# E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3<sup>rd</sup> Cycle) with Grade A+ & CGPA 3.51 by NAAC

# **DEPARTMENT OF MATHEMATICS**



# TANSCHE-CBCS with OBE MASTER OF SCIENCE

**PROGRAMME CODE - PM** 

# **COURSE STRUCTURE**

(w.e.f. 2023 – 2024 Batch onwards)



## E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI $-625\ 014$ .

(*An Autonomous Institution – Affiliated to Madurai Kamaraj University*)
Re-accredited (3<sup>rd</sup> Cycle) with Grade A+ & CGPA 3.51 by NAAC

## **CRITERION - I**

1.2.2 Details of Programmes offered through Choice Based Credit System (CBCS) / Elective Course System

Syllabus copies with highlights of contents focusing on Elective Course System



# To be Noted:

| HIGHLIGHTED | COURSE   |
|-------------|----------|
|             | Elective |

## E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited ( $3^{rd}$  Cycle) with Grade  $A^+$  and CGPA 3.51 by NAAC

# DEPARTMENT OF MATHEMATICS- PG TANSCHE – CBCS WITH OBE

(w.e.f. 2023 - 2024 onwards)

#### **VISION**

To mold the students to have strong Mathematical and Analytical skills to meet the challenges open to them.

## **MISSION**

To provide the students with a strong Mathematical Foundation through courses which cater to the needs of Industry, Research and Higher Education

# Programme Educational Objectives (PEOs) M.Sc.,

| PEO  | On completion of the Programme the student will be able to                                                                                              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO1 | Apply their knowledge in modern industry or teaching, or secure acceptance in high quality graduate programs in mathematics.                            |
| PEO2 | Keep on discovering new avenues in the chosen field and exploring areas that remain conducive for research and development.                             |
| PEO3 | Promote the culture of interdisciplinary research among all disciplines and Applied Mathematics.                                                        |
| PEO4 | Handle the problems faced by industry through Mathematical knowledge and scientific computational techniques                                            |
| PEO5 | To develop teaching skills, subject knowledge in the course of their study which will help them to shine in various field including Education ,IT etc., |

# **Programme Outcomes (POs) with Graduate Attributes**

| PO  | <b>Graduate Attributes</b>              | On completion of the Programme the student will be able to                                                                        |  |  |  |  |  |
|-----|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PO1 | Problem Solving Skill                   | Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context |  |  |  |  |  |
| PO2 | Decision Making Skill                   | kill Foster analytical and critical thinking abilities for data-based decision-making                                             |  |  |  |  |  |
| PO3 | Ethical Value                           | Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.                      |  |  |  |  |  |
| PO4 | Communication Skill                     | Ability to develop communication, managerial and interpersonal skills                                                             |  |  |  |  |  |
| PO5 | Employability Skill                     | Inculcate contemporary business practices to enhance employability skills in the competitive environment                          |  |  |  |  |  |
| PO6 | Individual and<br>Team Leadership Skill | Capability to lead themselves and the team to achieve organizational goals.                                                       |  |  |  |  |  |

## **Programme Specific Outcomes (PSOs) with Graduate Attributes**

| PSO   | Graduate Attributes               | On completion of the Programme the student will be able to                                                                                                                                    |
|-------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO1  | Placement                         | To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions                      |
| PSO 2 | Entrepreneur                      | To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations. |
| PSO 3 | Research and<br>Development       | Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.                                 |
| PSO 4 | Contribution to<br>Business World | To produce employable, ethical and innovative professionals to sustain in the dynamic business world.                                                                                         |
| PSO 5 | Contribution to the Society       | To contribute to the development of the society by collaborating with stakeholders for mutual benefit.                                                                                        |

Eligibility for Admission: Pass in B.Sc., Mathematics

## **Duration of the Course:**

The students shall undergo prescribed courses of study for the period of two academic years under CBCS semester pattern with Outcome Based Education.

**Medium of Instruction**: English

System: TANSCHE - Choice Based Credit System with Outcome Based Education.

## **Nature of the Course**

Courses are classified according to the following nature

- 1. Knowledge & Skill
- 2. Employability Oriented
- 3. Entrepreneurship Oriented

### Outcome Based Education (OBE) & Assessment

Students understanding must be built on and assessed for wide range of learning activities, which includes different approaches and are classified along several bases, such as

## 1. Based on purpose:

- Formative (Internal tests, Assignment, Seminar, Quiz, Documentation, Case lets, ICT based Assignment, Mini Projects administered during the learning process)
- Summative (Evaluation of students learning at the end of instructional unit)

## 2. Based on Domain knowledge: (Post Graduate Up to K5 Levels)

Assessment through K1, K2,K3, K4 & K5

#### **Evaluation**

Continuous Internal Assessment Test (CIA) : 25 Marks
Summative Examination : 75 Marks
Total : 100 Marks

#### **CIA-Continuous Internal Assessment: 25 Marks**

| Components                                          | Marks |
|-----------------------------------------------------|-------|
| Test (Average of two tests)                         |       |
| (Conduct for 120 marks and converted into 12 marks) | 12    |
| Application-oriented/Innovation/Creativity          | 3     |
| Assignment                                          |       |
| Assignment                                          | 5     |
| Seminar                                             | 5     |
| Total                                               | 25    |

- Centralized system of Internal Assessment Tests
- There will be a two Internal Assessment Tests
- Duration of Internal Assessment Test I and II will be 2 1/2 hours.
- Students shall write retest on the genuine grounds if they are absent in either Test I & Test II with the approval of Head of the Department.

# **Question Paper Pattern for Continuous Internal Assessment Test I and Test II**

| Section                                 | Marks |
|-----------------------------------------|-------|
| A – Multiple Choice Questions (8x1Mark) | 8     |
| B – Short Answer (6 x 2 Marks)          | 12    |
| C – Either Or type (4/8 x 5 Marks)      | 20    |
| D – Open Choice type (2/4 x 10 Marks)   | 20    |
| Total                                   | 60    |

## Conducted for 120 marks and converted into 12 marks

## **Question Paper Pattern for Summative Examination**

| Section                                                 | Marks |
|---------------------------------------------------------|-------|
| A – Multiple Choice Questions without choice            | 10    |
| (10x 1Mark)                                             |       |
| B – Short Answer Questions without choice (5 x 2 Marks) | 10    |
| C – Either Or type (5/10 X 5Marks)                      | 25    |
| D – Open Choice type(3out of 5 X 10Marks)               | 30    |
| Total                                                   | 75    |

• In respect of external examinations passing minimum is 45% for Post Graduate Courses and in total, aggregate of 50%.

Latest amendments and revisions as per UGC and TANSCHE Norms are taken into consideration in curriculum preparation.

## Distribution of Marks in % with K levels CIAI, II & Externa Assessment

| Blooms Taxonomy    | Internal Assessment |      | <b>External Assessment</b> |  |
|--------------------|---------------------|------|----------------------------|--|
|                    | I                   | II   |                            |  |
| Knowledge (K1      | 8 %                 | 8 %  | 5 %                        |  |
| Understanding (K2) | 8 %                 | 8 %  | 14 %                       |  |
| Apply (K3)         | 24 %                | 24 % | 27%                        |  |
| Analyze (K4)       | 30 %                | 30 % | 27%                        |  |
| Evaluate (K5)      | 30%                 | 30%  | 27%                        |  |

# BLUEPRINTFOR INTERNALASSESSMENT-I Articulation Mapping –K Levels with Course Learning Outcomes(CLOs)

|                                 |                   |            | Secti               | on A           | Section                   | on B                         | Section C                                                     | Section<br>D     |       |
|---------------------------------|-------------------|------------|---------------------|----------------|---------------------------|------------------------------|---------------------------------------------------------------|------------------|-------|
| Sl.No                           | CLOs              | K-Level    |                     | CQs<br>Choice) | Short Answ<br>(No Choice) | Short Answers<br>(No Choice) |                                                               | (Open<br>Choice) | Total |
|                                 |                   |            | No. of<br>Questions | K-Level        | No. of<br>Questions       | K-Level                      |                                                               |                  |       |
| 1                               | CLO1              | Upto<br>K5 | 1 2                 | K1<br>K2       | 1                         | K1<br>K3                     | 1(K3)<br>1(K5)                                                | 1(K4)            |       |
| 3.                              | CLO2              | Upto<br>K5 | 1                   | K1<br>K2       | 1 1                       | K1<br>K2                     | 1(K3) (Each set of questions must be in the same level) 1(K4) | 1(K4)<br>1(K5)   |       |
|                                 | . of Quest        | K5 ions to | 8                   | K2             | 6                         | К3                           | 8                                                             | 4                | 26    |
| No .of Questions to Be answered |                   | 8          |                     | 6              |                           | 4                            | 2                                                             | 20               |       |
| Marks for each question         |                   | 1          |                     | 2              |                           | 5                            | 10                                                            |                  |       |
|                                 | tal Marks<br>tion | for each   | 8                   |                | 12                        |                              | 40                                                            | 40               | 100   |

# BLUEPRINT FORINTERNALASSESSMENT– II Articulation Mapping –K Levels with Course Learning Outcomes (CLOs)

|       |                                 | CLOs<br>K-Level | Secti               | ion A                          | Section             | on B     | Section C                                               | Section D        |       |
|-------|---------------------------------|-----------------|---------------------|--------------------------------|---------------------|----------|---------------------------------------------------------|------------------|-------|
| Sl.No | CLOs                            |                 |                     | MCQs Short Answers (No Choice) |                     |          |                                                         | (Open<br>Choice) | Total |
|       |                                 |                 | No. of<br>Questions | K-Level                        | No. of<br>Questions | K-Level  |                                                         |                  |       |
| 1     | CLO3                            | Upto<br>K5      | 1 2                 | K1<br>K2                       | 1 1                 | K1<br>K3 | 1(K1)<br>1(K2)                                          | 1(K3)            |       |
| 2     | CLO4                            | Upto<br>K5      | 2 1                 | K1<br>K2                       | 1 1                 | K1<br>K2 | 1(K3) (Each set of questions must be in The same level) | 1(K4)<br>1(K5)   |       |
| 3.    | CLO5                            | Upto<br>K5      | 1 1                 | K1<br>K2                       | 1 1                 | K2<br>K3 | 1(K4)                                                   | 1(K5)            |       |
|       | of Quest<br>asked               | ions to         | 8                   |                                | 6                   |          | 8                                                       | 4                | 26    |
| No    | No. of Questions to Be answered |                 | 8                   |                                | 6                   |          | 4                                                       | 2                | 20    |
|       | Marks for each question         |                 | 1                   |                                | 2                   |          | 5                                                       | 10               |       |
| To    | tal Marks<br>tion               | for each        | 8                   |                                | 12                  |          | 40                                                      | 40               | 100   |

