique shock waves-the method of characteristics for two – dimensional ,homentropic, irrational flow.	15	Up to K5	CLO5

Book for study:

F.Chorlton: Text book of Fluid Dynamics, CBS publishers and Distributors Pvt.Limited,2004.

Books for Reference:

- 1. M.D.Raisinghania: Fluid Dynamics, S.Chand, 2003.
- 2. Michel Rieutord: Fluid Dynamics, Springer International Publishing, 2015.
- 3. Geoffrey K. Vallis Essentials of Atmospheric and Oceanic Dynamics 1st dition, 2019.
- 4. Richard W. Johnson : Handbook of Fluid Dynamics 2nd Edition.
- 5. George EmKarniadakis, Spencer J. SherwinSpectral/hp *Element Methods for Computational Fluid Dynamics* (*Numerical Mathematics and Scientific Computation*) 2nd Edition

Web Resourses:

1.https://www.meteo.physik.unimuenchen.de/lehre/roger/manuskripte/Fluid_Dynamics.pdf

2. http://www.ccpo.odu.edu/~klinck/Reprints/PDF/groschBook2011.pdf

3.https://www.engineerclassroom.com/2019/01/a-textbook-of-fluid-mechanics-and_18.html

E-books:

1.http://www.issp.ac.ru/ebooks/books/open/Advanced_Fluid_Dynamics.pdf 2.https://www.u-cursos.cl/usuario/5d90bc31eadb7b756f4a0d3fd9789c4f/mi_blog/r/1205763481Batchelor.-Introduction-to-Fluid-Dynamics.pdf

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar **Rationale for nature of Course:**

Knowledge and Skill:

- Students will get the knowledge of basic principles of fluids mechanics
- To get the ability to analyze the fluid flow problems with the application of Bernoulli's theorem.

Activities to be given: We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Describe the principles of motion for fluids	Up to K4
CLO2	Formulate the motion of fluid element	Up to K4
CLO3	Use the dimensional analysis and derive dimensional numbers	Up to K4
CLO4	Understanding of thermo dynamics properties and processes	Up to K5
CLO5	Be able to analyze shock waves	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	1	3	2	3	3
CLO2	1	2	2	2	1	3
CLO3	1	1	3	3	1	3
CLO4	2	2	2	2	2	3
CLO5	2	2	3	2	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content			Mode of
		75	Hours	Teaching
1	Real fluids and Ideal fluids- Velocity of a fluid at a	5	15	Chalk and
	point			Talk
	streamlines path lines- velocity potential	5		
	Vorticity Vector – Equation of continuity – acceleration of a fluid.	5		
II	Equation of motion of a fluid: Pressure at a point in a fluid at rest	5	15	Chalk and Talk
	pressure at a point in a moving fluid-Euler's equations of motion	5		
	Bernoulli's Equation, Bernoulli's theorem.	5		
III	Some two-dimensional flows: meaning of two- dimensional flow	5	15	Chalk and Talk
	stream function – two dimensional image systems	5		
	Milne – Thomson circle theorem –Theorem of Blasius.	5		
IV	Elements of Thermodynamics: The equation of state of a substance – the first law of thermodynamics	5	15	PowerPoint Presentation &Seminar
	internal energy of a gas – specific heats of a gas- function of state; Entropy	5		
	Maxwell's thermodynamics relation	5		
V	Shock waves: formation of shock waves – elementary analysis of normal shock waves	5	15	PowerPoint Presentation
	elementary analysis of oblique shock waves-the method of characteristics for two	5		&Seminar
	dimensional, homentropic, irrational flow.	5		
	Total		75	

	Department of Mathematics						I M.Sc.,		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total	
					Hours/week				
2	DSEC	23OPMADSE2C	Mathematical	3	5	25	75	100	
			Statistics						

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives:

- To know the desirable qualities for an estimator and learn a number oftechniques for finding minimum variance
- To understands the elements of hypothesis test and be able to carry outa number of different hypothesis test.
- To Formulate, test and interpret various hypothesis tests.
- To Characterize, compare, and contrast different nonparametrichypothesis tests.