## Distribution of Marks with choice K Levels CIA I – CIA and II-CIA

| CIA | K<br>Levels | Section-<br>AMCQ<br>(No choice) | Section –B<br>(Short<br>Answer(No<br>choice) | Section-<br>C(Either<br>or Type) | Section-D<br>(Open<br>Choice) | Total Marks | % of<br>Marks |
|-----|-------------|---------------------------------|----------------------------------------------|----------------------------------|-------------------------------|-------------|---------------|
|     | K1          | 4                               | 4                                            |                                  |                               | 8           | 8             |
| I   | K2          | 4                               | 4                                            |                                  |                               | 8           | 8             |
|     | K3          |                                 | 4                                            | 20                               |                               | 24          | 24            |
|     | K4          |                                 |                                              | 10                               | 20                            | 30          | 30            |
|     | K5          |                                 |                                              | 10                               | 20                            | 30          | 30            |
|     | Marks       | 8                               | 12                                           | 40                               | 40                            | 100         | 100           |
|     | K1          | 4                               | 4                                            |                                  |                               | 8           | 8             |
|     | K2          | 4                               | 4                                            |                                  |                               | 8           | 8             |
| II  | К3          |                                 | 4                                            | 20                               |                               | 24          | 24            |
|     | K4          |                                 |                                              | 10                               | 20                            | 30          | 30            |
|     | K5          |                                 |                                              | 10                               |                               | 30          | 30            |
|     |             |                                 |                                              |                                  | 20                            |             |               |
|     | Marks       | 8                               | 12                                           | 40                               | 40                            | 100         | 100           |

# Articulation Mapping –K Levels with Course Learning Outcomes (CLOs) for Internal Assessment (SEC)

| 0}                              | SC                           | K-Level | Sectio    |       | s Short Answers |       | Section C            | Section D        | Total   |
|---------------------------------|------------------------------|---------|-----------|-------|-----------------|-------|----------------------|------------------|---------|
| SI.No                           | cros                         | K.I     | MC(No ch  | -     |                 |       | (Either/ or<br>Type) | (open<br>choice) |         |
|                                 |                              |         | No. of    | K-    | No. of          | ` '   |                      |                  |         |
|                                 |                              |         | Questions | Level | Questions       | Level |                      |                  |         |
| 1                               | CLO1                         | Upto K4 | 2         | K1    |                 |       | 2(K3&K3)             | 1(K3)            |         |
| 2                               | CLO2                         | Upto K4 | 2         | K1    |                 |       | 2(K3&K3              | 1(K4)            |         |
| 3                               | CLO3                         | Upto K4 |           |       | 2               | K2    | 2(K4&K4)             | 1(K4)            |         |
| 4                               | CLO4                         | Upto K5 |           |       | 2               | K2    | 2(K5&K5)             | 1(K5)            |         |
| 5                               | CLO5                         | Upto K5 |           |       | 2               | K2    |                      | 1(K5)            |         |
|                                 | No. of Questions to be asked |         | 4         |       | 3               |       | 8                    | 5                | 20      |
| No. of Questions to be answered |                              | 4       |           | 3     |                 | 4     | 2                    | 13               |         |
| Marks for each question         |                              | 1       |           | 2     |                 | 5     | 10                   |                  |         |
| Tot                             | tal Marks f                  | or each | 4         | •     | 6               |       | 20                   | 20               | 50      |
| sec                             | tion                         |         |           |       |                 |       |                      |                  | (Marks) |

## Distribution of Section-wise Marks with K Levels for Internal Assessment (SEC)

| K Levels | Section A<br>(MCQ'S)<br>(No choice) | Section<br>B(Short<br>Answer)<br>(No choice) | Section<br>C(Either or<br>Type) | Section D<br>(Open<br>Choice) | Total<br>Marks | % of Marks |
|----------|-------------------------------------|----------------------------------------------|---------------------------------|-------------------------------|----------------|------------|
| K1       | 4                                   |                                              |                                 |                               | 4              | 4          |
| K2       |                                     | 6                                            |                                 |                               | 6              | 6          |
| K3       |                                     |                                              | 20                              | 10                            | 30             | 30         |
| K4       |                                     |                                              | 10                              | 20                            | 30             | 30         |
| K5       |                                     |                                              | 10                              | 20                            | 30             | 30         |
| Total    | 4                                   | 6                                            | 40                              | 50                            | 100            |            |
| Marks    |                                     |                                              |                                 |                               |                |            |

- K1-Rememberingandrecallingfactswithspecificanswers.
- K2- Basic understanding off acts and stating main ideas with general answers.
- K3-Application oriented Solving Problems, Justifying the statement and deriving inferences
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5-Evaluating, making Judgments based on criteria

## Articulation Mapping -K Levels with Course Learning Outcomes(CLOs) for External Assessment

| ογ    | sc            | K-Level    | Section             |             | Section B  Short Answers (No choice) |             | Section C           | Section D        | Total   |
|-------|---------------|------------|---------------------|-------------|--------------------------------------|-------------|---------------------|------------------|---------|
| SI.No | CLOs          | K-L        | MC<br>(No ch        | -           |                                      |             | (Either/or<br>Type) | (open<br>choice) |         |
|       |               |            | No. of<br>Questions | K-<br>Level | No. of<br>Questions                  | K-<br>Level |                     |                  |         |
| 1     | CLO1          | Upto K4    | 2                   | K1&K2       | 1                                    | K1          | 2(K2&K2)            | 1(K3)            |         |
| 2     | CLO2          | Upto K4    | 2                   | K1&K2       | 1                                    | K2          | 2(K3&K3)            | 1(K4)            |         |
| 3     | CLO3          | Upto K4    | 2                   | K1&K2       | 1                                    | К3          | 2(K3&K3)            | 1(K4)            |         |
| 4     | CLO4          | Upto K5    | 2                   | K1&K2       | 1                                    | K4          | 2(K4 &K4)           | 1(K5)            |         |
| 5     | CLO5          | Upto K5    | 2                   | K1&K2       | 1                                    | K5          | 2(K5 &K5)           | 1(K5)            |         |
| No.   | of Questioned | ons to be  | 10                  |             | 5                                    |             | 10                  | 5                | 30      |
|       | of Question   | ons to be  | 10                  |             | 5                                    |             | 5                   | 3                | 23      |
| Ma    | rks for eacl  | n question | 1                   |             | 2                                    |             | 5                   | 10               |         |
| Tot   | al Marks fo   | or each    | 10                  |             | 10                                   |             | 25                  | 30               | 75      |
| sect  | tion          |            |                     |             |                                      |             |                     |                  | (Marks) |

## Distribution of Section-wise Marks with K Levels for External Assessment

| K Levels | SectionA<br>(MCQ'S)<br>(No choice) | Section<br>B(Short<br>Answer)<br>(No choice) | Section<br>C(Either or<br>Type) | Section<br>D(Open<br>Choice) | Total<br>Marks | % of Marks |
|----------|------------------------------------|----------------------------------------------|---------------------------------|------------------------------|----------------|------------|
| K1       | 5                                  | 2                                            | -                               | -                            | 7              | 5          |
| K2       | 5                                  | 2                                            | 10                              | -                            | 17             | 14         |
| K3       | -                                  | 2                                            | 20                              | 10                           | 32             | 27         |
| K4       | -                                  | 2                                            | 10                              | 20                           | 32             | 27         |
| K5       | -                                  | 2                                            | 10                              | 20                           | 32             | 27         |
| Total    | 10                                 | 10                                           | 50                              | 50                           | 120            | 100        |
| Marks    |                                    |                                              |                                 |                              |                |            |

- K1-Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3-Application oriented Solving Problems, Justifying the statement and deriving inferences
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5-Evaluating, making Judgments based on criteria

# E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3<sup>rd</sup> Cycle) with Grade  $A^+$  and CGPA 3.51 by NAAC

# **DEPARTMENT OF MATHEMATICS- PG**

(w.e.f. 2023 – 2024 Batch onwards)

# COURSE STRUCTURE –SEMESTER WISE TANSCHE-CBCS with OBE

| Sem | Part                                               | Course Code                           | Course Title Teachi<br>Hours<br>(per      |       | Duration of Exam hrs. | Marks Allotted |    |       |         |
|-----|----------------------------------------------------|---------------------------------------|-------------------------------------------|-------|-----------------------|----------------|----|-------|---------|
|     |                                                    |                                       |                                           | Week) |                       | CIA            | SE | Total | Credits |
| I   | 230PMA11 Core I: Algebraic Structures              |                                       | Core I: Algebraic Structures              | 7     | 3                     | 25             | 75 | 100   | 5       |
|     | III                                                | III 23OPMA12 Core II: Real Analysis I |                                           | 7     | 3                     | 25             | 75 | 100   | 5       |
|     | 23OPMA13 Core III: Ordinary Differential Equations |                                       | Core III: Ordinary Differential Equations | 6     | 3                     | 25             | 75 | 100   | 4       |
|     |                                                    |                                       | DSEC1:                                    | 5     | 3                     | 25             | 75 | 100   | 3       |
|     | DSEC II:                                           |                                       |                                           |       | 3                     | 25             | 75 | 100   | 3       |
|     |                                                    | То                                    | tal                                       | 30    |                       |                |    |       | 20      |
|     |                                                    | 23OPMA21                              | Core IV : Advanced<br>Algebra             | 6     | 3                     | 25             | 75 | 100   | 5       |
| II  | III                                                | 23OPMA22                              | Core V: Real Analysis II                  | 6     | 3                     | 25             | 75 | 100   | 5       |
|     |                                                    | 23OPMA23                              | Core VI: Partial Differential Equations   | 6     | 3                     | 25             | 75 | 100   | 4       |
|     |                                                    |                                       | DSEC III:                                 | 5     | 3                     | 25             | 75 | 100   | 3       |
|     |                                                    |                                       | DSEC IV:                                  | 5     | 3                     | 25             | 75 | 100   | 3       |
|     | IV                                                 | 23OPMASEC2                            | SEC: Office Automation and ICT Tools      | 2     | 3                     | 25             | 75 | 100   | 2       |
|     |                                                    | 7                                     | Total                                     | 30    |                       |                |    |       | 22      |

## **DSEC** – Discipline Specific Elective Course

SEC - Skill Enhancement Course

## **DSEC** (Discipline Specific Elective Course)

## Semester – I (Choose any one)

## DSEC - I

- 1. Number Theory and Cryptography 23OPMADSE1A
- 2. Graph theory and its Applications -23OPMADSE1B

## DSEC - II (Choose any one)

- 1. Mathematical Programming 23OPMADSE1C
- 2. Fuzzy Sets and their Applications -230PMADSE1D

## Semester – II

## DSEC - III (Choose any one)

- 1. Modelling and Simulation with Excel 23OPMADSE2A
- 2. Fluid Dynamics 23OPMADSE2B

## DSEC - IV (Choose any one )

- 1. Mathematical Statistics 230PMADSE2C
- 2. Stochastic Process 230PMADSE2D

|     | Department of Mathematics |             |                                   |         |                       | I M.Sc., |    |       |
|-----|---------------------------|-------------|-----------------------------------|---------|-----------------------|----------|----|-------|
| Sem | Category                  | Course Code | Course Title                      | Credits | Contact<br>Hours/week | CIA      | SE | Total |
| 1   | DSEC                      | 23OPMADSE1A | Number Theory And<br>Cryptography | 3       | 5                     | 25       | 75 | 100   |

| Nature of the Course            |                        |                           |  |  |  |  |  |
|---------------------------------|------------------------|---------------------------|--|--|--|--|--|
| Knowledge and Skill<br>Oriented | Employability Oriented | Entrepreneurship oriented |  |  |  |  |  |

# **Course Objectives:**

To provide an introduction to analytic number theory and recent topics or Cryptography with applications

## **Course Content:**

| Unit | Course Content                                                                                                                                                                                                              | 75 Hours | K Level | CLO  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|
| I    | Introduction –Conjectures - Well Ordering and Induction – Sigma notation and product notation - Binomial Coefficients – Greatest Integer functions – Divisibility – Greatest Common Divisor (GCD) – Euclid Algorithm.       | 15       | Up toK4 | CLO1 |
| II   | Introduction – primes counting function – prime number theorem –canonical factorization – fundamental theorem of arithmetic – Seive of Eratosthenes – Determining factorization                                             | 15       | Up toK4 | CLO2 |
| III  | Congruence – equivalence relations- linear congruences – linear Diophantine equations and Chinese remainder theorem – Polynomial Congruences – modular arithmetic and Fermat's theorem – Wilson's theorem and Fermat number | 15       | Up toK4 | CLO3 |
| IV   | Arithmetic functions – Sigma function - tau functions – Dirichlet product – quadratic reisdues and Legendre symbols .                                                                                                       | 15       | Up toK5 | CLO4 |
| V    | Cryptography: Introduction – Character Ciphers – Block<br>Ciphers – One time Pods – Public – Key Cryptography                                                                                                               | 15       | Up toK5 | CLO5 |

# **Books for study:**

Neville Robbins; Beginning Number Theory, Second Edition, Narosa, 2006

## **Chapters:**

| UNIT | CHAPTER(S) | SECTIONS        |
|------|------------|-----------------|
| I    | 1,2        | 1.1 - 1.6 & 2.2 |
| II   | 3          | 3.1- 3.3        |
| III  | 4          | 4.2- 4.7        |
| IV   | 5,7        | 5.1-5.2 & 7.2   |
| V    | 12         | 12.1 - 12.5     |

#### **Books for Reference:**

- 1. Tom Apostol, Introduction to Analytic Number theory, Narosa Publications, New Delhi
- 2. Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, New York, 1987.
- 3. David M.Burton, Elementary Number Theory, Wm.C.Brown Publishers, Dubuque, Iowa, 1989.

#### Web Resources:

- 1. http://mathforum.org,
- 2. http://ocw.mit.edu/ocwweb/Mathematics,
- 3. <a href="http://www.opensource.org">http://www.opensource.org</a>,
- 4. https://onlinecourses.nptel.ac.in/noc20\_ma42/preview

## **Pedagogy:**

Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

#### Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

## **Course Learning Outcome (CLOs)**

On completion of the course, behind the students would be able to:

| No.  | Course Learning Outcomes                                                         | Knowledge Level (According to Bloom's Taxonomy) |
|------|----------------------------------------------------------------------------------|-------------------------------------------------|
| CLO1 | Understand the properties of divisibility and congruence.                        | Up to K4                                        |
| CLO2 | Use arithmetic functions in area of mathematics                                  | Up to K4                                        |
| CLO3 | Understand and use the theorems ,Chinese reminder theorem and Lagrange's theorem | Up to K4                                        |
| CLO4 | Know the applications of reciprocity law and Diophantine equation                | Up to K5                                        |
| CLO5 | Apply elementary number theory concepts in cryptography.                         | Up to K5                                        |

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

## Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 3   | 3   | 1   | 1   | 3   | 3   |
| CLO2 | 3   | 3   | 2   | 2   | 1   | 3   |
| CLO3 | 3   | 3   | 2   | 2   | 2   | 3   |
| CLO4 | 3   | 2   | 2   | 2   | 1   | 3   |
| CLO5 | 3   | 3   | 2   | 2   | 1   | 3   |

1-Basic Level 2- Interme

2- Intermediate Level

3- Advanced Level

## **Lesson Plan:**

| UNIT | DESCRIPTION                                               | 75 I | Hours | PEDAGOGY             |
|------|-----------------------------------------------------------|------|-------|----------------------|
|      | Divisibility - Division algorithm                         | 2    |       | Chalk and Talk,      |
|      | GCD, Euclidean algorithm                                  | 2    |       | Problem Solving,     |
|      | LCM and Properties                                        | 2    |       | Tutorial             |
| I    | Congruence's - Euler's Theorem                            | 2    | 15    |                      |
|      | Fermat's theorem – Wilson's theorem                       | 3    |       |                      |
|      | Solutions of congruence's – The Chinese Remainder Theorem | 4    |       |                      |
|      | Quadratic residues – Lemma of Gauss                       | 8    |       | Chalk and Talk,      |
| II   | Gaussian reciprocity law – Jacobi symbol.                 | 7    | 15    | Problem Solving,     |
|      |                                                           |      |       | Tutorial             |
| ***  | Greatest integer function                                 | 5    |       | Chalk and Talk,      |
| III  | Arithmetic functions                                      | 5    | 15    | Problem Solving,quiz |
|      | The Moebius Inversion formula                             | 5    |       |                      |
|      | Diophantine Equation – The linear equation –              | 0    |       | C1 11 1 T 11         |
| IV   | Pythagorean Triangle                                      | 8    |       | Chalk and Talk,      |
|      | The equation $x^2 y^2 z^2$                                | 7    | 15    | Problem Solving      |
|      | Discrete logarithm- Principles of public key              | 5    | 1     |                      |
| v    | Cryptosystem – RSA algorithm                              | 5    |       | Chalk and Talk,      |
| •    | Elliptic curve cryptography.                              |      | 15    | Problem Solving      |
|      | Total                                                     |      | 75    |                      |

|     | I M.Sc., |             |              |         |            |     |    |       |
|-----|----------|-------------|--------------|---------|------------|-----|----|-------|
| Sem | Category | Course Code | Course Title | Credits | Contact    | CIA | SE | Total |
|     |          |             |              |         | Hours/week |     |    |       |
| 1   | DSEC     | 23OPMADSE1C | Mathematical | 3       | 5          | 25  | 75 | 100   |
|     |          |             | Programming  |         |            |     |    |       |

| Nature of the Course            |                        |                           |  |  |
|---------------------------------|------------------------|---------------------------|--|--|
| Knowledge and Skill<br>Oriented | Employability Oriented | Entrepreneurship oriented |  |  |

## **Course Objectives:**

- To introduce the Revised simplex method and to make them performparametric analysis.
- To make them understand the limitations of simplex method in deriving integer solution to linear programming problems.
- To illustrate various dynamic programming models and their applications in solving a decision-problem.
- To introduce the concept of classical optimization techniques.
- To appreciate the use of some of the non-linear programming techniques such as quadratic and separable programming.

## **Course Content:**

| Unit | Course Content                                                                                                                                                                                                                                                                                                                                                                                                   | 75 Hours | K Level | CLO  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|
| I    | Network Models: Network Definitions – Minimal Spanning tree Algorithm – Shortest Route Problem – Examples of the Shortest Route Applications – Shortest Route Algorithms – Maximal flow Model – Maximum flow algorithm - CPM – PERT – CPM Computations – Construction of the Time Schedule.                                                                                                                      | 15       | Up toK3 | CLO1 |
| П    | Deterministic Inventory Models: General Inventory Model - Role of demand in the development of Inventory models - Static Economic order Quantity EOQ Models - Classic EOQ Model - EOQ Problems with Price Breaks - Multiitem EOQ with storage limitation- Dynamic EOQ models - No- Setup model - Set up model                                                                                                    | 15       | Up toK4 | CLO2 |
| III  | Queuing Systems: Elements of Queuing model - Role of Exponential Distribution - Pure Birth and Death Models - Pure Birth models _ Pure Death Model - Generalized poisson Queuing model - Specialized poisson Queues - Steady State Measures of Performance - Single Server Models - Multiple server models - Machine Servicing Model (M/M/R) (GD/K/K); R <k< td=""><td>15</td><td>Up toK4</td><td>CLO3</td></k<> | 15       | Up toK4 | CLO3 |

| IV | Classical Optimization Theory: Unconstrained Problems: Necessaryand Sufficient Conditions – The Newton-Raphson Method – Constrained Problems: Equality Constraints – Inequality Constraints (Karush-Kuhn-Tucker Conditions) | 15 | Up toK5 | CL<br>O4 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|----------|
| V  | Nonlinear Programming Algorithms: Unconstrained Algorithms: Direct search method – Gradient method – Constrained Algorithms: Separable Programming – Quadratic Programming.                                                 | 15 | Up toK5 | CL<br>O5 |

## **Book for study:**

Hamdy A. Taha, *Operations Research*, (Seventh edition) Pearson Prentice Hall of India Private Limited, New Delhi, 1997.