Unit	Course Content	75 Hours	K Level	CLO
Ι	Distribution of Functions of Random Variables: Sampling Theory – Transformations of Variables of the Discrete Type – Transformations of Variables of the Continuous Type – The t and F Distributions.	15	Up toK3	CL01
П	Order Statistics: Distributions of Order Statistics - The MomentGenerating Function Technique. The Distributions of X and ns^2/σ^2 – Expectations of Functions of Random Variables.	15	Up toK4	CLO2
Ш	Estimation Theory: Point Estimation – Measures of Quality ofEstimators – Confidence Intervals for Means – Confidence Intervals for Differences of Means - Confidence Intervals for Variances – Bayesian Estimates.	15	Up toK4	CLO3
IV	Statistical Hypothesis : Some Examples and Definitions – Certain Best Tests – Uniformly Most Powerful Tests – Likelihood Ratio Tests.	15	Up toK5	CLO4
v	Nonparametric Methods: Confidence Intervals for Distribution Quantiles – Tolerance Limits for Distributions – The sign Test – A Test of Wilcoxon – The Equality of Two Distributions – The Mann Whitney – Wilcoxon Test.	15	Up toK5	CLO5

Book for study:

Robert V. Hogg and Allen T. Craig, "Introduction to Mathematical Statistics" (Fourth Edition), Mcmillan publishing Co., Inc., New York.

Chapters

UNIT	CHAPTER(S)	SECTIONS
Ι	4	4.1 to 4.4
II	4	4.6 to 4.9
III	6	6.1 to 6.6
IV	7	7.1 to 7.4
V	9	9.1 to 9.6

Books for Reference:

- 1. M. Fisz, Probability theory and Mathematical Statistics, John Wiley & Sons New York, 1963.
- 2. E.J. Dudewiczn and S.N.Mishra, Modern Mathematical Statistics, JohnWiley & Sons, New York, 1988.
- **3.** V.N. Rohatgi, An Introduction to Probability theory and MathematicalStatistics, Wiley Eastern Limited, New Delhi, 1988.

Web Resources:

- <u>http://mathforum.org</u>,
- <u>http://ocw.mit.edu/ocwweb/Mathematics</u>,
- <u>http://www.opensource.org</u>
- <u>https://stat.ethz.ch/~geer/mathstat.pdf</u>

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

СО	Course learning	K-level
	outcome	
CO1	To determine transformations of variables of discrete and continuous typesand t and F distributions.	Upto K3
CO2	To compute order statistics, moment generating function and expectation of function of random variables	Upto K4
CO3	To construct point and interval estimators and evaluate their goodness.	Upto K4
CO4	To decide as to which test of significance is to be applied for any given large sample problem.	Upto K5
CO5	To analyze the different nonparametric methods in estimation, testing, model fitting, and in analyses.	Upto K4

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level	2- Intermediate Level	3- Advanced Level
---------------	-----------------------	-------------------

Lesson Plan

Unit	Topics		75 Hours	Mode
	Sampling Theory – Transformations of Variables of the Discrete Type	5	15	
Ι	Transformations of Variables of the Continuous Type	5	-	Lecture, Quiz.
	The t and F Distributions.	5	-	
II	Distributions of Order Statistics - The Moment Generating Function Technique.	5		
	The Distributions of X and ns^2/σ^2	5	- 15	Lecture, Quiz.
	Expectations of Functions of Random Variables.	5	-	Lootaro, Quiz.
	Point Estimation – Measures of Quality of Estimators .	5		
III	Confidence Intervals for Means – Confidence Intervalsfor Differences of Means	5		PPT,Lecture, Quiz, GD
	Confidence Intervals for Variances – Bayesian Estimates.	5	_ 15	
	Some Examples and Definitions – Certain Best Tests –	5		
IV	Uniformly Most Powerful Tests –.	5	15	PPT Lecture,
IV	Likelihood Ratio Tests.	5		Quiz.
v	Confidence Intervals for Distribution Quantiles – Tolerance Limits for Distributions.	5		
·	The sign Test – A Test of Wilcoxon.	5	15	Assignment and
	The Equality of Two Distributions – The MannWhitney – Wilcoxon Test.	5		Seminar.
	Total hours		75	-