## **Chapters:**

| UNIT | CHAPTER(S) | SECTIONS                           |
|------|------------|------------------------------------|
| Ţ    | 6          | 6.1,6.2,                           |
| 1    | O          | 6.3 - 6.3.1, 6.3.2,                |
|      |            | 6.4 - 6.4.2,                       |
|      |            | 6.5 – 6.5.1,6.5.2,6.5.3            |
| II   | 11         | 11.1, 11.2, 11.3 – 11.3.1, 11.3.2, |
| 11   | 11         | 11.3.3                             |
|      |            | 11.4 – 11.4.1, 11.4.2              |
| III  | 15         | 15.2, 15.3, 15.4- 15.4.1,15.4.2    |
| 111  | 13         | 15.5,15.6 – 15.6.1, 15.6.2,15.6.3, |
|      |            | 15.6.4                             |
| IV   | 18         | 18.1- 18.1.1, 18.1.2               |
|      |            | 18.2- 18.2.1, 18.2.2               |
| V    | 19         | 19.1 – 19.1.1, 19.1.2              |
| •    | 1)         | 19.2 – 19.2.1, 19.2.2              |

#### **Books for Reference:**

- 1. J.K.Sharma, Operations Research Theory and Applications (Fourth Edition), Macmillan India Ltd, New Delhi, 2009.
- 2. F.S. Hillier & J.Lieberman *Introduction to Operation Research* (7th Edition)Tata McGraw Hill Company, New Delhi, 2001.
- 3. Beightler. C, D.Phillips, B. Wilde, Foundations of Optimization (2nd Edition)Prentice Hall Pvt Ltd., New York, 1979
- 4. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd. New Delhi. 1990

#### **Web Resources:**

- 1. https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf
- 2. http://www.dl.behinehyab.com/Ebooks/LP/LP015\_800845\_www.behinehyab.com.pdf
- 3. https://coral.ise.lehigh.edu/~ted/teaching/ie406/

## **Pedagogy:**

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Semina

## Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

## **Course Learning Outcome (CLOs)**

On completion of the course, behind the students would be able to:

| CLO  | Course Learning Outcomes                                                                              | Knowledge Level (According to Bloom's Taxonomy) |
|------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| CLO1 | Know how Feasibility conditions Parametric changes in $c$ , Parametric changes in $b$                 | Up to K3                                        |
| CLO2 | Determine the Then Constraints – Integer Programming Algorithms Traveling Salesperson Problem         | Up to K4                                        |
| CLO3 | Illustrate the effect of Dynamic Programming Applications<br>Inventory Model                          | Up to K4                                        |
| CLO4 | To be able to Unconstrained Problems: Necessary and Sufficient Conditions – The Newton-Raphson Method | Up to K5                                        |
| CLO5 | To be able to understand the concept of Separable Programming – Quadratic Programming                 | Up to K5                                        |

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

## Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 3   | 3   | 1   | 1   | 3   | 3   |
| CLO2 | 3   | 3   | 2   | 2   | 1   | 3   |
| CLO3 | 3   | 3   | 2   | 2   | 2   | 3   |
| CLO4 | 3   | 2   | 2   | 2   | 1   | 3   |
| CLO5 | 3   | 3   | 2   | 2   | 1   | 3   |

1-Basic Level

2- Intermediate Level

3- Advanced Level

# **Lesson Plan**

| Unit | Description                                                                                 | 75 H | Iours | Mode                   |
|------|---------------------------------------------------------------------------------------------|------|-------|------------------------|
|      | Network Definitions - Minimal Spanning tree Algorithm – Shortest Route<br>Problem           | 2    |       |                        |
|      | Examples of the Shortest Route Applications                                                 | 5    |       | Lecture,               |
| I    | Shortest Route Algorithms – Maximal flow Model – Maximum flow algorithm                     | 4    | 15    | Discussion,            |
| 1    | CPM – PERT – CPM Computations – Construction of the Time Schedule.                          | 4    |       | Tutorial,<br>Quiz      |
|      | General Inventory Model - Role of demand in the development of Inventory models             | 4    |       |                        |
|      | Static Economic order Quantity EOQ Models                                                   | 4    |       | Lecture, Quiz          |
| II   | Classic EOQ Model – EOQ Problems with Price Breaks – Multi item EOQ with storage limitation | 4    | 15    | Group<br>Discussion,   |
|      | Dynamic EOQ models – No- Setup model – Set up model                                         | 3    |       | Tutorial               |
| III  | Elements of Queuing model - Role of Exponential Distribution                                | 2    |       | PPT,                   |
|      | Pure Birth and Death Models – Pure Birth models _ Pure Death Model                          | 3    |       | Lecture,Quiz,          |
|      | Generalized poisson Queuing model – Specialized poisson Queues                              | 2    | 15    | Tutorial               |
|      | Steady State Measures of Performance – Single Server Models – Multiple server models        | 5    |       |                        |
|      | Machine Servicing Model (M/M/R) (GD/K/K); R <k< td=""><td>3</td><td></td><td></td></k<>     | 3    |       |                        |
| IV   | Unconstrained Problems: Necessary and Sufficient Conditions Equality Constraints –          | 5    | 15    | PPT, Lecture           |
|      | The Newton-Raphson Method – Constrained Problems:                                           | 2    |       |                        |
|      | Inequality Constraints (Karush-Kuhn-Tucker Conditions)                                      | 8    |       |                        |
|      | Unconstrained Algorithms: Direct search method –Constrained Algorithms:–                    | 5    |       |                        |
|      | Gradient method                                                                             | 3    | 15    | Assignment,<br>Seminar |
| V    | Separable Programming                                                                       | 5    | 1     |                        |
|      | Quadratic Programming.                                                                      | 2    | 1     |                        |
|      | Total                                                                                       |      | 75    |                        |

|     | Department of Mathematics |             |                                   |         | •                     | ] | I M.Sc., |    |       |
|-----|---------------------------|-------------|-----------------------------------|---------|-----------------------|---|----------|----|-------|
| Sem | Category                  | Course Code | Course Title                      | Credits | Contact<br>Hours/week |   | CIA      | SE | Total |
| 1   | DSEC                      | 23OPMADSE1B | Graph Theory and its Applications | 3       |                       | 5 | 25       | 75 | 100   |

| Nature of the Course |                        |                           |  |  |
|----------------------|------------------------|---------------------------|--|--|
| Knowledge and Skill  | Employability Oriented | Entrepreneurship oriented |  |  |
| Oriented             | Employability Oriented | Entrepreneurship oriented |  |  |

## **Course Objectives:**

- To enable the students to apply Graph Theritical Techniques in Applications.
- To demonstrate knowledge of Connectivity.
- To study relationship between Euler Tours and Hamilton Cycles.
- To make familiarity with Directed Graphs.
- To assist the students to explore social network analysis software.

## **Course Content:**

| Unit | Course Content                                                            | 75<br>Hours | K Level  | CLO   |
|------|---------------------------------------------------------------------------|-------------|----------|-------|
|      | Graphs and Subgraphs                                                      | 15          |          |       |
| _    | Definition and Examples of a Graph – Simple Graphs - Graphs Isomorphism-  |             |          |       |
| I    | The Incidence and Adjacency Matrices - Subgraphs – Vertex Degrees – Paths |             | Up to K4 | CLO1  |
|      | and Connection—Cycles - Trees - Cut Edges and Bonds — Cut Vertices —      |             |          |       |
|      | Cayley's Formula( Applications ) -The Connector Problem.                  |             |          |       |
|      | Connectivity                                                              | 15          |          |       |
| II   | Connectivity – Blocks (Applications) - Construction of Reliable           |             | Up to K4 | CLO2  |
|      | Communication Networks                                                    |             |          |       |
|      | Euler Tours and Hamilton Cycles                                           | 15          |          |       |
| III  | Euler Tours - Hamilton Cycles (Applications) - The Chinese Postman        |             | Up to K4 | CLO3  |
|      | Problem – The Travelling Salesman Problem.                                |             |          |       |
|      | Directed Graphs                                                           | 15          |          |       |
| IV   | Directed Graphs - Directed Paths - Directed Cycles (Applications) - A Job |             | Um to V5 | CI O4 |
| 1 V  | sequencing Problem - Designing an Efficient Computer Drum - Making a      |             | Up to K5 | CLO4  |
|      | Road System One-way - Ranking the Participants in Tournament.             |             |          |       |
|      | Networks                                                                  | 15          |          |       |
| V    | Flows-Cuts-The Max-Flow Min-Cut Theorem (Applications)-Menger's           |             | Up to K5 | CLO5  |
|      | Theorems - Feasible Flows                                                 |             |          |       |

## **Book for study:**

J.A. Bondy and U.S.R. Murty. (1982), Graph Theory with Applications. 5th print, North Holland.

## **Chapters:**

| UNIT | CHAPTER(S) | SECTIONS               |
|------|------------|------------------------|
| I    | 1and 2     | 1.1 to 1.7 &2.1 to 2.5 |
| II   | 3          | 3.1 to 3.3             |
| III  | 4          | 4.1 to 4.4             |
| IV   | 10         | 10.1 to 10.7           |
| V    | 11         | 11.1 to 11.5           |

#### **Books for Reference:**

- 1. John Clark. Derek Allan Holton. Graph Theory. University of Otago (1995).
- 2. Frank Harary, (1969), *Graph theory*, Addition-Wesley Publishing Company, First Edition.
- 3.Murugan.M.,(2003), Topics in Graph theory and Algorithms, Muthal Publishing House,
- 4. S.A. Choudum. *A First Course in Graph Theory*. Macmillan Publishers India Limited (2011).
- 5. Narasing Deo (2007), Graph Theory with Applications to Engineering and Computer science, Pretice.

#### Web Resources:

- 1. https://www.shahucollegelatur.org.in/Department/Studymaterial/sci/it/BCS/FY/book.pdf
- 2. https://www.flowsurfv3.net/c.php?cu=https%253A%252F%252Fwww.shahucollegelatur.org.in%252FDepartment %252FStudymaterial%252Fsci%252Fit%252FBCS%252FFY%252Fbook.pdf&sh=www.shahucollegelatur.org.in%2F...%2Fit%2FBCS%2FFY%2Fbook.pdf&l=IN&po=2&u=mbeh-20210420-ccmnet-flga33&a=3100&tr=1712umd71g10&keyword=Graph%2Btheory%2Bwith%2Bapplication%2Bpdf&aid=61a88bda894f1&t=8&bc=0&rt=1638435802.1301&n=3&loc=normal

#### E – Books:

- 1. http://www.freebookcentre.net/maths-books-download/Descriptive-Complexity,-Canonisation and-Definable-Graph-Structure-Theory.html
- 2. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

## **Pedagogy:**

Chalk and Talk, Group Discussions, Quiz, Assignment and Seminar

## Rationale for nature of Course: Knowledge and Skill:

Provides a helpful tool to quantity & simplify the many moving parts of dynamic systems

## Activities to be given:

Tocreate social graphs for their own social networks. Group Discussion, Seminar & Project

## **Course Learning Outcome (CLOs)**

On completion of the course, behind the students would be able to:

| CLO  | Course Learning Outcomes                                                | Knowledge Level<br>(According to<br>Bloom's Taxonomy) |
|------|-------------------------------------------------------------------------|-------------------------------------------------------|
| CLO1 | Examine the Graphs and Subgraphs .                                      | Up to K4                                              |
| CLO2 | Understand the Connectivity                                             | Up to K4                                              |
| CLO3 | Investigating the relationship between Euler Tours and Hamilton Cycles. | Up to K4                                              |
| CLO4 | Explain the Directed Graphs.                                            | Up to K5                                              |
| CLO5 | Compute the Analysis of Networks.                                       | Up to K5                                              |

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

## Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 3   | 2   | 3   | 3   | 2   | 3   |
| CLO2 | 3   | 3   | 3   | 2   | 3   | 3   |
| CLO3 | 3   | 2   | 2   | 3   | 3   | 3   |
| CLO4 | 3   | 3   | 2   | 2   | 3   | 3   |
| CLO5 | 3   | 2   | 3   | 2   | 2   | 3   |

## 1-Basic Level 2- Intermediate Level 3- Advanced Level

## **Lesson Plan**

| Unit | Course Content                                          | 75 Hours |    | Mode of Teaching                      |  |
|------|---------------------------------------------------------|----------|----|---------------------------------------|--|
|      |                                                         |          |    |                                       |  |
| I    | Definition and Examples of a Graph - Simple Graphs -    | 5        | 15 | Chalk & Talk, Quiz,                   |  |
|      | Graphs Isomorphism- The Incidence and Adjacency         |          |    | Exercise                              |  |
|      | Matrices – Subgraphs.                                   |          |    |                                       |  |
|      | Vertex Degrees – Paths and Connection–Cycles            | 5        |    |                                       |  |
|      | Trees - Cut Edges and Bonds - Cut Vertices - Cayley's   | 5        | _  |                                       |  |
|      | Formula                                                 |          |    |                                       |  |
|      | ( Applications ) -The Connector Problem.                | _        |    |                                       |  |
| II   | Connectivity.                                           | 5        | 15 | Chalk & Talk, PPTs,                   |  |
|      | Blocks (Applications).                                  | 5        |    | Quiz, Exercise                        |  |
|      | Construction of Reliable Communication Networks.        | 5        |    |                                       |  |
| III  | Euler Tours and Hamilton Cycles.                        | 5        | 15 | Chalk & Talk, PPTs,<br>Exercise, Quiz |  |
|      | The Chinese Postman Problem.                            | 5        |    | Exercise, Quiz                        |  |
|      | The Travelling Salesman Problem.                        | 5        |    |                                       |  |
| IV   | Directed Graphs - Directed Paths - Directed Cycles      | 5        | 15 | Chalk & Talk,                         |  |
|      | (Applications)                                          |          |    | Exercise PPTs, Quiz,                  |  |
|      | A Job sequencing Problem-Designing an Efficient         | 5        |    | seminar                               |  |
|      | Computer Drum  Making a Road System One–way Ranking the | 5        | 4  |                                       |  |
|      | Participants in Tournament                              | 3        |    |                                       |  |
|      | Flows-Cuts-The Max-Flow Min-Cut Theorem                 | 5        | 15 | Chalk & Talk,                         |  |
|      | (Applications).                                         |          |    | Exercise Quiz                         |  |
|      | Menger's Theorems                                       | 5        | 1  | Assignment PPTs,                      |  |
|      | Feasible Flows.                                         | 5        |    | seminar                               |  |
|      | Total                                                   |          | 75 |                                       |  |

|     | Department of Mathematics |             |                      |         |         |      | ]   | M.Sc., |       |
|-----|---------------------------|-------------|----------------------|---------|---------|------|-----|--------|-------|
| Sem | Category                  | Course Code | Course Title         | Credits | Cont    | act  | CIA | SE     | Total |
|     |                           |             |                      |         | Hours/v | week |     |        |       |
| 1   | DSEC                      | 23OPMADSE1D | Fuzzy Sets and their | 3       | 5       |      | 25  | 75     | 100   |
|     |                           |             | Applications         |         |         |      |     |        |       |

| Nature of the Course            |                        |                           |  |  |  |
|---------------------------------|------------------------|---------------------------|--|--|--|
| Knowledge and Skill<br>Oriented | Employability Oriented | Entrepreneurship oriented |  |  |  |

## **Course Objectives:**

- 1. To understand fundamental of fuzzy set.
- 2. To learn fuzzy set, Arithmetic operation on fuzzy set.
- 3. To understand fuzzy notation
- 4. To know about fuzzy relation.
- 5. To apply fuzzy logic in real world problem.

## **Course Content:**

| Unit | Course Content                                                                                                                             | 75Hours | K-Level  | CLO  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------|
|      |                                                                                                                                            |         |          |      |
| I    | Introduction ,Crisp Sets: An Overview, The Notation of Fuzzy Sets, Basic Concepts of Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic | 15      | Up to K4 | CLO1 |
| II   | General Discussion, Fuzzy Complement, Fuzzy Union, Fuzzy Intersection, Combinations of Operations, General Aggregation Operations.         | 15      | Up to K4 | CLO2 |
| III  | Crisp and Fuzzy Relations, Binary Relations, Binary Relations On a Single Set, Equivalence and Similarity Relations.                       | 15      | Up to K4 | CLO3 |
| IV   | Compatibility or Tolerance Relations, Orderings                                                                                            | 15      | Up to K5 | CLO4 |
| V    | Morphisms, Fuzzy Relation Equations                                                                                                        | 15      | Up to K5 | CLO5 |

## **Book for Study:**

Fuzzy Sets, Uncertainty and Information, George J.Klir, Tina A. Folger.

#### **Chapters:**

| UNIT | CHAPTER(S) | SECTIONS   |
|------|------------|------------|
| I    | 1          | 1.1 to 1.6 |
| II   | 2          | 2.1 to 2.6 |
| III  | 3          | 3.1 to 3.4 |
| IV   | 3          | 3.5 & 3.6  |
| V    | 3          | 3.7 & 3.8  |

#### **Books for Reference:**

- 1) Bhargava A.K *Fuzzy Set Theory Fuzzy Logic and Their Applications*, S.Chand& Company Pvt. Ltd.2013.
- 2) Chennakesava, R. Alavala, Fuzzy Logic and Neural Network Basic Concepts & Applications, New Age International Publishers 2008.
- 3) George J.Klir and Boyuan, Fuzzy sets Fuzzy Logic, Theory and Applications, Prentice Hall of India, 2002.
- 4) George Bojadziev and Maria Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications, 1996.
- 5) Bhargava A.K. Fuzzy Set Theory Fuzzy Logic and their Applications, 2013.

#### **Web Resources:**

- 1.https://cours.etsmtl.ca/sys843/REFS/Books/ZimmermannFuzzySetTheory2001.pdf
- 2. https://link.springer.com/book/10.1007/978-3-642-35221-8
- 3. https://www.b-farhadinia.ir/bfarhadiadmin/file/stdfile/Klir.pdf

#### E-books:

- 1. https://bookauthority.org/books/beginner-fuzzy-logic-ebooks
- 2. https://www.phindia.com/Books/ShowBooks/NzI/Fuzzy-Sets-and-Fuzzy-Logic
- 3. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119193210

#### **Pedagogy:**

Chalk and Talk, Group Discussion, Student Seminar, Spot Test, Assignments, Quiz.