	Department of Mathematics						I M.Sc	,
Sem	Sem Category Course Code Course Title Credits Contact					CIA	SE	Total
					Hours/week			
2	DSEC	230PMADSE2D	Stochastic Process	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives:

- Acquire intense knowledge on the underlying concepts of Stochastic processes
- Familiarize with Markov chain and system
- > Obtain in-depth understanding of birth and death process
- > Develop the acquaintance with applications of Markov process
- Comprehend the concept of renewal process

Course Content:

Unit	Course Contents	75 Hours	K Level	CLO
Ι	Stochastic Processes -Specification of stochastic processes – Stationary processes – Martingales - MarkovChains: Definitions and Examples – Higher transition probabilities – Generalization of		Up toK3	CL01
	independent Bernoulli trials.			
п	Markov Chains: Classification of States and Chains – Determination of Higher transition probabilities – Stability of Markov system –Graph theoretic approach – Markov chain with denumerable number of states – Reducible chains.	15	Up toK4	CLO2
III	Poisson process: Poisson process and related distributions – Generalizations of Poisson process – Birth and death process – Markov process with discrete state space (Continuous time Markov chain).	15	Up toK4	CLO3
IV	Markov Process with continuous state space – Brownian motion – Weiner process – Differential equations for Weiner Process – Kolmogorov equations.	15	Up toK4	CLO4
V	Renewal process and renewal equation – Stopping time – Wald's equation – Renewal theorems.	15	Up toK4	CLO5

Book for Study:

UNIT	CHAPTER(S)	SECTIONS
Ι	2& 3	2.1 to 2.4 & 3.1 to 3.3
II	3	3.4 to 3.9
III	4	4.1 to 4.5
IV	5	5.1 to 5.4
V	6	6.1 to 6.5

Medhi.J, "Stochastic Processes", New Age International, Cochin, 2nd edition 2017.

Books for Reference:

- 1) Leo Breiman., Probability and Stochastic Processes, Houghton Mifflin, 2008
- 2) Athanasios Papoulis., *Probability Random Variable & Stochastic Process*, McGraw Hill, International, IIEdition, 2004.
- 3) Peter Watts Jones & Peter Smith "Stochastic Processes An Introduction, Third Edition 2018
- 4) *Stochastic Processes and Applications:* Diffusion Processes, the Fokker-Planck and Langevin Equations(Texts in Applied Mathematics, 60) 2014th Edition
- 5) Edward P.C Kao "An Introduction to stochastic processes" Dover Publication 2019.

Web Resources

- 1. <u>https://wwwf.imperial.ac.uk/~pavl/PavliotisBook.pdf</u>
- 2. https://www.mdpi.com/books/pdfdownload/book/1855
- 3. http://www.ma.ic.ac.uk/~pavl/lecture_notesM4A42.pdf

E-books

- 1. https://link.springer.com/chapter/10.1007/978-1-4939-1323-7_1
- 2. https://link.springer.com/content/pdf/10.1007/978-3-030-22297-0.pdf

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course

Knowledge and Skill:

Develop a deeper conceptual understanding of the theoretical basis Stability of Markov system – Graph theoretic approach

Apply stochastic problems

E.M.G.Yadava Women's College, Madurai-14.