#### **Rationale for Nature of the Course:**

## **Knowledge and Skill**

To understand the concept of fuzzy and its application in various field

## Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource

## **Course Learning Outcomes (CLO):**

On successful Completion of the course Students will be able to

| CLO  | Course Learning Outcomes                                              | Knowledge Level<br>(According to Bloom's<br>Taxonomy) |
|------|-----------------------------------------------------------------------|-------------------------------------------------------|
| CLO1 | Understand to Examine the Basic Concepts of Crisp sets and Fuzzy sets | Up to K4                                              |
| CLO2 | Describe Fuzzy Operations                                             | Up to K4                                              |
| CLO3 | Understand the concept of Fuzzy Arithmetic                            | Up to K4                                              |
| CLO4 | Determine the difference between Crisp and Fuzzy Relation             | Up to K5                                              |
| CLO5 | Use Fuzzy Relation as tools to Visualize and Simplify                 | Up to K5                                              |

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3– Application oriented Solving Problems
- K4 –Examining, analyzing, presentation and make inferences with evidences
- K5- Evaluating, making Judgments based on criteria

## **Mapping of Course Learning Outcome(CLOs) with Program Outcomes(Pos)**

| CLOs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 2   | 2   | 3   | 2   | 2   | 3   |
| CLO2 | 1   | 2   | 3   | 2   | 2   | 3   |
| CLO3 | 2   | 3   | 2   | 2   | 2   | 1   |
| CLO4 | 2   | 2   | 3   | 2   | 2   | 2   |
| CLO5 | 2   | 2   | 3   | 2   | 2   | 3   |

## 1 – Basic Level

- 2 Intermediate Level
- 3- Advance Level

# **Lesson Plan:**

| Units | Course Contents                                                        | 75 Ho | urs | Mode of Teaching        |
|-------|------------------------------------------------------------------------|-------|-----|-------------------------|
|       | Introduction, Crisp Sets                                               | 5     |     | Chalk & Talk            |
| I     | An Overview: The Notation of Fuzzy Sets.                               | 5     | 15  |                         |
|       | Basic Concepts: Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic. | 5     |     |                         |
|       | General Discussion, Fuzzy Complement,                                  | 5     |     | Chalk & Talk            |
|       | Fuzzy Union , Fuzzy Intersection                                       |       | 15  |                         |
| II    | Fuzzy Intersection, Combinations of Operations                         | 10    |     |                         |
|       | Combinations of Operations, General Aggregation                        |       |     |                         |
|       | Operations.                                                            |       |     |                         |
|       | Crisp and Fuzzy Relations                                              | 5     |     | Chalk & Talk, Spot Test |
|       | Relations, Binary Relations On a Single Set                            | 5     |     | Group Discussion        |
| III   | Equivalence and Similarity Relations                                   | 5     | 15  |                         |
|       |                                                                        |       |     |                         |
|       | Compatibility                                                          | 5     |     | Chalk & Talk            |
|       | Tolerance Relations                                                    | 5     |     |                         |
| IV    | Orderings                                                              | 5     | 15  |                         |
|       |                                                                        |       |     |                         |
|       | Morphisms                                                              | 10    |     | Chalk & Talk            |
| V     | Fuzzy Relation and Equation                                            | 5     | 15  | Students Seminar        |
|       |                                                                        |       |     |                         |
|       | Total                                                                  |       | 75  |                         |

| Department of Mathematics |          |             |                 |         |            | I M.Sc., |    |       |
|---------------------------|----------|-------------|-----------------|---------|------------|----------|----|-------|
| Sem                       | Category | Course Code | Course Title    | Credits | Contact    | CI       | SE | Total |
|                           |          |             |                 |         | Hours/week | A        |    |       |
| 2                         | DSEC     | 23OPMADSE2A | Modelling And   | 3       | 5          | 25       | 75 | 100   |
|                           |          |             | Simulation With |         |            |          |    |       |
|                           |          |             | Excel           |         |            |          |    |       |
|                           |          |             |                 |         |            |          |    |       |

| Nature of the Course            |                        |                           |  |  |  |
|---------------------------------|------------------------|---------------------------|--|--|--|
| Knowledge and Skill<br>Oriented | Employability Oriented | Entrepreneurship oriented |  |  |  |

## **Course Objectives:**

• To introduce the concepts and to develop working knowledge on Excel, Calculation in Excel, Formatting the Spread sheet, working with tables and Charts.

#### **Course Content:**

| Unit | Course Content                                                                                                                                                             | 75 Hours | K Level | CLO  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|
| I    | First look at Excel: The screen and its Elements – Navigating the spreadsheet – Writing the cells – Adaptation of cell size – Selecting Cells.                             | 15       | Up toK3 | CLO1 |
| II   | <b>Calculations</b> : Formulas — Formulas with references — Functions—Copying cells: Simple copying — Series—Copying Formulas.                                             | 15       | Up toK4 | CLO2 |
| III  | <b>Formatting</b> : Text and colours – Number Formats – Date and Time – Formatting Tables – Conditional Formatting – Themes and Styles.                                    | 15       | Up toK4 | CLO3 |
| IV   | Working with Tables: Create a Table – Filtering – Auto filter –Advanced Filter – Advanced Filter with Formulas – Sorting – Pivot tables – Preserving Results.              | 15       | Up toK5 | CLO4 |
| V    | Charts: Bar Charts – Line Charts – Charts with both Columns and Lines – Circle Charts – Scatter Charts – Chart Sheet – Viewing and Printing – Viewing – Adjust Print Range | 15       | Up toK5 | CLO5 |

# **Book for study:**

Pc Software for Windows 98 made simple, R.K.Taxali, McGraw HillEducation, 2001

#### **Books for Reference:**

- 1. Microsoft Office Excel 2007, Torben Lage Frandsen, Torben LageFrandsen & Ventus Publishing Aps,
- 2. Guerrero, H. Excel Data Analysis Modelling and Simulation, Springer, London (2010)

#### Web Resources:

- http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
- <a href="http://www.opensource.org">http://www.opensource.org</a>, <a href="www.mathpages.com">www.mathpages.com</a>

## **Pedagogy:**

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

## Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and practical works and also insist them to check the books for references and web resources.

# other

## **Course Learning Outcome (CLOs)**

On completion of the course, behind the students would be able to:

|      |                                                                                                                | Knowledge Level       |
|------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| CLO  | Course Learning Outcomes                                                                                       | (According to Bloom's |
|      |                                                                                                                | Taxonomy)             |
| CLO1 | Illustrate the concepts of excel screen, navigating spreadsheet, Selecting cells                               | Up to K2              |
| CLO2 | Analyze the formulas, functions in excel, copying the cells, series and formulas                               | Up to K3              |
| CLO3 | Determine the text and colours, date and time, formatting tables and themes andstyles                          | Up to K3              |
| CLO4 | Apply to create a table, Filtering, sorting pivot tables and preserving results                                | Up to K4              |
| CLO5 | Enhance the knowledge in creating bar charts, line charts, circle charts, scattercharts and adjust print range | Up to K4              |

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

# Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 3   | 3   | 1   | 1   | 3   | 3   |
| CLO2 | 3   | 3   | 2   | 2   | 1   | 3   |
| CLO3 | 3   | 3   | 2   | 2   | 2   | 3   |
| CLO4 | 3   | 2   | 2   | 2   | 1   | 3   |
| CLO5 | 3   | 3   | 2   | 2   | 1   | 3   |

1-Basic Level 2- Intermediate Level 3- Advanced Level

## **Lesson Plan**

| Unit | Description                                                                                         | 75 Hours |    | Pedagogy                         |
|------|-----------------------------------------------------------------------------------------------------|----------|----|----------------------------------|
| I    | The screen and its Elements – Navigating the spreadsheet                                            | 10       | 15 | Lecture, Chalk and talk          |
|      | Writing the cells – Adaptation of cell size – Selecting Cells.                                      | 5        | =  | Lecture, Assignment              |
| п    | Calculations: Formulas – Formulas with references – Functions                                       | 10       | 15 | Lecture, Group<br>Discussion     |
|      | Copying cells: Simple copying – Series – Copying Formulas.                                          | 5        |    | Lecture, Assignment              |
| III  | Formatting: Text and colours – Number Formats – Date and Time                                       | 5        | 15 | Lecture, Seminar                 |
|      | Formatting Tables – Conditional Formatting – Themes and Styles.                                     | 10       |    | Lecture, Quiz                    |
| IV   | Working with Tables: Create a Table – Filtering – Auto filter – Advanced Filter                     | 10       | 15 | Lecture, Chalk and talk, Seminar |
|      | Advanced Filter with Formulas – Sorting – Pivot tables – Preserving Results.                        | 5        |    | Lecture, Assignment              |
|      | Charts: Bar Charts – Line Charts – Charts with both Columns and Lines                               |          |    | Lecture, PPT,<br>Seminar         |
| V    | Circle Charts – Scatter Charts – Chart Sheet – Viewing and Printing – Viewing – Adjust Print Range. | 10       | 15 | Lecture, Chalk andTalk           |
|      | Total                                                                                               |          | 75 |                                  |

|     | I M.Sc., |             |              |         |            |     |    |       |  |
|-----|----------|-------------|--------------|---------|------------|-----|----|-------|--|
| Sem | Category | Course Code | Course Title | Credits | Contact    | CIA | SE | Total |  |
|     |          |             |              |         | Hours/week |     |    |       |  |
| 2   | DSEC     | 23OPMADSE2B | Fluid        | 3       | 5          | 25  | 75 | 100   |  |
|     |          |             | Dynamics     |         |            |     |    |       |  |

| Nature of the Course |                        |                           |  |  |  |
|----------------------|------------------------|---------------------------|--|--|--|
| Knowledge and Skill  | Employability Oriented | Entrepreneurship oriented |  |  |  |
| Oriented             | Employability Offented | Entrepreneursing oriented |  |  |  |

## **Course Objectives**

- 1. To develop an application for properties of Newtonian Fluid.
- 2. To Study analytical solution to variety of simplified problems.
- 3. To understand the dynamics of fluid flows and governing the non-dimensional parameters.
- 4. To give fundamental knowledge of fluid, its properties and behavior under various conditions of internal and external flows.

## **Course Content:**

| Unit | Course Content                                                                                                                                                                                                       | 75<br>Hours | K Level     | CLO  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------|
| I    | Real fluids and Ideal fluids- Velocity of a fluid at a point – streamlines path lines- velocity potential –Vorticity Vector – Equation of continuity – acceleration of a fluid                                       | 15          | Up to<br>K4 | CLO1 |
| II   | Equation of motion of a fluid: Pressure at a point in a fluid at rest – pressure at a point in a moving fluid-Euler's equations of motion – Bernoulli's Equation, Bernoulli's theorem.                               | 15          | Up to<br>K4 | CLO2 |
| III  | Some two-dimensional flows: meaning of two- dimensional flow –stream function – two dimensional image systems- Milne – Thomson circle theorem –Theorem of Blasius.                                                   | 15          | Up to<br>K4 | CLO3 |
| IV   | Elements of Thermodynamics: The equation of state of a substance – the first law of thermodynamics- internal energy of a gas – specific heats of a gas- function of state; Entropy-Maxwell's thermodynamics relation | 15          | Up to<br>K5 | CLO4 |
| V    | Shock waves: formation of shock waves – elementary analysis of normal shock waves –elementary analysis of oblique shock waves-the method of characteristics for two – dimensional ,homentropic, irrational flow.     | 15          | Up to<br>K5 | CLO5 |

### **Book for study:**

F.Chorlton: Text book of Fluid Dynamics, CBS publishers and Distributors Pvt.Limited,2004.

#### **Books for Reference:**

- 1. M.D.Raisinghania: Fluid Dynamics, S.Chand, 2003.
- 2. Michel Rieutord: Fluid Dynamics, Springer International Publishing, 2015.
- 3. Geoffrey K. Vallis Essentials of Atmospheric and Oceanic Dynamics 1st dition, 2019.
- 4. Richard W. Johnson: Handbook of Fluid Dynamics 2nd Edition.
- 5. George EmKarniadakis, Spencer J. SherwinSpectral/hp *Element Methods for Computational Fluid Dynamics* (Numerical Mathematics and Scientific Computation) 2nd Edition

#### Web Resourses:

- 1.https://www.meteo.physik.unimuenchen.de/lehre/roger/manuskripte/Fluid\_Dynamics.pdf
- 2. http://www.ccpo.odu.edu/~klinck/Reprints/PDF/groschBook2011.pdf
- 3.https://www.engineerclassroom.com/2019/01/a-textbook-of-fluid-mechanics-and\_18.html

#### E-books:

 $1. http://www.issp.ac.ru/ebooks/books/open/Advanced\_Fluid\_Dynamics.pdf$ 

 $2. \underline{https://www.u-cursos.cl/usuario/5d90bc31eadb7b756f4a0d3fd9789c4f/mi\_blog/r/1205763481Batchelor.-Introduction-to-Fluid-Dynamics.pdf}$ 

## **Pedagogy:**

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar Rationale for nature of Course:

#### **Knowledge and Skill:**

- Students will get the knowledge of basic principles of fluids mechanics
- To get the ability to analyze the fluid flow problems with the application of Bernoulli's theorem.

**Activities to be given:** We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insist them to check the Books for References and web resources.

## **Course Learning Outcome (CLOs)**

On completion of the course, behind the students would be able to:

| No.  | Course Learning Outcomes                                    | Knowledge Level (According to Bloom's Taxonomy) |
|------|-------------------------------------------------------------|-------------------------------------------------|
| CLO1 | Describe the principles of motion for fluids                | Up to K4                                        |
| CLO2 | Formulate the motion of fluid element                       | Up to K4                                        |
| CLO3 | Use the dimensional analysis and derive dimensional numbers | Up to K4                                        |
| CLO4 | Understanding of thermo dynamics properties and processes   | Up to K5                                        |
| CLO5 | Be able to analyze shock waves                              | Up to K5                                        |

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

## Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 2   | 1   | 3   | 2   | 3   | 3   |
| CLO2 | 1   | 2   | 2   | 2   | 1   | 3   |
| CLO3 | 1   | 1   | 3   | 3   | 1   | 3   |
| CLO4 | 2   | 2   | 2   | 2   | 2   | 3   |
| CLO5 | 2   | 2   | 3   | 2   | 3   | 3   |

## 1-Basic Level 2- Intermediate Level 3- Advanced Level

# **Lesson Plan**

| Unit | Course Content                                                                                     |    |       | Mode of                          |  |
|------|----------------------------------------------------------------------------------------------------|----|-------|----------------------------------|--|
|      |                                                                                                    | 75 | Hours | Teaching                         |  |
| 1    | Real fluids and Ideal fluids- Velocity of a fluid at a point                                       |    | 15    | Chalk and<br>Talk                |  |
|      | streamlines path lines- velocity potential                                                         | 5  |       |                                  |  |
|      | Vorticity Vector – Equation of continuity – acceleration of a fluid.                               | 5  |       |                                  |  |
| II   | Equation of motion of a fluid: Pressure at a point in a fluid at rest                              | 5  | 15    | Chalk and<br>Talk                |  |
|      | pressure at a point in a moving fluid-Euler's equations of motion                                  | 5  |       |                                  |  |
|      | Bernoulli's Equation, Bernoulli's theorem.                                                         | 5  |       |                                  |  |
| III  | Some two-dimensional flows: meaning of two-dimensional flow                                        | 5  | 15    | Chalk and<br>Talk                |  |
|      | stream function – two dimensional image systems                                                    |    |       |                                  |  |
|      | Milne – Thomson circle theorem –Theorem of Blasius.                                                | 5  |       |                                  |  |
| IV   | Elements of Thermodynamics: The equation of state of a substance – the first law of thermodynamics | 5  | 15    | PowerPoint Presentation &Seminar |  |
|      | internal energy of a gas – specific heats of a gas-<br>function of state; Entropy                  | 5  |       |                                  |  |
|      | Maxwell's thermodynamics relation                                                                  | 5  |       |                                  |  |
| V    | Shock waves: formation of shock waves – elementary analysis of normal shock waves                  |    | 15    | PowerPoint<br>Presentation       |  |
|      | elementary analysis of oblique shock waves-the method of characteristics for two                   | 5  |       | &Seminar                         |  |
|      | dimensional, homentropic, irrational flow.                                                         | 5  |       |                                  |  |
|      | Total                                                                                              |    | 75    |                                  |  |

|     | Department of Mathematics |             |              |         |            |     | I M.Sc., |       |
|-----|---------------------------|-------------|--------------|---------|------------|-----|----------|-------|
| Sem | Category                  | Course Code | Course Title | Credits | Contact    | CIA | SE       | Total |
|     |                           |             |              |         | Hours/week |     |          |       |
| 2   | DSEC                      | 23OPMADSE2C | Mathematical | 3       | 5          | 25  | 75       | 100   |
|     |                           |             | Statistics   |         |            |     |          |       |

| Nature of the Course            |                        |                           |  |  |  |
|---------------------------------|------------------------|---------------------------|--|--|--|
| Knowledge and Skill<br>Oriented | Employability Oriented | Entrepreneurship oriented |  |  |  |

## **Course Objectives:**

- To know the desirable qualities for an estimator and learn a number oftechniques for finding minimum variance
- To understands the elements of hypothesis test and be able to carry out number of different hypothesis test.
- To Formulate, test and interpret various hypothesis tests.
- To Characterize, compare, and contrast different nonparametrichypothesis tests.

| Unit | Course Content                                                                                                                                                                                                             | 75 Hours | K Level | CLO  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|
| I    | Distribution of Functions of Random Variables:  Sampling Theory – Transformations of Variables of the Discrete Type – Transformations of Variables of the Continuous Type – The t and F Distributions.                     | 15       | Up toK3 | CLO1 |
| II   | <b>Order Statistics:</b> Distributions of Order Statistics - The MomentGenerating Function Technique. The Distributions of $X$ and $ns^2/\sigma^2$ - Expectations of Functions of Random Variables.                        | 15       | Up toK4 | CLO2 |
| III  | <b>Estimation Theory:</b> Point Estimation – Measures of Quality of Estimators – Confidence Intervals for Means – Confidence Intervals for Differences of Means - Confidence Intervals for Variances – Bayesian Estimates. | 15       | Up toK4 | CLO3 |
| IV   | Statistical Hypothesis: Some Examples and Definitions – Certain Best Tests – Uniformly Most Powerful Tests – Likelihood Ratio Tests.                                                                                       | 15       | Up toK5 | CLO4 |
| V    | Nonparametric Methods: Confidence Intervals for Distribution Quantiles – Tolerance Limits for Distributions – The sign Test – A Test of Wilcoxon – The Equality of Two Distributions – The Mann Whitney – Wilcoxon Test.   | 15       | Up toK5 | CLO5 |

## **Book for study:**

Robert V. Hogg and Allen T. Craig, "Introduction to Mathematical Statistics" (Fourth Edition), Mcmillan publishing Co., Inc., New York.

## **Chapters**

| UNIT | CHAPTER(S)   | SECTIONS   |  |  |
|------|--------------|------------|--|--|
| I    | 4 4.1 to 4.4 |            |  |  |
| II   | 4            | 4.6 to 4.9 |  |  |
| III  | 6            | 6.1 to 6.6 |  |  |
| IV 7 |              | 7.1 to 7.4 |  |  |
| V    | 9            | 9.1 to 9.6 |  |  |

#### **Books for Reference:**

- 1. M. Fisz, Probability theory and Mathematical Statistics, John Wiley &Sons New York, 1963.
- 2. E.J. Dudewiczn and S.N.Mishra, Modern Mathematical Statistics, JohnWiley & Sons, New York, 1988.
- **3.** V.N. Rohatgi, An Introduction to Probability theory and MathematicalStatistics, Wiley Eastern Limited, New Delhi, 1988.