Activities to be given:

We will be providing students with intellectual problems, theory application problems and other practical works and also insist them to check the Books for References and web

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Correlate the concepts of stochastic processes with illustrations	Up to K3
CLO2	Illustrate Markov chain and its applications	Up to K4
CLO3	Compare the conceptualization of pure birth and deathprocess	Up to K4
CLO4	Apply Markov process in solving problems	Up to K4
CLO5	Summarize the concepts of renewal process and its applications	Up to K4

K1- Remembering facts with specific

K2- Basic understanding of facts.

K3- Application oriented

K4- Analyzing, examining and making presentations with evidences

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CL 01	3	2	3	2	3	3
CL 02	3	2	2	2	1	3
CL 03	3	3	2	2	2	3
CL 04	3	3	2	2	1	3
CL 05	3	3	2	2	1	3

1. Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	Hours	Total Hours	Mode of Teaching	
1	Stochastic Processes -Specification of stochastic processes – Stationary processes	5	15	Chalk & Talk	
	Martingales - Markov Chains: Definitions and Examples	5			
	Higher transition probabilities – Generalization of independent Bernoullitrials.	5			
II	Markov Chains: Classification of States and Chains – Determination of Higher transition probabilities	10	15	Chalk & Talk	
	Markov chain with denumerable number of states – Reducible chains.	5	_		
III	Poisson process: Poisson process and related distributions	5	15	Chalk & Talk	
	Generalizations of Poisson process – Birth and death process	5			
	Markov process with discrete state space (Continuous time Markov chain).	5			
IV	Markov Process with continuous state space – Brownian motion	5	15	PowerPoint Presentatio	
	Weiner process – Differential equations for Weiner Process	5		n&Seminar	
	Kolmogorov equations.	5	1		
V	Renewal process and renewal equation	5	15	PowerPoint	
	Stopping time – Wald's equation	5	1	Presentation & Seminar	
	Renewal theorems.	1	Seminar		
	Total hours	•	75		

Department of Mathematics							I M.Sc.,		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total	
					Hours/week				
2	Skill	230PMASEC2	Office	2	2	25	75	100	
Enhancement		Automation and							
	Course		ICT Tools						

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives:

- 1. Understand the basics of computer systems and its components.
- 2. Understand and apply the basic concepts of a word processing package.
- 3. Understand and apply the basic concepts of electronic spreadsheet software.
- 4. Understand and apply the basic concepts of database management system.

Course Content:

Unit	Course Content	30 Hours	K Level	CLO
I	Introductory concepts: Memory unit– CPU-Input Devices: Key board, Mouse and Scanner. Output devices: Monitor, Printer. Introduction to Operating systems &its features: DOS–UNIX–Windows. Introduction to Programming Languages	6	K2	CLO1
П	Word Processing: Open, Save and close word document; Editing text – tools, formatting, bullets; Spell Checker - Document formatting – Paragraph alignment, indentation, headers and footers, numbering; printing– Preview, options, merge	6	K2	CLO2
III	Spreadsheets: Excel –opening, entering text and data, formatting, navigating; Formulas – entering, handling and copying; Charts – creating, formatting printing, analysis tables, preparation of financial statements, introduction to data analytics.	6	K3	CLO3
IV	Database Concepts: The concept of data base management system; Data field, records, and files, Sorting and indexing data; Searching records. Designing queries, and reports; Linking of data files; Understanding Programming environment in DBMS; Developing menu drive applications in query language(MS–Access).	6	K3	CLO4
v	. Power point: Introduction to Power point - Features – Understanding slide typecasting & viewing slides – creating slide shows. Applying special object – including objects & pictures – Slide transition– Animation effects, audio inclusion, timers.	6	K4	CLO5

Book for study:

Vikas Gupta, (2006)," Comdex Computer Course Kit", Dream tech Press, New Delhi First Edition.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
Ι	i	(1)
II	ii	(1 – 7)
III	iii	(1-3)
IV	iv	(1 - 3)
V	V	(1)

Books for Reference:

- 1. Jennifer Ackerman Kettel, Guy Hat-Davis, Curt Simmons, (2003) "Microsoft Office 2003: The Complete Reference", McGraw-Hill Education, 2nd edition.
- 2. Dr. P. Rizwan Ahmed, (2016), "Office Automation" Margham Publications", 6 th edition.
- 3. Dr. Archana Kumar, (2019), "Computer Basics with Office Automation" First Edition, Dreamtech Press

Web Resources / E.Books:

- 1. https://www.ebookbou.edu.bd/Books/Text/SST/DCSA/dcsa_1302/Unit-01.pdf
- 2.https://www.tndalu.ac.in/econtent/8_Computer_Fundamentals_and_Office_Automation.pdf
- 3. https://www.ebookbou.edu.bd/Books/Text/SST/DCSA/dcsa_1302/Unit-02.pdf

Pedagogy:

Chalk and Talk, PPT, Group discussion, Quiz. **Rationale for nature of Course:**

Knowledge and Skill:

There are three basic activities of an office automation system: storage of information, data exchange, and data management.

Activities to be given:

Students shall be allowed to write program in many concepts.

Course learning Outcomes (CLO's):

CLO	Course learning Outcomes (CLO's)	Knowledge According to Bloom's Taxonomy (Up to K level)
CLO1	Possess the knowledge on the basics of computers and its	K1 to K3
	components	
CLO2	Gain knowledge on Creating Documents, spreadsheet and presentation.	K1 to K3
CLO3	Learn the concepts of Database and implement the Query in Database.	K1 to K3
CLO4	Demonstrate the understanding of different automation tools.	K1 to K4
CLO5	Utilize the automation tools for documentation, calculation and presentation purpose.	K1 to K4

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) (SCIENCE)

	PO1	PO2	PO3	PO4	PO5	PO6
CL01	2	2	2	3	3	1
CLO2	3	1	2	3	3	3
CLO3	3	2	1	2	1	3
CLO4	3	3	2	2	2	1
CLO5	2	2	1	3	1	3

1-Basic Level 2- Intermediate Level

3- Advanced Level

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	1	1	1	2	1
CLO2	3	2	2	2	3	2
CLO3	2	2	1	2	2	2
CLO4	3	2	3	2	3	2
CLO5	2	2	2	2	3	2

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) (ARTS)

LESSON PLAN

UNIT	DESCRIPTION	30 Hrs	MODE
I	Introductory concepts: Memory unit– CPU-Input Devices: Key board, Mouse and Scanner. Output devices: Monitor, Printer. Introduction to Operating systems &its features: DOS–UNIX–Windows. Introduction to Programming Languages	7	Chalk and Talk, PPT, group discussion, OHP presentations, quiz, on the spot test and Virtual Labs.
п	Word Processing: Open, Save and close word document; Editing text – tools, formatting, bullets; Spell Checker - Document formatting – Paragraph alignment, indentation, headers and footers, numbering; printing– Preview, options, merge.	7	Chalk and Talk, PPT, group discussion, OHP presentations, quiz, on the spot test and Virtual Labs.
ш	Spreadsheets: Excel –opening, entering text and data, formatting, navigating; Formulas – entering, handling and copying; Charts – creating, formatting printing, analysis tables, preparation of financial statements, introduction to data analytics.	6	Chalk and Talk, PPT, group discussion, OHP presentations, quiz, on the spot test and Virtual Labs
IV	Database Concepts: The concept of data base management system; Data field, records, and files, Sorting and indexing data; Searching records. Designing queries, and reports; Linking of data files; Understanding Programming environment in DBMS; Developing menu drive applications in query language(MS–Access).	5	Chalk and Talk, PPT, group discussion, OHP presentations, quiz, on the spot test and Virtual Labs
V	Power point: Introduction to Power point - Features – Understanding slide typecasting & viewing slides – creating slide shows. Applying special object – including objects & pictures – Slide transition– Animation effects, audio inclusion, timers	5	Chalk and Talk, PPT, group discussion, OHP presentations, quiz, on the spot test and Virtual Labs
	Total	30	