### Web Resources:

- <a href="http://mathforum.org">http://mathforum.org</a>,
- http://ocw.mit.edu/ocwweb/Mathematics,
- http://www.opensource.org
- https://stat.ethz.ch/~geer/mathstat.pdf

## **Pedagogy:**

Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

## Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

# **Course Learning Outcome (CLOs)**

On completion of the course, behind the students would be able to:

| CO  | Course learning                                                                                         | K-level |
|-----|---------------------------------------------------------------------------------------------------------|---------|
|     | outcome                                                                                                 |         |
| CO1 | To determine transformations of variables of discrete and continuous typesand t and F distributions.    | Upto K3 |
| CO2 | To compute order statistics, moment generating function and expectation of function of random variables | Upto K4 |
| CO3 | To construct point and interval estimators and evaluate their goodness.                                 | Upto K4 |
| CO4 | To decide as to which test of significance is to be applied for any given large sample problem.         | Upto K5 |
| CO5 | To analyze the different nonparametric methods in estimation, testing, model fitting, and in analyses.  | Upto K4 |

- K1- Remembering facts with specific answers
- K2-Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

## **Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|-----|-----|-----|-----|-----|-----|
| CLO1 | 3   | 3   | 1   | 1   | 3   | 3   |
| CLO2 | 3   | 3   | 2   | 2   | 1   | 3   |
| CLO3 | 3   | 3   | 2   | 2   | 2   | 3   |
| CLO4 | 3   | 2   | 2   | 2   | 1   | 3   |
| CLO5 | 3   | 3   | 2   | 2   | 1   | 3   |

1-Basic Level 2- Intermediate Level 3- Advanced Level

# **Lesson Plan**

| Unit | Topics                                                                                |   | 75 Hours | Mode                     |  |
|------|---------------------------------------------------------------------------------------|---|----------|--------------------------|--|
|      | Sampling Theory – Transformations of Variables of the                                 | 5 | 15       |                          |  |
| т    | Discrete Type                                                                         |   |          | Lastrona                 |  |
| I    | Transformations of Variables of the Continuous Type                                   | 5 |          | Lecture,<br>Quiz.        |  |
|      | The t and F Distributions.                                                            | 5 |          |                          |  |
| П    | Distributions of Order Statistics - The Moment Generating Function Technique.         | 5 |          |                          |  |
| 11   | The Distributions of $X$ and $ns^2/\sigma^2$                                          | 5 | 15       | Lecture, Quiz.           |  |
|      | Expectations of Functions of Random Variables.                                        | 5 |          | Zeeture, Quizi           |  |
|      | Point Estimation – Measures of Quality of Estimators .                                | 5 |          |                          |  |
| III  | Confidence Intervals for Means – Confidence Intervalsfor Differences of Means         | 5 |          | PPT,Lecture,<br>Quiz, GD |  |
|      | Confidence Intervals for Variances – Bayesian Estimates.                              | 5 | 15       |                          |  |
|      | Some Examples and Definitions – Certain Best Tests –                                  | 5 |          |                          |  |
|      | Uniformly Most Powerful Tests –.                                                      | 5 | 15       | PPT Lecture,             |  |
| IV   | Likelihood Ratio Tests.                                                               | 5 |          | Quiz.                    |  |
| V    | Confidence Intervals for Distribution Quantiles – Tolerance Limits for Distributions. | 5 |          |                          |  |
| ·    | The sign Test – A Test of Wilcoxon.                                                   |   | 15       | Assignment and           |  |
|      | The Equality of Two Distributions – The MannWhitney – Wilcoxon Test.                  | 5 |          | Seminar.                 |  |
|      | Total hours                                                                           |   | 75       |                          |  |

|     | Department of Mathematics                             |             |                    |   |            |     | I M.Sc | <b>:.,</b> |
|-----|-------------------------------------------------------|-------------|--------------------|---|------------|-----|--------|------------|
| Sem | Sem Category Course Code Course Title Credits Contact |             |                    |   |            | CIA | SE     | Total      |
|     |                                                       |             |                    |   | Hours/week |     |        |            |
| 2   | DSEC                                                  | 23OPMADSE2D | Stochastic Process | 3 | 5          | 25  | 75     | 100        |

| Nature of the Course            |                        |                           |  |  |  |  |
|---------------------------------|------------------------|---------------------------|--|--|--|--|
| Knowledge and Skill<br>Oriented | Employability Oriented | Entrepreneurship oriented |  |  |  |  |

## **Course Objectives:**

- Acquire intense knowledge on the underlying concepts of Stochastic processes
- Familiarize with Markov chain and system
- Obtain in-depth understanding of birth and death process
- ➤ Develop the acquaintance with applications of Markov process
- Comprehend the concept of renewal process

## **Course Content:**

| Unit | Course Contents                                                                                                                                                                                                                   | 75 Hours | K<br>Level | CLO  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|------|
| I    | Stochastic Processes -Specification of stochastic processes -<br>Stationary processes - Martingales - MarkovChains: Definitions<br>and Examples - Higher transition probabilities - Generalization of                             |          | Up toK3    | CLO1 |
|      | independent Bernoulli trials.                                                                                                                                                                                                     |          |            |      |
| II   | Markov Chains: Classification of States and Chains — Determination of Higher transition probabilities — Stability of Markov system —Graph theoretic approach — Markov chain with denumerable number of states — Reducible chains. | 15       | Up toK4    | CLO2 |
| III  | Poisson process: Poisson process and related distributions – Generalizations of Poisson process – Birth and death process – Markov process with discrete state space (Continuous time Markov chain).                              | 15       | Up toK4    | CLO3 |
| IV   | Markov Process with continuous state space – Brownian motion – Weiner process – Differential equations for Weiner Process – Kolmogorov equations.                                                                                 | 15       | Up toK4    | CLO4 |
| V    | Renewal process and renewal equation – Stopping time – Wald's equation – Renewal theorems.                                                                                                                                        | 15       | Up toK4    | CLO5 |

#### **Book for Study:**

Medhi.J, "Stochastic Processes", New Age International, Cochin, 2<sup>nd</sup> edition 2017.

| CHAPTER(S) | SECTIONS                |
|------------|-------------------------|
| 2& 3       | 2.1 to 2.4 & 3.1 to 3.3 |
| 3          | 3.4 to 3.9              |
| 4          | 4.1 to 4.5              |
| 5          | 5.1 to 5.4              |
| 6          | 6.1 to 6.5              |
|            | 2& 3<br>3<br>4<br>5     |

#### **Books for Reference:**

- 1) Leo Breiman., Probability and Stochastic Processes, Houghton Mifflin, 2008
- 2) Athanasios Papoulis., *Probability Random Variable & Stochastic Process*, McGraw Hill, International, IIEdition, 2004.
- 3) Peter Watts Jones & Peter Smith "Stochastic Processes An Introduction, Third Edition 2018
- 4) Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations(Texts in Applied Mathematics, 60) 2014th Edition
- 5) Edward P.C Kao "An Introduction to stochastic processes" Dover Publication 2019.

#### **Web Resources**

- 1. https://wwwf.imperial.ac.uk/~pavl/PavliotisBook.pdf
- 2. https://www.mdpi.com/books/pdfdownload/book/1855
- 3. http://www.ma.ic.ac.uk/~pavl/lecture\_notesM4A42.pdf

#### E-books

- 1. https://link.springer.com/chapter/10.1007/978-1-4939-1323-7\_1
- 2. https://link.springer.com/content/pdf/10.1007/978-3-030-22297-0.pdf

#### **Pedagogy:**

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

#### **Rationale for nature of Course**

## **Knowledge and Skill:**

Develop a deeper conceptual understanding of the theoretical basis Stability of Markov system – Graph theoretic approach

Apply stochastic problems

## Activities to be given:

We will be providing students with intellectual problems, theory application problems and other practical works and also insist them to check the Books for References and web

## **Course Learning Outcome (CLOs)**

## On completion of the course, behind the students would be able to:

| No.  | Course<br>Outcomes                                                | Knowledge Level (According to Bloom's Taxonomy) |
|------|-------------------------------------------------------------------|-------------------------------------------------|
| CLO1 | Correlate the concepts of stochastic processes with illustrations | Up to K3                                        |
| CLO2 | Illustrate Markov chain and its applications                      | Up to K4                                        |
| CLO3 | Compare the conceptualization of pure birth and deathprocess      | Up to K4                                        |
| CLO4 | Apply Markov process in solving problems                          | Up to K4                                        |
| CLO5 | Summarize the concepts of renewal process and its applications    | Up to K4                                        |

K1- Remembering facts with specific

## Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

|       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-------|-----|-----|-----|-----|-----|-----|
| CL 01 | 3   | 2   | 3   | 2   | 3   | 3   |
| CL O2 | 3   | 2   | 2   | 2   | 1   | 3   |
| CL O3 | 3   | 3   | 2   | 2   | 2   | 3   |
| CL O4 | 3   | 3   | 2   | 2   | 1   | 3   |
| CL O5 | 3   | 3   | 2   | 2   | 1   | 3   |

## 1. Basic Level 2- Intermediate Level 3- Advanced Level

K2- Basic understanding of facts.

K3- Application oriented

K4- Analyzing, examining and making presentations with evidences

## **Lesson Plan**

| Unit | Course Content                                                                                        | Hours | Total<br>Hours | Mode of<br>Teaching       |  |
|------|-------------------------------------------------------------------------------------------------------|-------|----------------|---------------------------|--|
| 1    | Stochastic Processes -Specification of stochastic processes - Stationary processes                    | 5     | 15             | Chalk & Talk              |  |
|      | Martingales - Markov Chains: Definitions and Examples                                                 | 5     |                |                           |  |
|      | Higher transition probabilities – Generalization of independent Bernoullitrials.                      | 5     |                |                           |  |
| II   | Markov Chains: Classification of States and Chains – Determination of Higher transition probabilities | 10    | 15             | Chalk & Talk              |  |
|      | Markov chain with denumerable number of states – Reducible chains.                                    | 5     |                |                           |  |
| III  | Poisson process: Poisson process and related distributions                                            | 5     | 15             | Chalk & Talk              |  |
|      | Generalizations of Poisson process – Birth and death process                                          |       |                |                           |  |
|      | Markov process with discrete state space (Continuous time Markov chain).                              | 5     |                |                           |  |
| IV   | Markov Process with continuous state space – Brownian motion                                          | 5     | 15             | PowerPoint<br>Presentatio |  |
|      | Weiner process – Differential equations for Weiner Process                                            | 5     |                | n&Seminar                 |  |
|      | Kolmogorov equations.                                                                                 | 5     |                |                           |  |
| V    | Renewal process and renewal equation                                                                  | 5     | 15             | PowerPoint Presentation & |  |
|      | Stopping time – Wald's equation                                                                       | 5     |                | Seminar                   |  |
|      | Renewal theorems.                                                                                     | 5     |                | Sellillar                 |  |
|      | Total hours                                                                                           | -     | 75             |                           |  |